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SUMMARY

Polymersomes are vesicles formed by the self-assembly of amphiphilic copolymers in water. They

represent one of the most promising alternatives of natural vesicles as they add new possibilities in

the amphiphiles’ molecular engineering of aqueous compartments. Here we report the design of

polymersomes using a bottom-up approach wherein self-assembly of amphiphilic copolymers

poly(2-(methacryloyloxy) ethyl phosphorylcholine)-poly(2-(diisopropylamino) ethyl methacrylate)

(PMPC-PDPA) into membranes is tuned using pH and temperature. We report evolution from

disk micelles, to vesicles, to high-genus vesicles (vesicles with many holes), where each passage

is controlled by pH switch or temperature. We show that the process can be rationalized,

adapting membrane physics theories to disclose scaling principles that allow the estimation of

minimal radius of vesiculation as well as chain entanglement and coupling. This approach allows us

to generate nanoscale vesicles with genus from 0 to 70, which have been very elusive and difficult

to control so far.

INTRODUCTION

Amphiphiles are molecules that contain both soluble and insoluble components with respect to a given

solvent. In solution, the balance of the two counteracting interactions drives one of the most exquisite

examples of self-assembly processes that give rise to supramolecularly defined nanostructures. These

can be spherical or cylindrical micelles, or membranes, depending on the amphiphile packing factor, which

in turn is defined by the insoluble-to-soluble molar ratio (Smart et al., 2008). For spherical micelles the

geometry is defined by the molecular architecture, whereas for both cylinders and membranes, the curva-

ture of the amphiphiles decides the formation of exposed ends or edges. These regions can be protected

either by the assembly of a portion of amphiphiles into more frustrated and curved structures or by the

structure closing on itself to avoid any hydrophobic exposure. For cylindrical micelles, these two scenarios

corresponds to either worm-like or toroidal micelles, whereas for membranes, the two options are either

disk-like micelles or closed vesicles (Smart et al., 2008). The latter are a very important structure as their

geometry enables the enclosure of a given solvent volume whose composition is controlled by the same

amphiphilic membrane. Assembly of natural amphiphiles such as phospholipids or their progenitors (Hanc-

zyc et al., 2003) into vesicles provides the necessary compartmentalization to house the energy pools for

feeding all biochemical processes (Szostak et al., 2001; Mann, 2013) making such a structure one of the

most important element of life complexity.

It is not surprising that both natural and synthetic vesicles have been the subject of several studies. Be-

side the obvious biophysical drive to understand natural membranes, vesicles have been proposed as

reactors and energy conversion units (Peters et al., 2012; Gaitzsch et al., 2015). Also, vesicles are one of

most successful drug delivery systems as they mimic nature’s way of carrying molecules, enabling the

encapsulation of both soluble and insoluble drugs (Guan et al., 2015; Pattni et al., 2015; Al-Jamal and

Kostarelos, 2011). Vesicles can be made using either natural or synthetic amphiphilic molecules. Among

these, one of the most promising is based on the use of amphiphilic block copolymers wherein each

soluble and insoluble component is macromolecular and consequently bestows the vesicles (known

as polymersomes) with extra interactions arising from chain entanglement (Wang et al., 2012; Smart

et al., 2008). Such a macromolecular nature allows to impart responsiveness (Li and Keller, 2009), to

finely control the surface properties (Photos et al., 2003), to enhance both colloidal stability (LoPresti

et al., 2009) and mechanical properties (Discher et al., 1999), as well as to augment tissue penetration

(Pegoraro et al., 2013). The most common vesicle shape is spherical but tubular, prolate, discocytic,

stomatocytic, toroidal, and pear-shaped vesicles have all been reported (Seifert and Lipowsky, 1995;
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Chang et al., 2014). Vesiculation is a process that strongly depends on the methods in which amphi-

philes are placed in contact with water. We classify these methods as top-down and bottom-up

approaches (Messager et al., 2014). The top-down approach involves the hydration of a dry block

copolymer film during which water diffusion and copolymer arrangements drive the formation of com-

plex lyotropic liquid lamellar structures. These later break down into vesicles via unbinding of mem-

brane-bound compartments. Such a process is complex, and its dynamics are strongly dependent on

the molecular weight of the amphiphile (Battaglia and Ryan, 2006b). Moreover, the mixing of the highly

viscous lamellar phase with water gives rise to finger-like instabilities, which result in the formation of

tubular vesicles (Battaglia and Ryan, 2006a; Robertson et al., 2014). On the other hand, the formation of

vesicles via the bottom-up approach starts with the amphiphile being fully solubilized and molecularly

dispersed in solution. This can be achieved via solvent switch, tuning the amphiphile’s assembly by

gradually exchanging the organic solvent with water. Alternatively, the amphiphile’s solubility can be

controlled by pH, temperature, light, enzymatic reactions, or redox reactions (Che and van Hest,

2016; Hu et al., 2017; Liu et al., 2014; Deng et al., 2016). In all cases, the self-assembly evolves from

molecularly dissolved amphiphiles to vesicles whose geometry is controlled by both thermodynamics

and kinetics. This means that the final shape of the vesicle can be controlled by temperature and con-

centration as well as by the mixing rate. Small amphiphiles are characterized by relatively high critical

assembly concentration (CAC) in water, and hence their assembly is characterized by a high exchange

rate between unimers and the aggregate with consequent fast equilibration. Macromolecular amphi-

philes, particularly those that assemble into membranes, have almost zero CAC, and hence once the

unimer pool is depleted the assembly becomes kinetically trapped (Jain and Bates, 2003). Such a

non-ergodic nature allows to access metastable phases, which are precluded for small amphiphiles.

