A NONEXISTENCE RESULT FOR SIGN-CHANGING SOLUTIONS OF THE
BREZIS-NIRENBERG PROBLEM IN LOW DIMENSIONS
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ABSTRACT. We consider the Brezis-Nirenberg problem:
—Au=Mu+ [u?"2u inQ
u=0 on 09,

where Q is a smooth bounded domain in RY, N > 3, 2* = ]3?2 is the critical Sobolev exponent

and A > 0 a positive parameter.
The main result of the paper shows that if N = 4,5,6 and X\ is close to zero there are no
sign-changing solutions of the form
ux = PUs, ¢ — PUs, ¢ +wa,

where PUs, is the projection on Hé(Q) of the regular positive solution of the critical problem
in RN, centered at a point £ € Q and wy, is a remainder term.

Some additional results on norm estimates of w) and about the concentrations speeds of
tower of bubbles in higher dimensions are also presented.

1. INTRODUCTION
In this paper we study the semilinear elliptic problem:

{—Au =Xu+ |[u? "2u inQ

1
u=20 on 0f), (1)

where  is a smooth bounded domain in RY, N > 3, X is a positive real parameter and 2* = ﬁ—lj

2
is the critical Sobolev exponent for the embedding of H{ () into L? ().

This problem is known as "the Brezis-Nirenberg problem” because the first fundamental results
about the existence of positive solutions were obtained by H. Brezis and L. Nirenberg in 1983 in
the celebrated paper [6]. From their results it came out that the dimension was going to play a
crucial role in the study of (1). Indeed they proved that if N > 4 there exists a positive solution of
(1) for every A € (0,A1(€2)), A\1(2) being the first eigenvalue of —A in © with Dirichlet boundary
conditions, while if N = 3 positive solutions exists only for A away from zero. In particular, in the
case of the ball B they showed that there are no positive solutions in the interval (0, )‘lle) ).

Since then several other interesting results were obtained for positive solutions, in particular
about the asymptotic behavior of solutions, mainly for N > 5 because also the case N = 4 presents
more difficulties compared to the higher dimensional ones.

Concerning the case of sign-changing solutions, existence results hold if N > 4 both for A\ €
(0, A1(£2)) and A > A1(£2) as shown in [3], [9], [7].

The case N = 3 presents even more difficulties than in the study of positive solutions. In
particular in the case of the ball is not yet known what is the least value \ of the parameter \
for which sign-changing solutions exist, neither whether X is larger or smaller than \; (B)/4. This
question, posed by H. Brezis, has been given a partial answer in [5]. However it is interesting to
observe that in the study of sign-changing solutions even the "low dimensions” N = 4,5, 6 exhibit
some peculiarities. Indeed it was first proved by Atkinson, Brezis and Peletier in [2] that if
is a ball there exists A* = A*(N) such that there are no radial sign-changing solutions of (1) for
A € (0,\*). Later this result was reproved in [1] in a different way.
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Moreover for N > 7 a recent result of Schechter and Zou [14] shows that in any bounded smooth
domain there exist infinitely many sign-changing solutions for any A > 0. Instead if N = 4,5,6
only N + 1 pairs of solutions, for all A > 0, have been proved to exist in [9] but it is not clear that
they change sign.

Coming back to the nonexistence result of [2] and [1] an interesting question would be to see
whether and in which way it could be extended to other bounded smooth domains.

Since the result of [2] and [1] concerns nodal radial solutions in the ball the first issue is to
understand what are, in general bounded domains, the sign-changing solutions which play the
same role as the radial nodal solutions in the case of the ball. A main property of a radial nodal
solution in the ball is that its nodal set does not touch the boundary therefore, a class of solutions
to comsider, in general bounded domains, could be the one made of functions which have this
property.

Moreover, in analyzing the asymptotic behavior of least energy nodal radial solutions u) in the
ball, as A\ — 0, in dimension N > 7 (in which case they exist for all A € (0, A\;(B)), see [8]) one
can prove (see [11]) that their limit profile is that of a "tower of two bubbles”. This terminology
means that the positive part and the negative part of the solutions u) concentrate at the same
point (which is obviously the center of the ball) as A — 0 and each one has the limit profile, after
suitable rescaling, of a "standard” bubble in RY, i.e. of a positive solution of the critical exponent
problem in R, More precisely the solutions uy can be written in the following way:

ux = PUs, ¢ — PUs, ¢ + wa, (2)

where PUs, ¢, i = 1,2 is the projection on H{ () of the regular positive solution of the critical
problem in RY, centered at ¢ = 0, with rescaling parameter ¢; and wj is a remainder term which
converges to zero in Hg (£2).

It is also interesting to observe that, thanks to a recent result of [12], sign-changing bubble-tower
solutions exist also in bounded smooth symmetric domains in dimension N > 7 for A close to zero,
and they have the property that their nodal set does not touch the boundary of the domain.

In view of all these remarks we are entitled to assert that in general bounded domains sign-
changing solutions which behave as the radial ones in the ball, at least for A close to zero, are the
ones which are of the form (2). Hence a natural extension of the nonexistence result of [2] and [1]
would be to show that, in dimension N = 4,5, 6, sign-changing solutions of the form (2) do not
exist in any bounded smooth domain.

This is indeed the main aim of this paper. Let us also note that in the 3-dimensional case a
similar nonexistence result was already proved in [5]. Indeed, in studying the asymptotic behavior
of low-energy nodal solutions it was shown in [5] that their positive and negative part cannot
concentrate at the same point, as A tends to a limit value A > 0. In the case N > 4 this question
was left open in [4]. Therefore our results also complete the analysis made in these last two papers.

To state precisely our result let us recall that the functions

N-—-2
072 N
Usg(z) = an vz, 0>0, {eRY, (3)
(0% + |z —¢£2) 2
ay = [N(N — 2)]¥, describe all regular positive solutions of the problem
AU =UN% inRV,
U(z) — 0, as |z| = +oo.

