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Reducible Veronese surfaces
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Abstract. Here we describe all degree n + 3 non-degenerate surfaces in Pn+4, n ≥ 1, connected
in codimension 1, which may be isomorphically projected into P4. There are three of them. One is
a suitable union of n + 3 planes (for all n ≥ 1); it was discovered by Floystad. The other two are
unions of a smooth quadric and two planes (only for n = 1).
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1 Introduction

Let PN be the N -dimensional projective space on C. For any integer k ≥ 0, a reduced
subvariety V ⊂ PN of pure dimension is said to be connected in codimension k if for any
closed subvarietyW ⊂ V , such that codV (W ) > k, we have that V \W is connected. For
any subvariety V ⊂ PN and for any λ-dimensional linear subspace Λ ⊂ PN we say that
V projects isomorphically to Λ if there exists a linear projection πL : PN 99K Λ, from
a suitable (N − λ − 1)-dimensional linear space L, disjoint from V , such that πL(V ) is
isomorphic to V .

In this note we consider the following type of surface arising from the example de-
scribed in Section 2.

Definition 1. For any positive integer n ≥ 1, we will call reducible Veronese surface any
algebraic surface X ⊂ Pn+4 such that:

i) X is a non-degenerate, reduced, reducible surface of pure dimension 2;
ii) deg(X) = n+ 3, cod(X) = n+ 2, so that X is a minimal degree surface;

iii) dim[Sec(X)] ≤ 4, so that it is possible to choose a generic linear space L of dimen-
sion n − 1 in Pn+4 such πL(X) is isomorphic to X , where πL is the the rational
projection πL : Pn+4 99K Λ from L to a generic target Λ ' P4;

∗This work is within the framework of the national research projects: “Geometry on Algebraic Varieties”
Cofin 2006 of MIUR and “Geometric Properties of Real and Complex Varieties” Cofin 2007 of MIUR.
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iv) X is connected in codimension 1, i.e. if we drop any finite number (possibly 0) of
points Q1, . . . , Qr from X we have that X\{Q1, . . . , Qr} is connected;

v) X is a locally Cohen–Macaulay surface.

Remark 1. Actually v) implies iv) by Corollary 2.4 of [6]; however we think that it is
more useful to give the above Definition 1 because condition iv) is crucial to get the
classification.

In summary: we prove that there are exactly 3 types of reducible Veronese surfaces
(see Proposition 2 and Theorems 2, 3, 4):

i) a suitable union of n + 3 planes (for any integer n ≥ 1) which sits as a linearly
normal scheme in Pn+4 (see Theorem 2 and Definition 2 for a precise description);
these are the examples whose existence is proved in [5];

ii) two surfaces which are the union of a smooth quadric surface and two planes; each
of these two examples sits as a linearly normal scheme in P5 (see Theorems 3 for
their description).

We will use the following definitions:
〈V1 ∪ · · · ∪ Vr〉: linear span in PN of the subvarieties Vi ⊂ PN , i = 1, . . . , r;
Supp(V ): support of the subscheme V ⊂ PN ;
Sing(V ): singular locus of the subscheme V ⊂ PN ;
Sec(V ):

{⋃
v1 6=v2∈V 〈v1 ∪ v2〉

}
⊂ PN for any subvariety V ⊂ PN .

For any positive integer d ≥ 2 a rational comb of degree d in PN is the union of d lines
L1, L2, . . . , Ld ⊂ PN such that, for any i ≥ 2, Li ∩ L1 is a point, these d − 1 points are
distinct and, for any j > i ≥ 2, Li ∩ Lj = ∅.

2 Floystad’s example

In [5, Corollary 3], the author proves that, for any integer n ≥ 1, there exists in P4 a
monad of the following form:

OP4(−1)⊕n+2 −→ OP4
⊕2n+3 −→ OP4(1)⊕n

whose homology is ISn
(2) where Sn is a locally Cohen–Macaulay surface in P4. More-

over Sn is embedded in Pn+4 as a linearly normal surface and Sn projects isomorphically
to some suitable Λ ⊂ Pn+4, Λ ' P4. For n = 1, S1 is the usual (smooth) Veronese
surface in P5; in contrast, Sn must be singular for n ≥ 2.

If we call ϕn : OP4
⊕2n+3 −→ OP4(1)⊕n we get the following exact sequences of

sheaves and vector bundles over P4:

0 −→ ker(ϕn) −→ OP4
⊕2n+3 −→ OP4(1)⊕n −→ 0

0 −→ OP4(−1)⊕n+2 −→ ker(ϕn) −→ ISn(2) −→ 0.

Now it is easy to calculate χ[OSn
(t)] =

(
t+4

4

)
− χ[ISn(t)] = (n+3

2 )t2 + (n+5
2 )t+ 1,

so that deg(Sn) = n+ 3 and Sn is a minimal degree surface in Pn+4 for any n ≥ 1.
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When n = 2, by a computer algebra system as Macaulay, it is easy to get a set of
generators for the ideal of a generic S2 in P6. In fact, by choosing a random (2, 7) matrix
M of linear forms we have a map as ϕn and, by calculating the higher syzygies of M , we
get a free resolution for ker(ϕn) and a commutative diagram as follows:

0 0

0 // OP4(−1)⊕4

OO

// ker(ϕ2)

OO

// IS2(2) // 0

OP4(−1)⊕4

OO

// OP4(−1)⊕5 ⊕OP4(−2)⊕10

OO

0

OO

OP4(−3)⊕20

OO

...

OO

By choosing another random (5, 4) matrix N of constants, in order to get a map
OP4(−1)⊕4 −→ OP4(−1)⊕5, (OP4(−1)⊕4 −→ OP4(−2)⊕10 is the zero map) and by us-
ing the mapping cone technique, we have that the ideal IS2 in P6 of a generic surface S2 is
generated by one cubic and ten quartics. S2 has codimension 4, degree 5 and (arithmetic)
sectional genus 0. Alternatively, one can also choose 4 generic sections of the rank 5
vector bundle ker(ϕ2)⊗OP4(1) by giving a random (5, 4) matrix of constants N ′: in this
case S2 is the degeneracy locus in P6 of these sections; if N ′ = N we get exactly the
same set of generators for IS2 .

By knowing a set of generators for IS2 it is, more or less, easy to see that the generic
S2 is given by 5 planes Π0,Π1, . . . ,Π4 such that: Π0∩Πi := Li is a line for i = 1, . . . , 4;
Πi ∩Πj := Qij is a point of Π0 for i, j = 1, . . . , 4, i 6= j, and the lines Li are in general
position on Π0. The generic hyperplane section of S2 is a rational comb of degree 5 given
by a line l0 on Π0 and four other lines li, i = 1, . . . , 4, li ∈ Πi, li ∩ lj = ∅ for i 6= j,
intersecting l0 at one point. Sec(S2) is the union of a finite number of linear spaces of
dimension 2 (Πi, i = 0, . . . , 4), 3 (〈Π0 ∪ Πi〉, i = 1, . . . , 4) or 4 (〈Πi ∪ Πj〉, i, j =
1, . . . , 4, i 6= j) so that it is possible to choose a generic line L in P6, L ∩ Sec(S2) = ∅,
and to project S2, from L to a generic Λ ' P4, in such a way that the projection of S2 is
isomorphic to S2.