Eisenberg and colleagues noted this unique nature of polymersomes in their pioneering work (Gao

et al., 1994; Zhang and Eisenberg, 1995) referring to the zoology of morphologies as crew-cut aggre-

gates. Later on, they optimized the process controlling the final structure (Lim Soo and Eisenberg,

2004; Mai and Eisenberg, 2012) to the point that they were able to isolate complex vesicular structures.

Using a similar approach, van Hest and colleagues demonstrated that the shape of polymersomes can

be controlled from spherical to prolate, to disk, to stomatocytes (Meeuwissen et al., 2011; van Oers

et al., 2013; Rikken et al., 2016); more recently, similar experiments were reported by Wong et al. add-

ing extra control using aromatic groups (Wong et al., 2017). We reported a different approach using

pH-sensitive poly(2-(methacryloyloxy)ethyl phosphorylcholine)-poly(2-(diisopropylamino)ethyl methacry-

late) (PMPC-PDPA) (Pearson et al., 2013). Here we have shown that the PMPC-PDPA assembles into

either micellar or vesicular structures depending on the kinetics of pH or temperature changes. We

expanded on this study showing via a combination of different techniques that the kinetics of assembly

can be controlled by either temperature or pH changes and that this allows to tune both the vesicle

closing morphology and its topology.
RESULTS AND DISCUSSION

pH-Driven Self-Assembly

The chemical structures of PMPC-PDPA copolymers are shown alongside the corresponding molecular

models with the DPAgroups protonated (Figure 1A) and deprotonated (Figure 1B). Themodels were calcu-

lated minimizing the PMPC25-PDPA70 using Merck molecular force field molecular mechanics in Avogadro

(Hanwell et al., 2012) (final structure rendered in Chimera [Pettersen et al., 2004]). PMPC and PDPA chains

wereminimized separately and joined together after calculation. No constrains were imposed on the PMPC

and protonated PDPA chains, and we imposed an end-to-end distance dAAfN2/3 on the deprotonated

PDPA, in agreement with the scaling reported for block copolymer micelles and membranes (Battaglia

and Ryan, 2005; Jain and Bates, 2003). The displayed models show the PMPC-PDPA’s charge distribution

and molecular size. The PDPA chain is fully soluble when protonated, whereas it is hydrophobic when de-

protonated, which drives its self-assembly (Lomas et al., 2007; Pearson et al., 2013). This process is strongly

dependent on the pH switch rate, as shown in Figure S1A wherein the pH change is plotted as a function of

time for different flow rates of NaOH solution titration. The pH rises exponentially with time until it reaches

the PDPA pKa, which under experimental conditions (PBS 100 mM and T = 25
�
C) is 6.8. The pH stabilizes for

the time necessary to complete the reaction between the protonated PDPA and the hydroxyl ions in solu-

tion to form deprotonated and hydrophobic PDPA. After all the chains are deprotonated, the pH again

rises exponentially with time. The graph in Figure S1B shows that the time plateau is proportional to the

flow rate and changes from a few minutes to hours. In Figures S1D–S1H we show the corresponding trans-

mission electron microscopic (TEM) images of the samples formed at different flow rates. The final
iScience 7, 132–144, September 28, 2018 133



Figure 1. Chemical Structure and Molecular Model of the PMPC-PDPA Copolymers

(A and B) The copolymers are shown with the tertiary amine group protonated (A) and deprotonated (B). Note that the

molecular models were calculated for PMPC25-PDPA72 and the structures are represented with their solvent-accessible

surface (probe distance 1.4 Å) colored as a function of the molecule electrostatic potential calculated as fðrÞ= P
qi=eri

with e= 4r being the dielectric, representing screening by the water.
morphology changes with the flow rate indicating that it is possible to modulate the formation of different

architectures.

Upon more detailed inspection using cryogenic TEM imaging of the vitrified sample produced by slower

rate, we observed that PMPC-PDPA assembles into a large variety of architectures, which are shown in the

micrographs in Figures 2A and 2B at low and high magnification, respectively. Two populations of struc-

tures are visible, one is made of discoid micelles and the other is made of vesicles. The latter have different

shapes and in some the membranes are not completely closed. We recently developed a method to

separate soft particles by using density gradient fractionation (Robertson et al., 2016) and applied it to

PMPC-PDPA structures made by slowest rate. At water density between 0.998 and 1.018 g cm�3 (as shown

in the TEM image in Figure 2C), we mostly found micelles with radius varying from 10 to 20 nm. At densities

between 1.018 and 1.038 g cm�3, the radius increases from 30 to 60 nm and the aggregates are mostly

composed of spherical vesicles (Figure 2D). At higher density between 1.038 and 1.081 g cm�3 the sample

is dominated by larger (radius from 60 to 200 nm) flattened and holed vesicles (Figure 2E). These latter

structures can be described using the mathematical terminology of genus, i.e., the number of holes or

handles of the vesicle (Seifert and Lipowsky, 1995), which varies from 0 for the spherical geometry to 1

for the torus to >1 for vesicles hereafter referred to as high-genus vesicles.

