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Abstract. We consider the Brezis-Nirenberg problem:{
−∆u = λu+ |u|2∗−2u in Ω

u = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN , N ≥ 3, 2∗ = 2N
N−2

is the critical Sobolev exponent

and λ > 0 a positive parameter.
The main result of the paper shows that if N = 4, 5, 6 and λ is close to zero there are no

sign-changing solutions of the form

uλ = PUδ1,ξ − PUδ2,ξ + wλ,

where PUδi is the projection on H1
0 (Ω) of the regular positive solution of the critical problem

in RN , centered at a point ξ ∈ Ω and wλ is a remainder term.

Some additional results on norm estimates of wλ and about the concentrations speeds of

tower of bubbles in higher dimensions are also presented.

1. Introduction

In this paper we study the semilinear elliptic problem:{
−∆u = λu+ |u|2∗−2u in Ω

u = 0 on ∂Ω,
(1)

where Ω is a smooth bounded domain in RN , N ≥ 3, λ is a positive real parameter and 2∗ = 2N
N−2

is the critical Sobolev exponent for the embedding of H1
0 (Ω) into L2∗(Ω).

This problem is known as ”the Brezis-Nirenberg problem” because the first fundamental results
about the existence of positive solutions were obtained by H. Brezis and L. Nirenberg in 1983 in
the celebrated paper [6]. From their results it came out that the dimension was going to play a
crucial role in the study of (1). Indeed they proved that if N ≥ 4 there exists a positive solution of
(1) for every λ ∈ (0, λ1(Ω)), λ1(Ω) being the first eigenvalue of −∆ in Ω with Dirichlet boundary
conditions, while if N = 3 positive solutions exists only for λ away from zero. In particular, in the

case of the ball B they showed that there are no positive solutions in the interval (0, λ1(B)
4 ).

Since then several other interesting results were obtained for positive solutions, in particular
about the asymptotic behavior of solutions, mainly for N ≥ 5 because also the case N = 4 presents
more difficulties compared to the higher dimensional ones.

Concerning the case of sign-changing solutions, existence results hold if N ≥ 4 both for λ ∈
(0, λ1(Ω)) and λ > λ1(Ω) as shown in [3], [9], [7].

The case N = 3 presents even more difficulties than in the study of positive solutions. In
particular in the case of the ball is not yet known what is the least value λ̄ of the parameter λ
for which sign-changing solutions exist, neither whether λ̄ is larger or smaller than λ1(B)/4. This
question, posed by H. Brezis, has been given a partial answer in [5]. However it is interesting to
observe that in the study of sign-changing solutions even the ”low dimensions”N = 4, 5, 6 exhibit
some peculiarities. Indeed it was first proved by Atkinson, Brezis and Peletier in [2] that if Ω
is a ball there exists λ∗ = λ∗(N) such that there are no radial sign-changing solutions of (1) for
λ ∈ (0, λ∗). Later this result was reproved in [1] in a different way.
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Moreover for N ≥ 7 a recent result of Schechter and Zou [14] shows that in any bounded smooth
domain there exist infinitely many sign-changing solutions for any λ > 0. Instead if N = 4, 5, 6
only N + 1 pairs of solutions, for all λ > 0, have been proved to exist in [9] but it is not clear that
they change sign.

Coming back to the nonexistence result of [2] and [1] an interesting question would be to see
whether and in which way it could be extended to other bounded smooth domains.

Since the result of [2] and [1] concerns nodal radial solutions in the ball the first issue is to
understand what are, in general bounded domains, the sign-changing solutions which play the
same role as the radial nodal solutions in the case of the ball. A main property of a radial nodal
solution in the ball is that its nodal set does not touch the boundary therefore, a class of solutions
to consider, in general bounded domains, could be the one made of functions which have this
property.

Moreover, in analyzing the asymptotic behavior of least energy nodal radial solutions uλ in the
ball, as λ → 0, in dimension N ≥ 7 (in which case they exist for all λ ∈ (0, λ1(B)), see [8]) one
can prove (see [11]) that their limit profile is that of a ”tower of two bubbles”. This terminology
means that the positive part and the negative part of the solutions uλ concentrate at the same
point (which is obviously the center of the ball) as λ→ 0 and each one has the limit profile, after
suitable rescaling, of a ”standard” bubble in RN , i.e. of a positive solution of the critical exponent
problem in RN . More precisely the solutions uλ can be written in the following way:

uλ = PUδ1,ξ − PUδ2,ξ + wλ, (2)

where PUδi,ξ, i = 1, 2 is the projection on H1
0 (Ω) of the regular positive solution of the critical

problem in RN , centered at ξ = 0, with rescaling parameter δi and wλ is a remainder term which
converges to zero in H1

0 (Ω).
It is also interesting to observe that, thanks to a recent result of [12], sign-changing bubble-tower

solutions exist also in bounded smooth symmetric domains in dimension N ≥ 7 for λ close to zero,
and they have the property that their nodal set does not touch the boundary of the domain.

In view of all these remarks we are entitled to assert that in general bounded domains sign-
changing solutions which behave as the radial ones in the ball, at least for λ close to zero, are the
ones which are of the form (2). Hence a natural extension of the nonexistence result of [2] and [1]
would be to show that, in dimension N = 4, 5, 6, sign-changing solutions of the form (2) do not
exist in any bounded smooth domain.

This is indeed the main aim of this paper. Let us also note that in the 3-dimensional case a
similar nonexistence result was already proved in [5]. Indeed, in studying the asymptotic behavior
of low-energy nodal solutions it was shown in [5] that their positive and negative part cannot
concentrate at the same point, as λ tends to a limit value λ̄ > 0. In the case N ≥ 4 this question
was left open in [4]. Therefore our results also complete the analysis made in these last two papers.

To state precisely our result let us recall that the functions

Uδ,ξ(x) = αN
δ
N−2

2

(δ2 + |x− ξ|2)
N−2

2

, δ > 0, ξ ∈ RN , (3)

αN := [N(N − 2)]
N−2

4 , describe all regular positive solutions of the problem{
−∆U = U

N+2
N−2 in RN ,

U(x)→ 0, as |x| → +∞.

Then, denoting by PUδ their projection on H1
0 (Ω), and by ‖u‖ :=

∫
Ω
|∇u|2 dx for any u ∈ H1

0 (Ω),
we have:

Theorem 1. Let N = 4, 5, 6 and ξ a point in the domain Ω. Then, for λ close to zero, Problem
(1) does not admit any sign-changing solution uλ of the form (2) with δi = δi(λ), i = 1, 2, such

that δ2 = o(δ1), ‖wλ‖ → 0 and |wλ| = o(δ
−N−2

2
1 ), |∇wλ| = o(δ

−N2
1 ) uniformly in compact subsets

of Ω, as λ→ 0.

The previous notations mean that |wλ|

δ
−N−2

2
1

, |∇wλ|

δ
−N

2
1

converge to zero as λ→ 0 uniformly in compact

subsets of Ω.
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The proof of the above theorem is based on a Pohozaev identity and fine estimates which are
derived in a different way in the case N = 4 or N = 5, 6. We would like to point out that it cannot
be deduced by the proof of Theorem 3.1 of [5] which holds only in dimension three.

Concerning the assumption on the C1-norm in compact subsets of Ω of the remainder term wλ,
whose gradient is only required not to blow up too fast, in Section 4 we show that it is almost
necessary.

Note that we do not even require that wλ → 0 uniformly in Ω neither that it remains bounded
as λ→ 0, but only a control of possible blow-up of |wλ| and |∇wλ|. We delay to the next sections
some further comments and comparisons with the case N ≥ 7.

Finally in the last section we show that in dimension N ≥ 7 if (uλ) is a family of solutions of
type (2) with |wλ|, |∇wλ| as in Theorem 1 and δi = diλ

αi , for some positive numbers di = di(λ)
with 0 < c1 < di < c2, for all sufficiently small λ, and 0 < α1 < α2, then necessarily:

α1 =
1

N − 4
, α2 =

3N − 10

(N − 4)(N − 6)
. (4)

In other words we prove that if the concentration speeds are powers of λ then necessarily the
exponent must be as in (4). Note that these are exactly the type of speeds assumed in [12] to
construct the tower of bubbles in higher dimensions.

