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DEITMAR’S VERSUS TOËN-VAQUIÉ’S SCHEMES OVER F1

ALBERTO VEZZANI

ABSTRACT. Deitmar indtroduced schemes overF1, the so-called “field with one element”, as certain spaces with
an attached sheaf of monoids, generalizing the definition ofschemes as ringed spaces. On the other hand, Toën and
Vaquié defined them as particular Zariski sheaves over the opposite category of monoids, generalizing the definition
of schemes as functors of points. We show the equivalence between Deitmar’s and Toën-Vaquié’s notions and estab-
lish an analog of the classical case of schemes overZ. This result has been assumed by the leading experts onF1, but
no proof was given. During the proof, we also conclude some new basic results on commutative algebra of monoids,
such as a characterization of local flat epimorphisms and of flat epimorphisms of finite presentation. We also inspect
the base-change functors from the category of schemes overF1 to the category of schemes overZ.

INTRODUCTION

Although the “field with one element” was originally mentioned in 1956 by Tits [21], it in fact emerged
as an significant object to investigate in the ’90s. Despite its youth, a lot of interesting constructions have
been built out of studyingF1-geometry, especially in the last decade. The interested reader may find excellent
commentaries on the motivations of this theory in various papers, such as [3], [4], [6]. We also refer to the
beautiful article of J. López Peña and O. Lorscheid [16], in which the whole picture of theF1-universe is
presented. TheF1-geometry project has been considered too ambitious by many, since none of the big aims that
motivated its introduction has been reached yet. That said,we have to specify that the theory itself has not been
settled fully since a lot of different approaches have been made, and thus, it is still undergoing a continuous
evolution. Moreover, it seems that some results in other parts of mathematics, such as combinatorics, can really
be proven using theF1-machinery. We also feel that some of the approaches toF1-geometry, such as the ones
we present in here, are undoubtedly elegant as well as natural, being in turn relevant on their own.

In this paper, we focus mainly on Deitmar’s and Toën-Vaquié’s theory. The reason for this is that we show
their equivalence, generalizing a classical result of Demazure and Gabriel ([5] I.1.4.4) toF1-geometry (Theorem
36). Indeed, this has been taken for granted by many (see the map in [16]), but only partial results were given.
In particular, we find that the core of this fact (which is Theorem 30), despite having a rather elementary proof,
is not trivial. This result is strongly related to some factson commutative monoids that generalize similar
statements on commutative rings. However, the tools to be used are necessarily different. For instance, this is
because the category ofM -modules for a given monoidM is not an abelian category. In developing such theory,
we were hugely inspired by the classical duality of schemes:they can be seen either as “geometrical” beings -
ringed spaces which are locally affine, or as “functorial” beings - Zariski sheaves on the opposite category of
rings, which are locally affine. Our result can be generalized as a new proof of this equivalence that only partly
overlaps with the classical one of Demazure and Gabriel.

NOTATION

In all this work, a choice of a universeU is implicit, and all the categories we introduce must be thought
asU-small categories (see also [12], 1.1, 1.2). We indicate categories with bold fonts. The category of sets is
denoted bySet. For a given categoryC and an objectX inside it, we writePsh(C) for the categorySetC

op

of presheaves overC, C/X for the category of objects overX , andX/C for the category of objects underX .
The word “ring” will indicate a commutative ring with unity unless otherwise specified. Also, maps of rings

respect the unity elements, hence subrings have the same unity of the bigger ring. The category of rings will be
denoted byRing.

Similarly, the word “monoid” will indicate a commutative monoid unless otherwise specified. The category
of monoids will be denoted byMon.
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2 ALBERTO VEZZANI

A closed symmetric monoidal category in the sense of [14] will be indicated with(C,⊗) omitting all the
extra structure, the unit object will be indicated with1 and the internal Hom functor withHom. The category
of monoids in(C,⊗) will be denoted byMonC. For a given monoidA in (C,⊗), the category of modules
overA will be indicated withA -Mod, the categoryA/MonC will be denoted byA -Alg and its objects will
be calledA-algebras.

1. SCHEMES OVERF1 À LA DEITMAR

The following definitions were presented by Kato in [13] and Deitmar in [4]. In the latter paper, the author
shows that the operation of the sum in rings can be overlookedfor many purposes, and some of the basic notions
and facts of algebraic geometry can be straightforwardly generalized to a broader context.

Definition 1. In a monoidM , a subsetI is an ideal if the set

IM := {xm : x ∈ I,m ∈M}

equalsI, and it isprime if M \ I is a submonoid ofM . Theprime spectrum ofM overF1 is the topological
set of all prime idealsp of M , with the topology in which closed sets are of the formV (I) := {p : I ⊂ p},
whereI is a subset ofM . It is indicated withSpec

F1
(M) (or simply withSpecM if the context is clear) and

its topology is called theZariski topology.

We can say that every monoidM is local, in the sense that it has a unique maximal proper ideal, namely
the subset of non-invertible elementsM \M×. It is obviously a prime ideal, and it is the only closed pointof
SpecM . We also remark thatSpecM has a basis of open sets constituted by the empty set and thoseof the
formD(a) := {p : a /∈ p}, wherea is an element ofM . An open subsetD(x) is never empty since it contains
the point∅. In particular, sinceD(a) ∩ D(b) = D(ab), the spaceSpecM is irreducible. Also, we remark
that every open covering includes the open subsetSpecM itself, since the only openD(a) that contains the
maximal ideal isD(1) = SpecM .