To further elucidate the kinetics of pH switch, we studied the self-assembly of PMPC25-PDPA70 copolymers

using stop-flow absorbance measurements following the initial 10 s of assembly at different degrees of

copolymer ionization, a = ð1+ 10ðpH�pKaÞÞ�1. This depends on the final solution pH and for pH = pKa, the

ionization degree a = 0.5, For any value below this, the PDPA has not sufficient charges to remain soluble

and becomes hydrophobic. As shown in Figure 2F, by normalizing the absorbance as a function of time,

self-assembly occurs via two steps and can be fitted by a double exponential growth as in:

A

Amax
= 1�

�
se� t

t1 + ð1� sÞe� t
t2

�
(Equation 1)

In Figure 2G, we plotted Equation 3 parameters as a function of the ionization degree showing that the first

fast relaxation time, t1 varies from 750 to 100 ms depending on the ionization degree, whereas the second

slower relaxation time t2 increases slightly with the ionization degree. The relative ratio between the two

processes, expressed here as s, also changes with the ionization degree and the fast dynamics dominates

with s > 0.7 for a < 0.1; the more the copolymer is charged, the more the two steps are balanced. This sug-

gests that as a / 0.5, the unimer concentration increases.

Temperature-Driven Self-Assembly

As we previously reported (Pearson et al., 2013), the PDPA pKa varies with temperature being about 7.5 at

5
�
C and going down to 5.5 at 60

�
C. This means that PMPC-PDPA self-assembly can be tuned by
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Figure 2. pH-Driven Assembly of PMPC25-PDPA70 Copolymers

(A–E) Low- (A) and high- (B) magnification cryogenic TEM images of PMPC25-PDPA70 assemblies produced at 0.5 mmol

min�1 of NaOH solution addition. The red arrows point to disk micelles and the blue ones to high-genus vesicles. TEM

images of the sample corresponding to density 0.998–1.018 gcm�3 (C), 1.018–1.038 gcm�3 (D), and 1.038–1.081 gcm�3 (E).

(F and G) Kinetics curves measured by stop-flow absorbance of PMPC25-PDPA70 copolymer at different ionization

degrees (F) and the corresponding parameters (G) obtained using Equation 3.
temperature changes, as shown in Figure 3; we dissolved the copolymers at pH = 2, cooled the solution

down to 5
�
C, and increased the pH to 7 triggering the formation of micelles and vesicles by heating. In Fig-

ure 3A, the dynamic light scattering (DLS) of a PMPC25-PDPA70 dispersion confirms that the copolymer is

molecularly dispersed at pH = 7 and T = 5
�
C, and as we raise the temperature it self-assembles. As shown by

both DLS and TEM (Figures 3B and 3C), the final structure architecture depends on the heating rate with

fast rate leading to small micellar structures, whereas slow rate leading to vesicles. Such temperature sensi-

tivity allowed us to monitor self-assembly using proton nuclear magnetic resonance (NMR) spectroscopy

following chemical shift of the copolymers’ hydrogens. The resulting spectra in Figure S2A show the evo-

lution of PMPC-PDPA proton intensity as a function of the solution temperature when dispersed at pH = 2.

The NMR spectra were collected every 5 min while the temperature was increased from 5�C to 40�C at a

rate of 0.2
�
C per minute. The spectra show no changes in the proton signal. In Figure 3D, the plot of

normalized intensity of peak 1 and peaks 7–9 as a function of temperature confirms that no changes are

detectable. This confirms that the PDPA is fully protonated and the copolymers are dissolved molecularly

with all protons allowed to interact with the solvent (Figure 3F). However, when the solution pH is increased

to 7, the NMR spectra show a decrease in several peaks. For heating rate 1
�
C per minute, all the PDPA

peaks decrease in intensity (Figure S2B) suggesting that the protons stop interacting with water and the

PDPA tertiary amines are deprotonated. The PMPC peaks, on the other hand, seem to be unaltered,
iScience 7, 132–144, September 28, 2018 135



Figure 3. PMPC25-PDPA70 Self-Assembly Tuned by Temperature Change

(A–F) Particle size distribution measured by dynamic light scattering (DLS) of PMPC25-PDPA70 polymersome dispersion at

pH = 7 and at T = 5
�
C and 40

�
C fast and slow heating (A). Corresponding TEM images of PMPC25-PDPA70 polymersomes

formed by fast (B) and slow (C) heating. NMR titration peaks 1 and 7–9 normalized intensity as a function of the

temperature and corresponding model of PMPC25-PDPA70 dispersion during slow heating at pH = 2 (D) and fast (E) and

slow (F) heating at pH = 7.(G–I) Schematics show the corresponding arrangements of the PMPC-PDPA copolymers under

the different constionds. Images were generated using the minimized structures shown in Figure 1 packed to form either

planar or curved arrangements.
suggesting that the corresponding protons interact with the solvent in the same way as the unimers (Fig-

ure 3E). The normalized intensity of peaks 1 and 7–9 is plotted as a function of the temperature in Figure 3G

and shows that the PDPA peaks decrease, whereas the PMPC peak 1 remains unchanged. This suggests an

assembly structure with a fully deprotonated PDPA shielded into a hydrophobic core, whereas the PMPC

chain remains in close contact with water and hence forms a curved structure that agrees with the micelles

observed by TEM and shown in Figure 3H. Finally, for slower heating rate of 0.2
�
C per minute, the NMR

spectra collected as a function of the temperature (Figure S2C) show a similar decrease inmost PDPA peaks

as well as a decrease in most PMPC peaks. Such an effect is more visible in Figure 3J where peaks 7–9

decrease to almost zero and peak 1 decreases to about 75% of its starting value. Such a decrease suggests

that most PMPC chains have a more packed configuration in agreement with the vesicular structure

observed by TEM, as showed by the cartoon in Figure 3K. It is important to point out that the PDPA

deprotonation process in D2O used for the NMR experiments is slightly different, and indeed the transition

temperature is a few degrees lower compared with our previous observations (Pearson et al., 2013).