Then, denoting by PUj their projection on Hj(€2), and by ||ul| := [, |[Vu|? dz for any v € H{ (),
we have:

Theorem 1. Let N =4,5,6 and £ a point in the domain Q). Then, for A close to zero, Problem
(1) does not admit any sign-changing solution uy of the form (2) with 6; = 6;(\), i = 1,2, such
N-—2 N

that 02 = 0(81), [[wall = 0 and |wx| = 0(6; 2 ), |Vwa| = 0(d; ?) uniformly in compact subsets
of Q, as A — 0.

. . v . .
The previous notations mean that %, | wj\?‘ converge to zero as A — 0 uniformly in compact
T2 T2

5 2 0y

subsets of €.
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The proof of the above theorem is based on a Pohozaev identity and fine estimates which are
derived in a different way in the case N =4 or N = 5,6. We would like to point out that it cannot
be deduced by the proof of Theorem 3.1 of [5] which holds only in dimension three.

Concerning the assumption on the C''-norm in compact subsets of 2 of the remainder term w,
whose gradient is only required not to blow up too fast, in Section 4 we show that it is almost
necessary.

Note that we do not even require that wy — 0 uniformly in Q neither that it remains bounded
as A — 0, but only a control of possible blow-up of |wy| and |Vwy|. We delay to the next sections
some further comments and comparisons with the case N > 7.

Finally in the last section we show that in dimension N > 7 if (uy) is a family of solutions of
type (2) with |wy|, [Vwa| as in Theorem 1 and §; = d; A%, for some positive numbers d; = d;())
with 0 < ¢1 < d; < ¢, for all sufficiently small A, and 0 < a3 < a9, then necessarily:

1 3N —-10

“NT oD o) @

(€51

In other words we prove that if the concentration speeds are powers of A then necessarily the
exponent must be as in (4). Note that these are exactly the type of speeds assumed in [12] to
construct the tower of bubbles in higher dimensions.

2. SOME PRELIMINARY RESULTS

Lemma 1. Let Q be a smooth bounded domain of RN and let (€,5) € Q x Rt. As § — 0 it holds:

N-2

PUs¢(x) = Use(a) —and = H(z,&) +0(6°2 ), 2€Q
Cl-uniformly on compact subsets of Q, where H is the reqular part of the Green function for the
Laplacian. Moreover, setting e 5(x) := Us¢(x) — PUse(x), the following uniform estimates hold:

(1): 0< w5 <Use,
(i): lleesl® =0 ((5N2).
where d = d(&,00) is the euclidean distance between & and the boundary of Q.

Proof. See [13], Proposition 1 and its proof. O

Lemma 2. Let N > 4 and (uy) be a family of sign-changing solutions of (1) satisfying
flusl|> = 28N/2, as A — 0.

Then, for all sufficiently small X > 0, the set Q\ {x € Q; ux(x) = 0} has ezxactly two connected
components.

Proof. Let us consider the nodal set Z := {z € Q; ux(x) = 0} and let ©Q; be a connected
component of 0\ Z,. Multiplying (1) by u) and integrating on Q, we get that

/ [Vu|* do > SN2 (14 o(1)),
(o

where we have used the Sobolev embedding and the fact that A — 0 and A () le ui dx <
le |Vuy|? do, where A\1(Q1) is the first Dirichlet eigenvalue of —A on €.

Since |luy||? — 28N/2, as A — 0, then for all sufficiently small A > 0 we deduce that Q\ Zy can
have only two connected components. O

We recall now the Pohozaev identity for solutions of semilinear problems which are not neces-
sarily zero on the boundary. Let D be a bounded domain in R, N > 3, with smooth boundary
and consider the equation

—Au = f(u) in D, (5)

where s+ f(s) is a continuos function. Denoting F(s) := [ f(t) dt, we have:
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Proposition 1. Let u be a C?-solution of (5), then

/ {NF(u)— N;Quf(u)} dx
D
N u Y 9 9 (6)

where v denotes the outer normal to the boundary and u,, is the partial derivative with respect
to x; of u.

The following lemma gives information on the asymptotic behavior of the nodal set Z) of
solutions of (1) as A — 0.

Lemma 3. Let N > 4, £ € Q and let (uy) be a family of solutions of (1), such that uy =
PUs, ¢ — PUs, ¢ + wx, with 61 = §1(\) and 62 = d2(N) satisfying

da =0(01) and |lwill =0, as A — 0.

N-2
Moreover, assume that wy satisfies [wy| = o(d; 2 ) uniformly in compact subsets of Q2. Then,
for all small € > 0 there exists \c > 0 such that the nodal set Zy is contained in the annular region
1.1 1y, 1
Ap (&) ={z € Qs m <|x—=¢| <12}, for all X € (0, \.), where rq := 67 6(522+€, ro 1= (5f+6522 ‘
Proof. Without loss of generality we assume that £ = 0. Let us fix a small € > 0 and a compact
neighborhood of the origin K. Thanks to the assumptions and Lemma 1, we have the following

N—-2
expansion uy(z) = Uy, (z) — Us,(z) + 0(6; 2 ), which is uniform with respect to x € K and to
all small A > 0. By definition, for all sufficiently small A > 0, we have that A4, ,,(0) C K. For
such that || = r; we have:

51\772 5_1\172
2 2

Us () = « 1 =« 1

() M e R T DY IS

 N-2 N_92 N (52 1+2€ N2 62 1+2€
= QN (51 2 — QN B) 61 2 (61> +o 51 2 a ,
and
N—2 N—2 _ N—2 N—2
- ( ) 622 522 5; 5 +(N*2)6527 5= —(N—2)e
52\ T = QN — — QN —
2 (55+5%—2e55+25)1\’22 1+ (%)1725]1"22
_N-2 —(N—-2)e
£ 1)
= an N-_2
2

B N2—2 62 —(N—2)e N_92 _ NZTZ 62 1—Ne 7¥ 52 1—Ne
= QN 51 <§1> —Of]\/'72 51 <(51> +o 61 <51> .