2. Some preliminary results

Lemma 1. Let Ω be a smooth bounded domain of RN and let (ξ, δ) ∈ Ω×R+. As δ → 0 it holds:

PUδ,ξ(x) = Uδ,ξ(x)− αNδ
N−2

2 H(x, ξ) + o(δ
N−2

2 ), x ∈ Ω

C1-uniformly on compact subsets of Ω, where H is the regular part of the Green function for the
Laplacian. Moreover, setting ϕξ,δ(x) := Uδ,ξ(x)− PUδ,ξ(x), the following uniform estimates hold:

(i): 0 ≤ ϕξ,δ ≤ Uδ,ξ,
(ii): ‖ϕξ,δ‖2 = O

(
( δd )N−2

)
,

where d = d(ξ, ∂Ω) is the euclidean distance between ξ and the boundary of Ω.

Proof. See [13], Proposition 1 and its proof. �

Lemma 2. Let N ≥ 4 and (uλ) be a family of sign-changing solutions of (1) satisfying

‖uλ‖2 → 2SN/2, as λ→ 0.

Then, for all sufficiently small λ > 0, the set Ω \ {x ∈ Ω; uλ(x) = 0} has exactly two connected
components.

Proof. Let us consider the nodal set Zλ := {x ∈ Ω; uλ(x) = 0} and let Ω1 be a connected
component of Ω \ Zλ. Multiplying (1) by uλ and integrating on Ω1, we get that∫

Ω1

|∇uλ|2 dx ≥ SN/2(1 + o(1)),

where we have used the Sobolev embedding and the fact that λ → 0 and λ1(Ω1)
∫

Ω1
u2
λ dx ≤∫

Ω1
|∇uλ|2 dx, where λ1(Ω1) is the first Dirichlet eigenvalue of −∆ on Ω1.

Since ‖uλ‖2 → 2SN/2, as λ→ 0, then for all sufficiently small λ > 0 we deduce that Ω \Zλ can
have only two connected components. �

We recall now the Pohozaev identity for solutions of semilinear problems which are not neces-
sarily zero on the boundary. Let D be a bounded domain in RN , N ≥ 3, with smooth boundary
and consider the equation

−∆u = f(u) in D, (5)

where s 7→ f(s) is a continuos function. Denoting F (s) :=
∫ s

0
f(t) dt, we have:
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Proposition 1. Let u be a C2-solution of (5), then∫
D

{
NF (u)− N − 2

2
uf(u)

}
dx

=

∫
∂D

{
N∑
i=1

xiνi

(
F (u)− 1

2
|∇u|2

)
+
∂u

∂ν

N∑
i=1

xiuxi +
N − 2

2
u
∂u

∂ν

}
dσ,

(6)

where ν denotes the outer normal to the boundary and uxi is the partial derivative with respect
to xi of u.

The following lemma gives information on the asymptotic behavior of the nodal set Zλ of
solutions of (1) as λ→ 0.

Lemma 3. Let N ≥ 4, ξ ∈ Ω and let (uλ) be a family of solutions of (1), such that uλ =
PUδ1,ξ − PUδ2,ξ + wλ, with δ1 = δ1(λ) and δ2 = δ2(λ) satisfying

δ2 = o(δ1) and ‖wλ‖ → 0, as λ→ 0.

Moreover, assume that wλ satisfies |wλ| = o(δ
−N−2

2
1 ) uniformly in compact subsets of Ω. Then,

for all small ε > 0 there exists λε > 0 such that the nodal set Zλ is contained in the annular region

Ar1,r2(ξ) := {x ∈ Ω; r1 < |x−ξ| < r2}, for all λ ∈ (0, λε), where r1 := δ
1
2−ε
1 δ

1
2 +ε
2 , r2 := δ

1
2 +ε
1 δ

1
2−ε
2 .

Proof. Without loss of generality we assume that ξ = 0. Let us fix a small ε > 0 and a compact
neighborhood of the origin K. Thanks to the assumptions and Lemma 1, we have the following

expansion uλ(x) = Uδ1(x) − Uδ2(x) + o(δ
−N−2

2
1 ), which is uniform with respect to x ∈ K and to

all small λ > 0. By definition, for all sufficiently small λ > 0, we have that Ar1,r2(0) ⊂ K. For x
such that |x| = r1 we have:

Uδ1(x) = αN
δ
N−2

2
1

(δ2
1 + δ1−2ε

1 δ1+2ε
2 )

N−2
2

= αN
δ
−N−2

2
1

[1 + ( δ2δ1 )1+2ε]
N−2

2

= αN δ
−N−2

2
1 − αN

N − 2

2
δ
−N−2

2
1

(
δ2
δ1

)1+2ε

+ o

(
δ
−N−2

2
1

(
δ2
δ1

)1+2ε
)
,

and

Uδ2(x) = αN
δ
N−2

2
2

(δ2
2 + δ1−2ε

1 δ1+2ε
2 )

N−2
2

= αN
δ
N−2

2
2 δ

−N−2
2 +(N−2)ε

1 δ
−N−2

2 −(N−2)ε
2

[1 + ( δ2δ1 )1−2ε]
N−2

2

= αN
δ
−N−2

2
1

(
δ2
δ1

)−(N−2)ε

[1 + ( δ2δ1 )1−2ε]
N−2

2

= αN δ
−N−2

2
1

(
δ2
δ1

)−(N−2)ε

− αN
N − 2

2
δ
−N−2

2
1

(
δ2
δ1

)1−Nε

+ o

(
δ
−N−2

2
1

(
δ2
δ1

)1−Nε
)
.

Hence, for x ∈ K, such that |x| = r1, we have

uλ(x) = αN δ
−N−2

2
1

(
1−

(
δ2
δ1

)−(N−2)ε
)

+ o(δ
−N−2

2
1 ) < 0

for all sufficiently small λ > 0. On the other hand, by similar computations (just changing the
sign of ε in every term of the previous equations), for x such that |x| = r2 we have

uλ(x) = αN δ
−N−2

2
1

(
1−

(
δ2
δ1

)+(N−2)ε
)

+ o(δ
−N−2

2
1 ) > 0

for all sufficiently small λ > 0.
From Lemma 2 and since uλ is a continuos function we deduce that Zλ ⊂ Ar1,r2(0) for all

sufficiently small λ > 0. �
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3. Proof of the nonexistence result

We begin considering the case N = 5, 6 since the case N = 4 requires different estimates.

Proof of Theorem 1 for N=5,6. Arguing by contradiction let us assume that such a family
of solutions exists and, without loss of generality set ξ = 0. Defining r :=

√
δ1δ2, we apply the

Pohozaev formula (6) to uλ in the ball Br = Br(0). Since uλ is a solution of (1) we set f(u) :=
λu + |u|p−1u and hence, using the notation of Proposition 1, we have F (u) = λ

2u
2 + 1

p+1 |u|
p+1.

By elementary computations 1 (see the footnote) we get that the left-hand side of (6) reduces to

λ

∫
Br

u2
λ dx.

For the right-hand side∫
∂Br

{
N∑
i=1

xiνi

(
F (uλ)− 1

2
|∇uλ|2

)
+
∂uλ
∂ν

N∑
i=1

xi
∂uλ
∂xi

+
N − 2

2
uλ
∂uλ
∂ν

}
dσ,

since ∂Br is a sphere, we have νi(x) = xi
|x| for all x ∈ ∂Br, i = 1, . . . , N , and hence

∑N
i=1 xiνi = |x|.

Furthermore since ∂uλ
∂ν = ∇uλ · x|x| and

∑N
i=1 xi

∂uλ
∂xi

=
(
∇uλ · x|x|

)
|x| we get that

∂uλ
∂ν

N∑
i=1

xi
∂uλ
∂xi

=

(
∇uλ ·

x

|x|

) N∑
i=1

xi
∂uλ
∂xi

=

(
∇uλ ·

x

|x|

)2

|x|,

uλ
∂uλ
∂ν

= uλ

(
∇uλ ·

x

|x|

)
.

Thus (6) rewrites as

λ

∫
Br

u2
λ dx

=

∫
∂Br

{
|x|
(
F (uλ)− 1

2
|∇uλ|2

)
+

(
∇uλ ·

x

|x|

)2

|x|+ N − 2

2
uλ

(
∇uλ ·

x

|x|

)}
dσ.

