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Equilibrium phenomena are characterized by time symmetry. Thermodynamic fluctuations are also time-
symmetric at equilibrium. Conversely, diffusion of a solute in a liquid in the presence of a gradient is a
nonequilibrium phenomenon, which gives rise to long-range fluctuations with amplitude much larger than the
equilibrium one for small enough wave number. In the case of diffusion in binary mixtures such fluctuations are
time-symmetric, notwithstanding the fact that they are generated by a nonequilibrium condition. In this paper, we
investigate diffusion of two solutes in a ternary liquid mixture by means of fluctuating hydrodynamics theory. We
show that the time-cross-correlation function of the concentrations is not time-symmetric, hence showing that
time symmetry is violated for such nonequilibrium fluctuations. We discuss the feasibility of experiments aimed
at the detection of the asymmetry of the cross-correlation function of nonequilibrium concentration fluctuations
in ternary mixtures, as envisaged in the Giant Fluctuations (NEUF-DIX) microgravity project of the European

Space Agency.
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I. INTRODUCTION

One of the features of systems at equilibrium is time
symmetry: Given a sequence of observations, it is not possible
to say if they are presented in the forward or backward
time direction [1]. Considering, in particular, a binary liquid
mixture, thermodynamic fluctuations of the concentration are
always present. Basically, they represent the Poisson noise
arising when molecules are counted inside a given volume.
The process describing molecules entering and exiting a
volume is time-symmetric at the macroscopic scale. From
the mesoscopic point of view the equilibrium fluctuations
of the concentration of a solute can be described by using
fluctuating hydrodynamics [2]: A fluctuation arises because
of a random source and is dissipated by diffusion. Although
the two processes are not time-symmetric, they are, however,
connected by the fluctuation-dissipation and linear-response
theorems, which safeguard the time symmetry of the outcom-
ing phenomena.

Under such circumstances, time symmetry is a conse-
quence of the fact that the process is isoentropic, and this
feature prevents the identification of a preferential direction
for time. In the presence of a nonequilibrium condition dissi-
pative processes determine a progressive increase of entropy.
If one takes into account the degrees of freedom of all the
molecules, however, the system still exhibits microscopic time
symmetry. This is due to the fact that the equations of motion
of the molecules are of second order in time, without any
term containing time derivatives of odd order. Conversely, the
evolution of the macroscopic degrees of freedom of the system
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is not time-symmetric, because the averaged microscopic
degrees of freedom determine the presence of derivatives of
odd order in the equations for the evolution of the macroscopic
system [1]. A typical example of such system is a Brownian
particle under the action of a constant external force like
gravity or a thermophoretic force [3]. A reconciliation of
time symmetry at the microscopic scale and time asymmetry
at the macroscopic scale requires a thorough comparison of
the probability distribution of finding a certain time evolution
for the position of the particle in the presence of a forward
nonequilibrium driving force and the probability distribution
in the presence of a backward driving force. The presence
of a nonequilibrium condition breaks the time symmetry of
these probability distributions, giving rise to a production of
entropy proportional to the unbalance between the probability
distributions [4].

A signature of the presence of time symmetry is provided
by the behavior of the time correlation functions of fluctu-
ations upon inversion of time. With this respect, the under-
standing of time-cross-correlations in a stochastic system is
of wide general relevance, because an asymmetric behavior
can underlie the presence of a causal relationship between
the correlated variables. A meaningful example of a stochastic
system which exhibits a time asymmetry is represented by the
fluctuations in returns of stocks in financial markets. In this
case, the time-cross-correlation function between fluctuations
is asymmetric whenever a causal relationship exists between
the returns of different stocks [5,6].

A model system suitable for the understanding of time
symmetry in nonequilibrium systems is represented by a
binary mixture where a macroscopic concentration gradient
determines a nonequilibrium diffusion process. In the past
20 years it has been shown that a nonequilibrium diffusion
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process is accompanied by long-range large-amplitude fluc-
tuations of concentration. These fluctuations have been pre-
dicted theoretically [7-13], reported experimentally [14-18]
and in numerical simulations [19-22]. Since such fluctua-
tions arise under nonequilibrium conditions determined by the
presence of a macroscopic gradient [23], the fluctuations are
not compelled to follow the fluctuation-dissipation and linear-
response theorems. In the presence of a nonequilibrium steady
state the fluctuation-dissipation theorem can be generalized
by taking into account the total entropy production [24-26],
but so far we are not aware of attempts of application of the
theorem to the case of nonequilibrium fluctuations in liquid
mixtures.