 N-2 o —(N—2)e  N-2
ux(z) = an §; 2 1—<5> +o(6; *)<0
1

for all sufficiently small A > 0. On the other hand, by similar computations (just changing the
sign of € in every term of the previous equations), for z such that |x| = ro we have

_ N-2 59 +(N=2)e _ N-2
ux(z) = ay §; 2 1—(5> +o(6;, *)>0
1

for all sufficiently small A > 0.
From Lemma 2 and since uy is a continuos function we deduce that Zy C A, ,,(0) for all
sufficiently small A > 0. O
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3. PROOF OF THE NONEXISTENCE RESULT
We begin considering the case N = 5,6 since the case N = 4 requires different estimates.

Proof of Theorem 1 for N=5,6. Arguing by contradiction let us assume that such a family
of solutions exists and, without loss of generality set £ = 0. Defining r := /0192, we apply the
Pohozaev formula (6) to uy in the ball B, = B,(0). Since u) is a solution of (1) we set fu) =
Au + |uP~'u and hence, using the notation of Proposition 1, we have F(u) = u® + p+1 Ju|PHL.
By elementary computations ! (see the footnote) we get that the left-hand side of (6) reduces to

)\/ u3 da.
B

r

For the right-hand side

Oux o~ Ouy N-2 0
/ {Zm 1/1< U ,,‘vu |2> 81:\ xl- 81;‘)\ +TU>\ au:} do,

T

since OB, is a sphere, we have v;(z) = o for all x € BBT, 1=1,..., N, and hence Zf\il xiv; = |z|.

Furthermore since 6:;‘—1} = Vuy - 7 and Zi:l X %Zk = (VuA ) |z| we get that

Ouy N Quy x N Ouy )2
W — ZT; 8mi = V'LL)\ ‘x| £ ./L'Zaixi = V’U,/\ . m |fl;|,

Quy T
U)\W = U) <VU)\ . |1‘|> .

Thus (6) rewrites as

)\/ ui dx
B

"

- /ﬁ{ﬂ (P = om) + (v ) e+ 22 (v ||>}

We estimate the left-hand side of (7). Let us fix a compact subset K C €; for A > 0 sufficiently
N-2
small we get that B, C K. Thanks to Lemma 1 we have PUs, = Us, —s,, where @5, = O (5j 2 ),

for 7 = 1,2, and this estimate is uniform for z € K, in particular for x € B,. Thus, as A — 0, we
get that

/\/ ul de = A
B

(7)

N-2 \ 2
U51 —U52 —1-0(51 2 )) dx

N—2

(
(U(s1 — Us, — s, + @5, +0(6; N;z))2 dx
(
(U2 + U2, —205,Us, + 06, 7 Us,)+o(6; 7 Us,) 406, 7)) do

= A+B+C+D+E+F
(8)

We estimate every term of the previous decomposition.

1

2

N N-=-2 N N —2
= - - Ml 4 [ —— — —= ) uPt?
2 2 pr1 2

= a2

N —2 A 1 N —2
NF(u) — 5 uf(u) = N<fu2+ﬁ\u|p+1)—T()\u2+|u|p+1)
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da:

5N 2 N 2)
A/ NG ) a2+|x\> zde = “NA/ 1+|x/61>

IN

o )\52/ v d ai\%| B, /6
W [, T S ok

b4
CN/\(S% (%) ,

where we have set ¢y 1= o 9", wy is the measure of the (N — 1)-dimensional unit sphere SV,

dx

N =5 or N = 6 the

6N (N 2)
B = )\/ o2 2 dx—a /\/
B, (03 +]z2)N2 N +|CU/52|2)N 2
1
2\ 52
NBY) / S S
N2 s, (L4 [y2)N—2
9 ) 1 9 +oo ’I"N_l
= Y —_—— d O [ N6 —_——
o 2/RN A2 @ 2/(31)% DL
N—4 2
— al/\5§+0()\5§ (%) ? >
where we have set ay = a% [on W dy. We point out that since

function i

C

W € LY(RY) while this is not true when N = 4.

e S5
= )\a2/ L — 2 — dx
N p, (82 + |x\2>”2<5§+\x|2>”2"’

5N;2
- / 2 22 2) N2 dy
1+|y| A CERH D
= / I | 62 N-2 dy
B./s; (1+ |y <(5 )2 2
) +lyl?
&\ T 1
S )\012 <) 52/ —2 dy
Y\ s (U [y2) N
N-2 55\ 1/2
52) 2 2/(51) rN-1
= O| A= 0 — dr
( <1 Yo (1+r2) 22 pN-2
— 02 * 2
- o(s(2)"4)

IN
S

_N-2 511\’772
ID] = o(Ad °* —— =z T
B, (0% + [af?) ="
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)\5;N;2/ 62—1\1—2 du
B, (03 +[x]*) 2

,NZ—Q 5;;2
[ [, e )

|E| = o

IN
o

— o(rs 67 ).
(Ao or)

Now we estimate the right-hand side of (7). Remembering that F(uy) = 3u3 + ﬁ\uﬂpﬂ we
get that the first term is equal to
A, 1 o1 1 )
— S — =V do.
el (G gt = 5V ) do
We observe that by definition of r it is immediate to see that
U51 (iL’) = U52 (1’),
for all x € 0B,., and hence we have
A A -2y 2
/ ~u3 |zl do = f/ (U51 —-Us, +o (51 2 )) |z| do
0B, 2 2 Jos,
A _N-2\72
= 7/ [0(51 2 )} || do
2 Jop,
- o ()\51_(]\’_2) / |z| do>
dB,
5\
- AM2) 2.
As in the previous case we have
L el de = — [ Us = Us, 4067 T )P 2] dor
p+1Jog, p+1Jom, ’ '
[ ol TP el d
= (0] X g
p+1Jop

i, 1)
()