Definition 2. A mapf : M → N of monoids islocal if f(M \M×) ⊂ N \N×, i.e. if f−1(N×) =M×.

One of the main special features of prime spectra of rings is the structure sheaf, defined via localizations.
Also in this setting, localizations can be defined using similar techniques.

Definition 3. For a subsetS of M , we call localization ofM at S the monoidS−1M with a mapπ : M →
S−1M which has the following universal property: for every map ofmonoidsf : M → N such thatf(S) ⊂
N×, there exists a unique mapS−1M → N that splitsf overπ. If S = {a}, we indicateS−1M withMa. If
S =M \ p wherep is a prime ideal, we indicateS−1M withMp.

We remark that if two elements ofM are sent to units inN , so is their product. Also, the unity ofM is
always mapped to the unity ofN . We can then restrict ourselves to considering localizations with respect to
submonoidsS ofM . The result [2] 3.1 can be generalized to prove that any localizationS−1M is well defined,
and has the following explicit description: as a set,S−1M is the set of formal fractions

{a

x
: a ∈M,x ∈ S

}/

∼

whereax ∼
b
y if there exists an elementt ∈ S such thatayt = bxt. The monoid operation inS−1M is defined

as ax ·
b
y = ab

xy and the map of monoidsM → S−1M is the mapa 7→ a
1 .

Definition 4. A monoidal spaceis a pair (X,OX) consisting of a topological spaceX and a sheaf of monoids
OX on it. A morphism of monoidal spaces from(X,OX) to (Y,OY ) is a pair (f, f ♯) wheref : X → Y is
a continuous map andf ♯ : OY → f∗OX is a map of sheaves onY such that for everyx ∈ X , the induced
morphism of stalksf ♯x : OY,f(x) → OX,x is local. The category of monoidal spaces is denoted byMS.

Proposition 5. The categoryMS is cocomplete.

Proof. The proof is the exact analogue of [5], I.1.1.6. �
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Proposition 6. LetM be a monoid. There is a canonical structure of monoidal spaceon Spec
F1
M such that

Spec
F1

defines a left adjoint of the functor of global sectionsΓ, seen as a functor fromMS op to Mon. In
particular, for any monoidal space(X,OX)

HomMon(M,Γ(X,OX)) ∼= HomMS(X, SpecF1
M).

The sheafOSpec
F1
M is such thatOSpec

F1
M (D(a)) =Ma for any elementa in M andOSpec

F1
M,p =Mp for any

prime idealp ofM .

Proof. The proof is the exact analogue of [5], I.1.2.1.
�

Definition 7. Monoidal spaces which are isomorphic to(Spec
F1
M,OSpec

F1
M ) for some monoidM are called

affine geometricalF1-schemes.

The previous proposition implies in particular that the functor Spec
F1

from monoids to affine geometrical
F1-schemes is part of a contravariant equivalence of categories.

Definition 8. A map(X,OX)→ (Y,OY ) ofMS is anopen immersionif it is the composite of an isomorphism
and an open inclusion(U,OY |U ) →֒ (Y,OY ). A family of open immersions is aZariski coveringif it is globally
surjective on the topological spaces underneath. AgeometricalF1-scheme(or scheme overF1 à la Deitmar) is
a monoidal space(X,OX) with an affine Zariski covering. Thecategory of geometricalF1-schemesis the full
subcategory ofMS whose objects are geometricalF1-schemes. It is easy to prove that Zariski coverings define
a Grothendieck pretopology in the category of geometricalF1-schemes. The site they form is called theZariski
site.

The category of geometricalF1-schemes is not cocomplete. Still, it has some colimits. In particular, it is
straightforward to generalize the gluing lemma ([11], Exercise II.2.12) to this context.

Proposition 9. The Zariski topology on geometricalF1-schemes is subcanonical. Also, the category of affine
geometricalF1-schemes is dense in the category ofF1-schemes, in the sense that each geometricalF1-scheme
is a colimit of a diagram contained in the subcategory of affine geometricalF1-schemes.

Proof. Suppose that{Ui = SpecMi → X} is a Zariski covering ofX . Let {SpecAijk → Ui ∩ Uj} be
coverings of the schemesUi ∩ Uj . Then the following are coequalizing diagrams

∐

Ui ∩ Uj ⇒
∐

Ui → X
∐

SpecAijk ⇒
∐

SpecMi → X

and this implies the claim.
�

As in the case of ordinary schemes, the category of geometricalF1-schemes has pullbacks (also called fibered
products), and affine geometricalF1-schemes are closed under pullbacks ([4], 3.1).

In the classical case of schemes, the spectrum of a ring can bedefined though a colimit usingK-points, as
K varies among the fields ([5]). In the case of monoids, the naive attempt would be to consider theG-points as
G runs through the category of groups. This does not work, as the following remark specifies.

Proposition 10. LetG be an abelian group andX a monoidal space. Defining aG-point onX is the same as
considering a pointx ofX such thatOX,x is a group, together with a group homomorphismOX,x → G.

Proof. Suppose thatf is a map fromSpec
F1
G toX . Since a group has only one prime ideal∅, the mapf defines

automatically a pointx = f(∅) in X . Adding to this, it defines a local map of monoidsOX,x → G. The fact
that this map is local implies that all elements ofOX,x are invertible, as wanted. Conversely, given a pointx
and a homomorphismOX,x → G, we can define a map between topological spaces that sends theunique point
of Spec

F1
G to x. Note that the mapOX,x = lim

−→x∈U
OX(U) → G induces mapsOX(U) → G for everyU

such thatx ∈ U . Together with the trivial mapsOX(U) → 1 for those open subsetsU that do not containx,
they define a map of sheavesOX → f∗ SpecF1

G, as wanted.
�
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In particular, we conclude thatG-points on monoidal spaces are rare to find, so that there is nopossibility to
recover the topological space beneath just by using them.