(7)

We estimate the left-hand side of (7). Let us fix a compact subset K ⊂ Ω; for λ > 0 sufficiently

small we get that Br ⊂ K. Thanks to Lemma 1 we have PUδj = Uδj−ϕδj , where ϕδj = O
(
δ
N−2

2
j

)
,

for j = 1, 2, and this estimate is uniform for x ∈ K, in particular for x ∈ Br. Thus, as λ→ 0, we
get that

λ

∫
Br

u2
λ dx = λ

∫
Br

(
PUδ1 − PUδ2 + o(δ

−N−2
2

1 )
)2

dx

= λ

∫
Br

(
Uδ1 − Uδ2 − ϕδ1 + ϕδ2 + o(δ

−N−2
2

1 )
)2

dx

= λ

∫
Br

(
Uδ1 − Uδ2 + o(δ

−N−2
2

1 )
)2

dx

= λ

∫
Br

(
U2
δ1 + U2

δ2 − 2Uδ1Uδ2 + o(δ
−N−2

2
1 Uδ1) + o(δ

−N−2
2

1 Uδ2) + o(δ
−N−2

2
1 )

)
dx

= A+B + C +D + E + F.
(8)

We estimate every term of the previous decomposition.

1

NF (u)−
N − 2

2
uf(u) = N

(
λ

2
u2 +

1

p+ 1
|u|p+1

)
−
N − 2

2
(λu2 + |u|p+1)

=

(
N

2
−
N − 2

2

)
λu2 +

(
N

p+ 1
−
N − 2

2

)
|u|p+1

= λu2.
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A = λ

∫
Br

α2
N

δN−2
1

(δ2
1 + |x|2)N−2

dx = α2
Nλ

∫
Br

δ
−(N−2)
1

(1 + |x/δ1|2)N−2
dx

= α2
Nλδ

2
1

∫
Br/δ1

1

(1 + |y|2)N−2
dy ≤ α2

Nλδ
2
1 |Br/δ1|

= cNλδ
2
1

(
δ2
δ1

)N
2

,

where we have set cN := α2
N
ωN
N , ωN is the measure of the (N − 1)-dimensional unit sphere SN−1.

B = λ

∫
Br

α2
N

δN−2
2

(δ2
2 + |x|2)N−2

dx = α2
Nλ

∫
Br

δ
−(N−2)
2

(1 + |x/δ2|2)N−2
dx

= α2
Nλδ

2
2

∫
Br/δ2

1

(1 + |y|2)N−2
dy

= α2
Nλδ

2
2

∫
RN

1

(1 + |y|2)N−2
dy +O

(
λδ2

2

∫ +∞(
δ1
δ2

) 1
2

rN−1

(1 + r2)N−2
dr

)

= a1λδ
2
2 +O

(
λδ2

2

(
δ2
δ1

)N−4
2

)
,

where we have set a1 := α2
N

∫
RN

1
(1+|y|2)N−2 dy. We point out that since N = 5 or N = 6 the

function 1
(1+|y|2)N−2 ∈ L1(RN ) while this is not true when N = 4.

|C| = λ α2
N

∫
Br

δ
N−2

2
1

(δ2
1 + |x|2)

N−2
2

δ
N−2

2
2

(δ2
2 + |x|2)

N−2
2

dx

= λ α2
N

∫
Br/δ1

δ
N+2

2
1

(1 + |y|2)
N−2

2

δ
N−2

2
2

(δ2
2 + δ2

1 |y|2)
N−2

2

dy

= λ α2
N

∫
Br/δ1

δ
−N−6

2
1

(1 + |y|2)
N−2

2

δ
N−2

2
2((

δ2
δ1

)2

+ |y|2
)N−2

2

dy

≤ λ α2
N

(
δ2
δ1

)N−2
2

δ2
1

∫
Br/δ1

1

(1 + |y|2)
N−2

2 |y|N−2
dy

= O

λ(δ2
δ1

)N−2
2

δ2
1

∫ (
δ2
δ1

)1/2

0

rN−1

(1 + r2)
N−2

2 rN−2
dr


= O

(
λ

(
δ2
δ1

)N
2

δ2
1

)
.

|D| = o

(
λδ
−N−2

2
1

∫
Br

δ
N−2

2
1

(δ2
1 + |x|2)

N−2
2

dx

)

≤ o

(
λ

∫
Br

δ
−(N−2)
1 dx

)

= o

(
λδ2

1

(
δ2
δ1

)N
2

)
.
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|E| = o

(
λδ
−N−2

2
1

∫
Br

δ
N−2

2
2

(δ2
2 + |x|2)

N−2
2

dx

)

≤ o

(
λδ
−N−2

2
1

∫
Br

δ
N−2

2
2

|x|N−2
dx

)

= o

(
λ

(
δ2
δ1

)N
2

)
.

|F | = o
(
λδ
−N−2

2
1 |Br|

)
= o

(
λ δ1 δ

N
2

2

)
.

Now we estimate the right-hand side of (7). Remembering that F (uλ) = λ
2u

2
λ + 1

p+1 |uλ|
p+1 we

get that the first term is equal to∫
∂Br

|x|
(
λ

2
u2
λ +

1

p+ 1
|uλ|p+1 − 1

2
|∇uλ|2

)
dσ.

We observe that by definition of r it is immediate to see that

Uδ1(x) = Uδ2(x),

for all x ∈ ∂Br, and hence we have

∫
∂Br

λ

2
u2
λ |x| dσ =

λ

2

∫
∂Br

(
Uδ1 − Uδ2 + o

(
δ
−N−2

2
1

))2

|x| dσ

=
λ

2

∫
∂Br

[
o
(
δ
−N−2

2
1

)]2
|x| dσ

= o

(
λδ
−(N−2)
1

∫
∂Br

|x| dσ
)

= o

(
λ

(
δ2
δ1

)N
2

δ2
1

)
.

As in the previous case we have

1

p+ 1

∫
∂Br

|uλ|p+1|x| dσ =
1

p+ 1

∫
∂Br

|Uδ1 − Uδ2 + o(δ
−N−2

2
1 )|p+1 |x| dσ

=
1

p+ 1

∫
∂Br

|o(δ−
N−2

2
1 )|p+1 |x| dσ

= o

(
δ−N1

∫
∂Br

|x| dσ
)

= o

((
δ2
δ1

)N
2

)
.

To complete the estimate of the first term it remains to analyze

−1

2

∫
∂Br

|∇uλ|2|x| dσ.

As before, writing PUδj = Uδj − ϕδj for j = 1, 2 we have

|∇uλ|2 = |∇Uδ1 −∇Uδ2 −∇ϕδ1 +∇ϕδ2 +∇wλ|2 = |∇Uδ1 −∇Uδ2 +∇Φλ|2,

where we have set Φλ := −ϕδ1 + ϕδ2 + wλ. Hence, we get that
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−1

2

∫
∂Br

|∇uλ|2|x| dσ

= −1

2

∫
∂Br

|∇Uδ1 |2 |x| dσ −
1

2

∫
∂Br

|∇Uδ2 |2 |x| dσ +

∫
∂Br

∇Uδ1 · ∇Uδ2 |x| dσ

−
∫
∂Br

∇Uδ1 · ∇Φλ |x| dσ +

∫
∂Br

∇Uδ2 · ∇Φλ |x| dσ −
1

2

∫
∂Br

|∇Φλ|2 |x| dσ

= A1 +B1 + C1 +D1 + E1 + F1.

(9)

By elementary computations, for all i = 1, . . . , N , j = 1, 2 we have:

∂Uδj
∂xi

(x) = −αN (N − 2)δ
N−2

2
j

xi

(δ2
j + |x|2)

N
2

,

|∇Uδj |2 = α2
N (N − 2)2δN−2

j

|x|2

(δ2
j + |x|2)N

. (10)

Thus, we get that

A1 = −α2
N

(N − 2)2

2

δ
−(N+2)
1[

1 +
(
δ2
δ1

)]N ∫
∂Br

|x|3 dσ

= −α2
N

(N − 2)2

2
ωN

δ
−(N+2)
1[

1 +
(
δ2
δ1

)]N δN+2
2

1 δ
N+2

2
2

= −α2
N

(N − 2)2

2
ωN

(
δ2
δ1

)N+2
2

+O

((
δ2
δ1

)N+4
2

)
.

