Reducible Veronese surfaces

Alberto Alzati and Edoardo Ballico*
(Communicated by K. Strambach)

Abstract

Here we describe all degree $n+3$ non-degenerate surfaces in $\mathbb{P}^{n+4}, n \geq 1$, connected in codimension 1 , which may be isomorphically projected into \mathbb{P}^{4}. There are three of them. One is a suitable union of $n+3$ planes (for all $n \geq 1$); it was discovered by Floystad. The other two are unions of a smooth quadric and two planes (only for $n=1$).

Key words. Reducible surfaces, projectability.
2000 Mathematics Subject Classification. Primary 14J25; Secondary 14N20

1 Introduction

Let \mathbb{P}^{N} be the N-dimensional projective space on \mathbb{C}. For any integer $k \geq 0$, a reduced subvariety $V \subset \mathbb{P}^{N}$ of pure dimension is said to be connected in codimension k if for any closed subvariety $W \subset V$, such that $\operatorname{cod}_{V}(W)>k$, we have that $V \backslash W$ is connected. For any subvariety $V \subset \mathbb{P}^{N}$ and for any λ-dimensional linear subspace $\Lambda \subset \mathbb{P}^{N}$ we say that V projects isomorphically to Λ if there exists a linear projection $\pi_{\mathcal{L}}: \mathbb{P}^{N} \rightarrow \Lambda$, from a suitable $(N-\lambda-1)$-dimensional linear space \mathcal{L}, disjoint from V, such that $\pi_{\mathcal{L}}(V)$ is isomorphic to V.

In this note we consider the following type of surface arising from the example described in Section 2.

Definition 1. For any positive integer $n \geq 1$, we will call reducible Veronese surface any algebraic surface $X \subset \mathbb{P}^{n+4}$ such that:
i) X is a non-degenerate, reduced, reducible surface of pure dimension 2;
ii) $\operatorname{deg}(X)=n+3, \operatorname{cod}(X)=n+2$, so that X is a minimal degree surface;
iii) $\operatorname{dim}[\operatorname{Sec}(X)] \leq 4$, so that it is possible to choose a generic linear space \mathcal{L} of dimension $n-1$ in \mathbb{P}^{n+4} such $\pi_{\mathcal{L}}(X)$ is isomorphic to X, where $\pi_{\mathcal{L}}$ is the the rational projection $\pi_{\mathcal{L}}: \mathbb{P}^{n+4} \rightarrow \Lambda$ from \mathcal{L} to a generic target $\Lambda \simeq \mathbb{P}^{4} ;$

[^0]iv) X is connected in codimension 1, i.e. if we drop any finite number (possibly 0) of points Q_{1}, \ldots, Q_{r} from X we have that $X \backslash\left\{Q_{1}, \ldots, Q_{r}\right\}$ is connected;
v) X is a locally Cohen-Macaulay surface.

Remark 1. Actually v) implies iv) by Corollary 2.4 of [6]; however we think that it is more useful to give the above Definition 1 because condition iv) is crucial to get the classification.

In summary: we prove that there are exactly 3 types of reducible Veronese surfaces (see Proposition 2 and Theorems 2, 3, 4):
i) a suitable union of $n+3$ planes (for any integer $n \geq 1$) which sits as a linearly normal scheme in \mathbb{P}^{n+4} (see Theorem 2 and Definition 2 for a precise description); these are the examples whose existence is proved in [5];
ii) two surfaces which are the union of a smooth quadric surface and two planes; each of these two examples sits as a linearly normal scheme in \mathbb{P}^{5} (see Theorems 3 for their description).
We will use the following definitions:
$\left\langle V_{1} \cup \cdots \cup V_{r}\right\rangle: \quad$ linear span in \mathbb{P}^{N} of the subvarieties $V_{i} \subset \mathbb{P}^{N}, i=1, \ldots, r ;$
$\operatorname{Supp}(V): \quad$ support of the subscheme $V \subset \mathbb{P}^{N}$;
$\operatorname{Sing}(V): \quad$ singular locus of the subscheme $V \subset \mathbb{P}^{N}$;
$\operatorname{Sec}(V): \quad\left\{\bigcup_{v_{1} \neq v_{2} \in V}\left\langle v_{1} \cup v_{2}\right\rangle\right\} \subset \mathbb{P}^{N}$ for any subvariety $V \subset \mathbb{P}^{N}$.
For any positive integer $d \geq 2$ a rational comb of degree d in \mathbb{P}^{N} is the union of d lines $L_{1}, L_{2}, \ldots, L_{d} \subset \mathbb{P}^{N}$ such that, for any $i \geq 2, L_{i} \cap L_{1}$ is a point, these $d-1$ points are distinct and, for any $j>i \geq 2, L_{i} \cap L_{j}=\emptyset$.

2 Floystad's example

In [5, Corollary 3], the author proves that, for any integer $n \geq 1$, there exists in $\mathbb{P}^{4} \mathrm{a}$ monad of the following form:

$$
\mathcal{O}_{\mathbb{P}^{4}}(-1)^{\oplus n+2} \longrightarrow \mathcal{O}_{\mathbb{P}^{4}}{ }^{\oplus 2 n+3} \longrightarrow \mathcal{O}_{\mathbb{P}^{4}}(1)^{\oplus n}
$$

whose homology is $\mathcal{I}_{S_{n}}(2)$ where S_{n} is a locally Cohen-Macaulay surface in \mathbb{P}^{4}. Moreover S_{n} is embedded in \mathbb{P}^{n+4} as a linearly normal surface and S_{n} projects isomorphically to some suitable $\Lambda \subset \mathbb{P}^{n+4}, \Lambda \simeq \mathbb{P}^{4}$. For $n=1, S_{1}$ is the usual (smooth) Veronese surface in \mathbb{P}^{5}; in contrast, S_{n} must be singular for $n \geq 2$.

If we call $\varphi_{n}: \mathcal{O}_{\mathbb{P}^{4}}{ }^{\oplus 2 n+3} \longrightarrow \mathcal{O}_{\mathbb{P}^{4}}(1)^{\oplus n}$ we get the following exact sequences of sheaves and vector bundles over \mathbb{P}^{4} :

$$
\begin{gathered}
0 \longrightarrow \operatorname{ker}\left(\varphi_{n}\right) \longrightarrow \mathcal{O}_{\mathbb{P}^{4}} \oplus 2 n+3 \longrightarrow \mathcal{O}_{\mathbb{P}^{4}}(1)^{\oplus n} \longrightarrow 0 \\
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{4}}(-1)^{\oplus n+2} \longrightarrow \operatorname{ker}\left(\varphi_{n}\right) \longrightarrow \mathcal{I}_{S_{n}}(2) \longrightarrow 0
\end{gathered}
$$

Now it is easy to calculate $\chi\left[\mathcal{O}_{S_{n}}(t)\right]=\binom{t+4}{4}-\chi\left[\mathcal{I}_{S_{n}}(t)\right]=\left(\frac{n+3}{2}\right) t^{2}+\left(\frac{n+5}{2}\right) t+1$, so that $\operatorname{deg}\left(S_{n}\right)=n+3$ and S_{n} is a minimal degree surface in \mathbb{P}^{n+4} for any $n \geq 1$.

When $n=2$, by a computer algebra system as Macaulay, it is easy to get a set of generators for the ideal of a generic S_{2} in \mathbb{P}^{6}. In fact, by choosing a random $(2,7)$ matrix M of linear forms we have a map as φ_{n} and, by calculating the higher syzygies of M, we get a free resolution for $\operatorname{ker}\left(\varphi_{n}\right)$ and a commutative diagram as follows:

By choosing another random $(5,4)$ matrix N of constants, in order to get a map $\mathcal{O}_{\mathbb{P}^{4}}(-1)^{\oplus 4} \longrightarrow \mathcal{O}_{\mathbb{P}^{4}}(-1)^{\oplus 5},\left(\mathcal{O}_{\mathbb{P}^{4}}(-1)^{\oplus 4} \longrightarrow \mathcal{O}_{\mathbb{P}^{4}}(-2)^{\oplus 10}\right.$ is the zero map) and by using the mapping cone technique, we have that the ideal $I_{S_{2}}$ in \mathbb{P}^{6} of a generic surface S_{2} is generated by one cubic and ten quartics. S_{2} has codimension 4 , degree 5 and (arithmetic) sectional genus 0 . Alternatively, one can also choose 4 generic sections of the rank 5 vector bundle $\operatorname{ker}\left(\varphi_{2}\right) \otimes \mathcal{O}_{\mathbb{P}^{4}}(1)$ by giving a random $(5,4)$ matrix of constants N^{\prime} : in this case S_{2} is the degeneracy locus in \mathbb{P}^{6} of these sections; if $N^{\prime}=N$ we get exactly the same set of generators for $I_{S_{2}}$.

By knowing a set of generators for $I_{S_{2}}$ it is, more or less, easy to see that the generic S_{2} is given by 5 planes $\Pi_{0}, \Pi_{1}, \ldots, \Pi_{4}$ such that: $\Pi_{0} \cap \Pi_{i}:=L_{i}$ is a line for $i=1, \ldots, 4$; $\Pi_{i} \cap \Pi_{j}:=Q_{i j}$ is a point of Π_{0} for $i, j=1, \ldots, 4, i \neq j$, and the lines L_{i} are in general position on Π_{0}. The generic hyperplane section of S_{2} is a rational comb of degree 5 given by a line l_{0} on Π_{0} and four other lines $l_{i}, i=1, \ldots, 4, l_{i} \in \Pi_{i}, l_{i} \cap l_{j}=\emptyset$ for $i \neq j$, intersecting l_{0} at one point. $\operatorname{Sec}\left(S_{2}\right)$ is the union of a finite number of linear spaces of dimension $2\left(\Pi_{i}, i=0, \ldots, 4\right), 3\left(\left\langle\Pi_{0} \cup \Pi_{i}\right\rangle, i=1, \ldots, 4\right)$ or $4\left(\left\langle\Pi_{i} \cup \Pi_{j}\right\rangle, i, j=\right.$ $1, \ldots, 4, i \neq j)$ so that it is possible to choose a generic line \mathcal{L} in $\mathbb{P}^{6}, \mathcal{L} \cap \operatorname{Sec}\left(S_{2}\right)=\emptyset$, and to project S_{2}, from \mathcal{L} to a generic $\Lambda \simeq \mathbb{P}^{4}$, in such a way that the projection of S_{2} is isomorphic to S_{2}.