2. SCHEMES OVERF1 À LA TOËN-VAQUIÉ

We now present the generalization of the concept of schemes introduced by Toën and Vaquié in their paper
[23]. One of the main advantages of this approach is its generality. The way new schemes are introduced is
purely categorical and the case ofF1 is just a particular case of a more general picture, in which the protagonists
are well-behaved monoidal categories.

From now on, we will consider a closed symmetric monoidal category(C,⊗) with unit 1 and inner Hom
functorHom, which is complete and cocomplete. We know in particular that the tensor product commutes
with colimits, because it has a right adjoint.

Definition 11. LetA be an object ofMonC, and letM ,N be objects ofA -Modwith actionsϕ,ψ respectively.
We define thetensor product ofM andN overA, and we indicate it withM ⊗A N , the coequalizer in the
diagram

A⊗M ⊗N
ϕ⊗N

//

ψ⊗M
// M ⊗N.

It has a naturalA-module structure.

It is easy to prove the following sequence of facts.

Proposition 12. Consider a mapf : A→ B in MonC.

(1) There is a natural forgetful functorB -Mod→ A -Mod that sends an objectN toN itself, considered
as aA-module with the action defined as the composite

A⊗N → B ⊗N → N.

In particular, the mapf defines a natural structure ofA-module onB, with the action defined as above.
(2) The forgetful functor has a left adjoint, indicated with⊗AB, which sends aA-moduleM toM ⊗A B,

with a suitableB-action.
(3) The forgetful functor has a right adjoint, which sends aA-moduleM to Hom(B,M), with a suitable

B-action.
(4) The pushout inMonC of a diagramB ← A→ C is isomorphic asA-module toB ⊗A C.

In particular, for an objectA of MonC, and for an objectM ofA -Mod,M⊗AA is canonically isomorphic
toM since both⊗AA and the identity itself are left adjoint functors of the identity.

Corollary 13. LetA → B be a map ofMonC. The forgetful functorB -Alg → A -Alg has a left adjoint,
which mapsA→ X toB → B⊗AX with the monoid structure induced by the isomorphismB⊗AX ∼= B⊔AX .

Definition 14. The opposite category of the category ofMonC is denoted byAffC, and its objects are called
affine schemes relative toC. We callSpecA the object inAffC which corresponds to the monoidA in MonC.

It is now high time to introduce the Zariski topology on the category of affine schemes.

Definition 15. Suppose thatf : A → B is a map inMonC. It is flat if the functor⊗AB fromA -Mod to
B -Mod is exact (equivalently, left exact) in the sense that it commutes with finite limits and colimits. The map
f is of finite presentationif for every direct system{Ci}i∈I ofA-algebras, the canonical map

lim
−→

HomA -Alg(B,Ci)→ HomA -Alg(B, lim−→
Ci)

is bijective. A mapSpecB → SpecA is an open immersionif the correspondent mapA → B is a flat
epimorphism of finite presentation, and a collection of openimmersions{SpecAi → SpecA}i∈I is a Zariski
coveringif there is a finite subsetJ ⊂ I such that the collection{SpecAj → SpecA}j∈J reflects isomorphisms
of modules, in the sense that any map ofA-modulesM → N is an isomorphism if and only if the induced maps
M ⊗A Aj → N ⊗A Aj are isomorphisms, for allj ∈ J .

It is easy to prove that Zariski coverings define a Grothendieck pretopology onAffC, and the site they form
is again called theZariski site.
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Proposition 16. In case(C,⊗) is the category of abelian groups with the tensor product⊗Z, then the Zariski
site onAffC is equivalent to the Zariski site on affine schemes.

Proof. In this case the categoryAffC is the categoryRing op, which is equivalent to the category of affine
schemes because of [8] I.7.4. A map of ringsA → B induces an open immersion if and only if it is a flat
epimorphism of finite presentation because of [10], 17.9.1.Also, using [2] 3.9, a collection{A→ Bi} induces
a covering ofSpecA if and only if it reflects isomorphisms of modules. Because any affine scheme is quasi-
compact, it is always possible to extract a finite sub-covering labeled byJ , and this proves the claim.

�

Note that, in particular, it is part of the definition the factthat affine schemes are quasi-compact (a finite sub-
covering is indexed byJ), while that is granted by the explicit definition of the Zariski topology in the case of
rings. Now that we introduced a topology on affine schemes, wecan study Zariski sheaves over affine schemes.
In the case of rings, the functor represented by any affine scheme was also a sheaf. In this more general setting,
this fact is still true, and it needs indeed a more elaboratedproof ([23], 2.11).

We then use the word “affine scheme” to refer both to objectsX of AffC and also to functorshX represented
by them. In order to define a scheme, we still have to define opencoverings of sheaves, so to have a good
definition of “being locally affine” also for a sheaf.