To complete the estimate of the first term it remains to analyze

1
ff/ |Vuy|?|z| do.
2 Jon,

As before, writing PUs, = Us, — @5, for j = 1,2 we have
|Vus|> = |VUs, — VUs, — Vs, + Vs, + Vwy|? = |[VUs, — VUs, + V5|2,

where we have set @) := —ps, + @5, + wx. Hence, we get that
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1
—7/ |Vuy|?|z| do
2 Jam,
1 2 1 2
= -3 VU, |2] do — 5 VU5, | |#| do + VUs, - VUs, |#| do
9B, OB, OB, 9)
1
—/ VU, - V@, |z] da—l—/ VU, - V@, |z| do — f/ |V, |2 |z| do
B, B, 2 Jom,
= A1+B1+Cl+D1+E1+F1.
By elementary computations, for all: =1,..., N, 7 = 1,2 we have:
8U5. N-—2 T
i(z) = —an(N—-2)5° ————,
Ox; (@) w{ ) (0% + z|2) %
2
VU, |? = ak (N —2)%67 2 2 (10)

AT

Thus, we get that

N -2 5N
A = —a?\,( 5 ) L N/ |z do
b ()]
N —2)2 57(N+2) N+2 N+2
= a?\,( 5 ) WN L 6,2 6,°?

N —2)2 §N—25-Ng5-N f
B1 _ 704?\[( ) 2 1 2 / ‘$|3 do
OB,

o)




A NONEXIST. RESULT FOR SIGN-CHANGING SOL. OF THE B-N PROBLEM IN LOW DIMENSIONS 9

Taking into account the assumptions on the remainder term w, and thanks to Lemma 1 we have

_N
[V®y| = 0(d; ?), uniformly on dB,. Thus we have the following:

D] < / VU, [V @[] do
OB,
525
- 0 17,“5;7/ 2)? do
(5% +d162)2 9B,
25Ny
= o0 51751&51—7/ |a:|2 do
() e
N+1
A
- (%
B < / VU | [V l2| do
= o0 057 0y 52ﬂ6;%/ |x|2da
e (B)

()

And finally the last term of (9) is trivial:

()
/BBT (vuA : é)z 2| do. (11)

As before we write uy = Us, — Us, + ®» and we have

(v )2' = (v |> o+ (V0 > =2 (V0 ) (W0 i) o
w2 (V0u - ) (Vo gy e =2 (V0 ) (90 ) o
#(vor ) .

By elementary computations we see that for j = 1,2

2
X

X
<VU51 | |) <VU52 ' |,’E|) |1‘| = _2(VU51 : VU52) |'T|?

N——

Now we analyze the term

(12)

[VUs,|* |,
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and for the remaining terms we have

‘ ) (VUJJ. : f;|) (v<1>A : |i|) ||

2
x

Thus, in order to estimate (11) it suffices to apply the estimates of the previous case, and hence

we get that
2 N-2 N-—2
x 02 2 o 2
Vuy - — x| do = o (N — 2)%w () +o0 () .
/a& ( A x|) = w Juw 01 01

To complete our analysis of (7) it remains only to study the term

N —2
7/ U) (Vu,\ . x) do.
2 Jan, ||

N —2
7/ U <Vu,\ . x) do
2 Jas, ||

N-2
- 7/ (Us, — Us, + ®y) [(VUgl — VU, + V) - x} do
2 o8, ||

IN

2|VU51||V®)\||"E|7

VD[ |-

IN

N—2 N —2
- 7/ D, <VU51-:”> da—i/ o, <VU52-I> do (13)
2 9B, || 2 9B, ||
N—2
SR D) <V<I>A~z) do
2 a8, ||
= Ay + By +C;y
N-—-2)2 4,2 N
4 < o B2 00 o[ lsllelao
5 2 JoB,
1+ (%))
N-—-2
5 2 §_N _N-2
= o0 1 1 N/ 0, % x| do
5 2 JoB,
1 (3)
o N N
= o R R
2
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N -2
o < & >/ 85|V, | do
OB,

- 0(5;N525‘§5 T )

(&)

Summing up all the estimates, from (6), for all sufficiently small A > 0, we deduce the following

equation
_ 2 N;Z N;Z
a1 A3 + 0 (\63) = a?VMwN (52> 0 ((?) ) . (14)
1

5 5
wndy T (14 o(1)), (15)

From (14) we deduce that
(N —2)?
2

for all sufficiently small A > 0. Since N = 5,6 it is clear that (15) is contradictory, in fact, passing
to the limit as A — 0, the left-hand side goes to zero while the right-hand side goes to a constant,
when N = 6 and diverges to +0co when N = 5. The proof is complete. (I

al)\§ (1 +0(1)) = a%

Now we turn to the case N =4
Proof of Theorem 1 for N=4. Again, without loss of generality we assume that £ = 0. We

repeat the scheme of the proof for the previous case, but some modification is needed. In fact,
since N = 4, we have to change the estimate of the term B in (8):

. 3 5
B*:)\/aia:—a)\/ 75dy
B, (83 +|z?)2 sy (L 1y2)2

1 (52) r3
2y 52 2 2
= oz)\é/ dyzaw)«?/ dr
e B, /5, (14 [y[?)? it 0 (1+1r2)?