The above concrete construction of S_{2} suggests to define a family of completely reducible surfaces having the same properties.

Definition 2. For any positive integer $n \geq 1$, let us choose a plane Π_{0} and $n+2$ distinct points P_{1}, \ldots, P_{n+2} in general position in \mathbb{P}^{n+4}, so that $\left\langle\Pi_{0} \cup P_{1} \cup \cdots \cup P_{n+2}\right\rangle=\mathbb{P}^{n+4}$. Let us choose $n+2$ planes $\Pi_{i}, i=1, \ldots, n+2, P_{i} \in \Pi_{i}$, such that $\Pi_{i} \cap \Pi_{0}$ is a line L_{i} and the $n+2$ lines L_{i} are in general position on Π_{0} (i.e. that the curve given by
their union has no triple points). Let us call Σ_{n} any surface in \mathbb{P}^{n+4} which is the union $\Pi_{0} \cup \Pi_{1} \cdots \cup \Pi_{n+2}$.

Proposition 1. The previously defined surfaces $\Sigma_{n}, n \geq 1$, are reducible Veronese surfaces according to Definition 1.

Proof. i), ii), iii), iv) follow directly from the definition; note that $\operatorname{Sec}\left(\Sigma_{n}\right)$ is the union of a finite number of linear spaces of dimension 2, 3, 4 .

Concerning v), let us remark that for any singular point $P \in \Sigma_{n}$ its local ring is isomorphic either to the local ring at $(0,0,0)$ of the affine variety $\{x y=0\}$ in $\mathbb{A}^{3}(\mathbb{C})$, or to the local ring at $(0,0,0,0)$ of the affine variety $\{x=y=0\} \cup\{z=w=0\} \cup\{x=$ $z=0\}=\left\{x^{2} z=x z^{2}=x^{2} w=x z w=x y z=y z^{2}=x y w=y z w=0\right\}$ in $\mathbb{A}^{4}(\mathbb{C})$. They are, up to isomorphisms, the same local rings of the singular points of S_{2} and we know that S_{2} is a locally Cohen-Macaulay surface by Corollary 3 of [5].

To prove that Σ_{n} are locally Cohen-Macaulay we could also use a slightly different version of the following lemma which will be useful at the end of the paper.

Lemma 1. Let $X \subset \mathbb{P}^{5}$ be a non-degenerate surface such that $X=Q \cup X_{1} \cup X_{2}$, where Q is a smooth quadric, X_{1} and X_{2} are planes, and either X_{1} and X_{2} cut Q along two lines intersecting at a point $P=X_{1} \cap X_{2}$ or Q, X_{1}, X_{2} intersect transversally along a unique line $L=Q \cap X_{1} \cap X_{2}$. Then X is a locally Cohen-Macaulay surface.

Proof. Let us consider the first case. Obviously we have to check the property only at P. Let R be the local ring of X at P and let m be its maximal ideal. We have height $(m)=2$, so that we have to prove that $\operatorname{depth}(m)=2$. As X is reduced and $\operatorname{dim}(X) \geq 1$ we know that $\operatorname{depth}(m) \geq 1$. A generic hyperplane section of X not passing through P cuts X along a reducible curve $Y=C \cup L_{1} \cup L_{2}$, where C is a smooth conic and L_{1}, L_{2} are two disjoint lines intersecting C transversally at two different points. Y is reduced, connected and its arithmetic genus $p_{a}(Y)$ is 0 . Let H be a generic hyperplane section of X passing through P; now $H \cap X:=Y_{P}$ is reducible as the union of a smooth conic C_{P} and two distinct lines intersecting C_{P} transversally at P. H gives rise to a non-zero divisor element $\alpha \in m$ because X has pure dimension 2. Now let us remark that $p_{a}\left(Y_{P}\right)=0$, so that Y_{P} has no embedded components at $P=\operatorname{Sing}\left(Y_{P}\right)$, otherwise $p_{a}\left(Y_{P}\right)<p_{a}(Y)$. Hence there is at least a non-zero divisor element $\beta \in m \backslash(\alpha)$ and (α, β) is a regular sequence for m, so that $\operatorname{depth}(m) \geq 2$. As $\operatorname{depth}(m) \leq \operatorname{height}(m)=2$ we are done.

In the second case we can argue as in the previous one for all points $P \in L$.
Remark 2. It is easy to see that the generic section of Σ_{n} is a rational comb, quite exactly as in the case of S_{2} (which is in fact an example of Σ_{2}), so that $p_{a}\left(\Sigma_{n}\right)=0$, but we will not consider this property in the sequel.

Now it is very natural to ask if the surfaces Σ_{n} are the only existing reducible Veronese surfaces in our sense. The answer to this question is the aim of the following sections. Moreover we will prove that any generic S_{n} is a surface Σ_{n} for $n \geq 2$, see Remark 3. To show that the matter is in fact very intricate, let us consider the following:

Example 1. Let $X=Q \cup \Pi_{1} \cup \Pi_{2} \cup \Pi_{3} \subset \mathbb{P}^{6}$, where Q is a smooth quadric of \mathbb{P}^{3} and any Π_{i} is a generic plane such that, if we call the three points $P_{i j}:=\Pi_{i} \cap \Pi_{j}$, we have: $P_{i j} \notin \Pi_{k}$ for $k \neq i, j, P_{i j} \notin Q$, but $P_{i j} \in\langle Q\rangle$. Then X is non-degenerate, $\operatorname{deg}(X)=5, \operatorname{dim}[\operatorname{Sec}(X)] \leq 4$, but X is not connected in codimension 1, for instance because $X \backslash\left\{P_{12} \cup P_{23} \cup P_{31}\right\}$ is not connected.

3 Xambò's result and applications

In [7] Xambò proves the following result:
Theorem 1. Let $V=V_{1} \cup \cdots \cup V_{r} \subset \mathbb{P}^{N}$ be a non-degenerate, reducible, reduced, surface of pure dimension 2 , whose irreducible components are V_{1}, \ldots, V_{r}. Assume that V is connected in codimension 1 and that it has minimal degree. Then

- any irreducible component V_{i} of dimension 2 of V is a surface of minimal degree in its span $\left\langle V_{i}\right\rangle$;
- there is at least an ordering $V_{1}, V_{2}, \ldots, V_{r}$ such that, for any $j=2, \ldots, r$,

$$
V_{j} \cap\left(V_{1} \cup \cdots \cup V_{j-1}\right)=\left\langle V_{j}\right\rangle \cap\left\langle V_{1} \cup \cdots \cup V_{j-1}\right\rangle
$$

and this intersection is always a line.
Proof. The theorem is a simple consequence of Theorem 1 of [7].
Corollary 1. Let $\Pi_{1}, \Pi_{2}, \ldots, \Pi_{r}$ be a set of ordered planes in some \mathbb{P}^{N} such that:
i) $\left\langle\Pi_{1} \cup \Pi_{2} \cup \cdots \cup \Pi_{r}\right\rangle=\mathbb{P}^{N}$;
ii) for any $j \geq 2, \operatorname{dim}\left(\Pi_{j} \cap\left\langle\Pi_{1} \cup \cdots \cup \Pi_{j-1}\right\rangle\right)=1$.

Then $X:=\Pi_{1} \cup \Pi_{2} \cup \cdots \cup \Pi_{r}$ is a non-degenerate surface in \mathbb{P}^{N}, of minimal degree, connected in codimension 1 .

Proof. The corollary follows from the remark after Theorem 1 of [7, p. 151].

Corollary 2. Let V be any surface as in Theorem 1. Then for any pair of irreducible components $V_{j}, V_{k} \subset V$ we have only three possibilities:

- $V_{j} \cap V_{k}=\emptyset$
- $V_{j} \cap V_{k}$ is a point
- $V_{j} \cap V_{k}$ is a line.

Proof. Let us assume that $V_{j} \cap V_{k} \neq \emptyset$ and that $k>j$ in the existing ordering of the components of V considered by Theorem 1. Then $V_{j} \cap V_{k} \subseteq V_{k} \cap\left(V_{1} \cup \ldots V_{j} \cup \cdots \cup V_{k-1}\right)$ which is a line, as a scheme, because it is the intersection of two linear spaces in \mathbb{P}^{N}. By Theorem 0.4 of [4] V is small according to the definition of [4, p. 1364] hence $V_{j} \cap V_{k}=$ $\left\langle V_{i}\right\rangle \cap\left\langle V_{j}\right\rangle$ is a linear space by Proposition 2.4 of [4]. As $V_{j} \cap V_{k}$ is contained in a line Corollary 2 follows.

Lemma 2. Let $X \subset \mathbb{P}^{n+4}$ be a reducible Veronese surface, according to Definition 1, for some $n \geq 1$. Then:
i) any connected surface $Y \subset X$ can be isomorphically projected in \mathbb{P}^{4};
ii) for any pair of irreducible components X_{j} and X_{k} of X we have $X_{j} \cap X_{k} \neq \emptyset$.

