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Abstract. Several tasks involving the determination of the time evolution of a system of solid
state qubits require stochastic methods in order to identify the best sequence of gates and the
time of interaction among the qubits. The major success of deep learning in several scientific
disciplines has suggested its application to quantum information as well. Thanks to its capability
to identify best strategy in those problems involving a competition between the short term and
the long term rewards, reinforcement learning (RL) method has been successfully applied, for
instance, to discover sequences of quantum gate operations minimizing the information loss.
In order to extend the application of RL to the transfer of quantum information, we focus on
Coherent Transport by Adiabatic Passage (CTAP) on a chain of three semiconductor quantum
dots (QD). This task is usually performed by the so called counter-intuitive sequence of gate
pulses. Such sequence is capable of coherently transfer an electronic population from the first
to the last site of an odd chain of QDs, by leaving the central QD unpopulated. We apply a
technique to find nearly optimal gate pulse sequence without explicitly give any prior knowledge
of the underlying physical system to the RL agent. Using the advantage actor-critic algorithm,
with a small neural net as function approximator, we trained a RL agent to choose the best
action at every time step of the physical evolution to achieve the same results previously found
only by ansatz solutions.

1. Introduction
We generate coherent adiabatic passage suitable for transferring quantum states by using a re-
inforcement learning approach, thus recovering counter-intuitive pulse sequences with no prior
knowledge of the system. Such result demonstrates that quantum information processing can be
optimized and controlled by reinforcement learning technique, to discover non-trivial strategies.

Coherent transport by adiabatic passage [1] has been introduced in semiconductor quantum
dots [2] and later discussed for ab-initio simulations and extended to multiple spin qubits as well
[3, 4, 5] . Contrary to supervised learning [6, 7], which has been applied to quantum informa-
tion related systems earlier [8] , reinforcement learning has been introduced only very recently
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Figure 1. The triple quantum dot
system. Top control gates of the three
quantum dots not shown. The system
is occupied by an individual spin at the
time, so that it can move along the three
quantum dots. The coupling gates can
be controlled separately by changing Ω12

and Ω23 respectively.

Figure 2. The eigenvalues of the triple
quantum dot system. The orange value
corresponds to the |D0〉 eigenvector.

[9, 10]. In the past, some of us have developed genetic algorithms to generate universal logic
port silicon spin qubits [11] , CMOS silicon logical qubit design for both Steane and surface
codes respectively [12] and CTAP for the hybrid qubits. CTAP provides an excellent example of
non-trivial strategy to find a gate pulse sequence to achieve optimum by moving in a quantum
framework. The coherent transfer is indeed achieved by a counter-intuitive combination of gate
pulsing sequence, i. e. the near and the far gates from the initially occupied quantum dot are
opened second and first respectively. By adopting reinforcement learning, we show that such a
non-trivial pulse sequence can be discovered with no prior knowledge of the system by applying
reinforcement learning method by a neural network.

First, we show that our software based on QuTIP library [13] is able to recover all the classical
results of prior literature. Next, the reinforcement learning algorithm is sized to the problem in
order to have a reasonable neural network consisting of three layers (input, hidden and output
layers respectively), in terms of number of neurons and its implementation. Like for the case of
the artificial intelligence learning in the classical Atari game environment [14], the reinforcement
learning routine here interacts with the QuTIP simulation of the CTAP implementing the
Hilbert space and the time evolution of the system, and exploits the information retrieved
by the feedback given by such time evolution generated by the time-varying Hamiltonian. By
appropriately defining a simple reward function which constrains the system to avoid occupation
of the central quantum dot and to reward occupation of the third quantum dot, the neural
network progressively learns how to shape the gate pulses in order to prevent the occupation
of the central dot to increase and next to maximize the occupation of the third, thanks of the
structure of the eigenvectors of the Hamiltonian. We therefore conclude that reinforcement
learning can be successfully applied to quantum information processing to discover highly non-
trivial sequences of actions.

2. Standard CTAP
Figure 1 shows the typical configuration of three semiconductor quantum dots used to investigate
CTAP. Each quantum dot is controlled by a control gate (not shown) from the top to set
the ground state energy relatively to the Fermi energy of some external reservoir of electrons.
Two coupling gates control the coupling between adjacent dots. Ground state are set by
E1 = E2 = E3 = 0. If we define the coupling between ith QD and jth QD as Ωij , the Hamiltonian



9th International Workshop DICE2018  : Spacetime - Matter - Quantum Mechanics

IOP Conf. Series: Journal of Physics: Conf. Series 1275 (2019) 012019

IOP Publishing

doi:10.1088/1742-6596/1275/1/012019

3

reads:

H =

 E1 −Ω12 0
−Ω12 E2 −Ω23

0 −Ω23 E3

 . (1)

The eigenstates of H, written in the QD base (with the respective energies), are [1] :

|D+〉 = sin Θ1 sin Θ2 |1〉+ cos Θ2 |2〉+ cos Θ1 sin Θ2 |3〉
|D−〉 = sin Θ1 cos Θ2 |1〉 − sin Θ2 |2〉+ cos Θ1 cos Θ2 |3〉
|D0〉 = cos Θ1 |1〉+ 0 |2〉 − sin Θ1 |3〉

with

Θ1 = arctan

(
Ω12

Ω23

)
. (2)

