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Abstract: In this source apportionment study, an original approach based 

on receptor modelling was tested to relate primary and secondary organic 

aerosol (OA) contributions - estimated from ACSM (Aerosol Chemical 

Speciation Monitor) measurements - to their emission sources. Moreover, 

thanks to the coupling of optical and chemical variables as input to the 

receptor model, information such as the impact of mineral dust to the 

aerosol absorption in the atmosphere and estimates for the absorption 

Ångström exponent (α) of the sources were retrieved. 

An advanced source apportionment study using the Multilinear Engine (ME-

2) was performed on data collected during February 2017 in Rome (Italy), 

in the frame of the CARE (Carbonaceous Aerosol in Rome and Environs) 

experiment. A complete chemical characterisation (elements, non-

refractory components, and carbonaceous components) was carried out, and 

the aerosol absorption coefficients bap(λ) at 7 wavelengths (370, 470, 

520, 590, 660, 880, and 950 nm) were retrieved by an Aethalometer AE33; 

all these variables (chemical + optical) were used as input to the 

receptor model. The final constrained solution consisted of nine factors 

which were assigned to major sources impacting on the investigated site 

(hereafter sources are referred to as: biomass burning, nitrate and aged 

aerosol, traffic exhaust, sulphate, mineral dust, marine aerosol, traffic 

non-exhaust, local source, and polluted marine aerosol), comprising both 

local urban sources and contributions from long-range transport. The 

bootstrap analysis supported the goodness of the solution.  

Total OA concentration from ACSM was apportioned by our receptor model 

and afterwards compared with HOA (hydrocarbon-like organic aerosol), BBOA 

(biomass burning-like organic aerosol), and OOA (oxygenated organic 

aerosol) concentrations obtained as results from an independent source 

apportionment study previously performed. As an original result of this 

work, insights on OA contributions were thus retrieved: (1) the 

contribution of organic aerosol assigned by ME-2 to the traffic exhaust 

source was fully comparable to HOA assessed by ACSM data analysis; (2) 

our source apportionment results gave the relevant indication that the 



OOA apportionment made on ACSM data likely includes a secondary OA 

contribution due to biomass burning.  

Other relevant results came from bap apportionment obtained by our multi-

variable source apportionment approach: traffic exhaust was the main 

contributor to aerosol absorption in the atmosphere, but mineral dust 

contribution was also notable when a not negligible mineral dust 

transport episode was registered at the measurement site. In addition, 

source dependent optical absorption parameters (i.e. the absorption 

Ångström exponent - α - and the mass absorption cross section at 

different wavelengths) were retrieved without any a-priori assumption. 

In perspective, our modelling approach paves the way to more powerful 

source apportionment approaches which have the potential of providing 

much more insights on aerosol properties and sources. 
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Abstract 17 

In this source apportionment study, an original approach based on receptor modelling was tested to 18 

relate primary and secondary organic aerosol (OA) contributions - estimated from ACSM (Aerosol 19 

Chemical Speciation Monitor) measurements - to their emission sources. Moreover, thanks to the 20 

coupling of optical and chemical variables as input to the receptor model, information such as the 21 

impact of mineral dust to the aerosol absorption in the atmosphere and estimates for the absorption 22 

Ångström exponent (α) of the sources were retrieved. 23 

An advanced source apportionment study using the Multilinear Engine (ME-2) was performed on 24 

data collected during February 2017 in Rome (Italy), in the frame of the CARE (Carbonaceous 25 

Aerosol in Rome and Environs) experiment. A complete chemical characterisation (elements, non-26 

refractory components, and carbonaceous components) was carried out, and the aerosol absorption 27 
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coefficients bap(λ) at 7 wavelengths (370, 470, 520, 590, 660, 880, and 950 nm) were retrieved by 28 

an Aethalometer AE33; all these variables (chemical + optical) were used as input to the receptor 29 

model. The final constrained solution consisted of nine factors which were assigned to major 30 

sources impacting on the investigated site (hereafter sources are referred to as: biomass burning, 31 

nitrate and aged aerosol, traffic exhaust, sulphate, mineral dust, marine aerosol, traffic non-exhaust, 32 

local source, and polluted marine aerosol), comprising both local urban sources and contributions 33 

from long-range transport. The bootstrap analysis supported the goodness of the solution.  34 