However, the scope of these experiments is to shed light on the molecular-level changes during the

self-assembly and hence the shift in transition is irrelevant.

As shown in Figure 4A, the temperature-driven self-assembly, unlike the pH-driven one, is not reversible.

Monitoring the solution turbidity by measuring the absorbance at 400 nm we noticed that whereas the

copolymers assemble into dispersed phases going from 5�C to 60�C, with transition temperature depend-

ing on their molecular mass, the assemblies do not dissolve into unimers as the solution is cooled backed to

5
�
C. The low-molecular-mass PMPC6-PDPA12 shows a hysteresis of about 8

�
C and the absorbance does not

go down to zero at 5
�
C. As the molecular mass increases, PMPC12-PDPA35 displays even more hysteresis,

whereas PMPC25-PDPA70 shows no sign of disassembly upon cooling. Upon inspection by TEM (Figure 4B),

we observed that PMPC25-PDPA70 assemble into vesicles andmicelles upon heating but themorphology of
136 iScience 7, 132–144, September 28, 2018



Figure 4. Temperature-Driven Self-Assembly of PMPC-PDPA Copolymer at Different Molecular Weight

(A–C) Turbidity measurement using UV/Vis absorbance at 400 nm of PMPC25-PDPA72, PMPC12-PDPA35, and PMPC6-

PDPA12 solution during heating (red curves) and cooling (blue curves) starting from 5
�
C to 60

�
C; a photograph of the

cuvette before and after heating is shown (A). TEM images of PMPC25-PDPA72, PMPC12-PDPA35, and PMPC6-PDPA12

structures formed during heating and after cooling. Scale bar, 200 nm (B). Micro-differential scanning calorimetry of

PMPC25-PDPA72, PMPC12-PDPA35, and PMPC6-PDPA12 dispersion showing the heat exchange during heating and

cooling (C).
these appear unchanged upon cooling. Both PMPC12-PDPA35 and PMPC6-PDPA12 also assemble into ves-

icles and micelles upon heating, but as their solutions are cooled down the number of vesicles increases

and so does their genus number. To further understand such a hysteresis in the self-assembly behavior,

we performed micro-differential scanning calorimetry for the three different PMPC-PDPA copolymers,

and both the heating and cooling curves are shown in Figure 4C. All the investigated copolymers showed

a thermal transition starting around 20�C to 30�C indicating that PMPC-PDPA self-assembly in water is an

endothermic process. We can confidently attribute such an endothermic process to the de-protonation

reaction of the PDPA with water. If we compare the pH- and temperature-driven process, in the former

the acid-base reaction is mostly controlled by the presence of hydrogen and hydroxyl ions in solution,

whereas in the latter the concentration of these is minimal (pH = 7) and the only changing parameter is

the copolymer pKa. The thermograms show that the endothermic peak is not mirrored by an exothermic

one during the reverse cooling cycle, We instead observed a shoulder typical of glass transitions indicating

that the PDPA becomes an amorphous glass below 20�C. This suggests that the PDPA membrane freezes

and becomes less permeable to water hence slowing down or even stopping altogether the water diffusion

with consequent arrest of the copolymer disassembly.

Disk Micelles

The two structures, disk micelles and vesicles formed both during pH- or temperature-driven assembly,

are indeed quite unique and warrant further analysis. In Figure 5A we show two high-resolution cryogenic

TEM images in grayscale and the fire palette of PMPC25-PDPA70 disk micelles. The PMPC chains were

selectively stained by phosphotungstic acid before vitrification. The disk micelles are small and show

highly curved edges with a few copolymers in the middle. We measured both the disk radius and mem-

brane thickness for several PMPC-PDPA copolymers and plotted these as a function of the degree of

polymerization of PDPA (Figure 5B). A given polymer chain has end-to-end distance scaling with its de-

gree of polymerization according to the power law, dfNn, where when the chains are stretched

1RnR3=5, when unperturbed (also random coil) n � 3=5, and when hyper-coiled n%3=5 (de Gennes,

1979; Battaglia and Ryan, 2005). Assuming that the PDPA chain extends as long as the disk radius or

thickness, we can assess the hydrophobic chain configuration in both types of assembly. We and others

reported that polymersome membranes are typically associated with a scaling exponent of 2/3
iScience 7, 132–144, September 28, 2018 137



Figure 5. Disk Micelles

(A and B) High-resolution cryogenic TEMwith pre-stained samples of PMPC25-PDPA70 disk micelles shown in gray and fire

palette (A). Scaling graph between the disk radius (red) and membrane thickness (blue) and PDPA degree of

polymerization (B).