It’s elementary to see that
(@) 7“3 51
——d 1
/0 @+ " O(Og(52)>’

B, =0 (w log (g;)) . (16)

Thus, summing up (16) with the other estimates made in the previous case (in which we take
N =4), from (6), we deduce the following asymptotic relation

o) (/\52 log (i)) +o0 <)\52 log (g;)) = 202w, (§1> +o0 <§j> . (17)

It is clear that (17) gives a contradiction. In fact, dividing each side of (17) by (g—f) we have

O <)\5152 log (?)) +o ()\(5152 log <g1>> =2ajws +o(1). (18)
2 2

Passing to the limit as A — 0 in (18), taking into account that d2 = o(d1), we deduce that
0 = 2a3w, which is a contradiction. ]

and hence we have that
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Remark 1. In [4, 5] sign-changing solutions uy of (1) with low energy were studied, namely
solutions such that

/ |Vuy|? do — 257/2,
Q

For this kind of solutions it is not difficult to show (see [4], Theorem 1.1) that there exist two
points a1 = a1(N), as = az(\) in Q (one of them is the global mazimum point of |ux|) and two
positive real numbers 61 = 01(\), do = d2(N), such that for N >4, as A — 0, we have

lur — PUs, ay + PUs, oy || — 0, 8;'d(a;,00) — +oo, fori=1,2,

where d(a;, 0Q) is the euclidean distance between a; and the boundary of Q. Hence these solutions
are of the form (2) but with possibly different concentration points. In [4], assuming that the
concentration speeds of uj\' and v were comparable, it was proved that the positive and the negative
part of uy had to concentrate in two different points.

Since here we assume that the concentration speeds are different, our result also completes the
study made in [4].

4. ABOUT THE ESTIMATE ON THE C'-NORM OF w)

Here we show that the hypotheses of Theorem 1 on the C'-norm of the remainder term w) are
almost necessary. Indeed we have:

Theorem 2. Let Q be a bounded open set of RN with smooth boundary, N > 4, and let £ € Q.
Let uy a solution of (1) of the form

Uy = PU(;l)g — PU§275 + wy,

with 99 = 0(61) as A — 0. Assume that the remainder term wy is uniformly bounded with respect
to \ in compact subsets of Q. Then for any open subset Q" CC Q such that £ € Q" and for all
sufficiently small € > 0, there exists a positive constant C = C(e, N,QY") such that

—2

_N-2 _ .
lwllor@n < €8 % 8,7,
for all sufficiently small X > 0.

Proof. Without loss of generality we assume that £ = 0. By definition w) satisfies the following:
—Awy = Mwy + A(PUs, — PUs,) + U}, = U} + [ur[* "2uy in Q (19)
wy =0 on If).

Let us set fy := Awy + A(PUs, — PUs,) + Ufg — Ugl + ur|? ~2uy. Since wy and uy are smooth,
applying the Calderén-Zygmund inequality we deduce that for any p € (1,00), for any Q" CC
Q' cc Q it holds:

[wallzp0r < Clwlpor + [falp.o), (20)

where C' depends on ', N, p, Q”. Thanks to the Sobolev imbedding theorem, for any € > 0, if
p = N + ¢ we have that W2P(Q) is continuously imbedded in C17(Q), where v = 1— NLJFE Let us
consider two open subsets Q”, Q' of Q such that 0 € Q” and Q" cc Q' cC Q. Thanks to (19) and
(20), in order to estimate ||wx||c1(qr) We have to estimate the following quantities: |wx|n+e0r,
| falv+esr-

Thanks to the assumptions on wy we deduce immediately that |wx|nte, = O(1), uniformly
with respect to A. For the other term we argue as it follows: we set g(s) := |s|* ~2s, ®y :=
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wx + p2 — 1, where ¢; 1= Us, — PUs,, for j = 1,2, and we write

|FAI N e

< MwalNteo + APUs, [N yea + MPUs, | Ntear + US| Nte o
+1g(Us, — Us, + ®x) — g(=Us,)|N+ecv

< MNwalnyeo + APUs, |Nve.q + APUsy | Nteor + U INveor

+lg(Us, = Us, + @) — 9(=Us,) — 9'(=Us,)(Us, + @) |Inye.r + |9'(=Us,) (Us, + @o)| e

= A+B+C+D+E+F.

The term A has been estimated before, and hence A|wx|niye, 00 = O(N). For B and C we use
the following estimates:

=2 (N+e€) 5 N=2(N+e)+N

0; T .
N+e N+e 7
N ~—— dr = ay / dy
// (02 + |z[?) 7= (VF9) /s (1+y]2) "7
= a%*eé%_TNN_GNQZ/ 1 dy
’ Y (14 [y?)°7

1-N +o0 N-1
+052N62/ A dr ) .
1/6; (L412)7z )

Thus, for all € > 0 sufficiently small we have

1
N=2(Nye) Nte

0.2
|PUs|Nter < /OéN+6 J
;N (82

1
54—N / ]_ d Nte (64—N 6))
= apnd;? — 1y +ol(0,? .
’ v (14 [y[2) "7 !

From this we deduce that B = O(A 5 (7O 6)) C =0\ 5 = +O(E)). Concerning the term D,
with similar computations we see that

1

Ne2veg 52 O W
Q 5 dx
’ (62 + |al) 7

e
_N 1 ¢ _N
p6 2+O(€) / d (5 2+O(6))
vt e (L ) 2w W) el !

N
and hence D = O(d; 2 +O(E)). In order to estimate E we remember that by elementary inequalities
we have |g(u 4+ v) — g(u) — ¢’ (u)v| < c|v|P, for all u,v € R, for some constant depending only on
p, and hence we get that

IN

|PU§1 ‘N+67Q’

E < | ®:P|nteqr = O(L).