In this paper, we investigate the time-cross-correlations of
the concentration fluctuations of two solutes in a ternary mix-
ture. We show that a violation of time symmetry is observable
at the mesoscopic scale for fluctuations in this system, as ev-
idenced by the asymmetry of the time-cross-correlation func-
tion. In Sec. II we outline how nonequilibrium fluctuations in
binary mixtures are time-symmetric. In Sec. Il A, we show
that the time-cross-correlation between the concentrations of
the two solutes is indeed not time-symmetric, its center of
mass being displaced from Ar = 0. In Sec. III B we give a
qualitative account of the observed behavior. In Sec. IV, we
discuss the feasibility of experiments showing the violation of
the time symmetry. Finally, in Sec. V we perform a critical
comparison of our results with those of previous work in the
field [27].

II. NONEQUILIBRIUM FLUCTUATIONS
IN BINARY LIQUID MIXTURES

Theoretical, experimental, and numerical work performed
in the past 20 years [12,13] showed that fluctuating hydrody-
namics [2] represents a reliable quantitative model to describe
nonequilibrium fluctuations generated by small gradients.
Fluctuating hydrodynamics relies on a linearization of the
Navier-Stokes equations to obtain a set of equations that,
once supplemented with stochastic white noise terms, act as
Langevin equations for the fluctuations of the relevant ther-
mophysical variables. In this work we are interested mainly
in modeling the nonequilibrium concentration fluctuations
generated by a concentration gradient and we will assume
that the system is isothermal, so that the nonequilibrium tem-
perature fluctuations can be neglected. We will also neglect
the contribution of temperature and concentration equilibrium
fluctuations and the gravitational force.

A. Time symmetry in binary mixtures

In binary mixtures of liquids, the composition is defined
univocally by the concentration of one component. Therefore,
the only time-correlation function that can be calculated is
the self correlation (8¢* (¢, q)3¢c(t + At, q)). Here the brackets
indicate a time average and c is the displacement of the local
concentration ¢ from the macroscopic average. By definition,
this function is time-symmetric under stationary conditions:

(8c*(t, q)dc(t — At, q)) = (8c*(t' + At, q)dc(t', q))
= (8c*(t + At, q)sc(t,q)), (1)

where the first equality is obtained by substituting ¢t = ¢’ + At
and the second equality holds due to the time invariance of the
process.

It is important to notice that this time symmetry is simply
a mathematical consequence of the definition of time cor-
relation and would hold also in the case of an apparently
time-asymmetric signal. In principle, higher-order correla-
tions could show a time asymmetry. However, concentration
fluctuations have a Gaussian statistics, as a consequence of
the central limit theorem. Therefore, by means of Wick’s
theorem, we can relate any n-point correlation to the two-point
correlation, which is, as previously shown, time-symmetric.
It follows that every n-point correlation of the concentration
fluctuations shows a symmetric behavior, and, more generally,
we can conclude that all of them are actually time-symmetric.

B. Fluctuating hydrodynamics in binary mixtures

The fluctuating hydrodynamics equations for the concen-
tration fluctuations in binary mixtures can be written as

e _ DV?§¢ — 8v,Ve — lV - 8], )
ot - 0

where §c is the fluctuation of the concentration, dv, is the
fluctuation of the vertical component of the velocity, D is
the mass diffusion coefficient, V¢ is the macroscopic con-
centration gradient, p is the density, and §J is a stochastic
source term for concentration fluctuations. This equation de-
scribes the variation of concentration due to diffusion, advec-
tion, and the source of fluctuations.

We will neglect the source term §J, which gives rise to
the equilibrium fluctuations only; it is negligible under all the
practical conditions where the amplitude of nonequilibrium
fluctuations is much larger than that of equilibrium ones, i.e.,
small wave numbers.

Under nonequilibrium conditions concentration fluctua-
tions are generated by the coupling of velocity fluctuations
to the macroscopic concentration gradient, which gives rise to
nonequilibrium concentration fluctuations [12]. The relevant
component of the velocity is dv,, the component parallel to
the macroscopic concentration gradient. The correlation of the
velocity fluctuations is [27,28]

(80 (w, @)8v. (o', 4'))

kgTv C]ﬁ 4 / ’
= 27m(27f) $(w—w)dlg—q), ()
where ¢} = ¢* — (¢ - Ve)? is the square of the component of
the wave vector g perpendicular to the macroscopic concen-
tration gradient.