(C) Schematics of the PMPC-PDPA disk shown in scale using the minimised copolymer strucutres shown in Figure 1.
corresponding to super-segregated copolymers (Jain and Bates, 2004; Battaglia and Ryan, 2005; Pearson

et al., 2013). As shown in the graph in Figure 5B, we confirm the same trend for PMPC-PDPA membranes,

whereas for the disk radius the power law scales with an exponent of 1/3. This suggests a hyper-coiled

configuration indicating that the interfacial energy associated with the free edges is sufficiently strong to

compress the chains. Using this scaling analysis together with NMR, the density data, and the structures

observed in cryogenic TEM images in Figure 5A, we conclude that the micelles are discoid with a core

made of copolymers assembling into a configuration as dense as the vesicle membrane with curved

edges that shield the hydrophobic chains from water. Such a structure is shown in Figure 5C where

we used the minimized PMPC-PDPA copolymers to reconstruct the final geometry. As PMPC25-PDPA70

forms a membrane of about 7.51 nm we can assume that to stabilize the edge, few copolymers form

a semi-cylindrical region with a radius of half the membrane thickness (i.e., 3.75 nm). Such a configuration

is naturally frustrated, and it can only be formed when there are not enough chains to form the vesicles as

all the unimers have been depleted from the solution.

High-Genus Vesicles

For both pH- and temperature-driven assemblies, the vesicles form with different topology and different

genus numbers. We hypothesize that as disk micelles close into spherical (g = 0) vesicles their interior

becomes inaccessible to unimers. These thus insert only onto the exterior leaflet of the vesicle membrane

leading to an asymmetric growth, which in turn leads to an increase in the vesicle genus. To prove this

hypothesis, we exploit the self-assembly hysteresis with the temperature, which allows the co-existence

of both unimers and vesicles at low temperature. We thus dissolved PMPC-PDPA at pH = 2, cooled

down the solution to 5
�
C, and finally raised the pH to 7. We mixed such a unimer solution with PMPC-PDPA

spherical vesicles, made using film hydration, which we established produces only g = 0 vesicles (Robertson
138 iScience 7, 132–144, September 28, 2018



Figure 6. High-Genus Structure

(A–D) TEM images of PMPC25-PDPA70 polymersomes prepared by film hydration (A) and after mixing with unimers at 5
�
C

at 1:1 ratio (B). Graph showing the genus number (blue) and average radius (red) as function of the PMPC25-PDPA70

ionization degree (C). TEM images of PMPC25-PDPA70 polymersomes with different genus numbers and formed with

different ionization degrees (D).
et al., 2014) keeping the temperature at 5
�
C. The TEM image in Figure 6A shows the polymersomes before

mixing at 5
�
C, confirming that they retain their structure, whereas the micrograph in Figure 6B shows the

structure after 30min of mixing the vesicle with unimer as stated above. The resulting structures are vesicles

with an altered topology and higher genus number, confirming our initial hypothesis.

A similar condition of co-existence of vesicles and unimer is achieved at pH values close to the pKa, i.e.,

a > 0. We thus performed a series of experiments dissolving PMPC25-PDPA70 at pH = 2 and raising the

pH to different values modulating its ionization degree. The graph in Figure 6C shows both the average

vesicle genus number (in blue) and the radius (in red) as a function of a. It is evident that both increase

with PDPA ionization degree, confirming that the longer the vesicles are allowed to grow, the higher their

genus number becomes. In Figure 6D, we show the relative TEM images for the different ionization degrees

further confirming the asymmetrical growth hypothesis and, moreover, demonstrating the remarkable

ability to form structures with genus as high as g = 70 at pH = pKa where a = 0.5.
Proposed Mechanism and Theoretical Considerations

Based on the data discussed above, we can conclude that both pH- and temperature-driven self-assem-

blies occur according to the cartoon proposed in Figure 7. As we measured in Figure 2G, we can

confidently assume that the kinetics of self-assembly occurs according to two regimes, and using themodel

proposed by Ligoure et al. (Ligoure and Leibler, 1990), we can estimate that this occurs with a first fast

nucleation time,

t1 = tN =x
a2

Df2
u

(Equation 2)

where a is the Kuhn statistical length of the unimer, D is the copolymer diffusion coefficient in water as un-

imer, and fu is the copolymer unimer volume fraction. As shown in Figure 2G, tN decreases with the in-

crease of charges on the PDPA chains, which, assuming the diffusion coefficient is unvaried, confirms

that with higher a the unimer concentration fu increases. The fast nucleation is followed by a much slower

regime dominated by the activation barrier of the unimer to insert in the pre-formed assembly. Indeed, the

unimer needs to diffuse through the PMPC brush and insert the PDPA chains into the preformed mem-

brane. We adapt the Liguore-Leibler model (Ligoure and Leibler, 1990), to estimate the construction time,
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Figure 7. Proposed Mechanism of Polymersome Formation and Topological Changes.