Total OA concentration from ACSM was apportioned by our receptor model and afterwards 35 

compared with HOA (hydrocarbon-like organic aerosol), BBOA (biomass burning-like organic 36 

aerosol), and OOA (oxygenated organic aerosol) concentrations obtained as results from an 37 

independent source apportionment study previously performed. As an original result of this work, 38 

insights on OA contributions were thus retrieved: (1) the contribution of organic aerosol assigned 39 

by ME-2 to the traffic exhaust source was fully comparable to HOA assessed by ACSM data 40 

analysis; (2) our source apportionment results gave the relevant indication that the OOA 41 

apportionment made on ACSM data likely includes a secondary OA contribution due to biomass 42 

burning.  43 

Other relevant results came from bap apportionment obtained by our multi-variable source 44 

apportionment approach: traffic exhaust was the main contributor to aerosol absorption in the 45 

atmosphere, but mineral dust contribution was also notable when a not negligible mineral dust 46 

transport episode was registered at the measurement site. In addition, source dependent optical 47 

absorption parameters (i.e. the absorption Ångström exponent - α - and the mass absorption cross 48 

section at different wavelengths) were retrieved without any a-priori assumption. 49 

In perspective, our modelling approach paves the way to more powerful source apportionment 50 

approaches which have the potential of providing much more insights on aerosol properties and 51 

sources. 52 

 53 
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 56 

1. Introduction 57 

Atmospheric aerosol – or particulate matter, PM - impacts human health (WHO, 2018) and climate 58 

(IPCC, 2013). Aerosol source identification and quantification are mandatory to establish mitigation 59 

strategies with the aim of reducing particle concentrations in the atmosphere; in this framework, 60 

receptor models are widely used for PM source apportionment (Hopke, 2016). Among them, the 61 

Positive Matrix Factorization (PMF) is a weighted least square method based on non-negativity 62 

constraints (Belis et al., 2019a), where an array of data can be written as the sum of products of 63 

unknown variables (Paatero, 1999). The Multilinear Engine (ME-2) is a very flexible algorithm 64 

developed to solve PMF problems generally defined as multilinear mathematical expressions; the 65 

flexibility of ME-2 allows the implementation of advanced approaches, e.g. the multi-time 66 

resolution model (Zhou et al., 2004; Ogulei et al., 2005; Crespi et al., 2016; Forello et al., 2019). 67 

High-time resolution measurements allow the investigation of short-scale processes in the 68 

atmosphere; their exploitation as input data to receptor modelling helps in the identification of 69 

sources so that high time resolution temporal patterns of the sources and also episodic emissions 70 

can be retrieved. 71 

Over the last decades, the development of high time resolution aerosol mass spectrometers has 72 

allowed an increasing detailed chemical and physical characterisation of atmospheric aerosol 73 

(Canagaratna et al., 2007); indeed, atmospheric single particles are constituted by millions of 74 

molecules, giving a very large signal for mass spectrometers (Murphy, 2007). In recent years, on-75 

line mass spectrometers like the HR-AMS (High Resolution Aerosol Mass Spectrometry) and the 76 

ACSM (Aerosol Chemical Speciation Monitor) were proved to be capable of routine stable 77 

operation for long periods of time (Ng et al., 2011). The huge amount of data produced can be 78 

processed via positive matrix factorization (Ulbrich et al., 2009; Canonaco et al., 2013). PMF 79 
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analysis on organic fragments was useful to further classify groups of organic aerosol components 80 

like HOA (hydrocarbon-like organic aerosol), BBOA (biomass burning-like organic aerosol), and 81 