Proof. As X is a reducible Veronese surface there exists a projection $\pi_{\mathcal{L}}: \mathbb{P}^{n+4} \rightarrow \Lambda$, from a suitable linear space \mathcal{L} to a suitable linear space $\Lambda \subset \mathbb{P}^{n+4}, \Lambda \simeq \mathbb{P}^{4}$, such that $\pi_{\mathcal{L}}(X) \simeq X$. This implies that, for any $i=1, \ldots, r, \pi_{\mathcal{L}}\left(X_{i}\right) \simeq X_{i}$, and, for any pair $X_{j}, X_{k} \subset X, \pi_{\mathcal{L}}\left(X_{j}\right) \cap \pi_{\mathcal{L}}\left(X_{k}\right) \simeq X_{j} \cap X_{k}$. Hence for any surface $Y \subset X$ we have $\pi_{\mathcal{L}}(Y) \simeq Y$ and $\pi_{\mathcal{L}}\left(X_{j}\right) \cap \pi_{\mathcal{L}}\left(X_{k}\right)$, being the intersection of two surfaces in \mathbb{P}^{4}, cannot be empty, so that $X_{j} \cap X_{k}$ cannot be empty too.

Lemma 3. Let $X \subset \mathbb{P}^{n+4}$ be a reducible Veronese surface, according to Definition 1, for some $n \geq 1$. Let P be a singular point of X and let $X_{1}^{P}, \ldots, X_{s}^{P}$ be the irreducible components of X containing P with $s \geq 2$. For any $i=1, \ldots, s$ let T_{i} be the tangent space of X_{i}^{P} at P in $\left\langle X_{i}^{P}\right\rangle$ and let us assume that the natural ordering of $X_{1}^{P}, \ldots, X_{s}^{P}$ is coherent with the ordering given by Theorem 1. Then, for any $j \geq 2, T_{j} \nsubseteq\left\langle T_{1} \cup \cdots \cup\right.$ $\left.T_{j-1}\right\rangle$ and $\operatorname{dim}\left[T_{j} \cap\left\langle T_{1} \cup \cdots \cup T_{j-1}\right\rangle\right] \leq 1$.

Proof. By contradiction, let us assume that $T_{j} \subseteq\left\langle T_{1} \cup \cdots \cup T_{j-1}\right\rangle$, hence $T_{j} \subseteq T_{j} \cap$ $\left\langle T_{1} \cup \cdots \cup T_{j-1}\right\rangle \subseteq\left\langle X_{j}^{P}\right\rangle \cap\left\langle X_{1}^{P} \cup \cdots \cup X_{j-1}^{P}\right\rangle$. As we are assuming that the natural ordering of $X_{1}^{P}, \ldots, X_{s}^{P}$ is coherent with the ordering given by Theorem 1, we have that $\operatorname{dim}\left[\left\langle X_{j}^{P}\right\rangle \cap\left\langle X_{1}^{P} \cup \cdots \cup X_{j-1}^{P}\right\rangle\right] \leq 1$. Moreover $\operatorname{dim}\left(T_{j}\right)=2$ if P is a smooth point of X_{j}^{P} and $\operatorname{dim}\left(T_{j}\right)=3$ if P is a singular point of X_{j}^{P}; in fact by Theorem 1 we know that every X_{j} is an irreducible, reduced, surface of minimal degree in its span and from the well known classification of these surfaces (see for instance Theorem 0.1 of [4]) we have that X_{j} is singular if and only if it is a rank 3 quadric. So that in any case we get a contradiction. By the way we have also proved that $\operatorname{dim}\left[T_{j} \cap\left\langle T_{1} \cup \cdots \cup T_{j-1}\right\rangle\right] \leq 1$.

Lemma 4. Let $X \subset \mathbb{P}^{n+4}$ be a reducible Veronese surface, according to Definition 1, for some $n \geq 1$. Let P be any point of X and let $X_{1}^{P}, \ldots, X_{s}^{P}$ be the irreducible components of X containing $P, s \geq 1$. For any $i=1, \ldots, s$ let T_{i} be the tangent space of X_{i}^{P} at P in $\left\langle X_{i}^{P}\right\rangle$ and let $\mathbb{T}_{P}:=\bigcup_{i=1}^{s} T_{i}$. Then $\operatorname{dim}\left(\left\langle\mathbb{T}_{P}\right\rangle\right) \leq 4$.

Proof. If $s=1$ we have that $\left\langle\mathbb{T}_{P}\right\rangle=T_{1}$ and $\operatorname{dim}\left(T_{1}\right) \leq 3$ as in the proof of Lemma 3 . If $s \geq 2, \mathbb{T}_{P}$ is the union of s linear spaces, of dimensions 2 or 3 , passing through P according a certain configuration $\mathcal{C}_{P} \subset \mathbb{P}^{n+4}$. By contradiction, let us assume that $\operatorname{dim}\left(\left\langle\mathbb{T}_{P}\right\rangle\right) \geq 5$. Let $\pi_{\mathcal{L}}: \mathbb{P}^{n+4} \rightarrow \Lambda$ be any linear projection, from a suitable $(n-$ 1)-dimensional linear space \mathcal{L} to a suitable $\Lambda \subset \mathbb{P}^{n+4}, \Lambda \simeq \mathbb{P}^{4}$, such that $\pi_{\mathcal{L}}(X)$ is isomorphic to X, hence $\pi_{\mathcal{L}}\left(\mathcal{C}_{P}\right)$ is isomorphic to \mathcal{C}_{P}. As $\operatorname{dim}\left(\left\langle\mathbb{T}_{P}\right\rangle\right) \geq 5$ there is a non-empty linear space $\mathcal{L}^{\prime}:=\mathcal{L} \cap\left\langle\mathbb{T}_{P}\right\rangle$ such that $\pi_{\mathcal{L}}\left(\mathcal{C}_{P}\right)=\pi_{\mathcal{L}^{\prime}}\left(\mathcal{C}_{P}\right)$ where $\pi_{\mathcal{L}^{\prime}}$: $\left\langle\mathbb{T}_{P}\right\rangle \rightarrow \Lambda$. But, as $\operatorname{dim}(\Lambda)<\operatorname{dim}\left(\left\langle\mathbb{T}_{P}\right\rangle\right)$, it is not possible that $\pi_{\mathcal{L}^{\prime}}\left(\mathcal{C}_{P}\right) \simeq \mathcal{C}_{P}$, otherwise isomorphic configurations of linear spaces would have linear spans of different dimensions, so that we get a contradiction.

Lemma 5. Let V and W be two irreducible surfaces of \mathbb{P}^{N} such that $V \cap W=\langle V\rangle \cap\langle W\rangle$ is a line L. Let us assume that each of V and W is a smooth rational scroll of degree 3 in \mathbb{P}^{4}, or a smooth quadric in \mathbb{P}^{3}, or a rank 3 quadric in \mathbb{P}^{3}. Then $\operatorname{dim}[\operatorname{Join}(V, W)]=5$ unless V and W are both rank 3 quadrics, having the same vertex.

Proof. Let us recall that $\operatorname{Join}(V, W):=\overline{\left\{\bigcup_{v \in V \backslash L, w \in W \backslash L}\langle v \cup w\rangle\right\}} \subset \mathbb{P}^{N}$. Let $\mathcal{U} \subset$ $\operatorname{Join}(V, W)$ be the open set $\left\{\bigcup_{v \in V \backslash L, w \in W \backslash L}\langle v \cup w\rangle\right\}$. That suffices to show that $\operatorname{dim}(\mathcal{U})$ $=5$.

Let p be a generic point of \mathcal{U}, hence $p \in\langle v \cup w\rangle$ for two generic points $v \in V \backslash L, w \in$ $W \backslash L$ and we claim that, in our assumptions, $\langle v \cup w\rangle$ is the only line of \mathcal{U} containing p. By contradiction, let us suppose that there exists another line $\left\langle v^{\prime} \cup w^{\prime}\right\rangle \neq\langle v \cup w\rangle$, with $v^{\prime} \in V \backslash L, w^{\prime} \in W \backslash L$, such that $p \in\left\langle v^{\prime} \cup w^{\prime}\right\rangle$. Then the two lines $\left\langle v \cup v^{\prime}\right\rangle$ and $\left\langle w \cup w^{\prime}\right\rangle$ intersect at a point $q \in L=\langle V\rangle \cap\langle W\rangle$. But our surfaces have no trisecant lines and, for generic points $v \in V \backslash L, w \in W \backslash L$, it is not possible that $\left\langle v \cup v^{\prime}\right\rangle \cap\left\langle w \cup w^{\prime}\right\rangle$ is a point of L, when $\left\langle v \cup v^{\prime}\right\rangle \subset V$ and $\left\langle w \cup w^{\prime}\right\rangle \subset W$, unless V and W are rank 3 quadrics of common vertex P. In this case there are infinitely many pairs of points $v^{\prime} \in V \backslash L, w^{\prime} \in W \backslash L$ such that $\left\langle v \cup v^{\prime}\right\rangle \cap\left\langle w \cup w^{\prime}\right\rangle=P$ (and $\operatorname{dim}[\operatorname{Join}(V, W)]=4$). So that the claim is proved. Now we can define a rational map $s: \mathcal{U} \longrightarrow G(1, N)$, the Grassmannian of lines in \mathbb{P}^{N}, such that $s(p)=\langle v \cup w\rangle$. Of course the generic fibre of s has dimension 1 and $\operatorname{dim}(\operatorname{Im}(s))=4$, so that $\operatorname{dim}(\mathcal{U})=5$.

From Theorem 1, and from the previous lemmas we get the following:
Proposition 2. Every reducible Veronese surface $X \subset \mathbb{P}^{n+4}$, according to Definition 1, can be only the union $X=X_{1} \cup \cdots \cup X_{r}$ of irreducible, reduced surfaces of the following types:

- planes
- smooth quadrics of \mathbb{P}^{3}
- quadrics of \mathbb{P}^{3} having rank 3 (quadric cones for simplicity).

