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Effective model of loop extrusion predicts chromosomal domains
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An active loop-extrusion mechanism is regarded as the main out-of-equilibrium mechanism responsible for
the structuring of megabase-sized domains in chromosomes. We developed a model to study the dynamics of
the chromosome fiber by solving the kinetic equations associated with the motion of the extruder. By averaging
out the position of the extruder along the chain, we build an effective equilibrium model capable of reproducing
experimental contact maps based solely on the positions of extrusion-blocking proteins. We assessed the quality
of the effective model using numerical simulations of chromosomal segments and comparing the results with
explicit-extruder models and experimental data.
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I. INTRODUCTION

Chromosomes display a hierarchical structure of domains
during cellular interphase [1,2]. In mammals, the level of
topological associating domains (TADs), at the megabase
scale, constitutes the most important level in the hierarchy for
their role in controlling gene expression. The folding of TADs
has been described at a molecular level by an active loop-
extrusion mechanism [3], where a protein complex extrudes
chromatin loops and it can be stopped by proteins bound to
chromosome (for a review, see Refs. [4,5]).

The cohesin protein complex has been suggested to extrude
the chromatin fiber, keeping close in space the two chromo-
somal segments at which it is bound at a given time (see
Fig. 1). The extrusion activity can be stopped by CTCF pro-
teins bound to chromatin, thus stabilizing the contact between
the CTCF-bound chromosomal regions. In fact, enrichment in
CTCF has been observed in loci pivoting strong contacts [6].
Cells lacking either CTCF [7] or cohesin [8] display a reduced
structuring of TADs. Recently, microscopy experiments using
biochemically reconstructed systems showed that cohesin can
extrude chromatin in an ATP-dependent way [9,10].

An interesting feature of CTCF is that it is directional, in
the sense that it can bind asymmetrically to chromatin in both
directions and can stop efficiently cohesin only if it oriented
towards it, but not those oriented opposite to it [11]. This
directionality arises because CTCF is not simply a barrier
to the motion of cohesin, but interacts with it in a specific
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way. CTCF binds to DNA in a nonpalindromic way [12] and
a segment in its terminal segment interacts strongly with a
specific domain of cohesin [13]. The directionality of CTCF
seems to be at the basis of “corner peaks” observed in contact
maps of mammalian cells at the scale of 100 kbp [3,14].

Several polymeric models have been employed to describe
the conformation and the dynamics of chromatin at the length
scale of TADs [15]. They usually describe the chromosomal
segments as a chain of beads interacting with some contact
potential. Simulations of polymer chains including an addi-
tional degree of freedom that specify the position of extruders
along the chain were shown to produce contact maps which
are qualitatively similar to the experimental ones [3,11,16].
Polymeric simulations of a diffusing extruder produced real-
istic contact maps also without energy consumption [17,18],
even if experimental data suggest that ATP hydrolysis is a key
ingredient for extrusion [9,10]. A mechanistic model for ATP-
dependent translocation of cohesin is described in Ref. [19].

In the present work we studied the active, out-of-
equilibrium dynamics of cohesin along the chromatin fiber
and we built an effective model in which the position of co-
hesin along the chain is averaged out. In this way, we obtained
a polymer model controlled by an effective potential whose
equilibrium state reflect the distribution of conformations in
cellular nuclei.

The reason for building such an effective model is twofold.
On one side, it can be helpful to better understand the physics
that controls the conformational properties of chromosomes.
In fact, the reduction of the degrees of freedom maps chromo-
somes into systems that can be studied by standard polymer
theory. On the other side, it can be a predictive tool to generate
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FIG. 1. A sketch of the loop-extrusion mechanism. Cohesin dif-
fuses in the nucleus (a) and can be loaded onto the chromosome at a
random position (b). From here, it starts to run on the chromosome
(c), extruding its two strings and thus forming a loop (d). CTCF
proteins bound to chromosomes towards the running cohesin (black
arrows) can stop its motion (e). At any point, cohesin has a probabil-
ity to detach from the chromosome (f). (g) The position of cohesin
along the chain define the interactions that contribute to determining
the conformations {ri} of the chromosome.

contact maps of chromosomal regions based on the position of
CTCF, in a computationally more efficient way than explicit-
extruder models.

II. MOTION OF THE EXTRUDER

Some of the numerical parameters that are necessary to
build the model are known, see Appendix A. In particular, the
diffusion coefficient of cohesin in the nucleoplasm is much
larger than that of chromatin loci on the TAD length scale,
suggesting that one can assume cohesin to be well mixed
in cellular nucleus. Moreover, the time scale associated with
extrusion is slightly smaller than that associated with the
motion of the polymer chain on the TAD length scale. Even
if this difference is marginal, we tested the assumption that
the distribution of cohesin along the chain can be regarded
as stationary. We compared the results of the effective model
with both the experimental data and polymer model in which
cohesin in simulated explicitly, thus without making in this
case any assumption on its probability distribution.