OOA (oxygenated organic aerosol) (Fröhlich et al., 2015) based on their chemical affinity (DeCarlo 82 

et al., 2010). In this way, primary and secondary organic contributions can be distinguished, but the 83 

origin of secondary aerosol components remains difficult to assess. At the state of the art, few 84 

source apportionment studies combine high time resolution measurements of the organic aerosol 85 

fraction with the inorganic one retrieved by other analytical techniques (Sofowote et al., 2018; Belis 86 

et al., 2019b; Jeong et al., 2019). 87 

Following the original approach described in Forello et al. (2019), in this work a high-time 88 

resolution dataset comprising both organic and inorganic chemical species and the multi-89 

wavelength aerosol absorption coefficients was used as input to the advanced receptor model. The 90 

interest for such a detailed dataset lies in the possibility of a further test on the approach above 91 

mentioned in a case-study characterised by aerosols with a variety of properties and sources and – 92 

in particular – impacted by episodes occurring on short timescales. In addition, from this dataset – 93 

as far as we know, here for the first time - the model retrieved the optical absorption contribution 94 

and absorption Ångström exponent of mineral dust. Last but not least, results from the ME-2 95 

analysis were compared with ACSM separation of the organic aerosol fraction obtaining the 96 

relevant indication that the OOA apportionment made on ACSM data likely includes a secondary 97 

OA contribution due to biomass burning.  98 

 99 

2. Material and methods 100 

2.1 Site description 101 

The CARE (Carbonaceous Aerosol in Rome and Environs) measurement campaign was carried out 102 

in Rome (Italy; latitude: 41.88°, longitude: 12.49°), in the middle of the Mediterranean sea, at an 103 

urban background site from 1
st
 to 28

th
 February 2017. Due to its position and meteorological 104 

conditions, the site can be affected by long-range transport of air masses from the sea - Rome is 105 
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about 30 km from the nearest coast – and from the Sahara desert, but also from local urban sources 106 

(Valentini et al., 2020; and references therein). 107 

 108 

2.2 Online and offline measurements 109 

A detailed description of the equipment deployed during the CARE experiment is reported in 110 

Costabile et al. (2017a). In the following, only instrumentation relevant to the data used in this 111 

paper are summarised. 112 

 113 

2.2.1 Mass 114 

Hourly PM2.5 mass concentration was reconstructed from particle number size distribution (PNSD) 115 

data measured combining a scanning mobility particle sizer and an aerodynamic particle sizer 116 

(Costabile et al., 2019). Size distributions from these instruments were merged following the 117 

methodology reported in Khlystov et al. (2004) and a size-dependent effective particle density was 118 

used to obtain the mass. Details on the mass retrieval procedure and validation can be found in 119 

Costabile et al. (2017a) and Alas et al. (2019).  120 

 121 

2.2.2 Elemental composition 122 

Hourly PM2.5 samples were collected by a streaker sampler (D’Alessandro et al., 2003; Calzolai et 123 

al., 2015). Briefly, the streaker sampler collects with 1-h resolution aerosol particles in the coarse 124 

(PM2.5-10) and fine (PM2.5) fraction on an impaction stage and a filter, respectively. For the aim of 125 

this campaign, only the fine fraction was analysed by Particle Induced X-ray Emission (PIXE) 126 

technique to obtain the elemental composition. More details about the technique and the set-up can 127 

be found e.g. in Lucarelli et al. (2014) and Calzolai et al. (2015). Minimum detection limits (MDLs) 128 

of the technique were in the range 1-10 ng m
-3

 (depending on the element) and average 129 

experimental uncertainties for different species ranged from about 10 % to about 40 % (the latter 130 

refers to those elements measured with concentrations near MDL). 131 
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 132 