Moreover only one irreducible surface of degree 2 can be contained in X.
Proof. From Theorem 1 we know that $X=X_{1} \cup \cdots \cup X_{r}$ and that every X_{j} is an irreducible, reduced, surface of minimal degree in its span. From the well known classification of irreducible, reduced surfaces of minimal degree (see Theorem 0.1 of [4]), we have that every X_{j} is a surface as above or it is a smooth Veronese surface, a smooth rational scroll of degree 4 in \mathbb{P}^{5}, a smooth rational scroll of degree 3 in \mathbb{P}^{4}.

As any surface X_{j} contains a line by Theorem 1, none of them can be a smooth Veronese surface. The secant variety of a smooth rational scroll of degree 4 has dimension 5 , so that X cannot contain such surfaces by condition iii) of Definition 1.

Let us consider a smooth rational scroll of degree 3 and let us assume, by contradiction, that it is a component of X, say X_{j}. Let X_{k} be any other component of X, different from X_{j}, and suppose that X_{k} is not a plane. As X is a reducible Veronese surface there exists a projection $\pi_{\mathcal{L}}: \mathbb{P}^{n+4} \rightarrow \Lambda$, from a suitable linear space \mathcal{L} to a suitable $\Lambda \simeq \mathbb{P}^{4}$, such that $\pi_{\mathcal{L}}(X) \simeq X$. This implies that, for any $i=1, \ldots, r, \pi_{\mathcal{L}}\left(X_{i}\right) \simeq X_{i}$, and $\pi_{\mathcal{L}}\left(X_{j}\right) \cap \pi_{\mathcal{L}}\left(X_{k}\right) \simeq X_{j} \cap X_{k}$. Recall that $\pi_{\mathcal{L}}\left(X_{j}\right) \cap \pi_{\mathcal{L}}\left(X_{k}\right)$ is the intersection of two
surfaces in \mathbb{P}^{4} and that, by assumption, $\pi_{\mathcal{L}}\left(X_{j}\right)$ is a smooth rational scroll of degree 3 and $\pi_{\mathcal{L}}\left(X_{k}\right)$ is another rational scroll of degree 3 or a quadric cone or a smooth quadric. Let us examine these possibilities.

If $\pi_{\mathcal{L}}\left(X_{k}\right)$ is another rational scroll of degree 3 then, by Lemma 2, $\pi_{\mathcal{L}}\left(X_{j}\right) \cap \pi_{\mathcal{L}}\left(X_{k}\right)$ cannot be empty, hence $\operatorname{dim}\left[\pi_{\mathcal{L}}\left(X_{j}\right) \cap \pi_{\mathcal{L}}\left(X_{k}\right)\right] \geq 0$. If $\operatorname{dim}\left[\pi_{\mathcal{L}}\left(X_{j}\right) \cap \pi_{\mathcal{L}}\left(X_{k}\right)\right]=$ $\operatorname{dim}\left(X_{j} \cap X_{k}\right)=0$, then $\operatorname{deg}\left[\pi_{\mathcal{L}}\left(X_{j}\right) \cap \pi_{\mathcal{L}}\left(X_{k}\right)\right]=9$ and this is not possible by Corollary 2. Hence $\operatorname{dim}\left[\pi_{\mathcal{L}}\left(X_{j}\right) \cap \pi_{\mathcal{L}}\left(X_{k}\right)\right]=\operatorname{dim}\left(X_{j} \cap X_{k}\right) \geq 1$ and, by Corollary 2, $X_{j} \cap X_{k}=\left\langle X_{j}\right\rangle \cap\left\langle X_{k}\right\rangle$ is a line, so that $\operatorname{dim}\left[\operatorname{Join}\left(X_{j}, X_{k}\right)\right]=5$ by Lemma 5, and $\operatorname{dim}\left[\operatorname{Sec}\left(X_{j} \cup X_{k}\right)\right] \geq 5$. This implies $\operatorname{dim}[\operatorname{Sec}(X)] \geq 5$, giving a contradiction with Definition 1 iii).

If $\pi_{\mathcal{L}}\left(X_{k}\right)$ is a quadric cone or a smooth quadric we can argue in the same way.
Now let us assume that $X_{k} \simeq \pi_{\mathcal{L}}\left(X_{k}\right)$ is a plane. By the above arguments, the only possibility is that the plane $\pi_{\mathcal{L}}\left(X_{k}\right)$ cuts $\pi_{\mathcal{L}}\left(X_{j}\right)$ along a line l, but also this case can be excluded, in fact we can consider a generic hyperplane H of Λ containing the plane $\pi_{\mathcal{L}}\left(X_{k}\right)$, the intersection $H \cap \pi_{\mathcal{L}}\left(X_{j}\right)$ is the union of l and of a smooth conic Γ. As Γ and $\pi_{\mathcal{L}}\left(X_{k}\right)$ are contained in $H \simeq \mathbb{P}^{3}$ their intersection cannot be empty, so that $\operatorname{Supp}\left[\pi_{\mathcal{L}}\left(X_{j}\right) \cap \pi_{\mathcal{L}}\left(X_{k}\right)\right]$ is not contained in a line and we have a contradiction with Corollary 2.

After proving that none of the irreducible components of X can be a rational scroll of degree 3, let us exclude that X has two (or more) components of degree 2, i.e. smooth quadrics or quadric cones. By contradiction, let us assume that X contains two irreducible components of degree 2 , say X_{j} and X_{k} as before, and suppose that they are not both quadric cones with the same vertex. Then we can repeat the same argument, with the only difference that now $\left\langle X_{j}\right\rangle \simeq\left\langle X_{k}\right\rangle \simeq \mathbb{P}^{3}$, and we get the same contradiction: $\operatorname{dim}[\operatorname{Sec}(X)] \geq 5$. If X_{j} and X_{k} are quadric cones with the same vertex P we cannot use Lemma 5, however in this case $T_{P}\left(X_{j}\right)=\left\langle X_{j}\right\rangle \simeq \mathbb{P}^{3} \simeq\left\langle X_{k}\right\rangle=T_{P}\left(X_{k}\right)$ and their intersection is a line so that $\operatorname{dim}\left(\left\langle\mathbb{T}_{P}\right\rangle\right) \geq 5$ and we get a contradiction with Lemma 4.

Note that, on the contrary, if X_{j} is a smooth quadric or a quadric cone and X_{k} is a plane we cannot repeat the previous arguments to exclude the existence of quadrics in X.

Now we give the following:
Corollary 3. Let $X \subset \mathbb{P}^{n+4}$ be a reducible Veronese surface, according to Definition 1 , for some $n \geq 1$. Then:
i) through any singular point $P \in X$ there passes only 1, 2 or 3 irreducible components of X and the first case occurs only when P is the vertex of a quadric cone;
ii) if P is a singular point of X, not the vertex of a quadric cone, the tangent planes at P to the irreducible components of X passing through $P(2$ or 3$)$ are all distinct;
iii) if P is a singular point of X which it is the vertex of a quadric cone Γ and there are at least two irreducible components of X passing through P :

- if the components are two, one of them is Γ and the other one is a plane not contained in $\langle\Gamma\rangle$
- if the components are three, one of them is Γ and the other ones are two distinct planes not contained in $\langle\Gamma\rangle$.

Proof. i) Obviously, by Proposition 2, a singular point $P \in X$ belongs to only one irreducible component X^{P} of X if and only if X^{P} is a quadric cone and P is its vertex. In the other cases, let $X_{1}^{P}, \ldots, X_{s}^{P}$ be the irreducible components of X containing P, $s \geq 2$. We can assume that their natural ordering is coherent with the existing ordering considered in Theorem 1. Let T_{i} be the tangent space of X_{i}^{P} at P in $\left\langle X_{i}^{P}\right\rangle, i=1, \ldots, s$.

By Lemma 3, $\operatorname{dim}\left(\left\langle T_{1} \cup \cdots \cup T_{s}\right\rangle\right)=\operatorname{dim}\left(\left\langle\mathbb{T}_{P}\right\rangle\right) \geq \operatorname{dim}\left(T_{1}\right)+s-1 \geq s+1$. If $s \geq 4$ we would get a contradiction with Lemma 4, hence $s \leq 3$.
ii) As P is not the vertex of a quadric cone, all the irreducible components of X passing through P are smooth at P by Proposition 2 and they are 2 or 3 by the previous proof. Let T_{1}, T_{2} or T_{1}, T_{2}, T_{3} be the tangent planes at P to these components, with an ordering coherent with the ordering given by Theorem 1. By Lemma 3, $T_{2} \nsubseteq T_{1}$ and $T_{3} \nsubseteq\left\langle T_{1} \cup T_{2}\right\rangle$ so that the planes must be distinct.
iii) By i) we have only one or two other irreducible components of X passing through P and they are planes by Proposition 2. The tangent space at P of Γ is $\langle\Gamma\rangle$, while the tangent spaces at P of the other components coincide with the components themselves, so that they cannot be contained in $\langle\Gamma\rangle$, otherwise we would get a contradiction with Lemma 3 for any possible ordering of these (2 or 3) components coherent with the ordering given by Theorem 1 .

The following lemma is based on property v) of Definition 1 and Corollary 3.

Lemma 6. Let $X \subset \mathbb{P}^{n+4}$ be a reducible Veronese surface, according to Definition 1, for some $n \geq 1$. Let P be a singular point of X such that the union C_{P} of the irreducible components of X passing through P is a cone, i.e. (by Proposition 2) the irreducible components of X passing through P are planes and, possibly, a quadric cone with vertex in P. Then if we cut C_{P} with a generic hyperplane H, not passing through P, the curve $C_{P} \cap H$ is an Arithmetically Cohen-Macauley (in brief ACM) scheme.