The blue and red arrow represent assembly and disaassembly processes.
t2 = tC � 1

a0
ðNM +aNDÞe

DGi
kT (Equation 3)

where NM and ND are the polymerization degree of the PMPC and PDPA blocks, DGi is the free energy

gain of the hydrophobic PDPA chain to insert in the membrane, k is the Boltzmann constant, and T is

the temperature. From Figure 5A, we can write that the membrane thickness is t = aN
2
3

D , and we calculate

for the PDPA that the Khun length a = 0.367 nm. Thus, we can derive the area per molecule of the copol-

ymers in the assembly a0 calculated as

a0 =
MDN

1=3
D

NArPpa
(Equation 4)

whereMD is the DPA monomer molecular mass, NA is the Avogadro number, rP is the PDPA density, and p

is the packing factor, which for membranes is p ˛½0:5;1�. tC Is considerably slower than the nucleation time,

and we measured it to increase linearly from 4.5 to 6 s together with a. Both times are also in strong agree-

ment with previous studies that used rapid mixing techniques (Johnson and Prud’homme, 2003). In the

graph in Figure 2G, we also calculated the relative fraction of the two different processes, s, as a function

of the ionization degree. This increases when the copolymer nucleation dominates the kinetics of the pro-

cess, suggesting that at this stage the copolymers do not have enough time to perform insertion events to

allow the disk micelles growing into vesicles.

This is very much confirmed by DLS in Figure 3A, TEM in Figures 2A and 3B, and NMR in Figures 3G and 3H,

which show that the fast kinetics lead to a large number of disk micelles. NMR and cryogenic TEM image

(Figure 5A) showed that these have highly curved interface with the PDPA core forming the corresponding

membrane in the disk center but hyper-coiling at the edge as demonstrated by our scaling analysis in Fig-

ure 5B, which constructs a very accuratemolecular model of its structure. As shown in Figure 7, provided the

unimer pool is not depleted, these insert into the disk making them grow, and when these reach a critical

radius (about 15 nm), the membrane starts bending and enclosing. The Hamiltonian associated with such a

process is the sum of three components:

H=HH +HADE +Hedge =

Z h
2kMðM� c0Þ2 + kGG

i
dA+

kmaN
5=3
D MD

8NAp

Z
A

dA

�
DNG

�2
+
3NAkTpa2N

2=3
D

8MD

Z
L

dL

(Equation 5)

The first termHH is themembrane bending energy of Helfrich’s elastic energy with A being the total surface

area, kM and kG the bending and the Gaussian moduli, and M = 0:5ðc1 + c2Þ, G = ðc1c2Þ, and c0 being the

mean, Gaussian and spontaneous curvatures of a surface characterized by c1 =R�1
1 and c2 =R�1

2 curvatures.

The second term HADE is the area-difference-elasticity and includes the energy contribution arising from

the differential stretching and compression of the two membrane monolayers, and it depends on the
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Figure 8. Transition from Disk to Closed Vesicle

(A–C) Geometry of the transition (A). Detail of three PMPC25-PDPA70 copolymers packed to give the highest density

possible with PMPC chains (B). The elastic minimum radius of vesiculation R�
E calculated from Equation 3 with b = 12, 24,

32, and 48 (black lines); the geometrical minimal radius calculated using Equation 3 R�
G (blue line) and from the

experimental data (blue square); as well as the disk radius all plotted as a function of the PDPA polymerization degree

ND (C).
membrane compression modulus km and the difference in copolymer numbers between the outer (+) and

inner (�) layers of the membrane, DNG = N+ � N�. Finally, the last term Hedge is associated with edge ef-

fect, and, as shown by the conformation of the copolymers in the disk edge (Figure 5C), we can attribute it

to the entropic compression of the PDPA chain from the equilibrium end-to-end distance, i.e., the mem-

brane thickness, t, to the radius of the disk edge, t/2.

Equation 3 can be used to analyze the experimental data observed above and rationalize them in

thermodynamic terms. The first transition from the disks arising from the initial fast nucleation to closed

vesicle is shown in Figure 8A where the disk is characterized by its radius, R, and height h ˛½0;R�. This is

the height of the spherical cap forming from the disk bending, and it allows to measure the

vesiculation as h = 0 for the planar disk and h = R for the fully closed vesicle. The very first observation

is that the disk curves to limit the length of the edges with consequent membrane deformation. The

spontaneous curvature, c0, includes molecular aspects that impose a geometrical curvature, and when

only one amphiphile is considered as in our case, they can be ignored. The area-difference-elasticity

HADE term can also be ignored as long as the disk inner and outer membrane layers are equally acces-

sible by unimers and hence DNG � 0. For most phospholipids kGx� kM (Huang et al., 2017), and we as-

sume here the same for PMPC-PDPA copolymer to simplify our calculations. Finally, we define

kM =KAa
2N

4=3
D b�1 as a function of the KA, the area elastic modulus, which we measured for PMPC-

PDPA polymersomes using atomic force microscopy (Battaglia et al., 2011), and it is invariant with the

degree of polymerization (Bermudez et al., 2002). The term b is a constant that depends on the lateral

pressure distribution across the membranes (Bloom et al., 1991). When the two monolayers are

coupled, the repulsion can be concentrated at the interfaces, b = 4, or distributes uniformly across the

membranes, b = 12. Uncoupled membranes have larger b close to the limit because the monolayers

are free to slide on each other, b = 48. We can now integrate Equation 3 for the disk geometry in

Figure 8A to give:

HðR; hÞ= 4pKAa2N
4=3
D h2

bR2
+
3NAkTpa2N

2=3
D

8MD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � h2

p
(Equation 6)

The two extreme configurations are the flat disk, i.e., h = 0, where Equation 3 evolves into
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HDisk =
3NAkTpa2N

2=3
D

8MD
R (Equation 7)

and the closed vesicle with h = R where Equation 3 evolves into

HVesicle =
4pKAa2N

4=3
D

b
(Equation 8)

Only for the disk radius, R, where HEdge > HH, i.e., for R where HDisk > HVesicle vesiculation occurs sponta-

neously, and we thus define the elastic minimum radius of vesiculation, R�
E , as:

R�
E =

8MDKAN
2=3
D

3bNApkT
(Equation 9)

In addition to this, it is important to note that the vesiculation is also limited by the amphiphile size. For

amphiphilic copolymer, the hydrophilic PMPC chains are forced together within the vesicle inner leafleat.