For the last term we have the following:
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P TF2(N+o) 5T N+

dx
(83 + |af2) == "2 (VF9 (8 + Jaf2) T (VO

Ni2 (N4
U N = 2™ [ gt O

N2 ny.
5;2<N+E) 61— 5 (N+e¢)

N+2
_ ,N+e, 3 (N+e)/
= e dx
Pt o (14 [2/02]2)2NF (1 4 |2/6,]2) "= (N+o)

e NEZ(N+te) —N52(N+e) c—2(N+e)+N 1
< pNteay N5 5 d
Sroew : 05, (L+ [ /37079
N+2 _N-2 1
< pNteg B (Nte) s—EFE(Nte) s N o / d
= : 2 Jags PO
N+42 N-—2
_ N+e, MFE(N+Q) s N2 (N+e) o N-2e 1
Sy 5 [ G
+0 67¥(N+6)5—N—2e /+OO rt
1 2 s, G )
Hence we get that
1
N+t2 _ N-2 —140(¢) 1 Ne N2 —14+0(e)
19" (Us:)Usi IN+er < pay® 6 % 4, </RN At v +0(61 T 0y )
By the same computations we see that
|g/(U52)(I>>\|N+e,Q/ = O (52_1+O(6)> )
Thus, we get that
N-—2
|F| < ¢(N,p)s; = 6, 19,
Summing up all these estimates, from (20) and Sobolev imbedding theorem we deduce that
_N=2 1.0
lwallor@n < Coy % 65 ©)
where C' is a positive constant depending on €, N, Q", Q. O

A straightforward consequence of the previous theorem is the following result:

Corollary 1. Under the assumptions of Theorem 2, for all sufficiently small € > 0 we have

N—4

/ ‘V’LU>\|2|,1" do < C(E,N) 63 620(6),
P o

T

for all sufficiently small X > 0, where B, is the ball centered at £ having radius r = 1/d165.

5. CONCENTRATION SPEEDS FOR N > 7

We consider as in the previous sections sign-changing solutions of Problem 1 which are of the
form uy = PUs, ¢ — PUs, ¢ + wy, with 61 = 01(N), 2 = () satisfying d2 = o(d1) as A — 0. In
addition we assume that §;, for ¢ = 1,2, is of the form

5; = di\, (21)

where d; = d;()\) is a strictly positive function such that d; — d; > 0, as A — 0, and the exponents
a; satisfy 0 < o < ap. Following the ideas contained in [13] and applying the asymptotic relation
(14), found in the proof of Theorem 1, we determine precisely the exponents ay, as in the case
N > 7. We observe that these speeds are exactly the same used in [12] to construct solutions of
(1) of the form (2).
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Theorem 3. Let Q be a bounded open set of RN with smooth boundary, N > 7, and let £ € Q.

Let uy a solution of (1) such that uy is of the form uy = PUs, ¢ — PUs, ¢ + wx, where 0;, for
i=1,2, is of the form (21) with ay > a; >0, wy € V¢, V¢ is the subspace of H}():

oUs, )
V)\»f = {UGH&(Q), (v;PU&,g)Hé(Q) = <1)7P6§“£> =0, ’L:]_,Q}.
Hg ()

v|Z

_N-—2 _
Moreover assume that |wa| = o(d; 2 ), |Vwxr| = o(d; ?), uniformly in compact subsets of Q.
10

_ _1 _ 3N —
Then a1 = N_4’ Qo = m

In order to prove Theorem 3 we need some preliminary lemmas. Without loss of generality we
assume that & = 0. The first one is the following:

Lemma 4. Let Q be a bounded open set of RN with smooth boundary and assume that 0 € ,
N > 5. Then, as § — 0, we have

2
/ <8§£J(5> (x-v) do=as" % +o0(6"72),
o0

for some positive real number as, depending only on N and 2.

Proof. We multiply the equation —APUs = U} by ZZ 1% 8§IU“ and we integrate on €2. On one
hand, integrating by parts we obtain

N
OPUs
_AP 0
/Q U5;x oz, dz
N ) 1 oPUs \*
_ _N 1 . 22
<1 2>/Q|VPU5| dx 2/8Q<8V>(:17 v) do (22)

B N , 1 oPUs\
= (1_2)/QU6PU6dx_2/39< 5 ) (z-v) do.

On the other hand, we have
N N
OPUs _10Us
/QUPZ1 i, = —Z/ (Uf-i—pmiUf ax)PU(; dx
' (23)
, o 18U5
U PUs dx —pz Ut PU(; dz.

By elementary computations we see that

TV e T T 2 96

i=1

and hence from (23) we get that

N

OPUjs
UPN 'z dz
/Q J ; ox;

?

72/U§PU(; da:+p5/ Uk~ 1%PU dz (24)
o o a6

N
= 7N/U§PU5 dr +p
Q

N oUs;

_ _ P p—1~~0
= <1 2>/QU6PU5 d:chpé/QU5 % PUs dzx.

We analyze the last term of (24). Applying Lemma 1 and since it is well known that

»0Us

Uﬂ* 96

dx =0,
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we have

5/ Ur- 1—PU5 dx

0Us

pa/UP 1—U5 dz — paN(S%/Ug’ Y20 H(z,0) d
0 96

+o 5%/ Ug’—l%H(x,o) dz
Q 96

»OUs N p—10Us
70 N
S ¥ 9% dr — pand /Q 5 oy (2,0) dx

N 3U5
0<62/U§’ 165 (a:,O)dx),

where H denotes, the regular part of the Green function for the Laplacian. By definition it is easy

to see that

—ps or 9% g4,

avi 0 96

IN

<

b1 N +2 5 - &
o — N+2 N dx
2 RN\Q (52 4 |z]2) 2 (62 + |z]2)>
2 2
ap+1N+2 / SN ||z]? - 82| o (26)
2 RN\Q || N2 |z
o) (5N+1) .