The above concrete construction of S2 suggests to define a family of completely re-
ducible surfaces having the same properties.

Definition 2. For any positive integer n ≥ 1, let us choose a plane Π0 and n+ 2 distinct
points P1, . . . , Pn+2 in general position in Pn+4, so that 〈Π0 ∪P1 ∪ · · · ∪Pn+2〉 = Pn+4.
Let us choose n + 2 planes Πi, i = 1, . . . , n + 2, Pi ∈ Πi, such that Πi ∩ Π0 is a
line Li and the n + 2 lines Li are in general position on Π0 (i.e. that the curve given by
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their union has no triple points). Let us call Σn any surface in Pn+4 which is the union
Π0 ∪Π1 · · · ∪Πn+2.

Proposition 1. The previously defined surfaces Σn, n ≥ 1, are reducible Veronese sur-
faces according to Definition 1.

Proof. i), ii), iii), iv) follow directly from the definition; note that Sec(Σn) is the union of
a finite number of linear spaces of dimension 2, 3, 4.

Concerning v), let us remark that for any singular point P ∈ Σn its local ring is
isomorphic either to the local ring at (0, 0, 0) of the affine variety {xy = 0} in A3(C), or
to the local ring at (0, 0, 0, 0) of the affine variety {x = y = 0} ∪ {z = w = 0} ∪ {x =
z = 0} = {x2z = xz2 = x2w = xzw = xyz = yz2 = xyw = yzw = 0} in A4(C).
They are, up to isomorphisms, the same local rings of the singular points of S2 and we
know that S2 is a locally Cohen–Macaulay surface by Corollary 3 of [5]. 2

To prove that Σn are locally Cohen–Macaulay we could also use a slightly different
version of the following lemma which will be useful at the end of the paper.

Lemma 1. Let X ⊂ P5 be a non-degenerate surface such that X = Q∪X1 ∪X2, where
Q is a smooth quadric, X1 and X2 are planes, and either X1 and X2 cut Q along two
lines intersecting at a point P = X1 ∩ X2 or Q,X1, X2 intersect transversally along a
unique line L = Q ∩X1 ∩X2. Then X is a locally Cohen–Macaulay surface.

Proof. Let us consider the first case. Obviously we have to check the property only at P .
LetR be the local ring ofX at P and letm be its maximal ideal. We have height(m) = 2,
so that we have to prove that depth(m) = 2. As X is reduced and dim(X) ≥ 1 we know
that depth(m) ≥ 1. A generic hyperplane section of X not passing through P cuts X
along a reducible curve Y = C ∪L1 ∪L2, where C is a smooth conic and L1, L2 are two
disjoint lines intersecting C transversally at two different points. Y is reduced, connected
and its arithmetic genus pa(Y ) is 0. Let H be a generic hyperplane section of X passing
through P ; now H ∩ X := YP is reducible as the union of a smooth conic CP and
two distinct lines intersecting CP transversally at P . H gives rise to a non-zero divisor
element α ∈ m because X has pure dimension 2. Now let us remark that pa(YP ) = 0,
so that YP has no embedded components at P = Sing(YP ), otherwise pa(YP ) < pa(Y ).
Hence there is at least a non-zero divisor element β ∈ m \ (α) and (α, β) is a regular
sequence for m, so that depth(m) ≥ 2. As depth(m) ≤ height(m) = 2 we are done.

In the second case we can argue as in the previous one for all points P ∈ L. 2

Remark 2. It is easy to see that the generic section of Σn is a rational comb, quite exactly
as in the case of S2 (which is in fact an example of Σ2), so that pa(Σn) = 0, but we will
not consider this property in the sequel.

Now it is very natural to ask if the surfaces Σn are the only existing reducible Veronese
surfaces in our sense. The answer to this question is the aim of the following sections.
Moreover we will prove that any generic Sn is a surface Σn for n ≥ 2, see Remark 3. To
show that the matter is in fact very intricate, let us consider the following:
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Example 1. Let X = Q ∪ Π1 ∪ Π2 ∪ Π3 ⊂ P6, where Q is a smooth quadric of P3

and any Πi is a generic plane such that, if we call the three points Pij := Πi ∩ Πj , we
have: Pij /∈ Πk for k 6= i, j, Pij /∈ Q, but Pij ∈ 〈Q〉. Then X is non-degenerate,
deg(X) = 5, dim[Sec(X)] ≤ 4, but X is not connected in codimension 1, for instance
because X\{P12 ∪ P23 ∪ P31} is not connected.

3 Xambò’s result and applications

In [7] Xambò proves the following result:

Theorem 1. Let V = V1 ∪ · · · ∪ Vr ⊂ PN be a non-degenerate, reducible, reduced,
surface of pure dimension 2, whose irreducible components are V1, . . . , Vr. Assume that
V is connected in codimension 1 and that it has minimal degree. Then
• any irreducible component Vi of dimension 2 of V is a surface of minimal degree in

its span 〈Vi〉;
• there is at least an ordering V1, V2, . . . , Vr such that, for any j = 2, . . . , r,

Vj ∩ (V1 ∪ · · · ∪ Vj−1) = 〈Vj〉 ∩ 〈V1 ∪ · · · ∪ Vj−1〉

and this intersection is always a line.

Proof. The theorem is a simple consequence of Theorem 1 of [7]. 2

Corollary 1. Let Π1,Π2, . . . ,Πr be a set of ordered planes in some PN such that:

i) 〈Π1 ∪Π2 ∪ · · · ∪Πr〉 = PN ;
ii) for any j ≥ 2, dim(Πj ∩ 〈Π1 ∪ · · · ∪Πj−1〉) = 1.

Then X := Π1 ∪ Π2 ∪ · · · ∪ Πr is a non-degenerate surface in PN , of minimal degree,
connected in codimension 1.

Proof. The corollary follows from the remark after Theorem 1 of [7, p. 151]. 2

Corollary 2. Let V be any surface as in Theorem 1. Then for any pair of irreducible
components Vj , Vk ⊂ V we have only three possibilities:
• Vj ∩ Vk = ∅
• Vj ∩ Vk is a point
• Vj ∩ Vk is a line.

Proof. Let us assume that Vj ∩ Vk 6= ∅ and that k > j in the existing ordering of the
components of V considered by Theorem 1. Then Vj∩Vk ⊆ Vk∩(V1∪. . . Vj∪· · ·∪Vk−1)
which is a line, as a scheme, because it is the intersection of two linear spaces in PN . By
Theorem 0.4 of [4] V is small according to the definition of [4, p. 1364] hence Vj ∩ Vk =
〈Vi〉 ∩ 〈Vj〉 is a linear space by Proposition 2.4 of [4]. As Vj ∩ Vk is contained in a line
Corollary 2 follows. 2
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Lemma 2. Let X ⊂ Pn+4 be a reducible Veronese surface, according to Definition 1, for
some n ≥ 1. Then:

i) any connected surface Y ⊂ X can be isomorphically projected in P4;
ii) for any pair of irreducible components Xj and Xk of X we have Xj ∩Xk 6= ∅.