C. Concentration-velocity cross correlation in binary mixtures

The investigation of nonequilibrium fluctuations relies on
linearized hydrodynamics, where second-order fluctuations
are neglected. However, it can be shown that second-order
fluctuations in concentration dc and velocity §v, give rise
to mesoscopic mass currents §j = dv.8¢. Quite interestingly,
the cumulative contribution of the microscopic mass currents
determined by nonequilibrium fluctuations accounts for the
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whole Fick’s flux [29-31]. This term violates time sym-
metry. However, it is not present unless renormalization is
performed. Therefore, the investigation of cross correlations
between velocity fluctuations and concentration fluctuations
is particularly meaningful, because it is strictly connected to
the microscopic flux § ;.

In the case of a binary liquid mixture the
equation governing the evolution on nonequilibrium
fluctuations is Eq. (2). Rewriting it in Fourier space,
we get

iwdc = —g>Déc — v, Ve. 4

By solving with respect to the concentration fluctuations, we
get

v, Ve

Se= ——=¥e
iw+ g*D

4)
The cross-correlation function of velocity (along V¢y) and
concentration is expressed by

(6v.(q, w)Sv.(q', "))

dc(g, 0)8v.(q', @)Ve) = —
(8c(q, w)dv;(q', w)Ve) “io+ D

. (©)

By substituting the expression of the velocity correlation,
Eq. (3), into Eq. (6), we get

(8c(q. w)dv.(q', o))

kgTv Clﬁ

8m4p (w? +v2g*)(—iw + ¢?D)’
(7

We carry on the calculation by assuming that the diffusion
time is much longer than the viscous time. this approximation
holds true for Sc = v/D > 1, the so-called large Schmidt
number approximation, a condition fulfilled by most binary
liquid mixtures (more details about the validity of such ap-
proximation are discussed in Ref. [11]). We obtain the approx-
imated expression:

(8c(q, w)sv,(q', "))

= —8(q—q")s(w—w')Vc

kBTU f]ﬁ
84 p vV2g*(—iw + g*D)’
®)
The time correlation is obtained by Fourier transforming. The
integrand has one pole at the positive imaginary part of w,
hence we get a correlation only for At > 0:
<8C(q, t)sz(q/’ t + At))

kBTV qﬁ
87T4,0 U2q4

=—8(q — ¢)8(w — &)Vc

= —8(g—¢q)Vc exp(—AtDg>)H(At).  (9)
This result has a clear physical interpretation: the concen-
tration fluctuations in nonequilibrium conditions are gener-
ated by the coupling of velocity fluctuations with the macro-
scopic concentration gradient, hence the concentration fluctu-
ation takes place only after the velocity fluctuation. Therefore,
under such circumstances the causal relation between veloc-
ity fluctuations and concentration fluctuations determines the
presence of a correlation between the two quantities.

In the next section we show that, at variance with the
binary mixtures, mixtures of three or more components show
an asymmetry of the time correlations.

III. NONEQUILIBRIUM FLUCTUATIONS
IN TERNARY MIXTURES

We now consider the case of nonequilibrium fluctuations
in a ternary liquid mixture. The determination of the time
autocorrelations of nonequilibrium fluctuations in ternary
mixtures has been dealt with in detail in a previous work [27].
A similar approach can be used to determine the time-cross-
correlation functions. In the Appendix we will present the re-
sults of this approach. In the following we will present a more
direct determination of the time-cross-correlation function of
concentration fluctuations in a ternary mixture, which relies
directly on the diagonalization of the hydrodynamic equations
describing the nonequilibrium concentration fluctuations.

A. Correlation and cross-correlation
of the concentration fluctuations

In analogy to Eq. (2), the fluctuating hydrodynamics equa-
tions for the concentration fluctuations in ternary mixtures can
be written as

décy 2 2 1

_8t = D1 V°8cy + D1,V°5c, — 6v, Ve — =V - 84,
P

a(SCz 2 2 1

7 = D21V 56‘1 +D22V 86‘2 — CSUZVCQ - -V -8]2,
0

(10)

where d¢; is the concentration fluctuations of the component
i €[l,2], dv, is the fluctuation of the vertical component
of the velocity, D; ; is the mass diffusion matrix, V¢; is the
macroscopic concentration gradient of component i, p is the
density, and 48J; is a stochastic source term for concentration
fluctuations. This equation describes the variation of concen-
tration due to diffusion, advection, and the fluctuation source.