Let us assume that the extruder can only walk towards the
ends of the chain, that it walks with constant rate in a fixed
direction and that it cannot overcome a CTCF molecule. Let
us define the binary quantities σ+

i and σ−
i that assume the

values 1 if site i contains a CTCF molecule oriented forward
and backward, respectively. We also define

δ̃±
i ≡ 1 − δσ±

i ,1 (1)

which assumes the value 0 in the sites with a CTCF molecule
oriented in the specified direction and thus it is able to stop
the motion of the extruder in that direction; it takes the value
1 otherwise.

The rate equation that describes the amount pi, j (t ) of ex-
truder linking sites i and j of the chromosomes is

d pi, j

dt
= konδ|i− j|,1 − koff pi, j + kδ̃−

i+1 pi+1, j

− kδ̃−
i pi, j + kδ̃+

j−1 pi, j−1 − kδ̃−
j pi, j, (2)

where kon is the loading rate of the extruder on the chromo-
some, koff the detachment rate, and k the advancement rate.
The stationary distribution can be obtained setting to zero the
time derivative for every i and j, that is

pi j = konδ|i− j|,1 + kδ̃−
i+1 pi+1, j + kδ̃+

j−1 pi, j−1

koff + k(δ̃−
i + δ̃+

j )
. (3)

This equation can be solved recursively, exploiting the fact
that pi j depends only on the probabilities pkl such that
i < k < l < j.

An important approximation that we implicitly did in
Eq. (2) is that multiple extruders do not interact with each
other by excluded volume when they walk on the chromo-
some.

A. Chromosome without CTCF

The simplest case is that in which the extruder can walk
freely on the chromosome in the absence of CTCF, as de-
scribed in Fig. 2(a).

In this case, Eq. (3) becomes

pi, j = konδ|i− j|,1 + kpi+1, j + kpi, j−1

koff + 2k
. (4)

Starting from the case i, i + 1 at which the extruder can bind,
one can write iteratively

pi,i+1 = kon

koff + 2k
≡ p0,

pi,i+2 = kpi+1,i+2 + kpi,i+1

koff + 2k
= 2k

koff + 2k
p0,

pi,i+3 = kpi+1,i+3 + kpi, j+2

koff + 2k
=

(
2k

koff + 2k

)2

p0

· · · ,

pi, j =
(

2k

koff + 2k

) j−i−1

p0, (5)

where use is made of the translational invariance pi+n, j+n =
pi j and the boundary condition pi,i = 0.

B. Contacts between sites within convergent CTCF

Consider a chromosome segment bordered by convergent
CTCF at sites ic and jc, as in Fig. 2(b). The value of pi j with
ic < i < j < jc depends only on the amount of extruder in the
interval from i to j, so for ic < i < j < jc Eq. (5) still holds.

Equation (3) can now be written as

pi j = konδ|i− j|,1+k(1 − δi+1,ic )pi+1, j +k(1 − δ j−1, jc )pi, j−1

koff + k(2 − δi,ic − δ j, jc )
.

(6)

The amount of extruder in sites containing a CTCF
molecule can be found from Eqs. (6) and (5). For example,
the term

pi, jc = kpi+1, jc + kpi, jc−1

koff + k
, (7)
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FIG. 2. A sketch of the different ways in which cohesin can
run, according to the position of CTCF. The pairs of bead indicate
the position of cohesin at the two chromosomal sites it encloses.
(a) A chromosomal segment where the extruder can move freely.
(b) The case in which the extruder is constrained by two convergent
CTCF molecules (i.e., σ+

ic
= 1 and σ−

jc
= 1). (c) The case in which

a further CTCF molecule prevents the motion of the extruder in one
direction (i.e., σ+

ic
= 1, σ+

kc
= 1, and σ−

jc
= 1). (d) Is the case similar

to the previous one with multiple aligned CTCF. (e) The case with
convergent CTCF in between. (f) The case of several divergent CTCF
in between, the inner being at positions kc and lc, respectively.

where pi, jc−1 is that of Eq. (5) and we iterate on pi+1, jc . We
get from Eqs. (7) and (6)

p jc−1, jc = kon

koff + k
,

p jc−2, jc = k

koff + k

[
kon

koff + k
+ p0

]
,

p jc−3, jc = kon

koff + k

(
k

koff + k

)2

+
(

k

koff + k

)2

p0

+ kon

koff + k

(
k

koff + 2k

)2

p0,

p jc−n, jc = kon

koff + k

(
k

koff + k

)n−1

+
n−1∑
l=1

(
k

koff + k

)n−l( k

koff + 2k

)l−1

p0. (8)

The general form of p jc−n, jc contains a geometric sum that
gives

p jc−n, jc = kon

koff+k

(
k

koff + k

)n−1

+ koff + 2k

k

(
k

koff + k

)n−1

p0

−
(

k

koff + 2k

)n−2

p0. (9)

By symmetry, the same expression is valid for pic,ic+n. The
probability associated with both CTCF sites obeys, by Eq. (6),
the relation

pic, jc = kpic+1, jc + kpic, jc−1

koff
, (10)

that can be evaluated substituting Eq. (9) in it.