Proof. By assumption we know that the local ring of X at P is a Cohen-Macaulay ring; of course it is isomorphic to the local ring of C_{P} at P. As C_{P} is a cone over $C_{P} \cap H$, with vertex P, the local ring of C_{P} at P is a Cohen-Macaulay ring if and only if $C_{P} \cap H$ is an ACM scheme.

Corollary 4. Let $X \subset \mathbb{P}^{n+4}$ be a reducible Veronese surface, according to Definition 1 , for some $n \geq 1$. Let P be a singular point of X such that the union C_{P} of the irreducible components of X passing through P is a cone. Then:
i) if P is not the vertex of a quadric cone and there are only two components of X, i.e. two planes, passing through P, then the two planes intersect along a line;
ii) if P is not the vertex of a quadric cone and there are three components of X, i.e. three planes, passing through P, then:

- the three planes intersect two by two along three lines passing through P, or
- the three planes intersect along a unique line passing through P and they span a 3-dimensional linear space, or
- the three planes intersect along a unique line passing through P and they span a 4-dimensional linear space, or
- two planes intersect only at P and the third plane cuts the other ones along two lines, passing through P;
iii) if P is the vertex of a quadric cone and there is only another component of X, i.e. a plane, passing through P, then the plane cuts the cone only along a line of the cone.

Proof. Let us apply Lemma 6. In case i) the cone C_{P} is given by two planes passing through P; if they intersect only at P then the curve $H \cap C_{P}$ is a pair of disjoint lines in $H \simeq \mathbb{P}^{3}$ and this is not an ACM scheme.

In case ii) the cone C_{P} is given by three planes passing through P, and the curve $H \cap C_{P}$ is a cubic curve reducible into three lines. $H \cap C_{P}$ is an ACM scheme if and only if it is: a plane cubic given by three lines in generic position or passing through a point $\left(H \simeq \mathbb{P}^{2}\right)$ or a space cubic given by a rational comb $\left(H \simeq \mathbb{P}^{3}\right)$ or three lines passing through a point and spanning a 3-dimensional linear space $\left(H \simeq \mathbb{P}^{3}\right)$. The four possibilities give rise only to the previously described configurations.

In case iii) the cone C_{P} is given by the union of a quadric cone Γ having vertex at P and a plane passing through P. By Lemma 3 and Corollary 3 iii), the plane is not contained in $\langle\Gamma\rangle$ so that it cuts $\langle\Gamma\rangle$ only at P or along a line L passing through P. If $L \in \Gamma$, then $H \cap C_{P}$ is a space cubic $\left(H \simeq \mathbb{P}^{3}\right)$ given by a smooth conic and a line cutting the conic transversally at some point, a well known ACM scheme. In the other cases $H \cap C_{P}$ would be the disjoint union of a smooth conic and a line and this is not an ACM scheme.

4 The main results

In this section we will get a complete classification of reducible Veronese surfaces. First of all we will prove the following theorem.

Theorem 2. Let $X \subset \mathbb{P}^{n+4}$ be a reducible Veronese surface, according to Definition 1, for some $n \geq 1$, and let us assume that all the irreducible components of X are planes. Then $X=\Sigma_{n}$.

Proof. By ii) of Definition 1 we have that X is the union of $n+3$ planes, say $X=$ $\Pi_{0} \cup \Pi_{1} \cup \cdots \cup \Pi_{n+2}$. By Theorem 1 we can assume that the planes are ordered in such a way that, for any $j \geq 1, \Pi_{j} \cap\left(\Pi_{0} \cup \cdots \cup \Pi_{j-1}\right)$ is a line. Let us call $L_{i j}:=\Pi_{i} \cap \Pi_{j}$ when the intersection is a line and $Q_{i j}:=\Pi_{i} \cap \Pi_{j}$ when the intersection is a point. We want to use induction on $n \geq 1$.

Step one. If $n=1, X=\Pi_{0} \cup \Pi_{1} \cup \Pi_{2} \cup \Pi_{3}$ and we have to prove that $X=\Sigma_{1} \subset \mathbb{P}^{5}$. Let us consider Π_{0} and Π_{1}; by Theorem 1 they intersect along a line L_{01} and $\left\langle\Pi_{0} \cup \Pi_{1}\right\rangle \simeq$ \mathbb{P}^{3}. Let us consider Π_{2}; by Theorem 1 we know that $\Pi_{2} \cap\left\langle\Pi_{0} \cup \Pi_{1}\right\rangle$ is a line L. By Lemma 2 ii) we have that $\Pi_{2} \cap \Pi_{0} \neq \emptyset$ and $\Pi_{2} \cap \Pi_{1} \neq \emptyset$, hence $L \cap \Pi_{0} \neq \emptyset$ and $L \cap \Pi_{1} \neq \emptyset$.

Let us suppose that L intersects Π_{0} only at a point $A \notin L_{01}$ and that L intersects Π_{1} only at a point $B \notin L_{01}$, so that $\left\langle\Pi_{0} \cup \Pi_{1} \cup \Pi_{2}\right\rangle \simeq \mathbb{P}^{4}$. Then $A=Q_{12}$ and $B=Q_{02}$
are singular points of X. By Corollary 4 i) it is not possible that only two components of X pass through A and B, hence there is another component of X passing through A and there is another component of X passing through B. As X has only four components we have that Π_{3} passes through A and B, moreover, by Theorem $1, \Pi_{3} \cap\left(\Pi_{0} \cup \Pi_{1} \cup \Pi_{2}\right)$ is a line, so that $\Pi_{3} \cap\left(\Pi_{0} \cup \Pi_{1} \cup \Pi_{2}\right)=L$ and $A=Q_{13}, B=Q_{03}$. Now let us consider A, for instance, it is a singular point of X and $\Pi_{1}, \Pi_{2}, \Pi_{3}$ pass through it, but the configuration of these planes contradicts Lemma 4 ii), so that this case is not possible.

Let us suppose that $L=L_{01}$. In this case for any point of L there pass three planes, components of X (this is the maximal number by Corollary 3 i)) intersecting among them only along the line L. By Corollary 4 ii), the three planes belong to the same 3dimensional linear space, or generate a 4-dimensional linear space. Let us consider the last plane Π_{3}, it cuts $\Pi_{0} \cup \Pi_{1} \cup \Pi_{2}$ along a line L^{\prime} by Theorem 1, hence L^{\prime} belongs to Π_{0} or to Π_{1} or to Π_{2} so that in any case $L^{\prime} \cap L \neq \emptyset$ and for any point in $L^{\prime} \cap L$ there pass four components of X, but this is a contradiction with Corollary 3 i).

Let us assume that $L \cap L_{01}$ is only one point $P=Q_{02}=Q_{12}$. Through P there pass three planes, components of X (this is the maximal number by Corollary 3 i), but the configuration of these planes contradicts Lemma 4 ii), so that this case is not possible.

Therefore there is only one possibility: L belongs to one of the two planes Π_{0}, Π_{1} and cuts L_{01} at one point $P=Q_{12}$. We can assume that $L \subset \Pi_{0}$ by reversing the role of Π_{0} and Π_{1}, if necessary (note that we can change the position of Π_{0} and Π_{1} in the ordering given by Theorem 1) and we have $L=L_{02}$ and $\left\langle\Pi_{0} \cup \Pi_{1} \cup \Pi_{2}\right\rangle \simeq \mathbb{P}^{4}$. By Theorem 1, $\Pi_{3} \cap\left\langle\Pi_{0} \cup \Pi_{1} \cup \Pi_{2}\right\rangle$ is a line L^{\prime} and, by Lemma 2, L^{\prime} cuts every plane $\Pi_{0}, \Pi_{1}, \Pi_{2}$, hence it cuts L at some point $A=Q_{03}=Q_{23}$ and it cuts Π_{1} at some point $B=Q_{13}$. If $B \notin L_{01}$ then through B would pass only two planes, components of X intersecting only at B and this is a contradiction with Corollary 4 ii). Then $B \in L_{01}$ and $L^{\prime}=L_{03}$. Note that $B \neq P$ otherwise there would be four components of X passing through P, hence the three lines: $L_{01}, L=L_{02}$, and $L^{\prime}=L_{03}$ are three lines of Π_{0} in general position. Summing up: $\Pi_{1}, \Pi_{2}, \Pi_{3}$ cut Π_{0} along the lines L_{01}, L_{02}, L_{03}, and they cut each other only at the three points $P=Q_{12}=L_{01} \cap L_{02}, B=Q_{13}=L_{01} \cap L_{03}, A=Q_{23}=L_{02} \cap L_{03}$, so that $X=\Sigma_{1}$ when $n=1$.