B1 = −α2
N

(N − 2)2

2

δN−2
2 δ−N1 δ−N2[
1 +

(
δ2
δ1

)]N ∫
∂Br

|x|3 dσ

= −α2
N

(N − 2)2

2
ωN

(
δ2
δ1

)N−2
2

+O

((
δ2
δ1

)N
2

)
.

C1 = α2
N (N − 2)2 δ

N−2
2

1 δ
N−2

2
2 δ−N1 δ

−N2
1 δ

−N2
2[

1 +
(
δ2
δ1

)]N
2
[
1 +

(
δ2
δ1

)]N
2

∫
∂Br

|x|3 dσ

= α2
N (N − 2)2ωN

(
δ2
δ1

)N
2[

1 +
(
δ2
δ1

)]N

= α2
N (N − 2)2ωN

(
δ2
δ1

)N
2

+O

((
δ2
δ1

)N+2
2

)
.
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Taking into account the assumptions on the remainder term wλ and thanks to Lemma 1 we have

|∇Φλ| = o(δ
−N2
1 ), uniformly on ∂Br. Thus we have the following:

|D1| ≤
∫
∂Br

|∇Uδ1 ||∇Φλ||x| dσ

= o

(
δ
N−2

2
1

(δ2
1 + δ1δ2)

N
2

δ
−N2
1

∫
∂Br

|x|2 dσ

)

= o

 δ
N−2

2
1 δ−N1[

1 +
(
δ2
δ1

)]N
2

δ
−N2
1

∫
∂Br

|x|2 dσ



= o

((
δ2
δ1

)N+1
2

)
.

|E1| ≤
∫
∂Br

|∇Uδ2 ||∇Φλ||x| dσ

= o

δN−2
2

2 δ
−N2
1 δ

−N2
2[

1 +
(
δ2
δ1

)]N
2

δ
−N2
1

∫
∂Br

|x|2 dσ



= o

((
δ2
δ1

)N−1
2

)
.

And finally the last term of (9) is trivial:

|F1| = o

((
δ2
δ1

)N
2

)
.

Now we analyze the term ∫
∂Br

(
∇uλ ·

x

|x|

)2

|x| dσ. (11)

As before we write uλ = Uδ1 − Uδ2 + Φλ and we have(
∇uλ ·

x

|x|

)2

|x| =

(
∇Uδ1 ·

x

|x|

)2

|x|+
(
∇Uδ2 ·

x

|x|

)2

|x| − 2

(
∇Uδ1 ·

x

|x|

)(
∇Uδ2 ·

x

|x|

)
|x|

+2

(
∇Uδ1 ·

x

|x|

)(
∇Φλ ·

x

|x|

)
|x| − 2

(
∇Uδ2 ·

x

|x|

)(
∇Φλ ·

x

|x|

)
|x|

+

(
∇Φλ ·

x

|x|

)2

|x|

(12)
By elementary computations we see that for j = 1, 2(

∇Uδj ·
x

|x|

)2

|x| = |∇Uδj |2 |x|,

−2

(
∇Uδ1 ·

x

|x|

)(
∇Uδ2 ·

x

|x|

)
|x| = −2(∇Uδ1 · ∇Uδ2) |x|,
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and for the remaining terms we have∣∣∣∣ ±2

(
∇Uδj ·

x

|x|

)(
∇Φλ ·

x

|x|

)
|x|
∣∣∣∣ ≤ 2|∇Uδj ||∇Φλ||x|,∣∣∣∣∣

(
∇Φλ ·

x

|x|

)2

|x|

∣∣∣∣∣ ≤ |∇Φλ|2 |x|.

Thus, in order to estimate (11) it suffices to apply the estimates of the previous case, and hence
we get that ∫

∂Br

(
∇uλ ·

x

|x|

)2

|x| dσ = α2
N (N − 2)2ωN

(
δ2
δ1

)N−2
2

+ o

((
δ2
δ1

)N−2
2

)
.

To complete our analysis of (7) it remains only to study the term

N − 2

2

∫
∂Br

uλ

(
∇uλ ·

x

|x|

)
dσ.

N − 2

2

∫
∂Br

uλ

(
∇uλ ·

x

|x|

)
dσ

=
N − 2

2

∫
∂Br

(Uδ1 − Uδ2 + Φλ)

[
(∇Uδ1 −∇Uδ2 +∇Φλ) · x

|x|

]
dσ

=
N − 2

2

∫
∂Br

Φλ

(
∇Uδ1 ·

x

|x|

)
dσ − N − 2

2

∫
∂Br

Φλ

(
∇Uδ2 ·

x

|x|

)
dσ

+
N − 2

2

∫
∂Br

Φλ

(
∇Φλ ·

x

|x|

)
dσ

= A2 +B2 + C2.

(13)

|A2| ≤ α2
N

(N − 2)2

2

δ
N−2

2
1 δ−N1[

1 +
(
δ2
δ1

)]N
2

∫
∂Br

|Φλ| |x| dσ

= o

 δ
N−2

2
1 δ−N1[

1 +
(
δ2
δ1

)]N
2

∫
∂Br

δ
−N−2

2
1 |x| dσ



= o

 δ−N1[
1 +

(
δ2
δ1

)]N
2

δ
N
2

1 δ
N
2

2



= o

((
δ2
δ1

)N
2

)
.

|B2| ≤ α2
N

(N − 2)2

2

δ
N−2

2
2 δ

−N2
1 δ

−N2
2[

1 +
(
δ2
δ1

)]N
2

∫
∂Br

|Φλ| |x| dσ

= o

δN−2
2

2 δ
−N2
1 δ

−N2
2[

1 +
(
δ2
δ1

)]N
2

∫
∂Br

δ
−N−2

2
1 |x| dσ



= o

((
δ2
δ1

)N−2
2

)
.
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|C2| ≤
(N − 2)

2

∫
∂Br

|Φλ||∇Φλ| dσ

= o
(
δ
−N−2

2
1 δ

−N2
1 δ

N−1
2

1 δ
N−1

2
2

)
= o

((
δ2
δ1

)N−1
2

)
.

Summing up all the estimates, from (6), for all sufficiently small λ > 0, we deduce the following
equation

a1λδ
2
2 + o

(
λδ2

2

)
= α2

N

(N − 2)2

2
ωN

(
δ2
δ1

)N−2
2

+ o

((
δ2
δ1

)N−2
2

)
. (14)

From (14) we deduce that

a1λδ
N−2

2
1 (1 + o(1)) = α2

N

(N − 2)2

2
ωNδ

N−6
2

2 (1 + o(1)), (15)

for all sufficiently small λ > 0. Since N = 5, 6 it is clear that (15) is contradictory, in fact, passing
to the limit as λ→ 0, the left-hand side goes to zero while the right-hand side goes to a constant,
when N = 6 and diverges to +∞ when N = 5. The proof is complete. �

Now we turn to the case N = 4

Proof of Theorem 1 for N=4. Again, without loss of generality we assume that ξ = 0. We
repeat the scheme of the proof for the previous case, but some modification is needed. In fact,
since N = 4, we have to change the estimate of the term B in (8):

B∗ = λ

∫
Br

α2
4

δ2
2

(δ2
2 + |x|2)2

dx = α2
4λ

∫
Br/δ2

δ−2
2

(1 + |y|2)2
δ4
2 dy

= α2
4λδ

2
2

∫
Br/δ2

1

(1 + |y|2)2
dy = α2

4ω4λδ
2
2

∫ (
δ1
δ2

)
0

r3

(1 + r2)2
dr

It’s elementary to see that∫ (
δ1
δ2

)
0

r3

(1 + r2)2
dr = O

(
log

(
δ1
δ2

))
,

and hence we have that

B∗ = O

(
λδ2

2 log

(
δ1
δ2

))
. (16)

Thus, summing up (16) with the other estimates made in the previous case (in which we take
N = 4), from (6), we deduce the following asymptotic relation

O

(
λδ2

2 log

(
δ1
δ2

))
+ o

(
λδ2

2 log

(
δ1
δ2

))
= 2α2

4ω4

(
δ2
δ1

)
+ o

(
δ2
δ1

)
. (17)

It is clear that (17) gives a contradiction. In fact, dividing each side of (17) by
(
δ2
δ1

)
we have

O

(
λδ1δ2 log

(
δ1
δ2

))
+ o

(
λδ1δ2 log

(
δ1
δ2

))
= 2α2

4ω4 + o (1) . (18)

Passing to the limit as λ → 0 in (18), taking into account that δ2 = o(δ1), we deduce that
0 = 2α2

4ω4 which is a contradiction. �
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Remark 1. In [4, 5] sign-changing solutions uλ of (1) with low energy were studied, namely
solutions such that ∫

Ω

|∇uλ|2 dx→ 2SN/2.