Proof. As X is a reducible Veronese surface there exists a projection πL : Pn+4 99K Λ,
from a suitable linear space L to a suitable linear space Λ ⊂ Pn+4, Λ ' P4, such that
πL(X) ' X . This implies that, for any i = 1, . . . , r, πL(Xi) ' Xi, and, for any pair
Xj , Xk ⊂ X , πL(Xj) ∩ πL(Xk) ' Xj ∩ Xk. Hence for any surface Y ⊂ X we have
πL(Y ) ' Y and πL(Xj) ∩ πL(Xk), being the intersection of two surfaces in P4, cannot
be empty, so that Xj ∩Xk cannot be empty too. 2

Lemma 3. Let X ⊂ Pn+4 be a reducible Veronese surface, according to Definition 1,
for some n ≥ 1. Let P be a singular point of X and let XP

1 , . . . , X
P
s be the irreducible

components of X containing P with s ≥ 2. For any i = 1, . . . , s let Ti be the tangent
space of XP

i at P in 〈XP
i 〉 and let us assume that the natural ordering of XP

1 , . . . , X
P
s

is coherent with the ordering given by Theorem 1. Then, for any j ≥ 2, Tj * 〈T1 ∪ · · · ∪
Tj−1〉 and dim[Tj ∩ 〈T1 ∪ · · · ∪ Tj−1〉] ≤ 1.

Proof. By contradiction, let us assume that Tj ⊆ 〈T1 ∪ · · · ∪ Tj−1〉, hence Tj ⊆ Tj ∩
〈T1 ∪ · · · ∪ Tj−1〉 ⊆ 〈XP

j 〉 ∩ 〈XP
1 ∪ · · · ∪ XP

j−1〉. As we are assuming that the natural
ordering of XP

1 , . . . , X
P
s is coherent with the ordering given by Theorem 1, we have that

dim[〈XP
j 〉 ∩ 〈XP

1 ∪ · · · ∪ XP
j−1〉] ≤ 1. Moreover dim(Tj) = 2 if P is a smooth point

of XP
j and dim(Tj) = 3 if P is a singular point of XP

j ; in fact by Theorem 1 we know
that every Xj is an irreducible, reduced, surface of minimal degree in its span and from
the well known classification of these surfaces (see for instance Theorem 0.1 of [4]) we
have that Xj is singular if and only if it is a rank 3 quadric. So that in any case we get a
contradiction. By the way we have also proved that dim[Tj ∩ 〈T1 ∪ · · · ∪ Tj−1〉] ≤ 1. 2

Lemma 4. Let X ⊂ Pn+4 be a reducible Veronese surface, according to Definition 1, for
some n ≥ 1. Let P be any point ofX and letXP

1 , . . . , X
P
s be the irreducible components

of X containing P , s ≥ 1. For any i = 1, . . . , s let Ti be the tangent space of XP
i at P

in 〈XP
i 〉 and let TP :=

⋃s
i=1 Ti. Then dim(〈TP 〉) ≤ 4.

Proof. If s = 1 we have that 〈TP 〉 = T1 and dim(T1) ≤ 3 as in the proof of Lemma 3.
If s ≥ 2, TP is the union of s linear spaces, of dimensions 2 or 3, passing through
P according a certain configuration CP ⊂ Pn+4. By contradiction, let us assume that
dim(〈TP 〉) ≥ 5. Let πL : Pn+4 99K Λ be any linear projection, from a suitable (n −
1)-dimensional linear space L to a suitable Λ ⊂ Pn+4, Λ ' P4, such that πL(X) is
isomorphic to X , hence πL(CP ) is isomorphic to CP . As dim(〈TP 〉) ≥ 5 there is a
non-empty linear space L′ := L ∩ 〈TP 〉 such that πL(CP ) = πL′(CP ) where πL′ :
〈TP 〉 99K Λ. But, as dim(Λ) < dim(〈TP 〉), it is not possible that πL′(CP ) ' CP ,
otherwise isomorphic configurations of linear spaces would have linear spans of different
dimensions, so that we get a contradiction. 2
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Lemma 5. Let V andW be two irreducible surfaces of PN such that V ∩W = 〈V 〉∩〈W 〉
is a line L. Let us assume that each of V and W is a smooth rational scroll of degree 3
in P4, or a smooth quadric in P3, or a rank 3 quadric in P3. Then dim[Join(V,W )] = 5
unless V and W are both rank 3 quadrics, having the same vertex.

Proof. Let us recall that Join(V,W ) :=
{⋃

v∈V \L,w∈W\L〈v ∪ w〉
}
⊂ PN . Let U ⊂

Join(V,W ) be the open set
{⋃

v∈V \L,w∈W\L〈v∪w〉
}

. That suffices to show that dim(U)
= 5.

Let p be a generic point of U , hence p ∈ 〈v∪w〉 for two generic points v ∈ V \L,w ∈
W\L and we claim that, in our assumptions, 〈v ∪ w〉 is the only line of U containing p.
By contradiction, let us suppose that there exists another line 〈v′ ∪ w′〉 6= 〈v ∪ w〉, with
v′ ∈ V \L,w′ ∈W\L, such that p ∈ 〈v′ ∪w′〉. Then the two lines 〈v ∪ v′〉 and 〈w ∪w′〉
intersect at a point q ∈ L = 〈V 〉 ∩ 〈W 〉. But our surfaces have no trisecant lines and, for
generic points v ∈ V \L,w ∈W\L, it is not possible that 〈v∪v′〉∩ 〈w∪w′〉 is a point of
L, when 〈v∪v′〉 ⊂ V and 〈w∪w′〉 ⊂W , unless V andW are rank 3 quadrics of common
vertex P . In this case there are infinitely many pairs of points v′ ∈ V \L,w′ ∈W\L such
that 〈v ∪ v′〉 ∩ 〈w ∪ w′〉 = P (and dim[Join(V,W )] = 4). So that the claim is proved.
Now we can define a rational map s : U −→ G(1, N), the Grassmannian of lines in
PN , such that s(p) = 〈v ∪ w〉. Of course the generic fibre of s has dimension 1 and
dim(Im(s)) = 4, so that dim(U) = 5. 2

From Theorem 1, and from the previous lemmas we get the following:

Proposition 2. Every reducible Veronese surface X ⊂ Pn+4, according to Definition 1,
can be only the unionX = X1∪· · ·∪Xr of irreducible, reduced surfaces of the following
types:
• planes
• smooth quadrics of P3

• quadrics of P3 having rank 3 (quadric cones for simplicity).

Moreover only one irreducible surface of degree 2 can be contained in X .