As we have done above for the binary mixture, we will
neglect the source terms &J;, because it gives rise to the
equilibrium fluctuations only.

The approach used here is based on the diagonalization
of the matrix D, as done in Refs. [32,33] for the calculation
of thermodynamic fluctuations and in Refs. [34,35] for dis-
cussing stability and convection. This approach is based on a
transformation matrix 7T such that

D D D, 0
T-!. [ b "2] =" (11)
Dy Dy 0 D,

The diagonal elements D; and D, are the eigenvalues of the
matrix D (see Refs. [27,32,33]):

_ Dii+Dry++/(Diy —D22)? +4D 2Dy

D, 5 . (12)
R D D5y — D —D>,)?+4D{,D
D, = 11+ Daa—/( 1,12 22)* +4D; 21 3
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The matrix T is [32,33]

1 Dy—Dy,

D

Since the cross-diffusion terms are usually smaller than the
self-diffusion terms, T is usually close to an identity, and
the eigenvalues Dy and D, are close to the self-diffusion
coefficients D; and D;.

By using this transformation, we define the diagonalized
concentration fluctuations 6¢;,

—1 (SC[ _ 861
r '[5@}—[5@2]’ (15)

and diagonalized macroscopic concentration gradients V¢;,

_ Ve veé
1 | _ 1
r [ch] = [Véz]' (16)
We thus rewrite Eqgs. (10) as

aé¢ N

U pv2se, — su,Ve,
ot
08¢, NP .
o = DyV=8¢; — 8v,Vé,. a7

The two equations are now decoupled and can be solved
separately, similar to what we have done in Sec. II for the fluc-
tuations in a binary mixture. First, we rewrite the equations in
Fourier space:

iwsé; = —Dg*8¢; — 8v.Vé;. (18)
By solving with respect to the concentration fluctuations,
we get
Sv, V&
8¢ = ——————. (19)
iw~+ ¢*D;

From this expression, we calculate the self and cross cor-

relations:

(8¢7(q, w)82(q', @)
(0v:(¢, @)dv (', )

~V by oD i
By using Eq. (3),
(8¢} (q, w)5¢;(q', ')
oV Gave _ 4 — :
o (0? +v2g")(Dig? + iw)(Djq* — iw)
x 21)*8(0 — 0')3(q — q'), 1)

and by using the definition of correlation,
(821 (g, @)8¢;(q', "))
=Cij(g, 0)2n)'8(0 — )3 —q).  (22)
we determine the correlation function C from Eq. (21):

kBTU

éi,j(qv a)) =2 Vé,Vél
2
X qH .
(@? +v2g*)(Dig? + io)(D;q* — iw)

(23)

Im( )
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// + \\
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FIG. 1. Residues of the integrand in Eq. (25) and integration paths.

Again, we make use of the large Schmidt number ap-
proximation [11] in its straightforward extension to ternary
mixtures, Sc; = v/D; > 1, so that the result is

A kgT e
(g ) =22 Ve ve—— _
. pvq “(Dig* + iw)D;q* — iw)

(24)
The time correlation is then obtained by Fourier transform-
ing in w:

kT
pvg*

Cii(q, At) =2 Véve;
2
9

_ 1 0”3y (25)
(Dig? + iw)(Djq? — iw)

In the case of the autocorrelation, the two decay times
(forward and backward) equal the diffusion decay time of the
component under consideration.

The integration can be easily performed by means of the
method of the residues (see Fig. 1). The integrand has two
poles on the imaginary axis of w, one at positive and one at
negative imaginary part, with residues Ry and R_:

. e—quzAt
N I(Dl +Dy)g*’
. eDZCIZAt
T I(Dl +Dy)g*

Ry

(26)

The integration is performed along different paths in the
case of Ar > 0 and Ar < 0, as shown in Fig. 1. In the two
different cases, a different pole is enclosed by the path, and
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the corresponding residue (with either D, or D5) appears in the
result. By using the Heaviside step function H the correlation
function can be expressed as

ksT
pvg*
x [H(ADe P10 4 H(—Ar)etP7].