Step two. Let us assume that $n \geq 2$ and let us define $Y:=X \backslash \Pi_{n+2}$. We want to prove that Y is a reducible Veronese surface in $\mathbb{P}^{n^{\prime}+4}$, according to Definition 1 , for $n^{\prime}:=n-1 \geq 1$. Let us check properties i$\left.), \ldots, \mathrm{v}\right)$.
i) By Theorem 1 we know that $\Pi_{n+2} \cap\left\langle\Pi_{0} \cup \cdots \cup \Pi_{n+1}\right\rangle$ is a line, hence $\Pi_{n+2} \cap\langle Y\rangle$ is a line. As $n+4=\operatorname{dim}(\langle X\rangle)=\operatorname{dim}\left(\left\langle Y \cup \Pi_{n+2}\right\rangle\right)=\operatorname{dim}(\langle Y\rangle)+2-\operatorname{dim}\left(\langle Y\rangle \cap \Pi_{n+2}\right)=$ $\operatorname{dim}(\langle Y\rangle)+1$ (we are assuming that $\operatorname{dim}(\emptyset)=-1$), we get that $\operatorname{dim}(\langle Y\rangle)=n+3=$ $n^{\prime}+4$, so that Y is a non-degenerate, reduced, reducible surface of pure dimension 2 in $\mathbb{P}^{n^{\prime}+4}$.
ii) $\operatorname{deg}(Y)=\operatorname{deg}(X)-1=n+2=n^{\prime}+3, \operatorname{cod}(Y)=n^{\prime}+2$.
iii) $\operatorname{dim}[\operatorname{Sec}(Y)] \leq \operatorname{dim}[\operatorname{Sec}(X)] \leq 4$.
iv) Y is a set of ordered planes $\Pi_{0}, \ldots, \Pi_{n+1}$ in $\mathbb{P}^{n^{\prime}+4}$ such that:

- $\left\langle\Pi_{0} \cup \cdots \cup \Pi_{n+1}\right\rangle=\mathbb{P}^{n^{\prime}+4}$ by the previous check of i),
- for any $j \geq 1, \operatorname{dim}\left(\Pi_{j} \cap\left\langle\Pi_{0} \cup \cdots \cup \Pi_{j-1}\right\rangle=1\right.$ by Theorem 1 (recall that we have ordered all the components of X according to this theorem).
Hence we can apply Corollary 1 and we get that Y is connected in codimension 1.
v) To prove that Y is locally Cohen-Macaulay we have to check all points of Y, obviously we have to check only the points of $Y \cap \Pi_{n+2}$ because for all other points of Y the property follows from the fact that X is locally Cohen-Macaulay.
Let P be a point of $Y \cap \Pi_{n+2}$ and let us assume that there exists only one component $\Pi_{i} \subset$ Y such that $P \in \Pi_{i} \cap \Pi_{n+2}$. As X is locally Cohen-Macaulay at P, by Corollary 4 i), we have that Π_{i} intersects Π_{n+2} along a line passing through P, so that when we delete Π_{n+2} we have that P is a smooth point of Y.
Let us assume that there are two components $\Pi_{i}, \Pi_{j} \subset Y$ such that $P \in \Pi_{i} \cap \Pi_{j} \cap \Pi_{n+2}$ (two is the maximal number by Corollary 3 i)). As X is locally Cohen-Macaulay at P, by Corollary 4 ii), we have the following possibilities:
- the three planes intersect two by two along three lines passing through P; in this case when we delete Π_{n+2} we get that Π_{i} intersect Π_{j} along a line passing through P and Y is locally Cohen-Macaulay at P (see also the proof of Corollary 4 ii));
- the three planes intersect along a unique line passing through P and they span a 3dimensional or a 4-dimensional linear space; in these cases we can argue as in the previous case and Y is locally Cohen-Macaulay at P;
- Π_{i} (or Π_{j}) and Π_{n+2} intersect only at P and the third plane cuts the other ones along two lines, passing through P; in this case we can argue as in the previous cases and Y is locally Cohen-Macaulay at P;
- Π_{i} and Π_{j} intersect only at P and Π_{n+2} cuts the other planes along two lines, passing through P; in this case if we delete Π_{n+2} we have that Y is not locally CohenMacaulay at P, so we have to prove that this case is not possible; by contradiction, let us assume that the configuration of Π_{i}, Π_{j} and Π_{n+2} is as above; we can assume that $0 \leq i<j<n+2$ in the ordering given by Theorem 1, so that $\Pi_{j} \cap\left(\Pi_{0} \cup \cdots \cup \Pi_{i} \cup \cdots \cup \Pi_{j-1}\right)$ is a line L passing through P; note that L is contained in at least a plane Π_{k} among $\Pi_{0}, \ldots, \Pi_{i}, \ldots, \Pi_{j-1}$ and that $\Pi_{k} \neq \Pi_{i}$ because $\Pi_{i} \cap \Pi_{j}=P$ (this implies $j>1$ because $\Pi_{0} \cap \Pi_{1}$ is a line), then $P \in \Pi_{k}$, so that we would have four different components of X passing through P and we would have a contradiction with Corollary 3 i).
Step three. Now let us proceed by induction on $n \geq 1$. If $n=1$ Theorem 2 is true by step one. Let us assume that the theorem is true for any X in $\mathbb{P}^{5}, \mathbb{P}^{6}, \ldots, \mathbb{P}^{n+3}$ and let us prove the theorem for $X \subset \mathbb{P}^{n+4}$. As in step two we can decompose $X=Y \cup \Pi_{n+2}$ and we know that Y is a reducible Veronese surface in \mathbb{P}^{n+3} according to Definition 1, by step two. By induction we can say that $Y=\Sigma_{n-1}$ so that $X=\Sigma_{n-1} \cup \Pi_{n+2}$. By Theorem 1 we have that $\Sigma_{n-1} \cap \Pi_{n+2}$ is a line L and, as above, L is contained in at least a plane among $\Pi_{0}, \ldots, \Pi_{n+1}$.

By contradiction, let us assume that $L \subset \Pi_{i}$ for some $i>0$ and let us consider the line $L_{0 i}$. L cannot contain any point $Q_{i j} \in L_{0 i}(j=1, \ldots, n+1, j \neq i)$ and a fortiori $L \neq L_{0 i}$ otherwise we would have four different components of X passing through $Q_{i j}: \Pi_{0}, \Pi_{i}, \Pi_{j}, \Pi_{n+2}$, a contradiction with Corollary 3 i). So that $L \cap L_{0 i}$ is a point $P \neq Q_{i j}$ for any $j=1, \ldots, n+1, j \neq i$, and the point $P \in X$ belongs exactly to $\Pi_{n+2}, \Pi_{i}, \Pi_{0}$, but this configuration contradicts Corollary 4 ii) because $\Pi_{n+2} \cap \Pi_{i}=L$, $\Pi_{n+2} \cap \Pi_{0}=P, \Pi_{i} \cap \Pi_{0}=L_{0 i}$ and $L \cap L_{0 i}=P$.

Therefore $L \subset \Pi_{0}$ (i.e. $L=L_{0(n+2)}$) and to prove that $X=\Sigma_{n}$ we have only to show that the lines $L_{0 i}$ with $i=1, \ldots, n+1$ and L are in general position on Π_{0} i.e. that
the curve given by their union has no triple points. But this curve has a triple point if and only if L passes through some point $Q_{i j}$ for some $i, j=1, \ldots, n+1, i \neq j$, (recall that $Y=\Sigma_{n-1}$) and we have proved that this is not possible.

To classify reducible Veronese surfaces containing a quadric we need other lemmas.

Lemma 7. Let $V=V_{1} \cup \cdots \cup V_{r} \subset \mathbb{P}^{N}$ be a non-degenerate, reducible, reduced, surface of pure dimension 2, whose irreducible components are V_{1}, \ldots, V_{r}. Let $W \subset V$ be a proper subvariety of V such that $W=V_{1} \cup \cdots \cup V_{\rho}$ with $1 \leq \rho<r$. Assume that V and W are connected in codimension 1 . Then there exists at least a component $V_{i} \subset V$ with $\rho<i \leq r$ such that $\operatorname{dim}\left(W \cap V_{i}\right)=1$ and $W \cup V_{i}$ is connected in codimension 1 .

Proof. If $\operatorname{dim}\left(W \cap V_{i}\right) \leq 0$ for any irreducible component $V_{i} \subset V$ with $\rho<i \leq r$, then $\operatorname{dim}\left[W \cap\left(V_{\rho+1} \cup \cdots \cup V_{r}\right)\right] \leq 0$, but this is not possible, otherwise $V \backslash[\bar{W} \cap$ $\left.\left(V_{\rho+1} \cup \cdots \cup V_{r}\right)\right]$ would be not connected while we are assuming that V is connected in codimension 1. Hence, by changing the ordering of $V_{\rho+1}, \ldots, V_{r}$ if necessary, we can assume that $\operatorname{dim}\left(W \cap V_{\rho+1}\right) \geq 1$. It is not possible that $\operatorname{dim}\left(W \cap V_{\rho+1}\right) \geq 2$, otherwise the irreducible surface $V_{\rho+1}$ would be a component of W, so that $\operatorname{dim}\left(W \cap V_{\rho+1}\right)=1$.

Now let us consider $W \cup V_{\rho+1}$. W is connected in codimension 1 by assumptions, $V_{\rho+1}$ is connected in codimension 1 because it is an irreducible surface; as $\operatorname{dim}(W \cap$ $\left.V_{\rho+1}\right)=1$ we have that $W \cup V_{\rho+1}$ is connected in codimension 1, too.

Lemma 8. Let $X \subset \mathbb{P}^{n+4}$ be a reducible Veronese surface, according to Definition 1, for some $n \geq 1$, and let X_{1}, \ldots, X_{r} be its irreducible components. Let us assume that X contains a quadric Q. Then:
i) $r=n+2$;
ii) there exists an ordering X_{1}, \ldots, X_{n+2} according to Theorem 1 such that $Q=X_{1}$.