C. Contacts across a CTCF site

Consider a segment from ic to jc closed by convergent
CTCF molecules, with a further CTCF molecule at position
kc with ic < kc < jc and, for instance, directed upward (i.e.,
σ+

kc
= 1), as in Fig. 2(c).

Pairs of sites on the same side with respect to kc display
the same probabilities as described above, that is Eqs. (4),
(9), and (10). Pairs interspersed by CTCF molecules, i.e.,
i < kc < j, are affected by the fact that the two sites cannot
be reached evenly from extruders coming from all parts of the
segment (i, j).

Let us use again an iterative approach, starting from

pkc−1,kc = p0. (11)

The probabilities involving site kc + 1 obey

pkc−n,kc+1 = k

koff + 2k
pkc−n+1,kc+1

= (2n − 1)

(
k

koff + 2k

)n

p0. (12)

Similarly, those involving site kc − 1 are given by Eq. (5),

pkc−1,kc+m =
(

k

koff + 2k

)m

p0. (13)

For any pair of sites across kc, the probability obeys the
iterative relation

pkc−n,kc+m = k

koff + 2k
(pkc−n+1,kc+m + pkc−n,kc+m−1). (14)

One can look for solutions in the form

pkc−n,kc+m = an,m

(
k

koff + 2k

)n+m−1

p0, (15)

which, substituted in Eq. (14), gives the iterative relation

an,m = k

koff + 2k
(an−1,m + an,m−1), (16)

starting from an,1 = 2n − 1 [Eq. (12)] and a1,m = 1 [Eq. (13)].
Solving the iterative problem making use of a

bivariate generating function (see Appendix B), one
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obtains

pkc−n,kc+m =
(

n + m − 1

m

)
2F1(1, 1 − n, 1 + m,−1)

×
(

k

koff + 2k

)m+n−1

p0, (17)

where 2F1 is the Gaussian hypergeometric function.

D. Contacts across several CTCF sites

Consider now the case of a pair of sites i and j separated
by more than a CTCF molecule, with various orientations, like
in Figs. 2(d) and 2(e). If both orientations are present, like in
Fig. 2(e), then pi, j = 0 because no extruder can bind to any
pair of sites q, q + 1 with i < q < j and reach sites i and j.

For sites i and j separated by two CTCF sites (at positions
kc and lc) with the same alignment, as in Fig. 2(d) one can
follow the same strategy as that of Sec. II C.

Analogously to Eq. (11), the starting point is the probabil-
ity pkc−1,lc that in the present case is given by Eq. (13) because
sites kc − 1 and lc fall in the case of Fig. 2(c), that is

pkc−1,lc =
(

k

koff + 2k

)lc−kc

p0. (18)

From here, an iterative relation analogous to Eq. (14) holds,
that is

pkc−n,lc+m = k

koff + 2k
(pkc−n+1,lc+m + pkc−n,lc+m−1), (19)

whose solution is the same as that of Eq. (17),

pkc−n,lc+m =
(

n + m − 1

m

)
2F

1
(1, 1 − n.1 + m,−1)

×
(

k

koff + 2k

)m+n+lc−kc−1

p0 (20)

with the difference that the iterative propagation is applied to
Eq. (18) instead of to p0 only.

This solution can be easily extended to the case in which
between the two sites of interest there is an arbitrary sequence
{kc1, kc2, . . . , kcN } of CTCF sites aligned in the same direc-
tion. In this case, one can apply the propagator of Eq. (20) to
pkc1,c(N−1) obtaining

pkc1−n,kcN +m =
(

n + m − 1

m

)
2F1(1, 1 − n.1 + m,−1)

×
(

k

koff + 2k

)m+n+cN−c1−1

p0, (21)

thanks to the fact that 2F1(1, 0, 1 + m,−1) = 1.
The most problematic case is that of two sites i and j

separated by diverging CTCF molecules, like in Fig. 2(f).
Calling kc and lc, respectively, the inner sites, we know that

pkc−1,lc+1 = k

koff + 2k
[pkc−1,lc + pkc,lc+1] (22)

that can be easily evaluated using Eq. (20). However, the
exact solution of this case for generic values of n and m
would require the summation of terms in the form of Eq. (20),

that we are not able to do. For this reason we resort to an
approximation, writing

pkc−n,lc+m = pkc,lc+m

(
k

koff + k

)n

+ pkc−n,lc

(
k

koff + k

)m

,

(23)

in which the probabilities on the right-hand side are given
by Eq. (20). This corresponds to the assumption that the
extruders that can reach sites i and j are only those that
after reaching sites kc and lc + m walk n steps on to reach
kc + n, and those that do the same thing from sites kc + n
and lc, making m steps from the former. Equation (23) is
exact for n = m = 1 and is expected to underestimate the true
probability for large n and m, a probability that is anyway
low in this limit. Moreover, under the same assumptions, the
resulting probability does not change if multiple CTCF sites
are aligned in the two directions, as in Fig. 2(f).