Ci (g, At) =2 Véve,

(27
Therefore, the correlation function is composed by two ex-

ponential decays, with different characteristic decay times
forward and backward in time, as shown in Fig. 2.

(8ci(t, q)*56‘2(t + At,q)) = f@cl(v(foo,t]’ t’q)*(scz(vg—oo,t+At]’ r 4+ At’q)P[v(foo,t+Az]]D[v(foo,tJrAt]]’

B. Origin of the time asymmetry

In this section, we discuss the qualitative reason why the
cross-correlation is time-asymmetric, and in particular, why
it shows an exponential decay with different time constants
forward and backward in time.

In our system, the observable quantities (§c¢; and d¢;) are
fully determined by the liquid velocity v,. In particular, the
concentration fluctuation at time 7, is determined by the values
of v, at times t < fy; this can be seen as a consequence of
the cause-effect relation between liquid velocity and concen-
tration fluctuations discussed in Sec. II C. We can thus write
Sc(vi> 1, q), evaluated at time ¢ and wave vector g, as
deterministically given as a function of v, in the interval
(—o0,t].

The correlation function becomes

. ; (28)

where P represents the probability of a given v, and [ -D[v.] is the functional integral over the function v;. In the case Ar > 0,
we can separate the interval (—oo, t + Af] into the two separate intervals (—oo, ¢] and (¢, t + At]:

(8c1(t, 9)*8ca(t + At q)) = / Scr (v, 1, q) 8y (v, WA 1 4 At q)

X P[v(_o"”]

z

where the symbol P[A|B] represents the conditional probability. By multiplying and dividing by éc¢» (¢, q):

wcmnqy%cxt+-Anq»==‘/aq(ﬁfw”,ansq(gfm”,nq)

z

This can be rewritten as

sttt + A ) = [ a1 L, 1, A g LD,

where

g(wMt, q) = 8ci (v, q)*SCz (v, q) (v 8, At q)

]IP[UZ(Z,H-AZ]|v;—oo,t]]D[U;—oo,l]]p[vz(f,l-Q—At]]’ (29)
862(1);_00’”, vé’*“’A’], t + At, q)
ser (v 1, q)
% fp[v(foo,t]]r})[vgt,tJrAt]|vz(.foo,t]]D[vzsfoo,t]]fp[v;t,t+At]]. (30)
(€29
P[U(t,H-At] |v(—oo.t]]D[v(t,t+At]]. (32)
Z Z Z

B / SCZ(UZ(_OO"], vz(t'““m],t + At, q)
B 8¢y (v§*°°"], 1,q)

We thus see that, for Ar > 0, the correlation function re-
flects the behavior of §c, with time. An analogous calculation
with At < 0 gives an analogous expression, with dc; playing
the same role.

Therefore, the time asymmetry is a consequence of the
cause-effect relation: both 6c; and ¢, are determined by
v, and the effect of v, at a given time can be seen only at
subsequent times.

The center of mass of the cross-correlation function,
Eq. (27), is not at At =0 as visible in Fig. 2. This is a
violation of the time symmetry. As mentioned above, the
concentration fluctuations of the two solutes are generated
simultaneously by a velocity fluctuation, but then they relax
at different rates, depending on the diffusion coefficient. Obvi-

(

ously, the solute with larger diffusion coefficient relaxes faster
than the other. The center of mass of the cross-correlation
function is displaced accordingly.

The result of Eq. (27) can be expressed in an alter-
native way: Due to the nonzero imaginary part, the cross
correlations between the two diagonal concentrations at
different wave vectors are different, (5¢j(0, ¢)dca(z, ¢)) #
(8¢3(0, @)dci(t, q')), both terms being real-valued functions,
but one prefactor decays proportionally to exp(—D;q°t),
while the other proportionally to exp(—D1g%?).

IV. APPLICATIONS TO EXPERIMENTS

Nonequilibrium concentration fluctuations arise during
diffusion processes in multicomponent mixtures. In the
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<8c(t) Scg(t+At)>

0
At

FIG. 2. Example of correlation function. The axes are arbitrary.
The ratio between the two diffusion coefficients is 3.

presence of a macroscopic concentration gradient the cou-
pling of spontaneous thermal velocity fluctuations gives rise
to nonequilibrium concentration fluctuations. On Earth large-
wavelength fluctuations are strongly influenced by the gravity
force, which can give rise to their stabilization or destabiliza-
tion, depending on whether the macroscopic density profile
associated to the concentration gradient is gravitationally
stable [10,14] or not [36,37].