2.2.3 Non-refractory chemical components 133 

Major non-refractory at 600°C components in PM1 were measured by an Aerodyne aerosol 134 

chemical speciation monitor (ACSM, see e.g. Ng et al., 2011) with a temporal resolution of 30 135 

minutes. Shortly, in the ACSM particles are focused inside the instrument by a system of 136 

aerodynamic lenses, then thermally vaporised, and finally ionized by electron impact. Starting from 137 

the acquired mass spectrum, organic matter (OA), sulphate (SO4
2-

), ammonium (NH4
+
), nitrate 138 

(NO3
-
), and chloride (Cl

-
) concentrations can be assessed. In a previous work (Costabile et al.; 139 

2017a), from ACSM data three factors for OA were singled out: HOA (hydrocarbon-like organic 140 

aerosol), BBOA (biomass burning-like organic aerosol), and OOA (oxygenated organic aerosol). 141 

MDLs were estimated following Ng et al. (2011) as 0.105 µg m
-3

,
 
0.201 µg m

-3
, 0.017 µg m

-3
, 0.008 142 

µg m
-3

, and 0.008 µg m
-3

 for OA, NH4
+
, SO4

2-
, NO3

-
, and Cl

-
, respectively. Sensitivity tests using 143 

different ranges of trial uncertainties as input to the model were performed; in the end, average 144 

uncertainties for ACSM measurements were set to 19 % for OA, 36 % for NH4
+
, 28 % for SO4

2-
, 145 

and 15 % for NO3
-
, in accordance with the reproducibility relative uncertainties observed in ACSM 146 

intercomparison exercises (Crenn et al., 2015; Belis et al., 2019b). 147 

 148 

2.2.4 Carbonaceous components 149 

Elemental carbon (EC) and organic carbon (OC) concentrations with two hour resolution were 150 

obtained by a Sunset Field Thermal-Optical Analyser (Sunset Laboratory Inc.). Briefly, this 151 

instrument collects particles on a quartz fibre filter; at the end of each sampling period (105 minutes 152 

of sampling and 15 minutes of analysis) the collected sample is analysed with the NIOSH-like 153 

temperature protocol (Sunset Laboratory Inc., 2005). The inlet was equipped with a cyclone with a 154 

cut point of 2.5 µm and a denuder for organics. MDL was 0.240 µg m
-3

 for OC and EC 155 

concentrations. Average uncertainties used as input to the model were 15 % and 10 % for EC and 156 

OC concentrations, respectively. 157 
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 158 

2.2.5 Optical absorption coefficients 159 

Optical properties were retrieved by online instrumentation with a time resolution of 1 minute. 160 

The aerosol absorption coefficient bap(λ) at 7 wavelengths (370, 470, 520, 590, 660, 880, and 950 161 

nm) was retrieved in PM10 by a dual-spot Aethalometer (AE33, Magee Scientific) (Drinovec et al., 162 

2015) using the instrument specific mass absorption cross-sections (MACs) (Magee Scientific 163 

AE33 User Manual, 2016) and the measured equivalent black carbon (eBC) concentration. bap(λ) 164 

values are calculated by the AE33 internal software considering attenuation measurements 165 

corrected for loading (k parameter) and multiple scattering (C factor) effects. It is noteworthy that 166 

recent literature studies (e.g. Goetz et al., 2018) evidenced that the fixed C factor equal to 1.57 167 

typically used in AE33 can lead to a significant overestimation of the bap(λ). Therefore, in this work 168 

a C factor of 2.66 was used at all wavelengths, as previously estimated by Valentini et al. (2020) for 169 

the CARE campaign. 170 

MDLs were estimated in the range 0.36 – 0.92 Mm
-1

 depending on the wavelength and average 171 

experimental uncertainty on bap(λ) was 15 % (U.S. EPA, 2011).  172 

 173 

2.3 Model description  174 

Receptor models rely on the principle of mass conservation between the emission source and the 175 

receptor site. Among them, the positive matrix factorization (PMF) is based on uncertainty-176 

weighted pollutant measurements to find the best linear combination of factors influencing 177 

atmospheric concentrations (Paatero and Tapper, 1994; Hopke 2016, Belis et al., 2019a).  178 