For this kind of solutions it is not difficult to show (see [4], Theorem 1.1) that there exist two
points a1 = a1(λ), a2 = a2(λ) in Ω (one of them is the global maximum point of |uλ|) and two
positive real numbers δ1 = δ1(λ), δ2 = δ2(λ), such that for N ≥ 4, as λ→ 0, we have

‖uλ − PUδ1,a1 + PUδ2,a2‖ → 0, δ−1
i d(ai, ∂Ω)→ +∞, for i = 1, 2,

where d(ai, ∂Ω) is the euclidean distance between ai and the boundary of Ω. Hence these solutions
are of the form (2) but with possibly different concentration points. In [4], assuming that the
concentration speeds of u+

λ and u−λ were comparable, it was proved that the positive and the negative
part of uλ had to concentrate in two different points.

Since here we assume that the concentration speeds are different, our result also completes the
study made in [4].

4. About the estimate on the C1-norm of wλ

Here we show that the hypotheses of Theorem 1 on the C1-norm of the remainder term wλ are
almost necessary. Indeed we have:

Theorem 2. Let Ω be a bounded open set of RN with smooth boundary, N ≥ 4, and let ξ ∈ Ω.
Let uλ a solution of (1) of the form

uλ = PUδ1,ξ − PUδ2,ξ + wλ,

with δ2 = o(δ1) as λ→ 0. Assume that the remainder term wλ is uniformly bounded with respect
to λ in compact subsets of Ω. Then for any open subset Ω′′ ⊂⊂ Ω such that ξ ∈ Ω′′ and for all
sufficiently small ε > 0, there exists a positive constant C = C(ε,N,Ω′′) such that

‖wλ‖C1(Ω̄′′) ≤ Cδ
−N−2

2
1 δ

−1+O(ε)
2 ,

for all sufficiently small λ > 0.

Proof. Without loss of generality we assume that ξ = 0. By definition wλ satisfies the following:{
−∆wλ = λwλ + λ(PUδ1 − PUδ2) + Upδ2 − U

p
δ1

+ |uλ|2
∗−2uλ in Ω

wλ = 0 on ∂Ω.
(19)

Let us set fλ := λwλ + λ(PUδ1 − PUδ2) + Upδ2 − U
p
δ1

+ |uλ|2
∗−2uλ. Since wλ and uλ are smooth,

applying the Calderón-Zygmund inequality we deduce that for any p ∈ (1,∞), for any Ω′′ ⊂⊂
Ω′ ⊂⊂ Ω it holds:

‖wλ‖2,p,Ω′′ ≤ C(|wλ|p,Ω′ + |fλ|p,Ω′), (20)

where C depends on Ω′, N , p, Ω′′. Thanks to the Sobolev imbedding theorem, for any ε > 0, if
p = N + ε we have that W 2,p(Ω) is continuously imbedded in C1,γ(Ω̄), where γ = 1− N

N+ε . Let us

consider two open subsets Ω′′, Ω′ of Ω such that 0 ∈ Ω′′ and Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω. Thanks to (19) and
(20), in order to estimate ‖wλ‖C1(Ω̄′′) we have to estimate the following quantities: |wλ|N+ε,Ω′ ,

|fλ|N+ε,Ω′ .
Thanks to the assumptions on wλ we deduce immediately that |wλ|N+ε,Ω′ = O(1), uniformly

with respect to λ. For the other term we argue as it follows: we set g(s) := |s|2∗−2s, Φλ :=
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wλ + ϕ2 − ϕ1, where ϕj := Uδj − PUδj , for j = 1, 2, and we write

|fλ|N+ε,Ω′

≤ λ|wλ|N+ε,Ω′ + λ|PUδ1 |N+ε,Ω′ + λ|PUδ2 |N+ε,Ω′ + |Upδ1 |N+ε,Ω′

+|g(Uδ1 − Uδ2 + Φλ)− g(−Uδ2)|N+ε,Ω′

≤ λ|wλ|N+ε,Ω′ + λ|PUδ1 |N+ε,Ω′ + λ|PUδ2 |N+ε,Ω′ + |Upδ1 |N+ε,Ω′

+|g(Uδ1 − Uδ2 + Φλ)− g(−Uδ2)− g′(−Uδ2)(Uδ1 + Φλ)|N+ε,Ω′ + |g′(−Uδ2)(Uδ1 + Φλ)|N+ε,Ω′

= A+B + C +D + E + F.

The term A has been estimated before, and hence λ|wλ|N+ε,Ω′ = O(λ). For B and C we use
the following estimates:

∫
Ω′
αN+ε
N

δ
N−2

2 (N+ε)
j

(δ2
j + |x|2)

N−2
2 (N+ε)

dx = αN+ε
N

∫
Ω′/δj

δ
−N−2

2 (N+ε)+N
j

(1 + |y|2)
N−2

2 (N+ε)
dy

= αN+ε
N δ

4−N
2 N−εN−2

2
j

∫
RN

1

(1 + |y|2)
N−2

2 (N+ε)
dy

+O

(
δ

4−N
2 N−εN−2

2
j

∫ +∞

1/δj

rN−1

(1 + r2)
N−2

2 (N+ε)
dr

)
.

Thus, for all ε > 0 sufficiently small we have

|PUδ|N+ε,Ω′ ≤

∫
Ω′
αN+ε
N

δ
N−2

2 (N+ε)
j

(δ2
j + |x|2)

N−2
2 (N+ε)

dx

 1
N+ε

= αNδ
4−N

2 +O(ε)
j

(∫
RN

1

(1 + |y|2)
N−2

2 (N+ε)
dy

) 1
N+ε

+ o
(
δ

4−N
2 +O(ε)

j

)
.

From this we deduce that B = O(λδ
4−N

2 +O(ε)
1 ), C = O(λδ

4−N
2 +O(ε)

2 ). Concerning the term D,
with similar computations we see that

|PUpδ1 |N+ε,Ω′ ≤

(∫
Ω′
α
N+2

2 (N+ε)

N

δ
N+2

2 (N+ε)
1

(δ2
1 + |x|2)

N+2
2 (N+ε)

dx

) 1
N+ε

= αpNδ
−N2 +O(ε)
1

(∫
RN

1

(1 + |y|2)
N+2

2 (N+ε)
dy

) 1
N+ε

+ o
(
δ
−N2 +O(ε)
1

)
,

and hence D = O(δ
−N2 +O(ε)
1 ). In order to estimate E we remember that by elementary inequalities

we have |g(u + v) − g(u) − g′(u)v| ≤ c|v|p, for all u, v ∈ R, for some constant depending only on
p, and hence we get that

E ≤ c||Φλ|p|N+ε,Ω′ = O(1).

For the last term we have the following:
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|g′(Uδ2)Uδ1 |N+ε
N+ε,Ω′ = pN+ε

∫
Ω′
α
N+2

2 (N+ε)

N

δ
4

N−2
N−2

2 (N+ε)

2

(δ2
2 + |x|2)

4
N−2

N−2
2 (N+ε)

δ
N−2

2 (N+ε)
1

(δ2
1 + |x|2)

N−2
2 (N+ε)

dx

= pN+εα
N+2

2 (N+ε)

N

∫
Ω′

δ
−2(N+ε)
2

(1 + |x/δ2|2)2(N+ε)

δ
−N−2

2 (N+ε)
1

(1 + |x/δ1|2)
N−2

2 (N+ε)
dx

≤ pN+εα
N+2

2 (N+ε)

N δ
−N−2

2 (N+ε)
1 δ

−2(N+ε)+N
2

∫
Ω′/δ2

1

(1 + |x/δ2|2)2(N+ε)
dy

≤ pN+εα
N+2

2 (N+ε)

N δ
−N−2

2 (N+ε)
1 δ−N−2ε

2

∫
Ω′/δ2

1

(1 + |y|2)2(N+ε)
dy

= pN+εα
N+2

2 (N+ε)

N δ
−N−2

2 (N+ε)
1 δ−N−2ε

2

∫
RN

1

(1 + |y|2)2(N+ε)
dy

+O

(
δ
−N−2

2 (N+ε)
1 δ−N−2ε

2

∫ +∞

1/δ2

rN−1

(1 + r2)2(N+ε)

)
.