In the case of binary liquid mixtures a stable configuration
can be obtained by bringing two miscible fluids into contact,
so that the denser fluid is below the less dense one [15,16,38].
Alternatively, one can use an external temperature gradient
to induce the concentration gradient through the Soret ef-
fect [14,18,39,40]. In the case of a sample with a positive
Soret coefficient S7, the imposition of a temperature gradi-
ent VT induces a steady-state concentration gradient V¢ =
—S7c(l — ¢)VT, where c is the concentration of the sample.
Nonequilibrium fluctuations induce fluctuations in the index
of refraction, which can be picked up by using either small
angle light scattering techniques [15] or near field techniques
such as quantitative shadowgraphy [16,41,42]. Both methods
allow to determine the time autocorrelation function of the
correlation fluctuations [38].

The experimental investigation of nonequilibrium fluctu-
ations in ternary mixtures is problematic, because on Earth
the presence of the gravity force gives rise to convective
instabilities under rather generic conditions. This is due to the
fact that, even in the configuration where the density profile is
gravitationally stable, solutes diffuse at different rates and this
can give rise to a local destabilization of the density profile.
For this reason a systematic investigation of mass transfer in
ternary liquid mixtures requires microgravity conditions. The

mass transfer in ternary liquid mixtures has been investigated
extensively in microgravity in the framework of the DCMIX
project of the European Space Agency [43-45]. The DCMIX
experiments were hosted inside the SODI facility of ESA,
where a two color Mach-Zehnder interferometer allowed to
recover the Soret coefficients and the eigenvalues of the
diffusion matrix. Thermal gradient cells for the investigation
on nonequilibrium fluctuations in ternary systems require a
different geometry with respect to that adopted in DCMIX.
Indeed, one wants to access the sample optically by looking
in the direction parallel to the concentration gradient. This
kind of configuration was used during the GRADFLEX ex-
periment, which flew for two weeks aboard the FOTON M3
spacecraft [46-49]. GRADFLEX contained a thermal gradi-
ent cell and a shadowgraph diagnostics that allowed to grab
images of the phase perturbations determined by nonequilib-
rium fluctuations. The experiments allowed to attain a first
important confirmation of the fact that in the absence of
gravity nonequilibrium fluctuations grow up to the size of the
container hosting the sample. The Giant Fluctuations (NEUF-
DIX) project of ESA will adopt a configuration similar to
GRADFLEX to investigate nonequilibrium fluctuations in
multicomponent complex liquids [50]. The facility will com-
prise five thermal gradient cells and shadowgraph diagnostics.
The use of two light sources, one in the red and one in the
blue region of the visible spectrum will allow to decouple
the contributions to the fluctuations determined by the two
independent components of the investigated mixtures. The
cross correlation of the shadowgraph images obtained with
the two light sources will allow to perform an experimental
check of the asymmetry of the time-cross-correlation function
of nonequilibrium fluctuations in ternary mixtures. This is
due to the fact that under rather generic conditions, signals
acquired at two wavelengths, A4 and Ap, allow us to calculate
four independent correlations, which are linearly connected to
the four independent correlations of the concentrations ¢; and
¢. Suitable samples will include ternary mixtures including
either a polymer or a colloid as a third component and ternary
mixtures of biological relevance, such as protein solutions.

The use of two-color shadowgraphy and light scattering
for separating the contributions of the various compoments of
the mixture requires to re-work the underlying physical optics
theory, taking into account the presence of two wavelength.
Part of the work has been already performed [S1] and our
preliminary evaluation showed the feasibility of the detection
of the asymmetry of the cross correlation. We detail below the
basic steps behind this method. A more detailed description is
beyond the aim of this work and will be performed as a part
of the above mentioned space projects.