Definition 17. A mapf : F → hX of Zariski sheaves overAffC is an open immersionif it definesF as a
subsheaf ofhX and if there exists a family of open immersions{Xi → X}i∈I such thatF is isomorphic over
hX to the image of the induced map

∐

i∈I hXi
→ hX . More generally, a mapf : F → G of Zariski sheaves

overAffC is anopen immersionif for every affine schemehX overG, the induced morphismF ×G hX → hX
is an open immersion. A collection{Fi → F}i∈I of open immersions is aZariski coveringif the induced map
∐

i∈I Fi → F is an epimorphism.

One should check that all the definitions given agree on affineschemes. This is again something completely
not trivial ([23], 2.14).

We are now ready to give the definition of a scheme in this new setting.

Definition 18. A scheme relative toC (or a scheme à la Toën-Vaquié relative toC) is a Zariski sheaf over
affine schemes in the sense of Definition 14, which has a Zariski covering constituted of open immersions of
affine schemes. Thecategory of schemes relative toC is the full subcategory ofPsh(AffC) whose objects are
schemes relative toC.

As a side note, we remark that in case(C,⊗) is the category of abelian groups with the tensor product⊗Z,
then the category of schemes relative toC is equivalent to the category of schemes as defined in [5], I.1.3.11.
This comes from Proposition 16 and the fact that a a family of open immersions{Fi → F} induces an an
epimorphism of Zariski sheaves

∐

Fi → F if and only if it induces a surjection
∐

Fi(SpecK)→ F(SpecK)
for all fieldsK (see [22], Lemma 4.2.1).

As it is shown in [23], 2.18, the category of schemes relativetoC inside the category of Zariski sheaves is sta-
ble under disjoint unions and fibered products. This easily implies that Zariski coverings define a Grothendieck
pretopology on schemes relative toC. The site they form is again called theZariski site.

Up to now, we presented the whole picture of generalized schemes à la Toën-Vaquié. It is now time to focus
on schemes overF1 which another special case of the general theory.

Definition 19. A F1-schemeor a scheme overF1 is a scheme relative to the monoidal category(Set,×). The
category ofF1-schemes is denoted withSchF1

.

In particular, since monoids in(Set,×) are just ordinary commutative monoids, the categoryAffC is the
categoryMon op. We will henceforth refer to it withAff . Also, for a fixed monoidM , the category ofM -
modules is the category ofM -sets, i.e. sets with an action ofM . It is not an abelian category, since the initial
object∅ it is not the final object{∗}. We also note that for a couple ofM -modulesS andT , S ⊗M T is the
setS × T modulo the equivalence relation generated by the relation(m · s, t) ∼ (s,m · t). In caseS andT
areM -algebras, by Proposition 12, the moduleS ⊗M T inherits aM -algebra structure, and it is isomorphic to
S ⊔M T in the categoryM -Alg.
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3. DEITMAR - TOËN-VAQUIÉ EQUIVALENCE

We now want to prove the equivalence of categories between the two different notions ofF1-schemes that
we introduced so far. A large part of this section is dedicated to commutative algebra of monoids, in which we
try to set up an environment which is similar to the classicalone of commutative rings. We denote withF1 the
trivial monoid{1}.

Proposition 20. LetM be a monoid. The forgetful functor fromM -Alg toMon has a left adjoint which sends
a monoidN toM ×N with the naturalM -action. In particular, the forgetful functor fromM -Alg toSet has
a left adjoint that sends a setS to the monoid

M [S] := {m · sd11 s
d2
2 . . . sdkk : k ∈ Z≥0,m ∈M, si ∈ S, di ∈ Z≥0}

with the obvious operation andM -action. We shall indicate the monoidM [{x1, . . . , xn}] withM [x1, . . . , xn].

Proof. The category of monoids is the category ofF1-algebras, and for any couple of monoidsM andN , we
haveM ⊗F1

N =M ×N . The result then follows from Corollary 13.
�

Example 21. Consider the monoid(Z≥1, ·). It is isomorphic toF1[x1, x2, . . .] through the mapxi 7→ pi, where
thepi’s are the positive primes.

Definition 22. LetM be a monoid and letϕ : M → N be aM -algebra. An equivalence relation∼ onN
is monoidal andM -linear if it is defined by a subset ofN × N which is a sub-M -algebra with respect to the
diagonal action ofM onN × N . Given a monoidalM -linear equivalence relation∼ onN , it is possible to
define a structure ofM -algebra onN/∼ mappingm to [ϕ(m)]. AM -algebraN is calledfinitely generated
if there exists an integern and a surjective map ofM -algebras fromM [x1, . . . , xn] toN . Equivalently, if it is
isomorphic asM -algebra toM [x1, . . . , xn]/∼ for a suitable monoidalM -linear equivalence relation∼.

Proposition 23. LetN be aM -algebra. ThenN is of finite presentation if and only if it is isomorphic as a
M -algebra toM [x1, . . . , xn]/∼ where the relation∼ is a finitely generated sub-M [x1, . . . , xn]-algebra of the
monoidM [x1, . . . , xn] ×M [x1, . . . , xn] i.e. N is the coequalizer in the category ofM [x1, . . . , xn]-algebras
of a diagram

M [x1, . . . , xn][y1, . . . , ym] ⇒M [x1, . . . , xn]

for some suitablen,m ∈ N.

Proof. The proof runs in the same way as in [9], 8.14.2.2. The only difference is that instead of taking quotients
over ideals, we now have to consider quotients overM [x1, . . . , xn]-linear monoidal equivalence relations.

�

Let {pi, qi}i∈I be elements ofM [S]. From now on, we indicate with(pi = qi)i∈I the monoidalM [S]-linear
equivalence relation onM [S] generated by the couples(pi, qi).