Hence we get that

|g′(Uδ2)Uδ1 |N+ε,Ω′ ≤ pα
N+2

2

N δ
−N−2

2
1 δ

−1+O(ε)
2

(∫
RN

1

(1 + |y|2)2(N+ε)
dy

) 1
N+ε

+ o
(
δ
−N−2

2
1 δ

−1+O(ε)
2

)
.

By the same computations we see that

|g′(Uδ2)Φλ|N+ε,Ω′ = O
(
δ
−1+O(ε)
2

)
.

Thus, we get that

|F | ≤ c(N, p)δ−
N−2

2
1 δ

−1+O(ε)
2 .

Summing up all these estimates, from (20) and Sobolev imbedding theorem we deduce that

‖wλ‖C1(Ω̄′′) ≤ Cδ
−N−2

2
1 δ

−1+O(ε)
2 ,

where C is a positive constant depending on ε,N,Ω′′,Ω′. �

A straightforward consequence of the previous theorem is the following result:

Corollary 1. Under the assumptions of Theorem 2, for all sufficiently small ε > 0 we have∫
∂Br

|∇wλ|2|x| dσ ≤ C(ε,N)

(
δ2
δ1

)N−4
2

δ
O(ε)
2 ,

for all sufficiently small λ > 0, where Br is the ball centered at ξ having radius r =
√
δ1δ2.

5. Concentration speeds for N ≥ 7

We consider as in the previous sections sign-changing solutions of Problem 1 which are of the
form uλ = PUδ1,ξ − PUδ2,ξ + wλ, with δ1 = δ1(λ), δ2 = δ2(λ) satisfying δ2 = o(δ1) as λ → 0. In
addition we assume that δi, for i = 1, 2, is of the form

δi = diλ
αi , (21)

where di = di(λ) is a strictly positive function such that di → d̄i > 0, as λ→ 0, and the exponents
αi satisfy 0 < α1 < α2. Following the ideas contained in [13] and applying the asymptotic relation
(14), found in the proof of Theorem 1, we determine precisely the exponents α1, α2 in the case
N ≥ 7. We observe that these speeds are exactly the same used in [12] to construct solutions of
(1) of the form (2).
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Theorem 3. Let Ω be a bounded open set of RN with smooth boundary, N ≥ 7, and let ξ ∈ Ω.
Let uλ a solution of (1) such that uλ is of the form uλ = PUδ1,ξ − PUδ2,ξ + wλ, where δi, for
i = 1, 2, is of the form (21) with α2 > α1 > 0, wλ ∈ Vλ,ξ, Vλ,ξ is the subspace of H1

0 (Ω):

Vλ,ξ :=

{
v ∈ H1

0 (Ω); (v, PUδi,ξ)H1
0 (Ω) =

(
v, P

∂Uδi,ξ
∂δi

)
H1

0 (Ω)

= 0, i = 1, 2

}
.

Moreover assume that |wλ| = o(δ
−N−2

2
1 ), |∇wλ| = o(δ

−N2
1 ), uniformly in compact subsets of Ω.

Then α1 = 1
N−4 , α2 = 3N−10

(N−4)(N−6) .

In order to prove Theorem 3 we need some preliminary lemmas. Without loss of generality we
assume that ξ = 0. The first one is the following:

Lemma 4. Let Ω be a bounded open set of RN with smooth boundary and assume that 0 ∈ Ω,
N ≥ 5. Then, as δ → 0, we have∫

∂Ω

(
∂PUδ
∂ν

)2

(x · ν) dσ = a2δ
N−2 + o

(
δN−2

)
,

for some positive real number a2, depending only on N and Ω.

Proof. We multiply the equation −∆PUδ = Upδ by
∑N
i=1 xi

∂PUδ
∂xi

and we integrate on Ω. On one
hand, integrating by parts we obtain∫

Ω

−∆PUδ

N∑
i=1

xi
∂PUδ
∂xi

dx

=

(
1− N

2

)∫
Ω

|∇PUδ|2 dx−
1

2

∫
∂Ω

(
∂PUδ
∂ν

)2

(x · ν) dσ

=

(
1− N

2

)∫
Ω

Upδ PUδ dx−
1

2

∫
∂Ω

(
∂PUδ
∂ν

)2

(x · ν) dσ.

(22)

On the other hand, we have∫
Ω

Upδ

N∑
i=1

xi
∂PUδ
∂xi

dx = −
N∑
i=1

∫
Ω

(
Upδ + pxiU

p−1
δ

∂Uδ
∂xi

)
PUδ dx

= −N
∫

Ω

Upδ PUδ dx− p
N∑
i=1

∫
Ω

xiU
p−1
δ

∂Uδ
∂xi

PUδ dx.

(23)

By elementary computations we see that

−
N∑
i=1

xiU
p−1
δ

∂Uδ
∂xi

=
N − 2

2
Uδ + δ

∂Uδ
∂δ

,

and hence from (23) we get that

∫
Ω

Upδ

N∑
i=1

xi
∂PUδ
∂xi

dx

= −N
∫

Ω

Upδ PUδ dx+ p
N − 2

2

∫
Ω

Upδ PUδ dx+ pδ

∫
Ω

Up−1
δ

∂Uδ
∂δ

PUδ dx

=

(
1− N

2

)∫
Ω

Upδ PUδ dx+ pδ

∫
Ω

Up−1
δ

∂Uδ
∂δ

PUδ dx.

(24)

We analyze the last term of (24). Applying Lemma 1 and since it is well known that∫
RN

Upδ
∂Uδ
∂δ

dx = 0,
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we have

pδ

∫
Ω

Up−1
δ

∂Uδ
∂δ

PUδ dx = pδ

∫
Ω

Up−1
δ

∂Uδ
∂δ

Uδ dx− pαNδ
N
2

∫
Ω

Up−1
δ

∂Uδ
∂δ

H(x, 0) dx

+o

(
δ
N
2

∫
Ω

Up−1
δ

∂Uδ
∂δ

H(x, 0) dx

)
= −pδ

∫
RN\Ω

Upδ
∂Uδ
∂δ

dx− pαNδ
N
2

∫
Ω

Up−1
δ

∂Uδ
∂δ

H(x, 0) dx

+o

(
δ
N
2

∫
Ω

Up−1
δ

∂Uδ
∂δ

H(x, 0) dx

)
,

(25)

where H denotes, the regular part of the Green function for the Laplacian. By definition it is easy
to see that∣∣∣∣∣−pδ

∫
RN\Ω

Upδ
∂Uδ
∂δ

dx

∣∣∣∣∣ ≤ αp+1
N

N + 2

2
δ

∫
RN\Ω

δ
N+2

2

(δ2 + |x|2)
N+2

2

δ
N−2

2

∣∣|x|2 − δ2
∣∣

(δ2 + |x|2)
N
2

dx

≤ αp+1
N

N + 2

2

∫
RN\Ω

δN+1

|x|N+2

∣∣|x|2 − δ2
∣∣

|x|N
dx

= O
(
δN+1

)
.

(26)

Moreover, by the usual change of variable and applying the mean value theorem, we have

pαNδ
N
2

∫
Ω

Up−1
δ

∂Uδ
∂δ

H(x, 0) dx = pαp+1
N δ

N−2
2

∫
Ω

δ2

(δ2 + |x|2)
2

δ
N−2

2

(
|x|2 − δ2

)
(δ2 + |x|2)

N
2

H(x, 0) dx

= pαp+1
N δ

N−2
2

∫
Ω

δ2

δ4
(
1 + |xδ |2

)2 δN−2
2 δ2

(
|xδ |

2 − 1
)

δN
(
1 + |xδ |2

)N
2

H(x, 0) dx

= pαp+1
N δN−2

∫
Ω/δ

1

(1 + |y|2)
2

(
|y|2 − 1

)
(1 + |y|2)

N
2

H(δy, 0) dy

= pαp+1
N δN−2

∫
Ω/δ

1

(1 + |y|2)
2

(
|y|2 − 1

)
(1 + |y|2)

N
2

H(0, 0) dy

+ O

(
δN−1

∫
Ω/δ

1

(1 + |y|2)
2

(
|y|2 − 1

)
(1 + |y|2)

N
2

(∇H(ηy, 0) · y) dy

)

= pαp+1
N δN−2

∫
RN

1

(1 + |y|2)
2

(
|y|2 − 1

)
(1 + |y|2)

N
2

H(0, 0) dy

+ O

(
δN−2

∫ +∞

1/δ

rN−1

(1 + r2)
2

(
r2 − 1

)
(1 + r2)

N
2

H(0, 0) dr

)

+ O

(
δN−1

∫
Ω/δ

1

(1 + |y|2)
2

(
|y|2 − 1

)
(1 + |y|2)

N
2

(∇H(ηy, 0) · y) dy

)

= pαp+1
N H(0, 0)δN−2

∫
RN

(
|y|2 − 1

)
(1 + |y|2)

N+4
2

dy +O(δN−1).