The basic bilinear equation to be solved is the following: 179 

 

               

 

   

 

 

(1) 

where the input data matrix X (matrix elements xij) is decomposed in the product of two factor 180 

matrices F (matrix elements fkj) and G (matrix elements gik), related to factors chemical profiles and 181 
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factors temporal contribution, respectively; factors can be then interpreted as the main sources 182 

impacting the investigated area. The matrix E (matrix elements eij) is composed of the residuals, i.e. 183 

the difference between measured and modelled values. Indices i, j, and k indicate the sample, the 184 

species, and the factor, respectively; P is the total number of factors. 185 

The solution of the problem is obtained minimising the object function Q, that is defined as: 186 

 

      
           

 
   

   
 

 

    
   

   
 

 

    

 
 

(2) 

where the elements     of the matrix   are the uncertainties related to xij, and they are given as input 187 

data together with xij. The minimisation is performed under the constraint that elements of G and F 188 

are non-negative. Therefore, from the application of this modelling approach the chemical profiles 189 

and temporal patterns contributions of the identified sources as well as the average source 190 

apportionment are retrieved at the receptor site. 191 

The Multilinear Engine program ME-2 (Paatero, 1999) was developed to solve PMF and – 192 

specifically - more general multilinear problems; ME-2 flexibility allows to solve problems even 193 

more complicated than the bilinear one presented in Eq. (1). In the case of the multi-time resolution 194 

model applied in this work, modifications to Eq. (1) are needed to exploit data with different time 195 

resolutions in the same source apportionment analysis. This advanced receptor modelling approach 196 

– pioneered by Zhou et al. (2004) - can be developed through the Multilinear Engine ME-2 script in 197 

order to use experimental data with different time resolutions in the same source apportionment 198 

study (Ogulei et al., 2005; Liao et al., 2013; Kuo et al., 2014; Liao et al., 2015; Crespi et al., 2016; 199 

Sofowote et al., 2018; Srivastava et al., 2019; Forello et al., 2019). 200 

In the multi-time approach, Equation (1) is modified as reported below: 201 

 

    
 

         
               

   

     

 

   

 

 

(3) 

where the indices s, j, and k represent the sample, the species, and the factor, respectively; P is the 202 

number of factors; ts1 and ts2 are the start and end times for the s
th

 sample expressed in time units 203 
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(i.e. the shortest sampling interval); i represents the time unit of the s
th

 sample. xsj is an element of 204 

the input matrix X, fkj is an element of the matrix F (i.e. chemical profiles), gik is an element of the 205 

matrix G (i.e. time contributions) and esj is an element of the residual matrix E (i.e. differences 206 

between measured and modelled values). ηjm is an adjustment factor for replicated species measured 207 

with different analytical methods (represented by subscript m) and with different time resolutions 208 

(all ηjm set to one in our case, see Sect. 2.4). 209 

The following regularisation equation is also introduced in the multi-time model to smooth the time 210 

series contributions: 211 

                  (4) 

where εi are the residuals of this equation. Equations (3) and (4) are solved using the ME-2 program 212 

(Paatero, 1999), minimising the object function Q defined as the squared sum of the uncertainty-213 

scaled residuals (see Sect. S2 in the Supplement for more details). 214 

In this work, a physical constraint based on a mass balance equation was implemented and solved 215 

together with Eq. (3) and Eq. (4) in the multi-time model; in each factor, the sum of concentrations 216 

of the species must be equal or smaller than the total variable mass concentration. The equation for 217 

each factor was introduced in the general form (Paatero and Hopke, 2009): 218 

 

           

 

   

 

(5) 

where N is the number of species, cj are known numerical coefficients, and rv represents the residual 219 

of the auxiliary equation. In this equation the numerical coefficient for mass is cmass = +1, while for 220 

species other than mass cj = -1. Since contributions from not measured oxides and water can be 221 

present, the equation was implemented in order to allow negative values of the residual rv (using 222 

error model code = -17, see Sect. S2 in the Supplement for details). 223 

The multi-time resolution model implemented by Crespi et al. (2016) was used as a basis as it 224 

allows the estimation of uncertainties by bootstrap analysis (see Sect. 3.1). 225 