The Hamiltonian dynamics is generated by a routine based on QuTIP. This section is
dedicated to show that our implementation recovers all the previous findings known from
literature, in particular to Ref.[1]. The energies of the eigenstates are plotted in Figure 2.
By changing the eigenstate parameters in time, |D0〉 can transform from |1〉 at t = 0 to |3〉 at
t = tmax. If the Hamiltonian is prepared in |D0〉 at t = 0, it will remain in the same eigenstate
if the adiabaticity criterion is met, that is:

|ε0 − ε±| � |
〈
Ḋ0

∣∣∣D±〉 |. (3)

Consequently Ω12 and Ω23 pulses of Gaussian form can achieve coherent transport with high
fidelity, if tmax ≥ 10π

Ωmax
. The remarking fact is that the two pulses must be applied in the

so-called counter-intuitive sequence, as shown in Fig. 2. In Fig. 3a, CTAP for a 3-QD system
is shown with a tmax ≥ 50π

Ωmax
.

Time evolution is governed by a master equation involving the density matrix ρ:

ρ̇ =
1

i~
[H, ρ]. (4)

Therefore the occupation of the first dot is provided by ρ11(t), that of the central by ρ22(t) and
the final by ρ33(t).
Figure 3 shows the transfer of population from the state |1〉 to the state |3〉 with no passage in

the state |2〉. This is achieved by a sequence of pulse called counter-intuitive, as the second gate
is pulsed before the first one, closest to the |1〉 quantum dot. Figure 4 reproduces the results of
the detuning of the ground state by ∆12 = E2 − E1 and ∆13 = E3 − E1 shown in Ref. [1]. In
Figure 5 we further exploit our software to show the pulse region for which ρ33(tf ) = 1 at the
end of the pulse sequence, complemented with the integral of ρ22(t) during the process. The
CTAP is successful only when both ρ33 = 1 and ρ22 = 0. for the whole time evolution. The
pulses are centered at α1 and α2 respectively, being their time evolution:

Ω12 = Ωmaxe[−(t− tmax+σ
2

)2/(2σ2)]

Ω23 = Ωmaxe[−(t− tmax−σ
2

)2/(2σ2)]

σ = tmax/8.

(5)

There is a wide region of counter-intuitive sequence of pulses allowing to achieve ρ33(tf ) = 1.
This value is achieved also for some combinations for the ”intuitive sequence”, i.e. when the
closest gate is pulsed first. The integral of ρ22 during the process rules out those pulse sequences
where the left gate is controlled first, as ρ22(t) does not equal zero for the whole time evolution.



9th International Workshop DICE2018  : Spacetime - Matter - Quantum Mechanics

IOP Conf. Series: Journal of Physics: Conf. Series 1275 (2019) 012019

IOP Publishing

doi:10.1088/1742-6596/1275/1/012019

4

Figure 3. a) The CTAP from QD 1 to QD 3 with no occupation of the central QD 2 generated
by QuTIP. b) the counter-intuitive pulse sequence of the coupling gates. Blue pulse of the gate
voltage between QD 1 and QD 2 opens second.

Figure 4. CTAP as a function of the detuning of the ground state energy of QD 1 with respect
to QD 2 and QD 3 like in [1].

3. Description of the Reinforcement Learning algorithm
To rediscover the best pulses for CTAP by exploiting an artificial intelligence agent, we used an
Advantage Actor-Critic (A2C) [10, 11] model. The algorithm finds the shape of the pulses of
the two control gates without providing any prior knowledge of the system. From now on, we
impose the system to behave consistently with episodic Markov Decision Processes (MDPs), so
there exists a final state sf that terminates the episode. A2C mixes two well-known paradigms of
RL, namely value-based and policy-based algorithms. In a value-based framework, the expected
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Figure 5. a) Value of ρ33(tf ) at the final time tf after two Gaussian pulses centered at α1 and
α2 respectively. b) The integral of ρ22 during the process.

return value of a state given an action is determined following a given policy π, called Qπ(s, a).
Then, if Qπ

∗
(s, a), where π∗ is the optimal policy:

π∗(s) = argmax
a

[Qπ(s, a)] . (6)

In a policy-based framework, instead, one is interested in directly finding the optimal policy, by
minimizing:

∇θJ(θ) = Eπ [Gt∇θ log πθ] (7)

where J is a proper loss function and Gt is:

Gt =

∞∑
k=0

γkRt+k+1 (8)

where γ is the discount factor and Rt is the reward at time t.