III. EFFECTIVE MODEL

From the knowledge of the stationary distribution of the
extruder, we built an effective polymeric model in which
the degrees of freedom of the extruder are averaged out. In
other words, we started from a model which is surely out of
equilibrium because the motion of cohesin does not obey the
condition of detailed balance, we showed that the distribution
of cohesin along the chain has a stationary distribution and
investigated if there is an effective potential that displays
that distribution at equilibrium, through Boltzmann statistics.
Then, we used the parameters of this potential in the confor-
mational space of the polymer, in connection with a realistic
(although arbitrary) contact function that defines the spatial
dependence of the potential.

Let us assume that the number μi j of extruder molecules
binding sites i and j of the chromosome can be written as an
equilibrium state of an effective potential

P(μ) = 1

Zμ

e− ∑
i j εi jμi j , (24)

where εi j is a site-dependent effective energy.
Due to the rigid nature of the extruder, the conditional

probability associated with a conformation {ri} of the system
for any given state {μi j} of the extruder along the chain is

P(r|μ) = 1

Z

∏
i< j

δ(�i j (r) − μi j )e
−βU0(r), (25)

where U0(r) is an underlying potential describing excluded
volume and other general features of the polymer, β ≡ 1/kT ,
and �(ri j ) is some function that defines the approaching in
space of two monomers. The functional form of �(ri j ) is
arbitrary and cannot be determined within the present theory;
due to the physical features of the system, one can envisage
some kind of short-range potential.

The marginal probability of a conformation, averaged over
the extruder conformations is then

P(r) =
∫

dN2
μ P(r|μ)P(μ). (26)
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Writing the delta function as δ(x) = limκ→0 exp[x2/2κ2], the
conformational probability is proportional to

∏
i< j

∫
dμi j exp

[
−εi jμi j − (�i j (r) − μi j )2

2κ2
− βU0(r)

]

that is a Gaussian integral, that gives

P(ri ) = exp

[
−βU0(r) −

∑
i< j

εi, j�i, j (r)

]
, (27)

where the term proportional to κ → 0 has been dropped.
The effective potential has thus the form

U (r) = U0(r) + kBT
∑
i< j

εi, j�i, j (r) (28)

whose parameters can be found from Eq. (24) as

εi, j = −kBT log P(μi j ) − E0 (29)

and if the number of extruders is small (and thus μi j is es-
sentially binary), the probabilities p(μi j ) can be regarded as
proportional to the results pi, j of the rate equations calculated
in Eqs. (5), (9), (10), (17), (21), and (23), according to the
position and the orientation of CTCF. The arbitrary additive
constant E0 (= −kBT log Zμ) in the energies εi j must be set
independently of the theory developed above (see below).
Positive values of εi j are filtered to zero, because it is not
realistic that the extruder induces a repulsive interaction in the
polymer.

IV. SIMULATIONS WITH THE EFFECTIVE MODEL

To test the performance of the effective model, we
performed molecular-dynamics simulations of chromosomal
segments described by a chain of beads connected by springs
and interacting with a potential U = U0 + Ueff [cf. Eq. (28)]
given by a polymeric term

U0 = ks

2
(�ri j − a)2 + ε0

∑
i< j

(
2a6

�r6
i j

− a12

�r12
i j

)
, (30)

where �ri j ≡ |ri − r j |, and the effective potential

Ueff =
∑
i< j

εi, j

(
2a6

�r6
i j

− a12

�r12
i j

)
(31)

representing the effect of the extruder. The rest distance a of
the harmonic spring sets the elementary scale of the system,
that is a = 67 nm corresponding to a resolution of 5 × 103 bp
(cf. Appendix A). The interaction range of the Lennard-Jones
potentials is set to a as well. All simulations are performed at
room temperature, kBT = 2.5 kJ/mol. The harmonic constant
is set to allow 10% fluctuations of the spring length, that
is ks = 102kBT/a2 = 250 kJ/mol/a2. The value of ε0 is set
to −1.5 kJ/mol so that simulations in absence of extruders
(Ueff = 0) display the polymer fragment at the θ point. This
is the simplest choice assuming that there are no other active
mechanisms besides cohesin extrusion. In this case, the chro-
mosome fragment we simulated mimics a segment of a much
larger polymeric system and thus should obey ideal-chain
statistics, in accordance with Flory theorem [20]. To be noted

that experiments depleting cohesin display a contact proba-
bility that scales with the linear distance as a power law with
exponent 1.2 [21], which is not that of an ideal chain (1.5),
suggesting that some other out-of-equilibrium mechanism is
at work. Choosing to simulate the polymer at the θ point we
neglect these other mechanisms.