 226 



 10 

2.4 Input data 227 

In this work, one hour was chosen as the basic time unit in the model to study high time resolution 228 

changes in source emissions. As already mentioned in Sec. 2.3, adjustment factors ηjm in Eq. (3) 229 

were set to one, since no replicated species were present in this dataset after input data selection 230 

(selection criteria are explained hereafter). 231 

In order to reduce their relevance in the modelling process, mass concentrations were included in 232 

the model with uncertainties set at 4 times their values following Kim et al. (2003). All other 233 

variables were classified according to their signal-to-noise ratio (S/N) as suggested by Paatero, 234 

(2015). All strong variables (S/N ≥ 1.2) and only some weak variables (i.e. Ti, V, Rb, and Pb) were 235 

used as input to the model. In the literature, Ti, V, Rb, and Pb are often indicated as tracers of 236 

specific sources (Saharan dust advection for Ti, residual oil combustion for V, biomass burning for 237 

Rb, and industry for Pb); for this reason, they were taken into account although strongly 238 

underweighted multiplying their uncertainties by a factor 3. Ranges of uncertainties and MDLs for 239 

measured variables are reported in Sect. 2.2; in the input dataset, uncertainties and data below 240 

minimum detection limits were pre-treated according to Polissar et al. (1998). Missing values were 241 

substituted by linear interpolation, with uncertainties set as three times the interpolated 242 

concentration value. Among strong variables, Si showed a slightly higher percentage (26 %) of 243 

missing data due to blank filter contamination. Linear interpolation was not possible in this case, 244 

since missing data were consecutive over time; therefore, in order to avoid artificial high values in 245 

modelled time contributions as already reported in literature works (Zhou et al., 2004; Forello et al., 246 

2019), missing values were substituted by the median value calculated over the whole campaign, 247 

with uncertainties set at four times the median value.  248 

To avoid double counting for sulphur/sulphate, organic aerosol/organic carbon, and 249 

chlorine/chloride the selection of input data was performed as explained in the following.  250 

Atmospheric concentrations of SO4
2-

 (measured online by ACSM) and S (measured offline by PIXE 251 

analysis on streaker samples) display very similar temporal patterns. The linear regression shows a 252 
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slope of 2.54 ± 0.02 (R
2
 = 0.89) (Fig. 1S in the Supplement). The difference of about 15 % from the 253 

sulphate-to-sulphur stoichiometric value (equal to 3) is within average uncertainties (12 % for S and 254 

28 % for SO4
2-

), and can be mainly ascribed to different sampling and analytical techniques (for 255 

more details see Sect. 1S in the Supplement). In order to avoid double counting, SO4
2-

 measured by 256 

ACSM was chosen as input variable, because sulphate is very often in the form of ammonium 257 

sulphate and NH4
+
 was measured by ACSM as well.  258 

Atmospheric concentrations of organic aerosol OA (measured online by ACSM) and organic 259 

carbon OC (measured online by Sunset Field Thermal-Optical Analyser) show very similar 260 

temporal patterns, too (Fig. 3S in the Supplement). The two-hour median value of OA-to-OC ratio 261 

is 1.3 (1.1 and 1.5 are the limits of the interquartile range) that is lower than 1.6 used in previous 262 

literature studies performed in Rome (Perrino et al., 2009; Tofful and Perrino, 2015; Perrino et al., 263 

2016); also in this case it is likely due to different sampling and analytical techniques. Finally, OA 264 

was selected as input variable since it carries a larger fraction of the total mass. 265 