In A2C, the so-called advantage function Qπ
∗
(s, a) replaces Rt. The latter method reduces

the variance in the results and it could be also used to upgrade value-based techniques to non-
episodic problems. The algorithm operates as in the following. The time evolution of H is
divided in N timesteps, with t ∈ [0, tmax]. At each time step, the A2C agent can choose 9
discrete actions corresponding to 3 possible actions of both the control gates, namely increase,
hold and decrease by an arbitrary quantity ∆Ω:

Ωij(t+ 1) =


Ωij(t)−∆Ω

Ωij(t)

Ωij(t) + ∆Ω

. (9)

As the next step, the master equation solver implemented in QuTiP is used to evolve the
quantum state at time t with the Hamiltonian calculated at step t + 1, by providing as input
the updated pulse values as decided by the agent. During each time step, the Hamiltonian
is constant. As both actor and critic, we chose a neural network as a function approximator.
The actor network is trained with policy gradient (PG) and it involves a Softmax output layer
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Figure 6. The network used to implement the advantage actor-critic algorithm. One hidden
layer (hl) of 16 neurons is used. The 9 output neurons generate the combinations of possible
actions (upward, hold, downward) of the two neurons.

consisting of 9 neurons. The input states of both networks are two 11-dimension vectors (Figure
6), in which the first 9 elements are populated by the density matrix elements, and the last 2 are
the values of the two gate pulses during the last time step. By choosing an appropriate reward
and by looking at the 3x3 density matrix of the system, the agent can learn which is the next
best action. The pseudocode is shown in Table 1.

Indent Functions

1 for each episode e:

2
initialize s0=[1.,0.,0.]
total reward=0
for each time step t:

3

choose action a with prob. p
evolve the quantum state
total reward+=reward
if done:

4 train act. & critic nets

5 break

Table 1. Pseudocode

4. Results
We developed an OpenAI-like environment [12] to perform the simulations. For the RL part
of the problem, we used Keras with Tensorflow backend [13]. The parameters of the neural
networks and the optimizers are listed in Table 2.

The simulations were run on an Intel Core i7-8700K @ 3.7 GHz and a Nvidia Titan Xp 12
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Architecture
and Settings

Neural Network

Actor Critic

Layers (11, 16, 9), Dense (11,16,1), Dense
Activation
function

ReLU for the hl,
Softmax for the output

ReLU for the hl,
Linear for the output

Optimizer
Adam (LRa =0.001,

default [15] elsewhere)
Adam (LRa =0.001,

default [15] elsewhere)

Loss Function
Categorical

Crossentropy
Mean Squared Error

(MSE)

Initialization Xavier uniform He uniform

a LR stands for Learning Rate

Table 2. Actor Critic Neural Networks

GB. The reward function used for the results shown in Figure 7 consists of 5 parts:

Rt+1 = (ρ33,t + ρ11,t)Θ(ρ33,t − ρ33,t−2)

−Θ(ρ22,t − 0.1)

−Θ(Ω12,t − Ω12,t−4)Θ(t− 3
4 tf )

−Θ(Ω23,t − Ω23,t−4)Θ(t− 3
4 tf )

+100 Θ(ρ33,t − 0.9)δt,tf

(10)

where Θ is the Heaviside function and δ is Kronecker delta.

The agent gets a positive reward if ρ33 rises and if it reaches a fidelity higher than 0.9 in the
final step of the evolution. Instead, it gets a punishment when the two pulses keep getting higher
near the end of the simulation. We chose N = 300 steps for the time evolution, where the last
step corresponds to t = tf . When an episode ends, the network’s weights are updated. In Figure
7 the artificial intelligence-based analogue of the Figure 3 is shown, consisting of the CTAP of the
population and the pulse shape obtained by the neural network. There, we chose a tmax = 20π

Ωmax

and ∆Ω = 5 · 10−4Ωmax. After training of 60000 simulations ρ22 remains below 0.035 and ρ33

reaches 0.99 with approximately 10 hours of computation by a single thread. Figure 8 shows
the results during the training after 30, 300, 20000 and 57000 epochs respectively. The artificial
intelligence-based method discovers two pulses obeying the counter-intuitive sequence, like those
found by human intuition in the seminal paper of Vitanov et al. [14]. In other words, if no one
guessed such method for coherent adiabatic transfer of quantum states, the RL would be able
to discover it from scratch by exploring the Hilbert space.

5. Conclusion
We have shown how to apply advantage actor-critic (A2C) reinforcement learning methods to
achieve control of the coherent transport by adiabatic passage of qubits. We have built an
environment consisting of a software simulating the CTAP, which returns known results if the
pulses are Gaussian and follows the counter-intuitive sequence, as from literature. Next, we use
such an environment to train a network by reinforcement learning, giving no prior knowledge
to the network. The A2C method exploits a neural network with a hidden layer of 16 neurons
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Figure 7. a) The CTAP found by reinforcement learning after 60000 epochs. b) The gate
pulses found by the actor-critic RL algorithm to achieve the CTAP. The artificial intelligence
discovers that the time evolution of the gates must follow a Gaussian-like shape and that the
sequence is counter-intuitive.

to maximize the reward consisting of achieving maximum population transfer by keeping null
occupation of the central dot in the meanwhile. We therefore demonstrated that RL is capable
to discover non-trivial sequences of control gates in quantum information processing, opening
the way of calibrating complex and non-ideal systems of qubits.
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