Such Using simple geometrical considerations, as shown in Figure 8B, we can thus identify a minimum

geometrical radius R�
G as:

R�
G = lM

2r � rM
r � rM

+ aN2=3
D (Equation 10)

where r ˛½rD ;
ffiffiffiffiffiffiffiffiffiffi
a0=p

p �, lM is the length of the PMPC chain, and rM and rD are the van derWaals radii of the two

monomers, which can be measured using the model in Figure 1. This is a pure molecular limit and indeed

depends on the amphiphile architecture. In Figure 8C, we plot the minimum geometrical radius R�
G,

the experimentally measured average disk radius, and different R�
E for different b. We can conclude that

b > 32 will be physically impossible for the PMPC chains to withstand. This suggests that there is some level

of coupling between the two membrane leaflets and that this is in agreement with the polymersome mem-

brane entanglement dictated by its macromolecular nature (Battaglia and Ryan, 2005; Bermudez et al.,

2004). Finally, the proposed model shows again that the disks observed for fast nucleations have radius

below the geometrical minimum and indeed can only be explained as disk micelles.

Most spherical vesicles have a Hamiltonian as in the Equation 3 with Hedge = 0. However, when the vesicles

remain in contact with unimers and these cannot penetrate the membrane causing a larger growth of the

outer layer then the inner one, we need to include the area-difference-elasticity HADE as well as break down

the Helfrich elasticity in mean and Gaussian curvature as the latter is a topological invariant. According to

the Gauss-Bonnet theorem, #GdA= 4pð1� gÞ where g is the genus number; we can thus write:

HVesicle =
KAa2N

4=3
D

2b

�
#MdA+ 4pð1� gÞ�+ kmaN

5=3
D MD

8NAp#dA

�
DNG

�2
(Equation 11)

Equation 3 is very difficult to minimize, and for g > 1 a conformational degeneracy is often found in the

ground state with consequent multiple solutions (Seifert, 1991). However, so far the theory has been

applied to explain observed structures in vesicles with radius much larger than the membrane thickness

using optical microscopy with several structures reported including vesicles with high genus (Noguchi,

2015). High-genus vesicles so far have been reported for micrometer-sized vesicles with radius consider-

able larger than the membrane thickness (Haluska et al., 2002; Noguchi et al., 2015; ichirou Akashi and

Miyata, 2010) and to the best of our knowledge no example of nanoscale high-genus vesicles have been

reported. Here we show that by exposing spherical vesicles to membrane-forming unimers, their topology

can be considerably altered increasing the vesicle genus number. As shown in Figure 6, we can indeed con-

trol the genus by allowing longer times of contact between vesicles and unimers, in other words, by

growing the outer layer and hence the term DNG. Our data are in strong agreement with the simulations

reported by Noguchi where an increase in genus number corresponds with an increase of area difference or

DNG (Noguchi, 2015). Most importantly, our data propose a very first approach to engineer the vesicle to-

pology and indeed access structures that so far have been very elusive.
Conclusions

One of the most used top-down techniques of polymeric assembly formation is the hydration of dry poly-

mer film with water. This mechanism often requires from days to weeks to obtain a dispersed polymersome

sample. Faster approaches such as environmentally driven self-assembly, which use solvent or pH switch,

are commonly exploited to accelerate the process. In this study, we have shown that the pH-responsive
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amphiphilic diblock copolymers PMPC-PDPA are capable of forming a range of colloidal assemblies in wa-

ter via simple temperature change. This is achieved by slowly changing the temperature of the dispersion

therefore modulating the DPA pKa. This novel approach allows homogeneous control of the temperature,

and consequently, assembly formation within the solution, opening new mechanisms for the formation of

PMPC-PDPA assemblies with different morphologies. We also demonstrate good control over the hydro-

dynamic diameter and the number of genus events occurring per particle by modulating the degree of

copolymer ionization. The ability to generate such a range of structures in aqueous solution from a single

copolymer creates exciting new avenues for exploration and extends our understanding of the formation of

complex curvatures adopted by copolymers in high-genus assemblies.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Transparent Methods and two figures and can be found with this article

online at https://doi.org/10.1016/j.isci.2018.08.018.
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1 SUPPLEMENTAL FIGURES

Figure 1 Related to Figure 2 pH titration. Titration curves plotted as pH versus time using different flow rates
of NaOH solution addition to PMPC25-PDPA70 A solutions (a). The time plateau obtained from the titration
curves trend lines versus the NaOH’s flow rate of injection calculated graphically from the titration curves (b).
TEM micrographs of the sample obtained at different flow-rates c-g. The small inset scale bar is 50nm



Figure 2 Related to Figure 3. NMR titration spectra as a function of temperature. PMPC25-PDPA70 dispersion
during slow heating at pH=2 (a), fast (b) and slow (c) heating at pH=7.