Definition 24. LetM be a monoid. We call it amonoid with zeroif there exists an element0 such that{0} is
an ideal. Arrows between monoids with zero are arrows of monoids that send0 to 0. We call the category they
form withMon0. The forgetful functorMon0 → Mon has a left adjoint that sendsM toM0 := M ⊔ {0},
with the obvious operation.

Example 25. The monoid(Z, ·) is isomorphic to the monoid
(

F1[u, x1, x2, . . .]

/

(

u2 = 1
)

)

0

through the mapu 7→ −1, x1 7→ p1, where thepi’s are the positive primes.

Corollary 26. A localization of a monoid over a finite set of elements is of finite presentation.

Proof. We can reduce ourselves to consider the case in which we localize over a single elementa. It is straight-
forward thatMa =M [x]/(ax = 1). We can then apply the previous proposition and conclude theclaim.

�
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Proposition 27. Localizations of monoids are flat.

Proof. Let T be aM -module. TheS−1M -moduleS−1T := T ⊗M S−1M has the following alternative de-
scription. Its underlying set is

S−1T :=

{

t

s
: t ∈ T, s ∈ S

}/

∼

where∼ is the equivalence relation that identifiests and t
′

s′ if there exists an elements′′ ∈ S such thats′′s′ · t =
s′′s · t′. The action ofS−1M is defined byms ·

t
s′ :=

m·t
ss′ .

Let nowS be a multiplicatively closed subset ofM . We have to prove that the functor⊗MS−1M commutes
with equalizers and finite products in the category ofM -modules. In this category, both these limits are built
over the limits in the category of sets, with the obviousM -action induced. Let nowT andU beM -modules. It
is easy to see that the map

S−1(T × U)→ S−1T × S−1U

(t, u)

s
7→

(

t

s
,
u

s

)

defines an isomorphism ofM -modules fromS−1(T × U) to S−1T × S−1U , as wanted.
Also, for two arrows ofM -modulesϕ, ψ : T ⇒ U whose equalizer isE, there is a natural map fromS−1E

to the equalizerE′ of the induced couple of arrowsS−1T ⇒ S−1U . This maps sends the elementx
s in S−1E

to x
s , seen as an element ofS−1T . This map is clearly injective. Suppose now thatt

s is inE′. This means that
ϕ(t)
s = ψ(t)

s , hence that there exists an elements′ ∈ S such that

ϕ(s′s · t) = s′s · ϕ(t) = s′s · ψ(t) = ψ(s′s · t).

We then conclude thatts = s′s·t
s′s2 ands′s · t ∈ E. This proves the surjectivity, hence the claim.

�

The following two results concern flat epimorphisms of monoids. In particular, we would like to conclude
that local flat epimorphisms are isomorphisms. Stenström in[20] refers to the work of Roos and he states
that flat epimorphisms of (non necessarily commutative) monoids can be characterized as localizations over
Gabriel topologies, using the tools of torsion theory developed in [7] by Gabriel. Indeed, any epimorphism of
monoidsM → N induces a full embedding of categoriesN -Mod→M -Mod via the forgetful functor. Due
to the flatness property, this forgetful functor has also an exact left adjoint, hence it defines a localization of
M -Mod. However, the proof of the fact that such reflective subcategories are all localizations with respect to
some Gabriel topologies of monoids is not present in [20], and it is not a direct corollary of the general results
of Gabriel, who considered abelian categories. Therefore,since in our caseM -Mod is not abelian, we prefer
to follow a more explicit approach, which is in turn valid just for our specific setting.

Analogous results on the comparison of the two topologies onMon op have been proven independently by
Florian Marty, who used a more abstract and general approach, based on Gabriel filters. All the details can be
found in his article [19].

Lemma 28. A local epimorphism of monoids is surjective on invertible elements.

Proof. Let ϕ : M → N be a local epimorphism of monoids. Consider the setN/∼m, where∼m identifies the
elements of the maximal idealm := N \N×. It has a natural monoid structure induced by the one inN , and it
is isomorphic to the monoid with zero(N×)0. We also consider the subgroupϕ(M×) in N×, and the quotient
taken in the category of groupsT := N×/ϕ(M×). We can now consider two maps(N×)0 ⇒ T0: the first
one is induced by the projection, the second is induced by theconstant mapN× 7→ 1T . Sinceϕ is local, the
image of an element inM via the two composite mapsN → (N×)0 ⇒ T0 is the same. Hence, becauseϕ is an
epimorphism, we conclude thatϕ(M×) = N×.

�

The statement of the following proposition is a generalization of a standard fact on the category of rings (see
[15], IV.1.2).

Proposition 29. Letϕ : M → N be a map of monoids.
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(1) If ϕ is local and flat, then it is injective.
(2) If ϕ is a local flat epimorphism, then it is an isomorphism.

Proof. We initially prove the first claim. Suppose thatϕ(a) = ϕ(b) = t. Consider the two maps ofM -
modulesM → M , 1 7→ a and1 7→ b, and letE be their equalizer. By using the isomorphisms ofM -modules
m⊗n 7→ ϕ(m)n fromM ⊗N toN , we conclude that the two maps tensored withN are both equal to the map
N → N , n 7→ tn. In particular, the equalizer of the two is the whole ofN . By the flatness property, we then
deduce that the mapE ⊗ N → N , x ⊗ n 7→ ϕ(x)n is an isomorphism. In particular, there exists an element
x ∈ E and an elementn ∈ N such thatϕ(x)n = 1. Because the map is local, we conclude thatx is invertible.
Sinceax = bx, this implies thata = b.