(27)
Finally from (22)-(27) we get that∫

∂Ω

(
∂PUδ
∂ν

)2

(x · ν) dσ = 2pαp+1
N H(0, 0)δN−2

∫
RN

(
|y|2 − 1

)
(1 + |y|2)

N+4
2

dy +O(δN−1),

and the proof is complete. �
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Another preliminary lemma is the following:

Lemma 5. Under the assumptions of Theorem 3, as λ→ 0, we have∣∣∣∣∣
∫
∂Ω

(
∂wλ
∂ν

)2

(x · ν) dσ

∣∣∣∣∣ = O(λ2δ4
1) + o(δN−2

1 ).

Proof. The first step is the following:∣∣∣∣∣
∫
∂Ω

(
∂wλ
∂ν

)2

(x · ν) dσ

∣∣∣∣∣ ≤
∫
∂Ω

(
∂wλ
∂ν

)2

|x · ν| dσ

≤
∫
∂Ω

(
∂wλ
∂ν

)2

|x| dσ

≤ c(Ω)

∫
∂Ω

(
∂wλ
∂ν

)2

dσ.

Thus we need to estimate

∫
∂Ω

(
∂wλ
∂ν

)2

dσ. Let us consider a smooth function ζ : RN → R such

that 0 ≤ ζ ≤ 1, ζ(x) = 0 for |x| ≤ 1
2 and ζ(x) = 1 for |x| ≥ 1. We set η(x) := ζ( x

d(0,∂Ω) ). It’s

elementary to see that ηwλ is a solution of the following problem{
−∆(ηwλ) = ληwλ + gλ in Ω

ηwλ = 0 on ∂Ω,
(28)

where gλ = η
(
λPUδ1 − λPUδ2 − U

p
δ1

+ Upδ2 + |uλ|2
∗−2uλ

)
− 2∇η · ∇wλ − wλ∆η. Since ηwλ is a

solution of (28), the following inequality holds (see Appendix C in [13]):∣∣∣∣ ∂∂ν (ηwλ)

∣∣∣∣2
2,∂Ω

=

∣∣∣∣∂wλ∂ν

∣∣∣∣2
2,∂Ω

≤ C|gλ|22N
N+1 ,Ω

, (29)

where C is a positive constant depending only on Ω and N . Hence, in order to complete the proof,

it suffices to estimate the L
2N
N+1 (Ω)-norm of gλ. We point out that, thanks to the multiplication

by the cut-off function η, what occurs around the origin does not count anymore and this will
make the boundary estimate sharper. By elementary inequalities we get that

|gλ| ≤ c(p)η
(
λUδ1 + λUδ2 + Upδ1 + Upδ2 + |wλ|p

)
+ 2|∇η||∇wλ|+ |∆η||wλ|.

Thus we have to estimate the following quantities:

λ|ηUδj | 2N
N+1 ,Ω

, |ηUpδj | 2N
N+1 ,Ω

, for j = 1, 2, and |η|wλ|p| 2N
N+1 ,Ω

, | |∇η||∇wλ| | 2N
N+1 ,Ω

, | |∆η||wλ| | 2N
N+1 ,Ω

.

This is a long computation already made by O. Rey (see Appendix C of [13]), in the case of
positive solutions of the form uλ = PUδ + wλ. In that paper it is shown that

|ηUpδj |
2
2N
N+1 ,Ω

= o
(
δN−2
j

)
, |ηλUδj |22N

N+1 ,Ω
= O

(
λ2δN−2

j

)
,

∣∣∣|∇η||∇wλ|∣∣∣2
2N
N+1 ,Ω

= O
(
‖wλ‖2

)
,
∣∣∣|∆η||wλ|∣∣∣2

2N
N+1 ,Ω

= O
(
‖wλ‖2

)
. (30)

Moreover, by the same computations of Appendix C in [13] we see that∣∣∣η|wλ|p∣∣∣2
2N
N+1 ,Ω

= o(δN−2
1 ).

In order to complete the proof we need to estimate the quantities in (30), and hence we have to
study the asymptotic behavior of ‖wλ‖. An estimate for ‖wλ‖ is contained in [4]; in particular,
by the proof of Lemma 3.3 of [4] we see that

‖wλ‖ ≤ c

[∑
i

(
λδ

(N−2)/2
i + δN−2

i

)
+ ε12(log ε−1

12 )(N−2)/N

]
, (31)
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where ε12 is defined by ε12 :=
(
δ1
δ2

+ δ2
δ1

)(2−N)/2

. Since δ2
δ1
→ 0 as λ→ 0 we see that

ε12 =

(
δ2
δ1

)N−2
2

+ o

(
δ2
δ1

)N−2
2

.

Moreover by the assumptions on the growth of ∇wλ and wλ, and thanks to (14) we get that ε12

is of the same order as λδ2
2 , hence, since δ2 = o(δ1) as λ→ 0, we have that

ε12(log ε−1
12 )(N−2)/N = o(λδ2

1).

Thus, from (31), and since N ≥ 7, we deduce that for all sufficiently small λ it holds

‖wλ‖ ≤ c(δN−2
1 + λδ2

1). (32)

Summing up all these estimates we deduce the desired relation. �

Lemma 6. Let Ω be a bounded open set of RN with smooth boundary and assume that 0 ∈ Ω,
N ≥ 5. Then, as δ → 0, we have∫

∂Ω

(
∂PUδ
∂ν

)2

dσ = O(δN−2).

Proof. We consider a smooth function η : RN → R having the same properties as the one consid-
ered in the previous proof. By elementary computation we see that ηPUδ satisfies{

−∆(ηPUδ) = −(∆η)PUδ −∇η · ∇PUδ + ηUpδ in Ω

ηPUδ = 0 on ∂Ω.
(33)

Since ηPUδ is a solution of (33), the following inequality holds:∣∣∣∣ ∂∂ν (ηPUδ)

∣∣∣∣2
2,∂Ω

=

∣∣∣∣∂PUδ∂ν

∣∣∣∣2
2,∂Ω

≤ C
∣∣∣|∆η|PUδ + |∇η · ∇PUδ|+ ηUpδ

∣∣∣2
2N
N+1 ,Ω

, (34)

where C is a positive constant depending only on Ω and N . In order to complete the proof we
have to estimate the quantities: |(∆η)PUδ| 2N

N+1
2
,Ω, |∇η ·∇PUδ|22N

N+1 ,Ω
, |ηUpδ |22N

N+1 ,Ω
. Using the same

computations made by O. Rey in [13], and since η ≡ 0 in a neighborhood of the origin we get that

|ηUpδ |
2
2N
N+1 ,Ω

= o
(
δN−2

)
,
∣∣∣|∇η||∇PUδ|∣∣∣2

2N
N+1 ,Ω

= O
(
‖PUδ‖2Ω∩supp(∇η)

)
,∣∣∣|∆η||PUδ|∣∣∣2

2N
N+1 ,Ω

= O
(
‖PUδ‖2Ω∩supp(∇η)

)
.

(35)

Applying Lemma 1 and taking account of (10), since ∇η ≡ 0 in an open neighborhood of the
origin, we have

‖PUδ‖2Ω∩supp(∇η) =

∫
Ω∩supp(∇η)

|∇(Uδ − ϕδ)|2 dx

≤
∫

Ω∩supp(∇η)

|∇Uδ|2dx+ 2

∫
Ω∩supp(∇η)

|∇Uδ||∇ϕδ|dx

+

∫
Ω∩supp(∇η)

|∇ϕδ|2dx

= O(δN−2).