Proof. i) Recall that, by Proposition $2, Q$ is the only component of X having degree ≥ 2, so that $n+3=\operatorname{deg}(X)=2+r-1$, hence $r=n+2$.
ii) Let us put $X_{1}=Q$. By Lemma 7 there is (at least) another component $X_{\bar{i}} \subset X$ such that $\operatorname{dim}\left(Q \cap X_{\bar{i}}\right)=1$ and $Q \cup X_{\bar{i}}$ is connected in codimension 1, moreover $X_{\bar{i}}$ is a plane. By Corollary $2 Q \cap X_{\bar{i}}$ is a line. If we put $X_{2}=X_{\bar{i}}$ we have that $X_{1} \cap X_{2}=$ $\left\langle X_{1}\right\rangle \cap\left\langle X_{2}\right\rangle$ and the intersection is a line. As $n \geq 1$ we have $r \geq 3$, so that there exists at least another component. Now let us apply Lemma 7 to $X_{1} \cup X_{2}$, which is connected in codimension 1, and there is (at least) another component $X_{\bar{i}} \subset X$ such that $\operatorname{dim}\left[\left(X_{1} \cup X_{2}\right) \cap X_{\bar{i}}\right]=1$ and $X_{1} \cup X_{2} \cup X_{\bar{i}}$ is connected in codimension 1, moreover $X_{\bar{i}}$ is a plane, and so on. By applying Lemma 7 a suitable number of times we get an ordering X_{1}, \ldots, X_{n+2} such that $X_{1}=Q$ and, for any $j \geq 2, \operatorname{dim}\left[X_{j} \cap\left(X_{1}, \ldots, X_{j-1}\right)\right]=1$ and $X_{1} \cup \cdots \cup X_{j}$ is connected in codimension 1.

Let us consider $\left\langle X_{j}\right\rangle \cap\left\langle X_{1} \cup \cdots \cup X_{j-1}\right\rangle=X_{j} \cap\left\langle X_{1} \cup \cdots \cup X_{j-1}\right\rangle$ for any $j \geq 2$ and we have $\operatorname{dim}\left(X_{j} \cap\left\langle X_{1} \cup \cdots \cup X_{j-1}\right\rangle\right) \geq \operatorname{dim}\left[X_{j} \cap\left(X_{1} \cup \cdots \cup X_{j-1}\right)\right]=1$. Let us
put $a_{j}:=\operatorname{dim}\left(X_{j} \cap\left\langle X_{1} \cup \cdots \cup X_{j-1}\right\rangle\right)$ for any $j \geq 3$, so that:

$$
\begin{aligned}
& \operatorname{dim}\left(\left\langle X_{1} \cup X_{2}\right\rangle\right)=4 \\
& \operatorname{dim}\left(\left\langle X_{1} \cup X_{2} \cup X_{3}\right\rangle\right)=\operatorname{dim}\left(\left\langle\left\langle X_{1} \cup X_{2}\right\rangle \cup X_{3}\right\rangle\right)=\operatorname{dim}\left(\left\langle X_{1} \cup X_{2}\right\rangle\right)+2-a_{3} \\
& \operatorname{dim}\left(\left\langle X_{1} \cup X_{2} \cup X_{3} \cup X_{4}\right\rangle\right)=\operatorname{dim}\left(\left\langle\left\langle X_{1} \cup X_{2} \cup X_{3}\right\rangle \cup X_{4}\right\rangle\right)= \\
& \quad=\operatorname{dim}\left(\left\langle X_{1} \cup X_{2}\right\rangle\right)+2-a_{3}+2-a_{4} \\
& \vdots \\
& \operatorname{dim}\left(\left\langle X_{1} \cup X_{2} \cup \cdots \cup X_{n+2}\right\rangle\right)=\operatorname{dim}\left(\left\langle\left\langle X_{1} \cup X_{2} \cup \cdots \cup X_{n+1}\right\rangle \cup X_{n+2}\right\rangle\right)= \\
& \quad=\operatorname{dim}\left(\left\langle X_{1} \cup X_{2}\right\rangle\right)+2-a_{3}+2-a_{4}+\cdots+2-a_{n+2}= \\
& \quad=4+2 n-\sum_{j=3}^{n+2} a_{j}=n+4 .
\end{aligned}
$$

Hence $\sum_{j=3}^{n+2} a_{j}=n$. As $a_{j} \geq 1$ for any $j \geq 3$ we have in fact $a_{j}=1$ for any $j \geq 3$, so that $1=\operatorname{dim}\left(X_{j} \cap\left\langle X_{1} \cup \cdots \cup X_{j-1}\right\rangle\right)=\operatorname{dim}\left[X_{j} \cap\left(X_{1} \cup \cdots \cup X_{j-1}\right)\right]$ for any $j \geq 3$ (the case $j=2$ was considered previously) and $X_{j} \cap\left\langle X_{1} \cup \cdots \cup X_{j-1}\right\rangle$ is obviously a line.

To prove Lemma 8 ii) now we have to show that $X_{j} \cap\left\langle X_{1} \cup \cdots \cup X_{j-1}\right\rangle=X_{j} \cap$ $\left(X_{1} \cup \cdots \cup X_{j-1}\right)$ for any $j \geq 2$. As above, the case $j=2$ was considered previously, so we can assume $j \geq 3$ and recall that X_{j} is a plane. As $X_{j} \cap\left\langle X_{1} \cup \cdots \cup X_{j-1}\right\rangle \supseteq$ $X_{j} \cap\left(X_{1} \cup \cdots \cup X_{j-1}\right)$ and $X_{j} \cap\left\langle X_{1} \cup \cdots \cup X_{j-1}\right\rangle$ is a line we have only to show that $X_{j} \cap\left(X_{1} \cup \cdots \cup X_{j-1}\right)$ is a line. As $\operatorname{dim}\left[X_{j} \cap\left(X_{1} \cup \cdots \cup X_{j-1}\right)\right]=1$ there exists at least one component X_{i}, with $1 \leq i \leq j-1$, such that $\left.\operatorname{dim}\left[X_{j} \cap X_{i}\right)\right]=1$, hence $X_{j} \cap X_{i}$ is a line $L_{i j}$ by Corollary 2. Moreover there are no other points $P \in X_{j} \cap\left(X_{1} \cup \cdots \cup X_{j-1}\right)$, $P \notin L_{i j}$, otherwise X_{j} would be contained in $\left\langle X_{1} \cup \cdots \cup X_{j-1}\right\rangle$ and this is not possible as $\operatorname{dim}\left(X_{j} \cap\left\langle X_{1} \cup \cdots \cup X_{j-1}\right\rangle\right)=1$. It follows that, for any $j \geq 3, X_{j} \cap\left(X_{1} \cup \cdots \cup X_{j-1}\right)$ is a line and we are done.

Now we can conclude this section with the following theorems.
Theorem 3. Let $X \subset \mathbb{P}^{n+4}$ be a reducible Veronese surface, according to Definition 1 , for some $n \geq 1$, and let X_{1}, \ldots, X_{r} be its irreducible components. Let us assume that X contains a smooth quadric Q. Then $n=1, r=3, X=Q \cup X_{1} \cup X_{2}$, where X_{1} and X_{2} are planes, and we have only two possibilities:
a) Q, X_{1}, X_{2} intersect transversally along a unique line $L=Q \cap X_{1} \cap X_{2}$;
b) X_{1} and X_{2} cut Q along two lines intersecting at a point $P=X_{1} \cap X_{2}$.

Proof. By Lemma 8 we know that $r=n+2 \geq 3$ and there exists an ordering X_{1}, \ldots, X_{n+2} given by Theorem 1 such that $X_{1}=Q, X_{i}$ is a plane for any $i \geq 2$ and X_{2} cuts Q along a line L. Now let us consider the plane X_{3} cutting $Q \cup X_{2}$ and $\left\langle Q \cup X_{2}\right\rangle \simeq \mathbb{P}^{4}$ along a line L^{\prime} by Theorem 1 . We have some cases to consider.

1) Let us assume that $L^{\prime} \subset X_{2}$ and $L^{\prime} \neq L$ so that $L^{\prime} \cap L$ is a point $\bar{P} \in Q$, then $\left\langle X_{2} \cup X_{3}\right\rangle \simeq \mathbb{P}^{3}, L=\left\langle X_{2} \cup X_{3}\right\rangle \cap\langle Q\rangle,\left\langle Q \cup X_{2} \cup X_{3}\right\rangle \simeq \mathbb{P}^{5}$, and $\bar{P}=Q \cap X_{3}$
so that $\left\langle Q \cup X_{3}\right\rangle=\left\langle Q \cup X_{2} \cup X_{3}\right\rangle \simeq \mathbb{P}^{5}$. This case is not possible, in fact, let P be a generic point in $\left\langle Q \cup X_{3}\right\rangle$; note that, in particular, this means that $P \notin\langle Q\rangle \cup X_{3}$ and $P \notin\left\langle T_{\bar{P}}(Q) \cup X_{3}\right\rangle \simeq \mathbb{P}^{4}$. Let us consider the 3-dimensional linear space $\Lambda_{P}:=$ $\left\langle P \cup X_{3}\right\rangle \subset\left\langle Q \cup X_{3}\right\rangle \simeq \mathbb{P}^{5}$. We have that $\Lambda_{P} \cap\langle Q\rangle$ is a line L_{P} passing through \bar{P} and that there exists (at least) another point $P^{\prime} \in Q$ on L_{P} with $\bar{P} \neq P^{\prime}$; recall that $P \notin\left\langle T_{\bar{P}}(Q) \cup X_{3}\right\rangle$ so that the line L_{P} is not tangent to Q. Now the line $P P^{\prime}$ $\in \Lambda_{P}$ cuts X_{3} at some point $P^{\prime \prime} \neq \bar{P}$ (otherwise $L_{P}=P P^{\prime}$ and $P \in\langle Q\rangle$) so that $P \in \operatorname{Sec}\left(Q \cup X_{3}\right) \subset \operatorname{Sec}(X)$. It follows that the generic point of $\left\langle Q \cup X_{2} \cup X_{3}\right\rangle \simeq \mathbb{P}^{5}$ is contained in $\operatorname{Sec}(X)$, hence $\operatorname{dim}[\operatorname{Sec}(X)] \geq 5$ and we get a contradiction with iii) of Definition 1.
2) Let us assume that $L^{\prime} \subset X_{2}$ and $L^{\prime}=L$. By contradiction let us assume that there exists another plane X_{4} in X. Then $X_{4} \cap\left(Q \cup X_{2} \cup X_{3}\right)$ is a line $L^{\prime \prime}$, but $L^{\prime \prime}$ cannot be contained in X_{2} or in X_{3} otherwise we would have four components of X passing through a point and this is not possible by Corollary 3 i), hence $L^{\prime \prime} \subset Q$. Analogously we have $L^{\prime \prime} \cap L=\emptyset$, but in this case X_{4} must intersect X_{2} at some point P by Lemma 2 ii), so that $X_{4}=\left\langle P \cup L^{\prime \prime}\right\rangle$ would be contained in $\left\langle Q \cup X_{2} \cup X_{3}\right\rangle$ and this is not possible by Lemma 8 ii). Hence there are only two planes in X and we get a).
3) Let us assume that $L^{\prime} \subset Q$ and that $L \cap L^{\prime}=\emptyset$. Then $X_{3} \cap X_{2}$ would be a point P by Lemma 2 ii) and we would get a contradiction by arguing as above: $X_{3}=\left\langle L^{\prime} \cup P\right\rangle$ would be contained in $\left\langle Q \cup X_{2}\right\rangle$.
4) Let us assume that $L^{\prime} \subset Q$ and that $L \cap L^{\prime}$ is a point P and, by contradiction, let us assume that there exists another plane X_{4} in X. Then $X_{4} \cap\left(Q \cup X_{2} \cup X_{3}\right)$ is a line $L^{\prime \prime}$. If $L^{\prime \prime} \subset Q, L^{\prime \prime} \neq L, L^{\prime \prime} \neq L^{\prime}$ then $X_{4} \cap X_{2}=\emptyset$ or $X_{4} \cap X_{3}=\emptyset$ and this is not possible by Lemma 2 ii), on the other hand if $L^{\prime \prime}=L$ or $L^{\prime \prime}=L^{\prime}$ we would have four components of X passing through a point and this is not possible by Corollary 3 i). So that $L^{\prime \prime} \nsubseteq Q$ and $L^{\prime \prime} \subset X_{2}$ or $L^{\prime \prime} \subset X_{3}$. Now let us suppose that $L^{\prime \prime} \subset X_{2}$ (the other case is similar), if $P \notin L^{\prime \prime}$ then $X_{4} \cap X_{3}=\emptyset$ and this is not possible by Lemma 2 ii), on the other hand if $P \in L^{\prime \prime}$ we would have four components of X passing through a point and this is not possible by Corollary 3 i). Hence there are only two planes in X and we get b).