Moreover, by the usual change of variable and applying the mean value theorem, we have

paN(S%/Uf 18{;{;H( ,0) dx

Finally from (22)-(27) we get that

2 N72 2 62
pa?\,ﬂd 7 / 0 5 (I )H(a:,O) dx
o (0% + [z[?) ( + Ix\ )®

2 z)2 _
paﬁ’\,ﬂ / J . 5! M)H(x,()) dx
a6t (1+]%2)° sn (14_‘%2)2

2
-1
paﬁ’vﬂéN*Q/ ! Y (|y| )ﬂH(éy,O) d
a/6 (L+1y[*)” (14 |y[2)>

oPHigN 2/ 1 (ly* —1)
pay N2 N
a/6 (L+yl1)” (14 |y2)2

o <5N1 /Q/é (1 JrL/IQ)2 (Eiljz,;?ié (V.0 9) dy)
pak e - 2/RN i +Ty|2)2 (Ei'jy_';é H(0,0) dy

o <5N_2 /:o (171:) (§+— 1) H(0,0) dr )

o <6N_1 /9/5 (1 +Ty|2)2 (Eﬁy_lsé (Vi 0)-0) dy)

pa® T H(0,0)6N 2 /

H(0,0) dy

21
(\ZJ| N)+4 dy +O(aN 1)

RY (1+[y?) 2
(27)
oPUs \* 2 v) do = el H v [ (WP-1) N-1
/39< 5 ) (z-v) do = 2pa H(0,0)0 /RN Lt dy +O(sN 1),
O

and the proof is complete.
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Another preliminary lemma is the following:

Lemma 5. Under the assumptions of Theorem 3, as A — 0, we have

[ ()

Proof. The first step is the following:

[ ()

= O(\26]) + o6V 72).

N
o
S
7 N

Q
Q
t‘g
N———
B
=
i~
Q)

IA IA
o S—
B 3
N
S
SR |
Q)‘Q) N———
S [V}
N N —
8
N——— —
N QL
o )
q

ow
Thus we need to estimate / (/\
Fle) aV

that 0 < ¢ < 1, {(z) = 0 for [z| < 1 and ((z) =1 for |z| > 1. We set n(z) := g(m). It’s

elementary to see that nw) is a solution of the following problem

{A(nwk) =Awy+gx in

2
> do. Let us consider a smooth function ¢ : RV — R such

28
nwy =0 on 01, (28)

where gy = 7 ()\PU51 — A\PUs, — Ufl + U§’2 + |u>\|2*_2u)\) — 2Vn - Vwy — wyAn. Since nw, is a
solution of (28), the following inequality holds (see Appendix C in [13]):

2 2
8w>\

< Clgal? , 29
200 o > |9/\|137§179 (29)

0
== (nwy)
‘3V 2,00

where C is a positive constant depending only on 2 and N. Hence, in order to complete the proof,
it suffices to estimate the L%(Q)—norm of gxn. We point out that, thanks to the multiplication
by the cut-off function 7, what occurs around the origin does not count anymore and this will
make the boundary estimate sharper. By elementary inequalities we get that

lgx| < e(p)n (AUs, + AUs, + US. +U§, + [wa|P) + 2|Vn|[Vwa| + |An|wa].
Thus we have to estimate the following quantities:

AnUs, | 2 o, [1UZ] 25 o, forj = 1,2, and [nfunl?] e o, | [VallVun| | ax o, | [Anlfws] | v o

N+1 N+1° N+1° N+1°

This is a long computation already made by O. Rey (see Appendix C of [13]), in the case of
positive solutions of the form uy = PUs + w). In that paper it is shown that

2 N-2 2 2:N—2
|77U§j|1§—j‘_’1,§2:0(5j ) |77)\U5j|137f179=0(/\ 577,

2 2
e o= O wal®), [1anlwl]

N+1° N+1°

NI

= O ([wal?) - (30)

Moreover, by the same computations of Appendix C in [13] we see that

= o(6V72).

2
p
‘MW|§ﬁ@

In order to complete the proof we need to estimate the quantities in (30), and hence we have to
study the asymptotic behavior of ||wy|. An estimate for ||wy|| is contained in [4]; in particular,
by the proof of Lemma 3.3 of [4] we see that

3

||’U))\H <c lz (A5§N72)/2 _i_(siNfQ) + 612(10g€;21)(N—2)/N ’ (31>
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><27N>/2

where €15 is defined by €15 := (g—; + g—f

5\ 5
_ (%) ° 92
612_<51> +0(51>

Moreover by the assumptions on the growth of Vwy and wy, and thanks to (14) we get that €2
is of the same order as Ad3, hence, since d = 0(d1) as A — 0, we have that

€12(log 61_21)(N_2)/N = o(\6?).
Thus, from (31), and since N > 7, we deduce that for all sufficiently small X it holds
lwall < e(8772 + 2é7). (32)

. Since g—f — 0 as A — 0 we see that

N-—2

Summing up all these estimates we deduce the desired relation. O

Lemma 6. Let Q be a bounded open set of RN with smooth boundary and assume that 0 € Q,
N > 5. Then, as § — 0, we have

aPU\® | Ns
/(99( 81/) do =0(6"7%).