(36)

From (34), (35) and (36) we deduce that∣∣∣∣∂PUδ∂ν

∣∣∣∣2
2,∂Ω

= O(δN−2),

and the proof is complete. �
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Proof of Theorem 3. We apply the Pohozaev’s identity to uλ = PUδ1 − PUδ2 + wλ. Since uλ
is a solution of Problem 1 we have

λ

∫
Ω

u2
λ dx =

1

2

∫
∂Ω

(
∂uλ
∂ν

)2

(x · ν) dσ. (37)

For the left-hand side of (37), as in the previous proofs we set Φλ := wλ − ϕδ1 + ϕδ2 , where
ϕδj = Uδj − PUδj for j = 1, 2, and we have

λ

∫
Ω

u2
λ dx = λ

∫
Ω

(PUδ1 − PUδ2 + wλ)2 dx

= λ

∫
Ω

(Uδ1 − Uδ2 + Φλ)2 dx

= λ

∫
Ω

(
U2
δ1 + U2

δ2 − 2Uδ1Uδ2 + 2Uδ1Φλ − 2Uδ2Φλ + Φ2
λ

)
dx

= A+B + C +D + E + F.

(38)

In order to estimate A and B we use the following

λ

∫
Ω

U2
δj dx = λ α2

N

∫
Ω

δ
−(N−2)
j

(1 + |x/δj |2)N−2
dx = λ α2

N

∫
Ω/δj

δ
−(N−2)
j

(1 + |y|2)N−2
δNj dy

= λ α2
Nδ

2
j

∫
RN

1

(1 + |y|2)N−2
dy +O

(
λδ2
j

∫ +∞

1/δj

rN−1

(1 + r2)N−2
dr

)
= λ α2

Nδ
2
j

∫
RN

1

(1 + |y|2)N−2
dy +O

(
λδN−2
j

)
.

(39)

We point out that since we are assuming that N ≥ 5, the first integral in the last line of (39)
converges. To estimate C we apply the following

λ

∫
Ω

Uδ1Uδ2 dx = λ α2
N

∫
Ω/δ1

δ
N+2

2
1

(1 + |y|2)
N−2

2

δ
N−2

2
2

(δ2
2 + δ2

1 |y|2)
N−2

2

dy

= λ α2
N

∫
Ω/δ1

δ
−N−6

2
1

(1 + |y|2)
N−2

2

δ
N−2

2
2((

δ2
δ1

)2

+ |y|2
)N−2

2

dy

≤ λ α2
N

(
δ2
δ1

)N−2
2

δ2
1

∫
Ω/δ1

1

(1 + |y|2)
N−2

2 |y|N−2
dy

= λ α2
N

(
δ2
δ1

)N−2
2

δ2
1

∫
RN

1

(1 + |y|2)
N−2

2 |y|N−2
dy

+ O

(
λ

(
δ2
δ1

)N−2
2

δ2
1

∫ +∞

1/δ1

rN−1

(1 + r2)
N−2

2 rN−2
dr

)

= λ α2
N

(
δ2
δ1

)N−2
2

δ2
1

∫
RN

1

(1 + |y|2)
N−2

2 |y|N−2
dy +O

(
λ

(
δ2
δ1

)N−2
2

δN−2
1

)
.

(40)

In order to estimate D, E, F , thanks to (32), Hölder’s inequality and Poincaré’s inequality we get
that ∫

Ω

w2
λ ≤ c1‖wλ‖2 ≤ c2(δN−2

1 + λδ2
1)2. (41)

We observe that, by Lemma 1 and since N ≥ 5, we have |ϕδj |2,Ω = O
(
δ
N−2

2
j

)
= o(δj). Thus, by

definition of Φλ and (41) we deduce that∫
Ω

Φ2
λ dx =

∫
Ω

(wλ + ϕδ2 − ϕδ1)
2
dx = o(δ2

1), (42)
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and hence
F = o(λδ2

1). (43)

Moreover, by the same computations of (39) we have
∫

Ω
U2
δj

= a1δ
2
j + o(δ2

j ), for some positive

constant a1. Hence by Hölder’s inequality and (42) we get that

|D| = o(λδ2
1),

and
|E| = o(λδ1δ2) = o(λδ2

1).

We analyze now the right-hand side of (37): by definition we have

1

2

∫
∂Ω

(
∂uλ
∂ν

)2

(x · ν) dσ =
1

2

∫
∂Ω

(
∂PUδ1
∂ν

− ∂PUδ2
∂ν

+
∂wλ
∂ν

)2

(x · ν) dσ

=
1

2

∫
∂Ω

(
∂PUδ1
∂ν

)2

(x · ν) dσ +
1

2

∫
∂Ω

(
∂PUδ2
∂ν

)2

(x · ν) dσ

−
∫
∂Ω

∂PUδ1
∂ν

∂PUδ2
∂ν

(x · ν) dσ +

∫
∂Ω

∂PUδ1
∂ν

∂wλ
∂ν

(x · ν) dσ

−
∫
∂Ω

∂PUδ2
∂ν

∂wλ
∂ν

(x · ν) dσ +
1

2

∫
∂Ω

(wλ
∂ν

)2

(x · ν) dσ

= A1 +B1 + C1 +D1 + E1 + F1.
(44)

Thanks to Lemma 4 we have:

A1 =
a

2
δN−2
1 + o(δN−2

1 ),

B1 =
a

2
δN−2
2 + o(δN−2

2 ).

(45)

Thanks to Lemma 6 and applying Hölder inequality we get that

|C1| ≤
∫
∂Ω

∣∣∣∣∂PUδ1∂ν

∣∣∣∣ ∣∣∣∣∂PUδ2∂ν

∣∣∣∣ |x · ν| dσ
≤ diam(∂Ω)

(∫
∂Ω

∣∣∣∣∂PUδ1∂ν

∣∣∣∣2 dσ

) 1
2
(∫

∂Ω

∣∣∣∣∂PUδ2∂ν

∣∣∣∣2 dσ

) 1
2

= O
(
δ
N−2

2
1 δ

N−2
2

2

)
.

(46)

Thanks to (29), Lemma 5, Lemma 6 and applying Hölder inequality we get that

|D1| ≤
∫
∂Ω

∣∣∣∣∂PUδ1∂ν

∣∣∣∣ ∣∣∣∣∂wλ∂ν

∣∣∣∣ |x · ν| dσ
≤ diam(∂Ω)

(∫
∂Ω

∣∣∣∣∂PUδ1∂ν

∣∣∣∣2 dσ

) 1
2
(∫

∂Ω

∣∣∣∣∂wλ∂ν

∣∣∣∣2 dσ

) 1
2

= o
(
λδ2

1

)
+ o

(
δN−2
1

)
.

(47)

|E1| ≤
∫
∂Ω

∣∣∣∣∂PUδ2∂ν

∣∣∣∣ ∣∣∣∣∂wλ∂ν

∣∣∣∣ |x · ν| dσ
≤ diam(∂Ω)

(∫
∂Ω

∣∣∣∣∂PUδ2∂ν

∣∣∣∣2 dσ

) 1
2
(∫

∂Ω

∣∣∣∣∂wλ∂ν

∣∣∣∣2 dσ

) 1
2

= o
(
λδ2

1

)
+ o

(
δN−2
1

)
.

(48)

|F1| =
1

2

∫
∂Ω

(
∂wλ
∂ν

)2

(x · ν) dσ = o
(
λδ2

1

)
+ o

(
δN−2
1

)
. (49)
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Summing up all the estimates, from (37) and since δ2 = o(δ1) as λ→ 0, we deduce the following
equality:

a1λδ
2
1 + o(λδ2

1) = a2δ
N−2
1 + o

(
δN−2
1

)
. (50)

Since δj is of the form (21), we deduce that α1 must satisfy the equation

1 + 2α1 = (N − 2)α1,

and hence we get that α1 = 1
N−4 . Moreover, from (14) we deduce that α1, α2 must satisfy the

following algebraic equation

1 + 2α2 =
N − 2

2
(α2 − α1). (51)

Thus, combining this result with (51), we get that α2 = 3N−10
(N−4)(N−6) and the proof is complete. �
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[6] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,

Comm. Pure. Appl. Math. 36, (1983), 437-477.

[7] A. Capozzi, D. Fortunato, G. Palmieri, An existence result for nonlinear elliptic problems involving critical
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