Proof. From Theorem 1 we know that X = X1 ∪ · · · ∪ Xr and that every Xj is an
irreducible, reduced, surface of minimal degree in its span. From the well known classi-
fication of irreducible, reduced surfaces of minimal degree (see Theorem 0.1 of [4]), we
have that every Xj is a surface as above or it is a smooth Veronese surface, a smooth
rational scroll of degree 4 in P5, a smooth rational scroll of degree 3 in P4.

As any surface Xj contains a line by Theorem 1, none of them can be a smooth
Veronese surface. The secant variety of a smooth rational scroll of degree 4 has dimension
5, so that X cannot contain such surfaces by condition iii) of Definition 1.

Let us consider a smooth rational scroll of degree 3 and let us assume, by contradic-
tion, that it is a component of X , say Xj . Let Xk be any other component of X , different
from Xj , and suppose that Xk is not a plane. As X is a reducible Veronese surface there
exists a projection πL : Pn+4 99K Λ, from a suitable linear space L to a suitable Λ ' P4,
such that πL(X) ' X . This implies that, for any i = 1, . . . , r, πL(Xi) ' Xi, and
πL(Xj) ∩ πL(Xk) ' Xj ∩Xk. Recall that πL(Xj) ∩ πL(Xk) is the intersection of two
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surfaces in P4 and that, by assumption, πL(Xj) is a smooth rational scroll of degree 3 and
πL(Xk) is another rational scroll of degree 3 or a quadric cone or a smooth quadric. Let
us examine these possibilities.

If πL(Xk) is another rational scroll of degree 3 then, by Lemma 2, πL(Xj)∩ πL(Xk)
cannot be empty, hence dim[πL(Xj) ∩ πL(Xk)] ≥ 0. If dim[πL(Xj) ∩ πL(Xk)] =
dim(Xj ∩Xk) = 0, then deg[πL(Xj) ∩ πL(Xk)] = 9 and this is not possible by Corol-
lary 2. Hence dim[πL(Xj) ∩ πL(Xk)] = dim(Xj ∩ Xk) ≥ 1 and, by Corollary 2,
Xj ∩ Xk = 〈Xj〉 ∩ 〈Xk〉 is a line, so that dim[Join(Xj , Xk)] = 5 by Lemma 5, and
dim[Sec(Xj ∪ Xk)] ≥ 5. This implies dim[Sec(X)] ≥ 5, giving a contradiction with
Definition 1 iii).

If πL(Xk) is a quadric cone or a smooth quadric we can argue in the same way.
Now let us assume that Xk ' πL(Xk) is a plane. By the above arguments, the

only possibility is that the plane πL(Xk) cuts πL(Xj) along a line l, but also this case
can be excluded, in fact we can consider a generic hyperplane H of Λ containing the
plane πL(Xk), the intersection H ∩ πL(Xj) is the union of l and of a smooth conic Γ.
As Γ and πL(Xk) are contained in H ' P3 their intersection cannot be empty, so that
Supp[πL(Xj) ∩ πL(Xk)] is not contained in a line and we have a contradiction with
Corollary 2.

After proving that none of the irreducible components of X can be a rational scroll
of degree 3, let us exclude that X has two (or more) components of degree 2, i.e. smooth
quadrics or quadric cones. By contradiction, let us assume that X contains two irre-
ducible components of degree 2, say Xj and Xk as before, and suppose that they are not
both quadric cones with the same vertex. Then we can repeat the same argument, with
the only difference that now 〈Xj〉 ' 〈Xk〉 ' P3, and we get the same contradiction:
dim[Sec(X)] ≥ 5. If Xj and Xk are quadric cones with the same vertex P we cannot
use Lemma 5, however in this case TP (Xj) = 〈Xj〉 ' P3 ' 〈Xk〉 = TP (Xk) and their
intersection is a line so that dim(〈TP 〉) ≥ 5 and we get a contradiction with Lemma 4.

Note that, on the contrary, if Xj is a smooth quadric or a quadric cone and Xk is
a plane we cannot repeat the previous arguments to exclude the existence of quadrics
in X . 2

Now we give the following:

Corollary 3. Let X ⊂ Pn+4 be a reducible Veronese surface, according to Definition 1,
for some n ≥ 1. Then:

i) through any singular point P ∈ X there passes only 1, 2 or 3 irreducible components
of X and the first case occurs only when P is the vertex of a quadric cone;

ii) if P is a singular point of X , not the vertex of a quadric cone, the tangent planes at
P to the irreducible components of X passing through P (2 or 3) are all distinct;

iii) if P is a singular point of X which it is the vertex of a quadric cone Γ and there are
at least two irreducible components of X passing through P :
• if the components are two, one of them is Γ and the other one is a plane not

contained in 〈Γ〉
• if the components are three, one of them is Γ and the other ones are two distinct

planes not contained in 〈Γ〉.
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Proof. i) Obviously, by Proposition 2, a singular point P ∈ X belongs to only one ir-
reducible component XP of X if and only if XP is a quadric cone and P is its vertex.
In the other cases, let XP

1 , . . . , X
P
s be the irreducible components of X containing P ,

s ≥ 2. We can assume that their natural ordering is coherent with the existing ordering
considered in Theorem 1. Let Ti be the tangent space of XP

i at P in 〈XP
i 〉, i = 1, . . . , s.

By Lemma 3, dim(〈T1 ∪ · · · ∪ Ts〉) = dim(〈TP 〉) ≥ dim(T1) + s − 1 ≥ s + 1. If
s ≥ 4 we would get a contradiction with Lemma 4, hence s ≤ 3.

ii) As P is not the vertex of a quadric cone, all the irreducible components of X
passing through P are smooth at P by Proposition 2 and they are 2 or 3 by the previous
proof. Let T1, T2 or T1, T2, T3 be the tangent planes at P to these components, with an
ordering coherent with the ordering given by Theorem 1. By Lemma 3, T2 * T1 and
T3 * 〈T1 ∪ T2〉 so that the planes must be distinct.

iii) By i) we have only one or two other irreducible components of X passing through
P and they are planes by Proposition 2. The tangent space at P of Γ is 〈Γ〉, while the
tangent spaces at P of the other components coincide with the components themselves,
so that they cannot be contained in 〈Γ〉, otherwise we would get a contradiction with
Lemma 3 for any possible ordering of these (2 or 3) components coherent with the order-
ing given by Theorem 1. 2

The following lemma is based on property v) of Definition 1 and Corollary 3.

Lemma 6. Let X ⊂ Pn+4 be a reducible Veronese surface, according to Definition 1, for
some n ≥ 1. Let P be a singular point of X such that the union CP of the irreducible
components of X passing through P is a cone, i.e. (by Proposition 2) the irreducible
components of X passing through P are planes and, possibly, a quadric cone with vertex
in P . Then if we cut CP with a generic hyperplane H , not passing through P , the curve
CP ∩H is an Arithmetically Cohen–Macauley (in brief ACM) scheme.