Simulations are performed solving Langevin equations
with Euler’s integrator. For time steps �t much larger than
m/γ ≈ 10−4 ps (see Appendix A) one can use the first-order
overdamped version of Langevin equations. The fastest degree
of freedom is that associated with the harmonic springs defin-
ing the chain, so we expect the time step to be smaller than
the associated time scale, that is �t < γ/ks ∼ 1010 ps. We
evaluated the quality of the simulation quantifying to which
extent it satisfies the principle of detailed balance. For this
purpose, we calculated the quantity

H̃ ≡ �t

4γ

(
∂U

∂r

)2

− r

2

∂U

∂r
+ U (r) (32)

that is a parameter (in energy units) which is strictly con-
served if detailed balance is satisfied [22], in the present case
by the Euler integrator. In simulations performed with �t �
107 ps H̃ is conserved within an error of kBT [see Fig. 3(a)].
For larger values of �t this is no longer the case, and thus the
simulations are no longer correct. We used �t = 107 ps in the
rest of the simulations.

We first applied the effective model to a small re-
gion of mouse embryonic stem cells (of coordinates
ChrX:100378307-100702306, the so-called Tsix TAD). The
position and orientation of CTCF are taken from Ref. [23].
The map of the interaction energies εi j is displayed in
Fig. 3(f); the main patterns displayed by the Hi–C map [cf.
Fig. 3(b)] are already apparent here. The average contact map
�i j obtained from simulations of 16 min each is displayed in
Fig. 3(c) and is compared with the experimental map obtained
from Hi–C experiments (Fig. 3(b), [24]). After this time span,
contact maps are at convergence and one can expect that the
system is equilibrated.

In this procedure there are two free parameters that have
to be set, namely the additive constant E0 associated with the
interaction energies [cf. Eq. (29)] and the cut-off distance Rcont

for two beads to be defined as in contact, distance that can
hardly be obtained from a molecular insight of the crosslink-
ing process at the basis of Hi–C maps. These parameters are
then obtained maximizing the Pearson’s correlation function
r between all pairs of contacts in the simulated and in the
experimental contact map. The correlation coefficient r as a
function of E0 is displayed in Fig. 3(d) and display a max-
imum at E0 = 14. The dependence on Rcont is displayed in
Fig. 3(e) and is optimal at Rcont = 1.7a. The optimal corre-
lation obtained with these values is r = 0.89. The simulated
contact map displays the main features of the experimental
Hi–C map, including two regions with high contact probabil-
ity [cf panels (b) and (c) in Fig. 3]. Moreover, the simulated
map displays strong contacts in the initial part of the polymer
which are not present in the experimental map; this is a region
lacking of any CTCF molecule.

To better understand the effective model, we simulated
a toy model made of a 30-bead string with two convergent
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FIG. 3. (a) The width of fluctuations of the effective energy H̃ as a function of the time step �t of the simulation, in ps. (b) The experimental
Hi–C map of the Tsix region. (c) The contact map simulated with the effective model. The positions of CTCF in both orientations are indicated
below the map. The correlation coefficient r between simulated and experimental contact map as a function of the shift E0 of the energy
parameters (d) and of the distance Rcont that defines contacts (e). (f) The interaction energy εi j between the beads. (g) The standard deviation
between ten simulations of 16 min each, plotted in the same color scale of the contact maps.

CTCF sites, as displayed in Fig. 4(a). The effective inter-
actions εi j display a square of strongly interacting elements
within the two CTCF sites, see Fig. 4(b); the borders of this
square are even more interacting, as well as the corner where
the extruder accumulates. In addition, there is a sort of ‘border
effect’ due to extruders that bind to the CTCF-free ends of
the chain. The simulation of the effective model produces a
contact map which reflects essentially the interaction potential
[cf. Fig. 4(c)].

V. COMPARISON WITH EXPLICIT EXTRUDER MODEL

A relevant question we want to answer is how the effective
model performs with respect to a model in which the extruder
is described explicitly [3]. In fact, we do not expect that
the effective model can reproduce all details of Hi–C maps,
because loop extrusion is not the only mechanism at work.
For example, it is known that the formation of compartments
on the scale of the whole chromosome is not driven by loop
extrusion but interacts with it at a smaller scale [21]. Our main

goal is then to show that the effective model can reproduce
Hi–C map with the same accuracy as the explicit-extruder
model.