1.1 TRANSPARENT METHODS
Materials. MPC monomer (99.9 % purity) was donated by Biocompatibles U.K. Ltd.. Anhydrous ethanol
(99 %), anhydrous methanol (99.8 %), DPA, copper(I) bromide (99.9 %), 2,2’-bipyridine (99 %), tris (2-
carboxyethyl) phosphine hydrochloride (TCEP, 98 %), dry triethylamine and phosphotungstic acid (PTA) were
purchased from Sigma Aldrich UK. The silica gel 60(63-200 nm) used to remove the ATRP catalyst CuBr was
purchased from E. Merck (Darmstadt, Germany). HPLC grade dichloromethane and methanol was purchased
from Fisher Scientific (Loughborough, UK). All the above were used as received. Phosphate-buffered saline
(PBS) was prepared from tablets obtained from Oxoid (Basingstoke, UK). Semi-permeable cellulose dialysis
tubing (Spectra/Por 6 MWCO 1,000) was purchased from Fisher Scientific (Loughborough, UK).

PMPC-PDPA synthesis. The PMPC-PDPA copolymers were synthesised using the already published protocol
(Lomas et al., 2007). In a typical ATRP synthesis procedure for PMPC25-PDPA70, a solution containing an
equivalent of morpholinoethyl-bromoisobutyric acid ester (ME-Br) was mixed in a round-bottom flask with MPC
(25 eq.). The mixture was then dissolved in a few mililiters of ethanol and purged with nitrogen. Subsequently,
a solid mixture of 2,2-bipyridine (2 eq.) and Cu(I)Br (1 eq.) was added under a constant nitrogen flow. The
reaction mixture was stirred for 60 minutes to yield a highly viscous brown solution. Meanwhile, a solution of
DPA (70 eq.) was prepared and purged with nitrogen in a separate flask before addition. Then, the reaction
mixture was left overnight at room temperature. The mixture gradually turned green after dilution with ethanol,
indicating the catalyst oxidation and passed through silica. The solution was then dialysed (MWCO 1,000 Da)
against dichloromethane, methanol and water. The polymer was then freeze-dried under vacuum. PMPC25-
PDPA72 was solubilised in a mixture of CDCl3/MeOD (3:1) and analyse in 1H NMR analysis to confirm the
success of the reaction.

Preparation of PMPC-PDPA dispersions. PMPCx-PDPAy copolymers were solubilised at a concentration of
40µM, at room temperature in acidified phosphate buffer saline (PBS, pH 2) solution in order to dissolve all the
block copolymer chains (unimers). For the pH switch, this was raised adding drop-wise a 1 M NaOH solution.
The temperature of the solution was then dropped to 5◦C and the pH was raised to 7 by adding the required 1
M NaOH solution.

UV-Vis Spectroscopy analysis. UV-vis spectroscopy experiments were carried out on a JASCO XX spectropho-
tometer equipped with a temperature controller. Solutions of PMPCx-PDPAy were prepared at low temperature
with a concentration of 40µM, and placed in the UV chamber. Absorbance was recorded from 5 to 60◦C at a
constant rate of 0.3 to 3◦C/min.

Transmission Electron Microscopy (TEM) imaging. TEM imaging was performed using a JEOL 2100 TEM
microscope at 200 kV, equipped with a Gatan CCD camera. The polymersomes were stained using a phos-
photungstic acid (PTA) solution at 0.75 % (w/v). This PTA solution was prepared by dissolving 37.5 mg
of PTA in boiling distilled water (5 mL). The pH was adjusted to 7.0 by adding a few drops of 5 M NaOH
under continuous stirring. The PTA solution was then filtered through a 0.2 µm membrane. Copper grids were
glow-discharged for 40 seconds in order to render their surface hydrophilic. Then 5 µL of copolymer dispersion
(concentration 0.5 mg mL-1) was deposited onto the grids for one minute. After that, the grids were blotted
with filter paper and immersed into the PTA staining solution for 5 s for positive staining. Then the grids were
blotted again and dried under vacuum for 1 min. Cryogenic TEM specimens were prepared by fast immersing a
pre-sample-engrossed grid in liquid ethane using the Gatan Cryoplunge® 3 system. The grid is quickly placed
in a cryogenic stage and kept at -170 °C and imaged using a GATAN cryogenic holder.

Differential Scanning Calorimetry (DSC) analysis. The analysis was carried out using a VP-DSC MicroCalorime-
ter with a sample cell of 0.5 mL. The sample were prepared as previously described at pH 7 and 5◦C, and analyse
at a rate of 1◦Cm−1 from 5 to 60 ◦C and vice versa.

1H NMR spectroscopy. NMR spectroscopy of PMPC-PDPA after synthesis was carried out on a Bruker AV600
spectrometer. 1H-NMR was also used to monitor the intensity evolution of DPA and MPC protons peaks as
function of temperature by using a Bruker 400 MHz instrument. In a typical experiment, block copolymer
solutions in deuterated PBS using a the same protocol described above for all the PMPC-PDPA dispersions.
NMR spectra were then recorded while the temperature was increased at 40 ◦C with a rate of 0.2 and 1◦
min−1. The proton intensity of the peak 7, 8 and 9 were normalised setting the maximum value to 1. All the
following intensities were set in relation to this value to give a distinct intensity correlation as a function of the
temperature change. The average and standard deviation values were then calculated and used to illustrate the
change in intensities.
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