Proof. By assumption we know that the local ring of X at P is a Cohen–Macaulay ring;
of course it is isomorphic to the local ring of CP at P . As CP is a cone over CP ∩ H ,
with vertex P , the local ring of CP at P is a Cohen–Macaulay ring if and only if CP ∩H
is an ACM scheme. 2

Corollary 4. Let X ⊂ Pn+4 be a reducible Veronese surface, according to Definition 1,
for some n ≥ 1. Let P be a singular point of X such that the union CP of the irreducible
components of X passing through P is a cone. Then:

i) if P is not the vertex of a quadric cone and there are only two components of X , i.e.
two planes, passing through P , then the two planes intersect along a line;

ii) if P is not the vertex of a quadric cone and there are three components of X , i.e.
three planes, passing through P , then:
• the three planes intersect two by two along three lines passing through P , or
• the three planes intersect along a unique line passing through P and they span

a 3-dimensional linear space, or
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• the three planes intersect along a unique line passing through P and they span
a 4-dimensional linear space, or

• two planes intersect only at P and the third plane cuts the other ones along two
lines, passing through P ;

iii) if P is the vertex of a quadric cone and there is only another component of X , i.e. a
plane, passing through P , then the plane cuts the cone only along a line of the cone.

Proof. Let us apply Lemma 6. In case i) the cone CP is given by two planes passing
through P ; if they intersect only at P then the curve H ∩ CP is a pair of disjoint lines in
H ' P3 and this is not an ACM scheme.

In case ii) the cone CP is given by three planes passing through P , and the curve
H ∩ CP is a cubic curve reducible into three lines. H ∩ CP is an ACM scheme if and
only if it is: a plane cubic given by three lines in generic position or passing through
a point (H ' P2) or a space cubic given by a rational comb (H ' P3) or three lines
passing through a point and spanning a 3-dimensional linear space (H ' P3). The four
possibilities give rise only to the previously described configurations.

In case iii) the cone CP is given by the union of a quadric cone Γ having vertex at
P and a plane passing through P . By Lemma 3 and Corollary 3 iii), the plane is not
contained in 〈Γ〉 so that it cuts 〈Γ〉 only at P or along a line L passing through P . If
L ∈ Γ, then H ∩ CP is a space cubic (H ' P3) given by a smooth conic and a line
cutting the conic transversally at some point, a well known ACM scheme. In the other
cases H ∩ CP would be the disjoint union of a smooth conic and a line and this is not an
ACM scheme. 2

4 The main results

In this section we will get a complete classification of reducible Veronese surfaces. First
of all we will prove the following theorem.

Theorem 2. Let X ⊂ Pn+4 be a reducible Veronese surface, according to Definition 1,
for some n ≥ 1, and let us assume that all the irreducible components of X are planes.
Then X = Σn.

Proof. By ii) of Definition 1 we have that X is the union of n + 3 planes, say X =
Π0 ∪Π1 ∪ · · · ∪Πn+2. By Theorem 1 we can assume that the planes are ordered in such
a way that, for any j ≥ 1, Πj ∩ (Π0 ∪ · · · ∪ Πj−1) is a line. Let us call Lij := Πi ∩ Πj

when the intersection is a line and Qij := Πi ∩ Πj when the intersection is a point. We
want to use induction on n ≥ 1.

Step one. If n = 1, X = Π0 ∪Π1 ∪Π2 ∪Π3 and we have to prove that X = Σ1 ⊂ P5.
Let us consider Π0 and Π1; by Theorem 1 they intersect along a line L01 and 〈Π0∪Π1〉 '
P3. Let us consider Π2; by Theorem 1 we know that Π2 ∩ 〈Π0 ∪ Π1〉 is a line L. By
Lemma 2 ii) we have that Π2 ∩ Π0 6= ∅ and Π2 ∩ Π1 6= ∅, hence L ∩ Π0 6= ∅ and
L ∩Π1 6= ∅.

Let us suppose that L intersects Π0 only at a point A /∈ L01 and that L intersects Π1
only at a point B /∈ L01, so that 〈Π0 ∪ Π1 ∪ Π2〉 ' P4. Then A = Q12 and B = Q02
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are singular points of X . By Corollary 4 i) it is not possible that only two components of
X pass through A and B, hence there is another component of X passing through A and
there is another component of X passing through B. As X has only four components we
have that Π3 passes through A and B, moreover, by Theorem 1, Π3 ∩ (Π0 ∪Π1 ∪Π2) is a
line, so that Π3∩(Π0∪Π1∪Π2) = L andA = Q13, B = Q03. Now let us considerA, for
instance, it is a singular point of X and Π1,Π2,Π3 pass through it, but the configuration
of these planes contradicts Lemma 4 ii), so that this case is not possible.

Let us suppose that L = L01. In this case for any point of L there pass three planes,
components of X (this is the maximal number by Corollary 3 i)) intersecting among
them only along the line L. By Corollary 4 ii), the three planes belong to the same 3-
dimensional linear space, or generate a 4-dimensional linear space. Let us consider the
last plane Π3, it cuts Π0 ∪Π1 ∪Π2 along a line L′ by Theorem 1, hence L′ belongs to Π0
or to Π1 or to Π2 so that in any case L′ ∩ L 6= ∅ and for any point in L′ ∩ L there pass
four components of X , but this is a contradiction with Corollary 3 i).

Let us assume that L ∩ L01 is only one point P = Q02 = Q12. Through P there pass
three planes, components of X (this is the maximal number by Corollary 3 i)), but the
configuration of these planes contradicts Lemma 4 ii), so that this case is not possible.

Therefore there is only one possibility: L belongs to one of the two planes Π0,Π1 and
cuts L01 at one point P = Q12. We can assume that L ⊂ Π0 by reversing the role of Π0
and Π1, if necessary (note that we can change the position of Π0 and Π1 in the ordering
given by Theorem 1) and we have L = L02 and 〈Π0 ∪ Π1 ∪ Π2〉 ' P4. By Theorem 1,
Π3 ∩ 〈Π0 ∪Π1 ∪Π2〉 is a line L′ and, by Lemma 2, L′ cuts every plane Π0,Π1,Π2, hence
it cuts L at some pointA = Q03 = Q23 and it cuts Π1 at some pointB = Q13. IfB /∈ L01
then through B would pass only two planes, components of X intersecting only at B and
this is a contradiction with Corollary 4 ii). ThenB ∈ L01 and L′ = L03. Note thatB 6= P
otherwise there would be four components ofX passing through P , hence the three lines:
L01, L = L02, and L′ = L03 are three lines of Π0 in general position. Summing up:
Π1,Π2,Π3 cut Π0 along the lines L01, L02, L03, and they cut each other only at the three
points P = Q12 = L01 ∩ L02, B = Q13 = L01 ∩ L03, A = Q23 = L02 ∩ L03, so that
X = Σ1 when n = 1.