In the explicit model, we assumed that the extruder is well
mixed around the polymer and it is always available for bind-
ing. It can bind to a pair of adjacent sites with rate kon, each
side of the extruder can walk with rate k, and it can detach
with rate koff. The monomers linked by an extruder experience
a harmonic force characterized by a harmonic constant ks and
a rest distance a, that is the same force that guarantees the
integrity of the polymer. We assumed that different bound
extruders cannot overcome each other and they cannot over-
come CTCF sites. The numerical parameters are given in
Appendix A.

The average contact map obtained from 30 simulations,
calculated in the same way as those obtained with the effective
model (cf. Sec. IV), is displayed in Figs. 5(a) and 5(b) for the
Tsix domain. Contact maps seem to be at convergence. The
correlation coefficient with the experimental map is r = 0.89,
which is identical to that of the effective model.
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(a)

(d) (e)

(c)(b)

1 30

FIG. 4. (a) A toy model with two convergent CTCF molecules.
(b) The effective contact energy εi j . (c) The result of a simulation
with the effective model of 16 min with E0 = 13. (d) The contact
map resulting from the average of 30 explicit-extruder simulations
of 16 min each in which extruders can overcome each other freely.
(e) The result of simulations in which extruders cannot move into
occupied sites.

The main difference between the explicit and the effective
model is in the fluctuations around the average. In Fig. 5(c)
we showed the result of three individual simulations and in
Fig. 5(d) the standard deviation associated with the simula-
tions. It is apparent that in explicit-extruder simulations the

experimental simulation (mean)

individual  simulations

< ij>

0

0.1

0.3

0.3

ChrX100378307 100702306

(a) (b)

(d)
(c)

simulation (stdev)

r=0.89

FIG. 5. Results of the simulation of the Tsix TAD with explicit
extruders. (a) The experimental map. (b) The mean contact function
〈�i j〉, averaged over 30 simulations. (c) Examples of individual sim-
ulations that contribute to the average. (d) Their standard deviation.

0

-8

(a) (b)

ε ij

FIG. 6. The interaction energies εi j between beads for (a) re-
gion chrX:102278307-103570000 and (b) region chrX:103578307-
106170000. The inset is the zoom of the squared region.

average map is given by the contribution of maps which are
quite different from each other. In fact, the standard deviation
is comparable with the average. This result is different than
that of the effective model, in which the different simula-
tions generate maps which are much more homogeneous [cf.
Fig. 3(g)].

In the case of the toy model of Fig. 4, explicit-extruder
simulations produce contact maps in which corner peaks are
more evident, and the overall domain is less clear. We also
compared the results of simulations in which extruders are
freely allowed to overcome each other [Fig. 4(d)] with sim-
ulations in which an extruder cannot occupy a site which is
already occupied [Fig. 4(e)]. The two maps are essentially
identical, suggesting that the hypothesis done in connection
with Eq. (4) is not critical.

We repeated similar calculations for other two regions of
the chromosome X of mouse embryonic stem cells, of 1300
and 2600 kbp, respectively. The energy maps εi j are displayed
in Fig. 6. As in the case of Tsix, the energy maps contain
most of the features displayed by the experimental maps.
The comparison between the results of the explicit-extruder
model, those of the effective model and the experimental map
are displayed in Fig. 7. Also in these cases, the effective model
(r = 0.82 and r = 0.76 for the two regions, respectively) per-
forms similarly, if not better, than the explicit-extruder model
(r = 0.78 and r = 0.71, respectively). The main features of
the Hi–C maps are captured by both the explicit and the
effective models. While small TADs are captured well, large
TADs display in the models a finer structure which is not
apparent in the experiment. Interestingly, the explicit and the
effective models produce very similar maps (r = 0.89 and
0.80, respectively), even in the patterns that are not in the
experimental map.

The larger correlation of the effective model with the ex-
perimental data is presumably due to simulation statistics:
while the explicit-extruder model requires to average the mo-
tion of the extruders over multiple simulations (30 in the
case shown above), the effective model already contains im-
plicitly this average. The most apparent difference between
the two models is that while the explicit extruder gener-
ates maps whose elements are spatially correlated with their
neighbors, the maps obtained with the effective model display
abrupt changes between neighboring elements. This is not
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r=0.82experiment effective model

r=0.76

explicit model

effective modelexplicit model

r=0.78

r=0.71 experiment

CTCF

CTCF

FIG. 7. Comparison between the experimental data (central panels), the results of the explicit-extruder model (left panels) and those of the
effective model (right panels). The upper panels are region chrX:102278307-103570000, the lower panel chrX:103578307-106170000. The
dashed lines are a guide to the eye.

unexpected, since the effective model, assuming a stationary
distribution of the extruder along the chain, neglects correla-
tions between consecutive sites associated with the motion of
the extruder on short time scales.

A popular way of summarizing the information contained
in contact maps of chromosomes is studying the average con-
tact probability between sites as a function of their distance
|i − j| along the chain, that is usually a power law [25].