Now we turn to the second claim. Because we already know thatϕ is injective, we considerM as a sub-
monoid ofN , and considerϕ as the inclusion. We recall that a map is an epimorphism if andonly if its
cokernel pair is constituted by identities. BecauseN ⊗M N is the cokernel pair ofϕ in the category of monoids
(Proposition 12), we conclude that the two mapsN → N ⊗M N defined asn 7→ 1⊗ n andn 7→ n⊗ 1 are iso-
morphisms. Now consider theM -moduleN/∼M , defined as the quotient ofN with respect to the equivalence
relation which identifies the elements ofM . It has a well-definedM -module structure induced by the one of
N , and a natural projection mapπ : N → N/∼M . This projection has the following universal property: any
map ofM -modulesN → T such that the image ofM is constant, splits uniquely throughπ. In other words,π
is the pushout of the diagram below.

M

��

ϕ
// N

{∗}

Because of the flatness property,⊗MN commutes with small products, hence it preserves the terminal object
{∗} (the empty product). Also, because it commutes with colimits andϕ ⊗M N = idN , we conclude that
(N/∼M )⊗M N is the pushout of the diagram

N

��

=
// N

{∗}

hence it is the trivial module{∗}.
We now inspect the kernel pairK of the projectionπ : N → N/∼M . It is constituted by the couples(x, y)

in N ×N such thatπ(x) = π(y). Since(N/∼M)⊗M N is the terminal object, the kernel pair of the tensored
map is the product of two copies ofN ⊗M N = N . Because of the flatness property, we then conclude that
the mapK ⊗M N → N × N , (x, y) ⊗ n 7→ (xn, yn) is an isomorphism. Fix now an elementn̄ of N . In
particular, the couple(1, n̄) has to be reached by the previous map, hence there is a couple(x, y) ∈ K and an
elementn ∈ N such thatxn = 1 andyn = n̄. We then conclude thatn andx are invertible, hence they are
elements ofM by Lemma 28. Because the couple(x, y) lies inK andx is in M , we conclude that alsoy is
in M . Therefore,̄n is an element ofM . This holds for anȳn, henceM = N . We then showed thatϕ is also
surjective. Because any bijective map of monoids is an isomorphism, the claim is proven.

�

Theorem 30. Letϕ : M → N be a morphism of monoids. The following are equivalent.

(1) The mapϕ is a flat epimorphism, of finite presentation.
(2) The mapϕ is isomorphic as aM -algebra to a localization over an element ofM .
(3) The mapϕ defines an open immersion of affine geometricalF1-schemes.

Proof. The fact that (2) implies (3) is obvious. It is also easy to show that (3) implies (2). Indeed, suppose that
Spec

F1
N is an open geometricalF1-subscheme ofSpec

F1
M . Cover it with basis open sets{Spec

F1
Mai}, and

cover each of these with basis open sets{Spec
F1
Nbij}. Because all coverings of affine schemes are trivial, we

conclude thatSpec
F1
Nbij equalsSpec

F1
N for some couple(i, j), and in particularSpec

F1
N equalsSpec

F1
Mai .
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The fact that (2) implies (1) comes from Corollary 26, Proposition 27 and the universal property of localizations.
We are then left to prove that (1) implies (2). By universal property, the mapϕ splits over the monoid

lim−→
ai∈ϕ−1(N×)

Mai =Mp

wherep is ϕ−1(N \ N×). The induced mapMp → N is local, and still an epimorphism. We now prove it is
also flat. Suppose thatS is aMp-module. We claim thatS = S⊗MMp. Indeed, the mapx 7→ x⊗ 1 defines an
inverse of the natural mapx⊗ m

f 7→
m
f · x. Also, by the essential uniqueness of the adjoint functor, whenever

we have a composite map of monoidsM → N → P , then the functor(⊗MN)⊗N P is canonically isomorphic
to the functor⊗MP . We then writeS⊗MN⊗N P without using brackets, and consider it equal toS⊗M P , for
anyM -moduleS. Now consider a finite limitlimSi of Mp-modules. We writêSi whenever we consider them
asM -modules. Using the flatness ofϕ and of localizations (Proposition 27), we then conclude thefollowing
chain of isomorphisms

(limSi)⊗Mp
N = (lim Ŝi ⊗M Mp)⊗Mp

N = (lim Ŝi)⊗M Mp ⊗Mp
N =

= (lim Ŝi)⊗M N = lim(Ŝi ⊗M N) = lim(Ŝi ⊗M Mp ⊗Mp
N) =

= lim(Si ⊗Mp
N)

which proves thatMp → N is flat.
By Proposition 29, we conclude thatMp → N is an isomorphism. Because of the finite presentation

property, the identity mapN → Mp has to split over someMa with a ∈ ϕ−1(N×). Because all the maps
involved are maps ofM -algebras, we conclude thatN =Ma, as wanted.

�

Corollary 31. Letϕ : M → N be a map of monoids. The induced mapSpecN → SpecM is an open Zariski
immersion in the sense of Definition 15 if and only if the induced mapSpec

F1
N → Spec

F1
M is an open Zariski

immersion in the sense of Definition 8.

Theorem 32. The Zariski site of affine geometricalF1-schemes is equivalent to the Zariski site ofMon op.