Step two. Let us assume that n ≥ 2 and let us define Y := X\Πn+2. We want
to prove that Y is a reducible Veronese surface in Pn′+4, according to Definition 1, for
n′ := n− 1 ≥ 1. Let us check properties i), . . . ,v).

i) By Theorem 1 we know that Πn+2∩〈Π0∪· · ·∪Πn+1〉 is a line, hence Πn+2∩〈Y 〉 is
a line. As n+4 = dim(〈X〉) = dim(〈Y ∪Πn+2〉) = dim(〈Y 〉)+2−dim(〈Y 〉∩Πn+2) =
dim(〈Y 〉) + 1 (we are assuming that dim(∅) = −1), we get that dim(〈Y 〉) = n + 3 =
n′ + 4, so that Y is a non-degenerate, reduced, reducible surface of pure dimension 2 in
Pn′+4.

ii) deg(Y ) = deg(X)− 1 = n+ 2 = n′ + 3, cod(Y ) = n′ + 2.
iii) dim[Sec(Y )] ≤ dim[Sec(X)] ≤ 4.
iv) Y is a set of ordered planes Π0, . . . ,Πn+1 in Pn′+4 such that:

• 〈Π0 ∪ · · · ∪Πn+1〉 = Pn′+4 by the previous check of i),
• for any j ≥ 1, dim(Πj ∩ 〈Π0 ∪ · · · ∪ Πj−1〉 = 1 by Theorem 1 (recall that we have

ordered all the components of X according to this theorem).
Hence we can apply Corollary 1 and we get that Y is connected in codimension 1.
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v) To prove that Y is locally Cohen–Macaulay we have to check all points of Y ,
obviously we have to check only the points of Y ∩Πn+2 because for all other points of Y
the property follows from the fact that X is locally Cohen–Macaulay.
Let P be a point of Y ∩Πn+2 and let us assume that there exists only one component Πi ⊂
Y such that P ∈ Πi ∩ Πn+2. As X is locally Cohen–Macaulay at P , by Corollary 4 i),
we have that Πi intersects Πn+2 along a line passing through P , so that when we delete
Πn+2 we have that P is a smooth point of Y .
Let us assume that there are two components Πi,Πj ⊂ Y such that P ∈ Πi ∩Πj ∩Πn+2
(two is the maximal number by Corollary 3 i)). As X is locally Cohen–Macaulay at P ,
by Corollary 4 ii), we have the following possibilities:
• the three planes intersect two by two along three lines passing through P ; in this case

when we delete Πn+2 we get that Πi intersect Πj along a line passing through P and
Y is locally Cohen–Macaulay at P (see also the proof of Corollary 4 ii));

• the three planes intersect along a unique line passing through P and they span a 3-
dimensional or a 4-dimensional linear space; in these cases we can argue as in the
previous case and Y is locally Cohen–Macaulay at P ;

• Πi (or Πj) and Πn+2 intersect only at P and the third plane cuts the other ones along
two lines, passing through P ; in this case we can argue as in the previous cases and Y
is locally Cohen–Macaulay at P ;

• Πi and Πj intersect only at P and Πn+2 cuts the other planes along two lines, pass-
ing through P ; in this case if we delete Πn+2 we have that Y is not locally Cohen–
Macaulay at P , so we have to prove that this case is not possible; by contradic-
tion, let us assume that the configuration of Πi, Πj and Πn+2 is as above; we can
assume that 0 ≤ i < j < n + 2 in the ordering given by Theorem 1, so that
Πj ∩ (Π0 ∪ · · · ∪ Πi ∪ · · · ∪ Πj−1) is a line L passing through P ; note that L is
contained in at least a plane Πk among Π0, . . . ,Πi, . . . ,Πj−1 and that Πk 6= Πi be-
cause Πi ∩ Πj = P (this implies j > 1 because Π0 ∩ Π1 is a line), then P ∈ Πk, so
that we would have four different components of X passing through P and we would
have a contradiction with Corollary 3 i).
Step three. Now let us proceed by induction on n ≥ 1. If n = 1 Theorem 2 is true

by step one. Let us assume that the theorem is true for any X in P5,P6, . . . ,Pn+3 and let
us prove the theorem for X ⊂ Pn+4. As in step two we can decompose X = Y ∪ Πn+2
and we know that Y is a reducible Veronese surface in Pn+3 according to Definition 1,
by step two. By induction we can say that Y = Σn−1 so that X = Σn−1 ∪ Πn+2. By
Theorem 1 we have that Σn−1 ∩Πn+2 is a line L and, as above, L is contained in at least
a plane among Π0, . . . ,Πn+1.

By contradiction, let us assume that L ⊂ Πi for some i > 0 and let us consider
the line L0i. L cannot contain any point Qij ∈ L0i (j = 1, . . . , n + 1, j 6= i) and
a fortiori L 6= L0i otherwise we would have four different components of X passing
through Qij : Π0,Πi,Πj ,Πn+2, a contradiction with Corollary 3 i). So that L ∩ L0i is a
point P 6= Qij for any j = 1, . . . , n + 1, j 6= i, and the point P ∈ X belongs exactly to
Πn+2,Πi,Π0, but this configuration contradicts Corollary 4 ii) because Πn+2 ∩ Πi = L,
Πn+2 ∩Π0 = P , Πi ∩Π0 = L0i and L ∩ L0i = P .

Therefore L ⊂ Π0 (i.e. L = L0(n+2)) and to prove that X = Σn we have only to
show that the lines L0i with i = 1, . . . , n+ 1 and L are in general position on Π0 i.e. that



Veronese surfaces 731

the curve given by their union has no triple points. But this curve has a triple point if and
only if L passes through some point Qij for some i, j = 1, . . . , n + 1, i 6= j, (recall that
Y = Σn−1) and we have proved that this is not possible. 2

To classify reducible Veronese surfaces containing a quadric we need other lemmas.

Lemma 7. Let V = V1 ∪ · · · ∪ Vr ⊂ PN be a non-degenerate, reducible, reduced,
surface of pure dimension 2, whose irreducible components are V1, . . . , Vr. Let W ⊂ V
be a proper subvariety of V such that W = V1 ∪ · · · ∪Vρ with 1 ≤ ρ < r. Assume that V
and W are connected in codimension 1. Then there exists at least a component Vi ⊂ V
with ρ < i ≤ r such that dim(W ∩ Vi) = 1 and W ∪ Vi is connected in codimension 1.

Proof. If dim(W ∩ Vi) ≤ 0 for any irreducible component Vi ⊂ V with ρ < i ≤ r,
then dim[W ∩ (Vρ+1 ∪ · · · ∪ Vr)] ≤ 0, but this is not possible, otherwise V \[W ∩
(Vρ+1 ∪ · · · ∪ Vr)] would be not connected while we are assuming that V is connected
in codimension 1. Hence, by changing the ordering of Vρ+1, . . . , Vr if necessary, we can
assume that dim(W ∩ Vρ+1) ≥ 1. It is not possible that dim(W ∩ Vρ+1) ≥ 2, otherwise
the irreducible surface Vρ+1 would be a component of W , so that dim(W ∩ Vρ+1) = 1.