To show the feasibility of the detection of the time asym-
metry of the fluctuations, here we use a simplified approach,
i.e., we assume that the optical technique gives access to the
fluctuation of the refraction indices at the two wavelengths,
[6n1, én,], as it might be experimentally achieved by using a
two-color diagnostics. We approximate with a linear relation-
ship, as usually observed:

56‘1
56‘2

_ 81/11
_R. [M}, (33)
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with a given matrix R. Both R and T are experimentally
measurable, thus, from the optically measured [§n;, §n,] it is
possible to calculate the diagonalized concentrations:

86’1 81’11

[862] =T-R- |:5n2:|' (34)
It is possible to first calculate the diagonalized concentrations
[6¢1, 6¢;] and then calculate their correlation function CA’,-, s
which should provide a more remarkable evidence of the
time asymmetry. An alternative approach could be to calculate
the correlation function of the refraction indices at the two
wavelengths, C';; the latter is connected to the correlation

function of the Hiagonalized concentration by the following
equation:

[crj] =@ - BT R (35)

From this equation, we see that the cross correlation of the
refraction index is a linear combination of the auto- and the
cross correlations of the diagonalized concentrations, hence it
will appear more time-symmetric than the cross correlation of
the diagonalized concentration.

V. CONCLUSION

In this work we have analyzed the cross correlations
of nonequilibrium concentration fluctuations of independent
components in a multicomponent mixture. In the trivial case
of binary mixtures, the number of independent components
is only one, so that one can only investigate autocorrelation,
which is symmetric, notwithstanding the entropy production
during the nonequilibrium process. In the case of a ternary
mixture, the cross correlations are investigated and they ap-
pear to be asymmetric in time. An experimental verification
would require a measurement technique able to separate the
contribution of different components. This is in principle
possible with the two-wavelength shadowgraph apparatus that
is being developed within the NEUF-DIX project. An ex-
perimental verification of the time asymmetry will then be
performed in a near future.
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APPENDIX

In this section we will derive the time-cross-correlation
function of nonequilibrium concentration fluctuations in a
ternary mixture by using a procedure similar to that adopted
in Ref. [27] to determine the autocorrelation function. At vari-
ance with Ref. [27] we will take into account the contribution
of the imaginary part of the time-correlation function. These
contributions cancel out when determining the autocorre-
lation function but become significant in the case of the
cross-correlation function. Following Ref. [27] the fluctu-
ations hydrodynamics equations describing nonequilibrium

concentration fluctuations in a ternary mixture are

38¢, s ) 1
7 = D1 V°8¢cy + D1,V“5cy — Sv,Vey — =V - 84,
0
8¢ ) ) 1
? = D21V (SCl + D22V 5C2 — (SUZVCZ - -V 6.]2 (Al)
P

In Fourier space:

iwdcy = —D11q2801 — Dlzqzécz —o6v, Ve + Fi,

iwdcy = —D21q256‘| + D22q2802 —6v,Ver + F. (A2)
This expression can be rewritten as
iwdc + ¢*D - 8¢ = —8v.Ve + F, (A3)

where ¢ = ((SC], 86‘2), Ve = (VC], ch), F = (F],Fz), and
D is the matrix of diffusion coefficients. We decompose the
concentration fluctuation as the sum of an equilibrium and a
nonequilibrium contribution:

8¢ = 8¢ + 8cNE, (A4)
where
iwdct + ¢*D - 8c* = F (A5)
and
iwde™E + ¢*D - 8¢"F = —§v.Ve. (A6)

Since F and §v, are not correlated, we can evaluate separately
the contributions of the two terms, and we now focus on the
nonequilibrium part §¢"F. By calculating 8¢"F:

6¢™E = —(iw +Dg*)7! - Vedv,. (A7)
The correlation is
(8" (w, )" 8¢ (o', g")T)
= (—iwl +Dg?*)~" - Ve ® Ve - (iwl + Dg*)~""
x (v} (@, )8v (', ¢)),

where the symbol & represents the dyadic product. The cor-
relation of dv, is

6V} (o, g)3v.(e', ¢))

2
q / /
= 2kpT — 27)*8(w — )8(q — q).
vpq

(A8)

(A9)

Using this correlation, we get
<acNE(a), q)*(SCNE((,()/, q/)T>
= (—iwl +Dg*)™' - Ve ® Ve - (iwl +Dg?)~'T

2
« 2kpT 1 -2m)*8(w - w)dg —q).  (AL0)
vpq
By using the definition of correlation,
<6CNE(C(), q)*acNE(a)/’ q/)T>
=C"w, 9)21)*8(w — 0)S(g — '), (All)
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we get

2

O (. q) = 25T L
vpq

®Ve - (iwl +Dg*)~'T.