As for Cl (measured by PIXE analysis) and Cl
-
 (given by ACSM) concentrations, the former was 266 

used as input variable to the model as it showed much more reliable temporal pattern and 267 

concentration.  268 

bap(λ) values measured at 7 wavelengths in PM10 were inserted in the model together with chemical 269 

variables assessed in PM2.5 (and PM1 for ACSM data). The main issue in considering different size 270 

fractions for chemical and optical variables was the presence of a desert dust transport episode 271 

(Valentini et al., 2020) lasting less than two days (24
th 

- 25
th

 February) during the CARE campaign. 272 

In this work, samples impacted by desert dust were included in the input dataset in order to estimate 273 

optical absorption properties of the mineral dust source (see Sect. 3.2). It is interesting to note that 274 

in the simulation chamber study by Caponi et al. (2017), desert dust samples in the PM10 and PM2.5 275 

fractions showed very small differences in elemental composition and the absorption Ångström 276 

exponent (α) of dust in that work did not seem to be related to differences in particle size.  277 
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Forello et al. (2019) have shown the usefulness of performing a source apportionment study on a 278 

dataset joining chemical and optical variables; indeed, source-dependent α values and mass 279 

absorption cross-sections (MACs) at different wavelengths can be retrieved by the model, without 280 

any a-priori assumption (see Sect. 3.2). As for the MAC of mineral dust, in Caponi et al. (2017) it 281 

was defined considering the total mass concentration of dust and, opposite to the α value, the MAC 282 

seemed to be dependent on particle size. For this reason, the MAC values at different wavelenghts 283 

retrieved in this work for mineral dust have to be considered as an upper limit. 284 

Finally, 30 variables with 1-h resolution (PM2.5 mass, Na, Mg, Al, Si, Cl, K, Ca, Ti, V, Cr, Mn, Fe, 285 

Ni, Cu, Zn, Br, Rb, Pb, OA, NH4
+
, SO4

2-
, NO3

-
, bap at 370 nm, 470 nm, 520 nm, 590 nm, 660 nm, 286 

880 nm, and 950 nm) and 2-h EC concentrations were inserted as input data in the multi-time 287 

model. The input matrix X consisted of 916 samples distributed over 619 time units. The analysis 288 

was performed in the robust mode (Brown et al., 2015). The error model em = -14 was used for the 289 

main equation with C1 = input error, C2 = 0.0, and C3 = 0.1 (Paatero, 2012) for both chemical and 290 

optical absorption data (see Sect. S2 in the Supplement for more details). 291 

It is important to remark that, in contrast to what generally believed, the analysis of matrices with 292 

different dimensional units (in this work, Mm
-1

 for optical absorption variables, and ng m
-3

 for 293 

chemical variables) is not a priori adversely affected by these differences, as underlined by Paatero 294 

(2018) and shown by results reported in Forello et al. (2019). 295 

 296 

3. Results and discussion 297 

3.1 Source apportionment coupling different datasets 298 

Following the approach proposed by Forello et al. (2019), the model was run coupling chemical 299 

variables and light absorption coefficients at 7 wavelengths retrieved by AE33 Aethalometer. 300 

Solutions from 5 to 10 factors were explored. In this analysis 30 convergent runs were obtained and 301 

a nine-factor base case solution corresponding to the minimum Q value was selected. A lower or 302 

higher number of factors gave mixing or artificial separation of sources, respectively, and a not 303 
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satisfactory reconstruction of some variables during aerosol transport episodes (e.g. marine aerosol 304 

advection). In the selected base-case solution, all variables were well reconstructed by the model 305 

(R
2
 > 0.70) with the exception of V (R

2
 = 0.52) and Ni (R

2
 = 0.51), that were however characterised 306 

by concentration values near MDLs. Uncertainty-scaled residuals (as defined in Paatero and 307 

Tapper, 1994, and Norris et al., 2014) were randomly distributed in the ± 3 range and their 308 

distribution was mostly symmetrical. The explained variation for matrix F (EVF) (see Lee et al., 309 