Now let us consider W ∪ Vρ+1. W is connected in codimension 1 by assumptions,
Vρ+1 is connected in codimension 1 because it is an irreducible surface; as dim(W ∩
Vρ+1) = 1 we have that W ∪ Vρ+1 is connected in codimension 1, too. 2

Lemma 8. Let X ⊂ Pn+4 be a reducible Veronese surface, according to Definition 1, for
some n ≥ 1, and let X1, . . . , Xr be its irreducible components. Let us assume that X
contains a quadric Q. Then:

i) r = n+ 2;
ii) there exists an ordering X1, . . . , Xn+2 according to Theorem 1 such that Q = X1.

Proof. i) Recall that, by Proposition 2, Q is the only component of X having degree ≥ 2,
so that n+ 3 = deg(X) = 2 + r − 1, hence r = n+ 2.

ii) Let us put X1 = Q. By Lemma 7 there is (at least) another component Xi ⊂ X
such that dim(Q ∩Xi) = 1 and Q ∪Xi is connected in codimension 1, moreover Xi is
a plane. By Corollary 2 Q ∩ Xi is a line. If we put X2 = Xi we have that X1 ∩ X2 =
〈X1〉 ∩ 〈X2〉 and the intersection is a line. As n ≥ 1 we have r ≥ 3, so that there
exists at least another component. Now let us apply Lemma 7 to X1 ∪ X2, which is
connected in codimension 1, and there is (at least) another component Xi ⊂ X such that
dim[(X1∪X2)∩Xi] = 1 andX1∪X2∪Xi is connected in codimension 1, moreoverXi

is a plane, and so on. By applying Lemma 7 a suitable number of times we get an ordering
X1, . . . , Xn+2 such that X1 = Q and, for any j ≥ 2, dim[Xj ∩ (X1, . . . , Xj−1)] = 1 and
X1 ∪ · · · ∪Xj is connected in codimension 1.

Let us consider 〈Xj〉 ∩ 〈X1 ∪ · · · ∪Xj−1〉 = Xj ∩ 〈X1 ∪ · · · ∪Xj−1〉 for any j ≥ 2
and we have dim(Xj ∩ 〈X1 ∪ · · · ∪Xj−1〉) ≥ dim[Xj ∩ (X1 ∪ · · · ∪Xj−1)] = 1. Let us



732 Alberto Alzati and Edoardo Ballico

put aj := dim(Xj ∩ 〈X1 ∪ · · · ∪Xj−1〉) for any j ≥ 3, so that:

dim(〈X1 ∪X2〉) = 4
dim(〈X1 ∪X2 ∪X3〉) = dim(〈〈X1 ∪X2〉 ∪X3〉) = dim(〈X1 ∪X2〉) + 2− a3

dim(〈X1 ∪X2 ∪X3 ∪X4〉) = dim(〈〈X1 ∪X2 ∪X3〉 ∪X4〉) =
= dim(〈X1 ∪X2〉) + 2− a3 + 2− a4

...
dim(〈X1 ∪X2 ∪ · · · ∪Xn+2〉) = dim(〈〈X1 ∪X2 ∪ · · · ∪Xn+1〉 ∪Xn+2〉) =

= dim(〈X1 ∪X2〉) + 2− a3 + 2− a4 + · · ·+ 2− an+2 =

= 4 + 2n−
n+2∑
j=3

aj = n+ 4.

Hence
∑n+2
j=3 aj = n. As aj ≥ 1 for any j ≥ 3 we have in fact aj = 1 for any j ≥ 3,

so that 1 = dim(Xj ∩ 〈X1 ∪ · · · ∪Xj−1〉) = dim[Xj ∩ (X1 ∪ · · · ∪Xj−1)] for any j ≥ 3
(the case j = 2 was considered previously) and Xj ∩ 〈X1 ∪ · · · ∪Xj−1〉 is obviously a
line.

To prove Lemma 8 ii) now we have to show that Xj ∩ 〈X1 ∪ · · · ∪ Xj−1〉 = Xj ∩
(X1 ∪ · · · ∪Xj−1) for any j ≥ 2. As above, the case j = 2 was considered previously,
so we can assume j ≥ 3 and recall that Xj is a plane. As Xj ∩ 〈X1 ∪ · · · ∪ Xj−1〉 ⊇
Xj ∩ (X1 ∪ · · · ∪Xj−1) and Xj ∩ 〈X1 ∪ · · · ∪Xj−1〉 is a line we have only to show that
Xj ∩(X1∪· · ·∪Xj−1) is a line. As dim[Xj ∩(X1∪· · ·∪Xj−1)] = 1 there exists at least
one component Xi, with 1 ≤ i ≤ j−1, such that dim[Xj ∩Xi)] = 1, hence Xj ∩Xi is a
line Lij by Corollary 2. Moreover there are no other points P ∈ Xj ∩ (X1 ∪ · · · ∪Xj−1),
P /∈ Lij , otherwiseXj would be contained in 〈X1∪· · ·∪Xj−1〉 and this is not possible as
dim(Xj ∩〈X1∪· · ·∪Xj−1〉) = 1. It follows that, for any j ≥ 3, Xj ∩ (X1∪· · ·∪Xj−1)
is a line and we are done. 2

Now we can conclude this section with the following theorems.

Theorem 3. Let X ⊂ Pn+4 be a reducible Veronese surface, according to Definition 1,
for some n ≥ 1, and let X1, . . . , Xr be its irreducible components. Let us assume that X
contains a smooth quadric Q. Then n = 1, r = 3, X = Q ∪X1 ∪X2, where X1 and X2
are planes, and we have only two possibilities:

a) Q,X1, X2 intersect transversally along a unique line L = Q ∩X1 ∩X2;
b) X1 and X2 cut Q along two lines intersecting at a point P = X1 ∩X2.

Proof. By Lemma 8 we know that r = n + 2 ≥ 3 and there exists an ordering X1, . . . ,
Xn+2 given by Theorem 1 such that X1 = Q, Xi is a plane for any i ≥ 2 and X2 cuts
Q along a line L. Now let us consider the plane X3 cutting Q ∪X2 and 〈Q ∪X2〉 ' P4

along a line L′ by Theorem 1. We have some cases to consider.
1) Let us assume that L′ ⊂ X2 and L′ 6= L so that L′ ∩ L is a point P ∈ Q, then

〈X2 ∪ X3〉 ' P3, L = 〈X2 ∪ X3〉 ∩ 〈Q〉, 〈Q ∪ X2 ∪ X3〉 ' P5, and P = Q ∩ X3
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so that 〈Q ∪ X3〉 = 〈Q ∪ X2 ∪ X3〉 ' P5. This case is not possible, in fact, let P
be a generic point in 〈Q ∪ X3〉; note that, in particular, this means that P /∈ 〈Q〉 ∪ X3
and P /∈ 〈TP (Q) ∪ X3〉 ' P4. Let us consider the 3-dimensional linear space ΛP :=
〈P ∪ X3〉 ⊂ 〈Q ∪ X3〉 ' P5. We have that ΛP ∩ 〈Q〉 is a line LP passing through
P and that there exists (at least) another point P ′ ∈ Q on LP with P 6= P ′; recall
that P /∈ 〈TP (Q) ∪ X3〉 so that the line LP is not tangent to Q. Now the line PP ′

∈ ΛP cuts X3 at some point P ′′ 6= P (otherwise LP = PP ′ and P ∈ 〈Q〉) so that
P ∈ Sec(Q ∪X3) ⊂ Sec(X). It follows that the generic point of 〈Q ∪X2 ∪X3〉 ' P5

is contained in Sec(X), hence dim[Sec(X)] ≥ 5 and we get a contradiction with iii) of
Definition 1.