The three sets of experimental data we studied display scal-
ing coefficients β = 0.71, β = 0.87, and 0.77, respectively,
cf. Fig. 8. The simulations display a central region (around ten
beads, corresponding to 50 kbp) in which the contact proba-
bility is a power law with good exponents both in the case of
the explicit extruder (giving 0.74, 0.86, and 0.75, respectively)
and the effective model (0.73, 0.86, and 0.78, respectively). In
addition, all models display a bend at |i − j| < 5, likely due
to the coarse-graining of the model and an exponential cutoff
due to finite-size effects.

This power-law dependence of the contact probability on
the linear distance is not surprising in light of the effective
model, if this describes realistically the effective interactions
between the beads of the polymer. In fact, both the interaction
energy [cf. Eq. (29)] and the polymer looping entropy display
such a power-law dependence.

VI. CONCLUSIONS

We developed an effective model for the dynamics of chro-
mosomes based on the assumption that the interactions that
stabilize TADs are mediated by extruders running along the

polymer consuming energy. The effective model is built in
such a way that its equilibrium conformations approximate
the conformations visited in the long run by the out-of-
equilibrium extrusion mechanism.

We showed that simulations performed with the effective
model produce average contact maps that are as similar to the
experimental Hi–C map as those from an explicit extrusion
mechanism. Even if they allow to detect TADs, the agreement
with the experimental data for both kinds of models is still
not perfect. This is not surprising because they are based
on a minimal amount of information, that is the position of
CTCF along the chain. There are indeed models [26–28] that
produce contact maps closer to the experimental ones, but
at the price of a larger amount of input information, being
thus less predictive. Importantly, the present model can be
improved by adding information from the experimental maps,
such as the presence of compartments on a length scale larger
than that of TADs [16].

The effective model in controlled by a free parameter (E0)
because interaction energies are defined but for an additive
constant. This parameter cannot be determined by the position
of CTCF but has to be tuned manually. Although the details
of the simulated maps depend on this choice, the overall par-
titioning of the chromosome into domains seems quite robust
with respect to it.

The effective model is based on averaging out the position
of the extruder along the chain, so it is a mean-field approxi-
mation. Although this appears to be good enough to reproduce
average maps, by definition it cannot account for fluctuations.
Thus, the price to be payed to reduce the complexity in the
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FIG. 8. The contact probability between sites as a function of
their distance along the chain, for the Tsix domain (upper panel),
for region chrX:102278307-103570000 (middle panel), and region
chrX:103578307-106170000 (lower panel).

description of the system is the loss of information about
cell-to-cell variability.

Nonetheless, the maps that summarize the interaction ener-
gies εi j display the main patterns present in the experimental
Hi–C maps, suggesting that polymeric entropy plays a limited
role in shaping the architecture of chromosomes, at least at the
scale of Mbp.

Another strong approximation that we implemented is that
the extruder cannot overcome CTCF sites. This approximation
allowed us to obtain an analytical expression for the distribu-
tion of the extruder. However, it is known that CTCF is bound
to its binding sites only for ≈50% of time [29], resulting in an
effective permeability of CTCF sites. Explicit simulations of
the motion of phantom and of sterically interacting extruders
give similar results, at least in a simple toy system.

An approach analogous to ours was followed in Ref. [17],
in which a Fokker-Planck equation for the binding probability
of the extruder is solved in case of constant velocity, of pure
diffusion, and of diffusion in an effective potential that reflects
the entropic cost of polymer looping. Only in the last case the
binding probability displays a power-law scaling, reflecting
the dependence of the entropy cost on the linear distance of
the loop. However, recent experiments [9,10] indicate that
cohesin uses ATP not only to bind/unbind but also to run
on the chromosome. Since ATP hydrolysis rate in cohesin is
approximately 2 s−1 [9], assuming that hydrolysis provides
≈30 kJ/mol, the provided power is approximately 60 kJ/mol
per s. On the other hand, cohesin runs at a rate of 2 kbp/s,
making a loop of 4 kbp every second. Assuming a persistence
length of the order of a kbp, the energy loss associated with
the formation of the loop is at most T log 4 ≈ 3 kJ/mol, which
is one twentieth of the provided energy. Consequently, one
does not expect entropy loss to be the main determinant of the
distribution of cohesin on the fiber.

The computational gain offered by the effective model is
quite consistent, not only because one has not to solve the
equations for the extruder, but also because in a single simu-
lation one describes in an effective way multiple trajectories.
As an example, the simulation of the Tsix domain with the
effective model takes of the order of 0.2 h per simulated
minute per cpu core, to be compared with 6 h with the explicit
model.

The effective model is useful not only to make simulations
more efficient, but also to clarify the physics of chromatin. For
example, in the light of the form of the potential developed
for the effective model, it is not surprising that the contact
probability scales with the linear distance as a power law. In
fact, both the looping energy and the associated entropy loss
scale as power laws. The code to perform the simulations can
be downloaded from Ref. [30].