Proof. The two categories underneath are equivalent because of Proposition 6. By the previous corollary,
we also know that open immersions are the same. We have to prove that coverings are the same. LetM
be a monoid. In the case of affine geometricalF1-schemes, coverings must include the trivial immersion
Spec

F1
M → Spec

F1
M . We now prove that this is also true for the topology defined in15. Let{SpecMai →

SpecM} be a Zariski covering. Suppose that none of these open immersions is trivial, i.e. that none of theai’s
is invertible. Consider theM -moduleM/∼m where∼m identifies the non-invertible elements inM . We claim
that(M/∼m)⊗MMai is isomorphic to the trivialM -module{∗}, for all ai’s. Indeed, sinceai is not invertible,
we conclude the following sequence of equalities for any element[x]⊗ m

ak
i

in (M/∼m)⊗M Mai :

[x]⊗
m

aki
= [mx]⊗

ai

ak+1
i

= [ai]⊗
1

ak+1
i

= [ak+1
i ai]⊗

1

ak+1
i

= [ai]⊗ 1.

However, the morphism(M/∼m)→ {∗} is never an isomorphism, unlessM is the trivial group in which case
the statement is obvious. We then conclude that any Zariski covering must include the trivial open immersion,
as claimed.

�

Warning 33. From now on, we will then drop the subscript when referring toaffine geometricalF1-schemes,
and just writeSpecM . Also, we won’t refer to any specific definition when considering open immersions of
affineF1-schemes. It is also legitimate to refer to the site we built on Mon op as theZariski site, without
specifying which definition we are using at every occurrence.

Lemma 34. A mapX → Y of geometricalF1-schemes is an open immersion if and only if for any affine
schemeSpecM overY , the induced arrowX ×Y SpecM → SpecM is an open immersion.

Proof. This follows in the same way as in [8], I.4.2.4.
�
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Proposition 35. Letf : F → G be a morphism of Zariski sheaves overMon op, and letG = hSpecM be affine.
Thenf is an open immersion if and only ifF is isomorphic overG to hU := Hom(·, U) whereU is an open
geometricalF1-subscheme ofSpecM .

Proof. By [23], 2.14, this amounts to say that for a family of affine open geometricalF1-subschemes{SpecMi}
of SpecM , the image of the sheaf map

∐

hSpecMi
→ hSpecM is hU , whereU is the open geometricalF1-

subschemes constituted by the union of theSpecMi’s, and this is clear by [18], III.7.7.
�

Theorem 36. The category ofF1-schemes is equivalent to the category of geometricalF1-schemes.

Proof. Since the category of monoidal spaces is cocomplete (Proposition 5), the inclusionAff →MS induces
an adjoint pairPsh(Aff) ⇄ MS by means of [12] Theorem 2.7.1, in which the left adjoint is the functor
| · | : Psh(Aff) → MS that sends each objectcolimhSpecM to colimSpecM and the right adjoint is the
functorh : MS → Psh(Aff) that sendsX to hX = Hom(·, X). Let nowX be a geometricalF1-scheme,
and let{SpecMi → X} be an affine Zariski covering of it. Because the Zariski topology is subcanonical
(Proposition 9), we conclude thathX is indeed a sheaf overAff . Fix now an affineF1-schemehSpecN over
hX . By Lemma 34, the morphismSpecMi×XSpecN → SpecN is an open immersion. Because of Definition
17, Proposition 35, and the fact thath is a right adjoint, we can also conclude that the map

h(SpecMi ×X SpecN → SpecN) = hSpecMi
×hX

hSpecN → hSpecN

is an open immersion. This proves that each maphSpecMi
→ hSpecM is an open immersion. Now we also

prove that
∐

hSpecMi
→ hX is an epimorphism. Indeed, letF be another sheaf, and letf, g be maps fromhX

toF such thatfϕi = gϕi for everyi. Note that, using [1] III.4,F can be seen not only as a sheaf over affines,
but also as a sheaf over geometricalF1-schemes. Hence, by Yoneda’s lemma, the mapsf, g translate into two
elementsρ, σ in F(X) such thatF(ϕi)(ρ) = F(ϕi)(σ) for everyi. SinceF is a sheaf and because theϕi’s
define a covering, this implies thatρ = σ, hencef = g. We then conclude thathX is aF1-scheme.

By the co-Yoneda lemma ([17] X.6.3), we can write a presheaf of affinesF as the colimit of the functor

Aff/F → Psh(C)

(Hom(·, A)→ F) 7→ Hom(·, A).

In particular,|hX | is the colimit of the functor

Aff/X →MS

(A→ X) 7→ A.

Since affine geometricalF1-schemes are dense in geometricalF1-schemes, the colimit of this functor restricted
to F1-schemes is exactlyX ([17], X.6.2), hence there is a natural map|hX | → X . We also know thatX is the
colimit in MS of the gluing diagram induced by an affine open covering, which is embedded in the colimiting
diagramAff/X →MS. Hence we have also a mapX → |hX |, which determines an isomorphism.

Now suppose thatF is aF1-scheme with an open affine covering{hSpecMi
}. BecauseF1-schemes have

fibered products ([23], 2.18) , we can also consider affine open coverings{hSpecMijk
} of the F1-schemes

hSpecMi
×X hSpecMj

. By [18] IV.7.3 and [18] A.1.1, an epimorphism of sheaves is the coequalizer of its kernel
pair, and fiber products distribute over coproducts. Therefore, we conclude thatF is the coequalizer in the
diagram below.