Proof. We consider a smooth function 1 : RV — R having the same properties as the one consid-
ered in the previous proof. By elementary computation we see that nPUjs satisfies

—A(nPUs) = —(An)PUs —Vn - VPUs +nU? in Q (33)
nPUs; =0 on 0f.
Since nPUs is a solution of (33), the following inequality holds:
9 ? dPU; | 2
orn|  =|%0] <clanrvsewnvrvd vl o G
v 2,00 vV 1200 225,

where C' is a positive constant depending only on Q2 and N. In order to complete the proof we
have to estimate the quantities: [(An)PUs| on 2 o, [V)-VPUs|*n (), [1U5|%n (- Using the same
NFI NI Nt1o

computations made by O. Rey in [13], and since n = 0 in a neighborhood of the origin we get that

2
- 2
2N o 0 (”PU(SHQﬂsupP(V")) ’

N+1°

U =0 (6V7%), |IVnlIVPU;

(35)

2
1201PUs| ", = O (IPUslrpmcon)) -

NF1°

Applying Lemma 1 and taking account of (10), since Vi = 0 in an open neighborhood of the
origin, we have

||PU5H?2ﬂsupp(Vn) = / |V(U§ - L)05)|2 dx
QNsupp(Vn)
< / [VUs|*dx + 2/ IVUs|[Ves|dx
QNsupp(Vn) QNsupp(Vn) (36)
—|—/ |Vs|?da
QNsupp(Vn)
= 0("N7?).
From (34), (35) and (36) we deduce that
oPU; |?
’ | =00"),
ov 2,00

and the proof is complete. O
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Proof of Theorem 3. We apply the Pohozaev’s identity to uy = PUs, — PUs, + wy. Since uy
is a solution of Problem 1 we have

A/Quida:zi/m(%?f(x-u)da. (37)

For the left-hand side of (37), as in the previous proofs we set @y := wy — @s, + ¥s5,, Where
ws; = Us; — PUs, for j = 1,2, and we have

)\/ uj de = )\/(PU51 — PUs, +wy)? dx
Q Q

= /\/(U(gl —Us, +®))? da
Q

(38)
= /\/Q (U5, + Ug, — 2Us,Us, + 2Us, @ — 2U5, @5 + ®3) da
= A+B+C+D+E+F
In order to estimate A and B we use the following
—(N=2) —(N-2)
MUh e = ek | G de=hak [ e d
+00 N-1
= \a}o? /RN TP |y1|2)N_2 dy + O <>\5]2- /1/5,- 7(11#)%? dr> (39)

1
2 ¢2 N—2

We point out that since we are assuming that N > 5, the first integral in the last line of (39)
converges. To estimate C' we apply the following

5N;»2 5N;2
A/U5U5 de = )\a2/ U 2 — dy
o Mags (L4 122" (83 + 621y)2)
57N275 5N2—2
= )\O{?\// L N_2 2 N-—2 dy
o/ (L+1y)?) = ((52)2+y|2> 2
51
<aa(®) e S
B M\a Fags, (14 |y2) T |y V-2
6 N2—2 1
= a3 (2> 52 — dy
M a e (14 [y[2) Ry N2
H-2 +oo N-1
+ 0 A(‘SQ) 53 L dr
1 16 (L+7r2)72 rN=2
N2—2 N2—2
= A3 <52> 5%/ }H dy + O )\<52) N2
01 BV (14 [yf2) 7= |y|N-2 o1

In order to estimate D, E, F, thanks to (32), Holder’s inequality and Poincaré’s inequality we get
that

/ w2 < erflwall2 < ea(6V 2 + A2, (41)
Q

N—-2
We observe that, by Lemma 1 and since N > 5, we have |¢s, 2,0 = O (537) = 0(d;). Thus, by
definition of ®, and (41) we deduce that

/ (I)i dx = / (’LU)\ 2 9051)2 dr = 0(6%)a (42)
Q Q
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and hence
F = o(\6}). (43)

Moreover, by the same computations of (39) we have fQ Ufj = a15]2 + 0(5?), for some positive
constant a;. Hence by Holder’s inequality and (42) we get that

‘Dl = 0()‘5%)7

and
|E| = 0(A\6162) = 0(\63).
We analyze now the right-hand side of (37): by definition we have

1 our\’ 1 OPUs, 0PUs, 0Owy\’
2/89<au) (@-v)do = 2/89< w aw ay> (w-v)do

1 [ (0PU,\? L[ (0PUs,\?
= 2/89<81/ ) (m-l/)da—i—Q/aQ< £y > (z-v) do

OPU;, OPUs, OPUs, dwy
f/émiay 5 (x V)dUJr/aQ e aV(:l: v) do

OPUs, Jwx L[ oy
_/39 ov Ov (@-v) d0+2/69(81/) (z-v) do

= A1 +B1+Ci+ D1+ By + Fru.

(44)
Thanks to Lemma 4 we have:
A = g(s{H +o(s] ),
. (45)
B, = 555*2 +o(6Y 7).
Thanks to Lemma 6 and applying Holder inequality we get that
OPUs, | |0PUs,
< I o] |22 0% .
|ICh] < /89 £y ‘ £y |z - v| do
1 1
2 2 2 2
< diam(69) / OPUs, " 4, / OPUs: |" 45 (46)
o0 4 oo | Ov
N—2 N-2
= 0 (5lT 5,7 ) .
Thanks to (29), Lemma 5, Lemma 6 and applying Hélder inequality we get that
P
il = [T |52 e vl do
a0 ov ov
2 % 2 % a7
< diam(09) / OPUs, do / wx do 47)
a0 81/ a0 81/
= o(\F) +0 (07 7?).
Bl < / OPUs, % |z - v| do
a0 ov ov
1 1
2 2 2 2
4
< diam(9Q) / OPUs " 44 / ol o (48)
oa| Ov oa | Ov

= 0(\F) +0(077?).

Bl = ;/{99(%‘3)2@.@ do = o(A?) +o(8V2). (49)
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Summing up all the estimates, from (37) and since do = 0(d1) as A — 0, we deduce the following
equality:
a1\ + 0o(N67) = azdy 2+ o (67 72). (50)
Since 6; is of the form (21), we deduce that a; must satisfy the equation
1 +20[1 = (N — 2)0&1,
1

and hence we get that oy = . Moreover, from (14) we deduce that a;, ap must satisfy the
following algebraic equation

2(0[2 —al). (51)

Thus, combining this result with (51), we get that ap = %

N —
1+ 209 =

and the proof is complete. [
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