APPENDIX A: NUMERICAL PARAMETERS
OF THE SYSTEM

Experiments of fluorescence recovery after photobleach-
ing indicate that the mean residence time of cohesin on the
chromatin fiber is 13 min, corresponding to a detachment
rate koff = 1.3 × 10−3s−1 [31]. Total internal reflection mi-
croscopy of reconstructed cohesin–chromatin in a flow cell
indicate that the stepping rate of cohesin is k = 103 bp/s [9].
Fluorescence correlation spectroscopy experiments show that
approximately c = 250 000 copies of cohesin are present in
human cells in G1 phase and that 64% of them are bound to
chromatin [31]. The same order of magnitude but a smaller
number (c = 109 000) is obtained for mouse embryonic stem
cells [32]. The binding rate k′

on of cohesin on chromatin per
base can be estimated from koff and from the fraction of bound
molecules, that is

k′
on = koff

Vn

N

cb

c − cb
, (A1)

where Vn is the nuclear volume, N is the total number of base
pairs, cb is the number of bound cohesin molecules, and c is
the total number of cohesin molecules. Using Vn = 500 μm3,
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N = 3 × 109, c = 2.5 × 105, and cb = 1.6 × 105 [31], one
obtains k′

on = 3.9 × 10−13 nm2/(ps bp).
The (effective) diffusion coefficient of the chromatin fiber

measured by live-cell imaging is Dch = 3 × 10−3 μm2/s [33].
The diffusion coefficient of cohesin can be estimated by
Stoke’s law, using a hydrodynamic radius of R = 8.5 nm [34]
and a viscosity for the nucleoplasm of η = 1.5 cP [35]. One
obtains for cohesin Dco = 18 μm2/s, which is five orders of
magnitude larger than that of chromatin, justifying the well-
mixed hypothesis.

The time scale τext associated with extrusion on the TAD
length scale (i.e., L ∼ 106 bp extruded by next ∼ 30 cohesin
molecules) is τext ∼ L/(k next ) ∼ 30 s. The time scale asso-
ciated with the motion of the chain is τ ∼ L2/Dch ∼ 300 s
(using for typical TADs L ∼ 100 nm [36]).

The Hi–C maps we used as reference have a resolution of
5 × 103 bp, an thus we used this as elementary unit of the
model. From the density obtained from Ref. [26], this cor-
responds to a = 67 nm. We used this quantity as elementary
length scale for the model. The friction constant of the poly-
mer can be obtained from Einstein’s equation γ = Dch/kBT
and, in terms of the length scale a, at room temperature is
γ = 4 × 1012 kJ ps/mol a2. The stepping rate of cohesin is
k = 2 × 10−13 a/ps. The loading rate used for simulations of
N monomers is kon = Nk′

on.
Assuming the mass density typical of biomolecules,

1 g/cm3, the mass of a monomer is of the order
of 10−22 Kg.

APPENDIX B: SOLUTION OF THE
RECURSIVE EQUATION

Let us define bn,m = an+1,m+1. Equation (B1) can be
written as

bn,m = bn−1,m + bn,m−1, (B1)

that can be solved iteratively starting from bn,0 = 2n+1 − 1
and b0,m = 1.

Let us define the bivariate generating function

f (x, y) =
∞∑

n,m=0

bn,mxnym. (B2)

Separating the terms m, n = 0 one obtains

f (x, y) =
∑
n=0

(2n+1 − 1)xn +
∑
m>0

yn +
∑

n,m>0

bn,mxnym

= 1

1 − x
+ y

1 − y
+

∑
n,m>0

bn,mxnym. (B3)

Substituting Eq. (B1) and renaming the indexes,

f (x, y) = 1

(1 − x)(1 − 2x)
+ y

1 − y

+
∑

n,m>0

[bn−1,m + bn,m−1]xnym

= 1

(1 − x)(1 − 2x)
+ y

1 − y
+ x

∑
n=0,m>0

bn,mxnym

+y
∑

n>0,m=0

bn,mxnym

= 1

(1 − x)(1 − 2x)
+ y

1 − y
+ x f (x, y)

− x

(1 − 2x)(1 − x)
+ y f (x, y) − y

1 − y

= 1

(1 − 2x)
+ x f (x, y) + y f (x, y). (B4)

Thus,

f (x, y) = 1

(1 − x − y)(1 − 2x)
(B5)

whose series expansion is

bn,m = 2n+m+1 − (n+m+2) 2F1(1, n+m+2, n+ 2, 1/2)

2(n + 2)(m + 1)
,

(B6)

where 2F1 is the Gaussian hypergeometric function. This ex-
pression can be simplified to

bn,m =
(

n + m + 1

m + 1

)
2F 1(1,−n2 + m,−1) (B7)

and thus

an,m =
(

n + m − 1

m

)
2F 1(1, 1 − n1 + m,−1). (B8)
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