2) Let us assume that L′ ⊂ X2 and L′ = L. By contradiction let us assume that there
exists another plane X4 in X . Then X4 ∩ (Q ∪ X2 ∪ X3) is a line L′′, but L′′ cannot
be contained in X2 or in X3 otherwise we would have four components of X passing
through a point and this is not possible by Corollary 3 i), hence L′′ ⊂ Q. Analogously we
have L′′ ∩ L = ∅, but in this case X4 must intersect X2 at some point P by Lemma 2 ii),
so that X4 = 〈P ∪ L′′〉 would be contained in 〈Q ∪X2 ∪X3〉 and this is not possible by
Lemma 8 ii). Hence there are only two planes in X and we get a).

3) Let us assume that L′ ⊂ Q and that L ∩ L′ = ∅. Then X3 ∩X2 would be a point
P by Lemma 2 ii) and we would get a contradiction by arguing as above: X3 = 〈L′ ∪P 〉
would be contained in 〈Q ∪X2〉.

4) Let us assume that L′ ⊂ Q and that L ∩ L′ is a point P and, by contradiction, let
us assume that there exists another plane X4 in X . Then X4 ∩ (Q ∪ X2 ∪ X3) is a line
L′′. If L′′ ⊂ Q, L′′ 6= L, L′′ 6= L′ then X4 ∩ X2 = ∅ or X4 ∩ X3 = ∅ and this is not
possible by Lemma 2 ii), on the other hand if L′′ = L or L′′ = L′ we would have four
components of X passing through a point and this is not possible by Corollary 3 i). So
that L′′ * Q and L′′ ⊂ X2 or L′′ ⊂ X3. Now let us suppose that L′′ ⊂ X2 (the other
case is similar), if P /∈ L′′ then X4 ∩X3 = ∅ and this is not possible by Lemma 2 ii), on
the other hand if P ∈ L′′ we would have four components of X passing through a point
and this is not possible by Corollary 3 i). Hence there are only two planes in X and we
get b).

To complete the proof of Theorem 3 now we have to prove that the surfaces X in
cases a) and b) are reducible Veronese surfaces according to Definition 1: i), ii) and iv)
are obvious; for iii) let us remark that Sec(X) is the union of a finite number of linear
spaces of dimension ≤ 4; for v) we can apply Lemma 1. 2

Theorem 4. Let X ⊂ Pn+4 be a reducible Veronese surface, according to Definition 1,
for some n ≥ 1, and let X1, . . . , Xr be its irreducible components. Then none of the
components of X can be a quadric cone.

Proof. By contradiction, let us suppose that X contains a quadric cone Γ of vertex PΓ.
By Lemma 8 we know that r = n + 2 ≥ 3 and there exists an ordering X1, . . . , Xn+2
such that Γ = X1, the other components are planes andX2∩Γ is a line L passing through
PΓ. Let us consider the plane X3 and let us remark that PΓ /∈ X3, in fact the union of
the tangent spaces to Γ and X2 at PΓ spans the 4-dimensional linear space 〈Γ ∪X2〉 and
X3 /∈ 〈Γ ∪ X2〉 by Theorem 1, so that, if PΓ ∈ X3, we would get a contradiction with
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Lemma 4 for P = PΓ.
On the other hand we know thatX3∩(Γ∪X2) is a line L′ by Theorem 1. As PΓ /∈ X3

we have that L′ * Γ, so that L′ ⊂ X2 and it cuts Γ only at a point P ∈ L, P 6= PΓ.
Hence X3 and Γ are in the same configuration as X3 and Q in Case 1) of Theorem 3, so
that we can argue as above and we can prove that this case is not possible. Therefore X3
does not exist and we get a contradiction as r ≥ 3. 2

Remark 3. The above Theorems 2, 3 and 4, taking into account Proposition 2, give a
complete classification of the reducible Veronese surfaces according to Definition 1. It
follows that the generic surfaces Sn, embedded in Pn+4, introduced by Floystad in [5],
are in fact surfaces Σn for any n ≥ 2. If n = 2 the proof was made in Section 2. If n ≥ 3
we have only to check that any generic Sn satisfies Definition 1: in [5] it is proved that Sn
is non-degenerate and that iii) and v) hold; from v) it follows that Sn is reduced, of pure
dimension 2, and that iv) holds (see Remark 1); ii) follows from direct calculation as in
Section 2; to have i) it suffices to show that Sn is reducible, if not, from the classification
of irreducible, reduced surfaces of minimal degree (see the beginning of the proof of
Proposition 2) it would follow that deg(Sn) ≤ 4, while deg(Sn) ≥ 6 as n ≥ 3.

Remark 4. Reducible Veronese surface X are not locally complete intersections. In fact
let us consider any triple point P ∈ X and let Yp be any generic hyperplane section of
X passing through P . If X is a locally complete intersection at P then Yp is a locally
complete intersection at P too (see for instance [2, Theorem 2.3.4]). If X = Σn then Yp
is the union of 3 lines passing through P , spanning a 3-dimensional linear space. If X is
one of the cases a), b) of Theorem 3 then YP is the union of a smooth conic and two lines
passing through P , spanning a 4-dimensional linear space. In any case YP is not a locally
complete intersection at P .

Remark 5. Reducible Veronese surfaces are not even locally Gorenstein. Let X , P , YP
be as in Remark 4. IfX is locally Gorenstein at P then the dualizing sheaf ωX is free at P
and it has rank 1 (see [3, p. 532]). By adjunction we have that ωYP

= (ωX+H)|YP
where

H is the Cartier divisor of X corresponding to YP (see Lemma 1.7.6 of [1]), so that ωYP

is free at P and it has rank 1 too. But this is not possible: let f : YP −→ YP be the nor-
malization of YP ; note that f is a triple unramified covering locally at P . The conductor
sheaf C of OYP ,P

in OYP ,P is the maximal ideal of OYP ,P , hence dimC(OYP ,P /C) =
1, on the other hand dimC(OYP ,P

/OYP ,P ) = 2 and this is a contradiction because
dimC(OYP ,P

/OYP ,P ) = dimC(OYP ,P
/C) + dimC(OYP ,P /C) = 2 + 1 = 3.
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