To complete the proof of Theorem 3 now we have to prove that the surfaces X in cases a) and b) are reducible Veronese surfaces according to Definition 1: i), ii) and iv) are obvious; for iii) let us remark that $\operatorname{Sec}(X)$ is the union of a finite number of linear spaces of dimension ≤ 4; for v) we can apply Lemma 1.

Theorem 4. Let $X \subset \mathbb{P}^{n+4}$ be a reducible Veronese surface, according to Definition 1, for some $n \geq 1$, and let X_{1}, \ldots, X_{r} be its irreducible components. Then none of the components of X can be a quadric cone.

Proof. By contradiction, let us suppose that X contains a quadric cone Γ of vertex P_{Γ}. By Lemma 8 we know that $r=n+2 \geq 3$ and there exists an ordering X_{1}, \ldots, X_{n+2} such that $\Gamma=X_{1}$, the other components are planes and $X_{2} \cap \Gamma$ is a line L passing through P_{Γ}. Let us consider the plane X_{3} and let us remark that $P_{\Gamma} \notin X_{3}$, in fact the union of the tangent spaces to Γ and X_{2} at P_{Γ} spans the 4-dimensional linear space $\left\langle\Gamma \cup X_{2}\right\rangle$ and $X_{3} \notin\left\langle\Gamma \cup X_{2}\right\rangle$ by Theorem 1, so that, if $P_{\Gamma} \in X_{3}$, we would get a contradiction with

Lemma 4 for $P=P_{\Gamma}$.
On the other hand we know that $X_{3} \cap\left(\Gamma \cup X_{2}\right)$ is a line L^{\prime} by Theorem 1. As $P_{\Gamma} \notin X_{3}$ we have that $L^{\prime} \nsubseteq \Gamma$, so that $L^{\prime} \subset X_{2}$ and it cuts Γ only at a point $\bar{P} \in L, \bar{P} \neq P_{\Gamma}$. Hence X_{3} and Γ are in the same configuration as X_{3} and Q in Case 1) of Theorem 3, so that we can argue as above and we can prove that this case is not possible. Therefore X_{3} does not exist and we get a contradiction as $r \geq 3$.

Remark 3. The above Theorems 2, 3 and 4, taking into account Proposition 2, give a complete classification of the reducible Veronese surfaces according to Definition 1. It follows that the generic surfaces S_{n}, embedded in \mathbb{P}^{n+4}, introduced by Floystad in [5], are in fact surfaces Σ_{n} for any $n \geq 2$. If $n=2$ the proof was made in Section 2. If $n \geq 3$ we have only to check that any generic S_{n} satisfies Definition 1: in [5] it is proved that S_{n} is non-degenerate and that iii) and v) hold; from v) it follows that S_{n} is reduced, of pure dimension 2, and that iv) holds (see Remark 1); ii) follows from direct calculation as in Section 2; to have i) it suffices to show that S_{n} is reducible, if not, from the classification of irreducible, reduced surfaces of minimal degree (see the beginning of the proof of Proposition 2) it would follow that $\operatorname{deg}\left(S_{n}\right) \leq 4$, while $\operatorname{deg}\left(S_{n}\right) \geq 6$ as $n \geq 3$.

Remark 4. Reducible Veronese surface X are not locally complete intersections. In fact let us consider any triple point $P \in X$ and let Y_{p} be any generic hyperplane section of X passing through P. If X is a locally complete intersection at P then Y_{p} is a locally complete intersection at P too (see for instance [2, Theorem 2.3.4]). If $X=\Sigma_{n}$ then Y_{p} is the union of 3 lines passing through P, spanning a 3-dimensional linear space. If X is one of the cases a), b) of Theorem 3 then Y_{P} is the union of a smooth conic and two lines passing through P, spanning a 4-dimensional linear space. In any case Y_{P} is not a locally complete intersection at P.

Remark 5. Reducible Veronese surfaces are not even locally Gorenstein. Let X, P, Y_{P} be as in Remark 4. If X is locally Gorenstein at P then the dualizing sheaf ω_{X} is free at P and it has rank 1 (see [3, p. 532]). By adjunction we have that $\omega_{Y_{P}}=\left(\omega_{X}+H\right)_{\mid Y_{P}}$ where H is the Cartier divisor of X corresponding to Y_{P} (see Lemma 1.7.6 of [1]), so that $\omega_{Y_{P}}$ is free at P and it has rank 1 too. But this is not possible: let $f: \overline{Y_{P}} \longrightarrow Y_{P}$ be the normalization of Y_{P}; note that f is a triple unramified covering locally at P. The conductor sheaf \mathcal{C} of $\mathcal{O}_{\overline{Y_{P}}, P}$ in $\mathcal{O}_{Y_{P}, P}$ is the maximal ideal of $\mathcal{O}_{Y_{P}, P}$, hence $\operatorname{dim}_{\mathbb{C}}\left(\mathcal{O}_{Y_{P}, P} / \mathcal{C}\right)=$ 1 , on the other hand $\operatorname{dim}_{\mathbb{C}}\left(\mathcal{O}_{\overline{Y_{P}}, P} / \mathcal{O}_{Y_{P}, P}\right)=2$ and this is a contradiction because $\operatorname{dim}_{\mathbb{C}}\left(\mathcal{O}_{\overline{Y_{P}}, P} / \mathcal{O}_{Y_{P}, P}\right)=\operatorname{dim}_{\mathbb{C}}\left(\mathcal{O}_{\overline{Y_{P}}, P} / \mathcal{C}\right)+\operatorname{dim}_{\mathbb{C}}\left(\mathcal{O}_{Y_{P}, P} / \mathcal{C}\right)=2+1=3$.

References

[1] M. C. Beltrametti, A. J. Sommese, The adjunction theory of complex projective varieties. De Gruyter 1995. MR1318687 (96f:14004) Zbl 0845.14003
[2] W. Bruns, J. Herzog, Cohen-Macaulay rings. Cambridge Univ. Press 1993. MR1251956 (95h:13020) Zbl 0788.13005
[3] D. Eisenbud, Commutative algebra. Springer 1995. MR1322960 (97a:13001) Zbl 0819.13001
[4] D. Eisenbud, M. Green, K. Hulek, S. Popescu, Small schemes and varieties of minimal degree. Amer. J. Math. 128 (2006), 1363-1389. MR2275024 (2007j:14078) Zbl 1108.14042
[5] G. Fløystad, Monads on projective spaces. Comm. Algebra 28 (2000), 5503-5516. MR1808585 (2002e:14070) Zbl 0977.14007
[6] R. Hartshorne, Complete intersections and connectedness. Amer. J. Math. 84 (1962), 497-508. MR0142547 (26 \#116) Zbl 0108.16602
[7] S. Xambó, On projective varieties of minimal degree. Collect. Math. 32 (1981), 149-163. MR653892 (84e:14039) Zbl 0501.14020

Received 13 October, 2008; revised 5 March, 2009
A. Alzati, Dipartimento di Matematica Univ. di Milano, via C. Saldini 50, 20133-Milano, Italy Email: alberto.alzati@unimi.it
E. Ballico, Dipartimento di Matematica Univ. di Trento, via Sommarive 14, 38050-Povo (TN), Italy Email: ballico@science.unitn.it

[^0]: *This work is within the framework of the national research projects: "Geometry on Algebraic Varieties" Cofin 2006 of MIUR and "Geometric Properties of Real and Complex Varieties" Cofin 2007 of MIUR.