∐

hSpecMi
×X hSpecMj

⇒
∐

hSpecMi
→ F

Note that all these maps are open immersions. Indeed, by their very definition, open immersions are stable
under affine base change, hencehSpecMi

×F hSpecMj
→ hSpecMi

is an open immersion. In particular, by
Proposition 35, these maps can be written ashUij

→ hSpecMi
induced by open immersionsUij → SpecMi.

We then conclude that|F| is the coequalizer of the diagram
∐

Uij ⇒
∐

SpecMi → |F|
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so that it is a gluing of affines on open subsets, hence a geometrical F1-scheme. By lettingG be another
F1-scheme, we can also construct the equalizing diagram

Hom(F ,G)→
∐

Hom(hSpecMi
,G) ⇒

∐

Hom(hSpecMi
×X hSpecMj

,G)

and hence conclude that the Zariski topology onF1-schemes is subcanonical. We can then define an inverse of
the mapF → h|F| by gluing the mapshSpecM → h|F|, henceF ∼= h|F|. This concludes the proof.

�

It is easy to see that the equivalence of categories respectsthe topology of the two sites.

Proposition 37. A morphism of geometricalF1-schemes is an open immersion if and only the induced morphism
ofF1-schemes is an open immersion. Let nowX be a fixed geometricalF1-scheme. A collection of geometrical
F1-schemes overX is an open Zariski covering ofX if and only if the induced collection ofF1-schemes over
hX is an open Zariski covering ofhX .

Proof. The first claim follows from the fact that open coverings in both cases can be defined via affine base
change (by using Lemma 34 and Definition 17), and in the affine case the two notions do agree. For coverings,
it suffices to write down the associate coequalizing diagrams and use the gluing lemma.

�

We remark that the proofs of Theorem 36 and Proposition 37 canbe directly generalized to the context of
schemes overZ, providing an alternative proof of the equivalence presented in [5], I.1.4.4.

4. BASE CHANGE FUNCTORS

After having defined schemes overF1, the natural question is how to lift them to classical schemes overZ.
We want to consider this process like a base change withZ overF1. This can be done starting from the functor
that lifts a monoidM to the ringZ[M ]. However, the two approaches toF1-geometry we presented in the
past sections have different ways to generalize this functor to arbitrary schemes. Not surprisingly, Deitmar’s
definition ([4], Section 2) is more “geometric”, while Toën-Vaquié’s approach ([23], Section 2.5) is more “func-
torial”. Given that the two perspectives on schemes are equivalent, we have to prove that also the two ways of
base-changing are naturally equivalent.

Definition 38. The forgetful functorRing →Mon has a left adjointMon→ Ring that sends a monoidM
to the ringZ[M ]. We indicate this functor with the notation⊗F1

Z.

Lemma 39. LetSpecN → SpecM be an open immersion of affine schemes overF1. Then the induced map

Spec(N ⊗F1
Z)→ Spec(M ⊗F1

Z)

is an open immersion of affine schemes overZ.

Proof. By Theorem 30, it suffices to show that, for a given elementa ∈M , there is an isomorphism

Ma ⊗F1
Z = Z[Ma] ∼= Z[M ]a=(M ⊗F1

Z)a

where the second localization is taken in the category of rings. A mapZ[Ma]→ Z[M ]a is induced by the map
of monoidsMa → Z[M ]a, which is in turn induced by the natural mapM → Z[M ]a. A mapZ[M ]a → Z[Ma]
is induced by the mapZ[M ]→ Z[Ma], which is in turn induced by the natural mapM →Ma. It is easy to see
that these two maps are inverse one of the other.

�

Definition 40. LetX be a geometricalF1-scheme and let{SpecMi} be an affine covering of it. Fix now an
affine open covering{SpecMijk} for eachSpecMi ×X SpecMj . By Lemma 39, we can define a scheme
overZ by gluing the affine schemesSpec(Mi ⊗F1

Z) overSpec(Mijk ⊗F1
Z). The scheme overZ we obtain is

calledbase change ofX , with respect to the covering{SpecMijk}.
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Definition 41. As described in[23], Section 2.5, the adjoint couple fromMon toRing induces a functor from
Zariski sheaves on affine schemes overZ to Zariski sheaves on affine schemes overF1, which has a left adjoint
⊗F1

Z. Also, the functor⊗F1
Z is such thatF1-schemes are mapped to schemes. Hence, its restriction defines a

functor

SchF1
→ Sch

X 7→ X ⊗F1
Z.

called thebase change functor.

Proposition 42. Base change of geometricalF1-schemes does not depend on the covering and is canonically
equivalent to base change ofF1-schemes.

Proof. We remark that the base change functor is automatically defined from the adjoint couple fromMon to
Ring. LetX be an arbitrary scheme overF1, and let{SpecMijk} be coverings as in Definition 40. We can
then writeX as the coequalizer of an affine diagram

∐

SpecMijk ⇒
∐

SpecMi → X.

Since⊗F1
Z is a left adjoint, we conclude thatX ⊗F1

Z is the coequalizer of the diagram
∐

Spec(Mijk ⊗F1
Z) ⇒

∐

Spec(Mi ⊗F1
Z)→ X ⊗F1

Z

which is exactly the image ofX via base change with respect to the fixed covering.
�

We can hence summarize what we have done by saying that the part of theF1-map in [16] that concerns
Deitmar’s and Toën-Vaquié’s schemes is correct, in the sense that both the equivalence between the two notions
and the commutativity of the base change functors have been proven.
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