(—iwl +Dg*) ™' - Ve

(A12)

Now we diagonalize the matrix D. We consider the case in
which D has two real eigenvalues, although an imaginary
part could be present. The eigenvalues can be calculated
analytically (Eq. (18) of Ref. [27]):

Dy =3[Dy +Dn+ \/(Dn — D)’ +4D Dy .

(A13)
The transformation T' diagonalizes D:
T-'-D.-T =D, (A14)
|
q P P
C™E(w, q) = 2kpT ”4T~[ 2 }T‘l
voq —iw+D1g>  —iw+ Dyq?

By distributing the products on the sum,

2

C¥(.q) = 25T L
voq

(D; + Dj)¢?

X A = = . (A20
Z] Y (—iw + Dig?)(iw + Djq?) (A20
where the matrices A; ; are defined as
T-P-T'-Ve®Ve-T'".P;. T
A= . (A2])

D;+D;

We now compare our results with those of Ref. [27].
The real part of CNF can be written as

2

RelC™ (0. g)] = 2kT — L
vpq

Diq2
X ZAi’j|: ~
ij »? + Diq*

b
b |
w” + Dijq

(A22)
The sum can be rearranged as
7
Re[CE(w, )] = 2kpT ——
voq
Dig? D.a?
q i4 (A23)

A A ——
' Dt 0 DA

where D is a diagonal matrix with elements D; and D,. By
using this transformation,

2
4
vogt
x(—iwl+T-D-T7'¢>)™" . Ve® Ve -
x(iwl+T-D-T7'¢»)7'T. (A15)

CN(w, ) = 2ksT

We rewrite this last equation as

2

q
CE(w, q) = 2kpT —
vpq

xT - (—iwl +Dg>)'T™' - Ve ® Ve -

x T . (iwl + Dg>)~'T . T7. (A16)
By introducing the projectors P;,
1 0
P = |:O 0:|, (A17)
0 O
P, = [O 1}. (A18)
The correlation becomes
P P
-Ve®Ve-T7'T. [ L2 } -T".  (A19)
io+D1q*>  iw+ Dyg?
[
where
A =2A11+A 12+ A, (A24)
Ay =2A5,+A 15+ A,. (A25)

This expression is the same result of Ref. [27] [Eqgs. (20)—
(23) of the cited paper], taking into account the notation
differences. The result given in Ref. [27] is thus equal to
the one reported here for the autocorrelations, which are real.
Conversely, here we explicitly write the imaginary part since
the latter is significant in the calculation of the cross corre-
lations, while it does not contribute to the autocorrelations
whose computation was the main goal of Ref. [27].

To complete the calculation, we also report the imaginary
part of CNE:

2

Im[C (0w, )] = 2k T —L
vpq

w(ﬁj — Dl)
A = = .
X ; 2 (a)2 +D,2q4)(w2 —i—D?q“)

(A26)

The presence of a nonvanishing imaginary part of CNF trans-
lates into the time asymmetry of the correlation function. It
can be noticed that the static intensity of the fluctuations is
obtained by integration over w. From Eq. (A26), we see that
the imaginary part of CNF is an odd function of w, thus its
integral vanishes and does not contribute to the static intensity
of the fluctuations.
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In various cases, D;> and D,; are much smaller
than D;; and D,,, in particular, in the limit of vanish-
ing concentrations ¢; — 0 and ¢, — 0; this means that
the eigenvalues D correspond to the diffusion coefficients

D, and D,, and the transformation matrix 7T is the
identity.
We calculate the correlations for this case:
2 2 2
g9y Ver 2D1g
C"E(w, q) = 2ksT —1 . (A27
L@, q) B vpg® 2D, @2 + D ( )
2 2
VeV D, +D
CMe(w, q) = 2T —L ZELYE2 ( s 2)4 —
' vpq® Dy + Dy (—iw + D1g*)(iw + D2g*)
(A28)

q4i V&l 2Dy
vpq® 2D, w? + Dyq?

CY5(w, q) = 2ksT . (A29)

i, q) = [N 9] (A30)

These equations are equal to Eq. (24) under the approximation
D; = D;. We see that the self-power-spectra of the concentra-
tion fluctuations are real with a Lorentzian shape. In this case
the determination of the autocorrelation function is straight-
forward and yields a single exponential decay. Conversely, the
cross-spectra exhibit two poles and the determination of the
cross-correlation function requires the procedure outlined in
Sec. IITA.
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