1999, and Paatero, 2010 for the definition) was firstly exploited for factor-to-source assignment; 310 

indeed, high EVF values are typically indicators for chemical species which are source tracers. The 311 

unexplained variation for matrix F was lower than 0.15 for all variables. 312 

In Fig. 4S in the Supplement, EVF and chemical profiles for the base-case solution are reported. 313 

According to EVF, chemical profile, and temporal trend, the nine factors were tentatively assigned 314 

to biomass burning, nitrate and aged aerosol, traffic exhaust, sulphate, mineral dust, marine aerosol, 315 

traffic non-exhaust, local source, and polluted marine aerosol (see also afterwards for details on the 316 

factor-to-source assignment motivation). In Table 1S in the Supplement, average source 317 

contributions to atmospheric PM2.5 mass are reported both in absolute and percentage values.  318 

Even if the base-case solution is largely satisfactory, constrained solutions were explored and 319 

finally constraints were applied to the factor interpreted as marine aerosol. Indeed, the marine 320 

aerosol factor in the base-case solution was characterised by values of the typical diagnostic ratios 321 

Mg/Na and Cl/Na very similar to literature ones for bulk sea salt emissions (Seinfeld and Pandis, 322 

2006), suggesting advection of fresh marine aerosol. However, contaminations appeared in the 323 

chemical profile due to EC, together with NH4
+
 and NO3

-
, which are often found in chemical 324 

profiles of aged marine emissions (Seinfeld and Pandis, 2006). From source temporal patterns, it 325 

was noted that the polluted marine aerosol episode was interrupted for a few hours by the advection 326 

of fresh marine aerosol; the former was characterised also by ship emissions so that some mixing 327 

between the two chemical profiles can be present. Therefore, in the constrained solution EC, NO3
-
, 328 

and NH4
+
 were pulled down maximally in the chemical profile of marine aerosol (fresh); as a 329 
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consequence, also bap at all wavelengths decreased in agreement with the lack of light absorbing 330 

components in the profile. It is noteworthy that NO3
-
 contribution appeared in the polluted marine 331 

aerosol chemical profile, as expected when compounds present in marine air masses react with 332 

polluted air masses during the transport, leading also to chloride deficit (Seinfeld and Pandis, 2006).  333 

Constraints led to an effective increase in Q of about 25 units with a 0.6 % increase, which can be 334 

considered acceptable (Paatero and Hopke, 2009). The constrained solution improved the chemical 335 

profiles of factors impacted by sea salt, with negligible differences in all other relevant features (i.e. 336 

EVF, residuals, source apportionment) respect to the base-case one. Thus, the constrained solution 337 

was considered the most reliable one from a physical point of view; results are presented in Fig. 1 338 

and Fig. 2 and discussed in the following. The average apportionment during the CARE experiment 339 

is reported in Table 1. 340 
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Fig. 1 (a) Chemical profiles and (b) bap apportionment of the nine-factor constrained solution. The 342 

blue bars represent the chemical profile (output of the matrix F for chemical variables normalised 343 

on mass), the green bars the output of the matrix F for optical variables, and the black dots the 344 

EVF. 345 

 346 

 347 

Fig. 2 Hourly temporal patterns of the nine-factor constrained solution for February 2017. Vertical 348 

lines show midnight in each day. 349 
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 350 

Factors - Sources µg m
-3 

% 

F1 - Biomass burning 5.5 (4.5 – 5.8) 32 (26 – 34) 

F2 - Nitrate and aged aerosol 4.4 (3.7 – 5.2) 25 (22 – 30) 

F3 - Traffic exhaust 2.8 (2.6 – 3.2) 16 (15 – 18) 

F4 - Sulphate 2.5 (2.1 – 2.8) 14 (12 – 16) 

F5 - Mineral dust 0.66 (0.57 – 0.71) 3.8 (3.3 – 4.1) 

F6 - Marine aerosol 0.63 (0.50 – 0.74) 3.6 (2.9 – 4.2) 

F7 - Traffic non-exhaust 0.38 (0.26 – 0.51) 2.2 (1.5 – 2.9) 

F8 – Local source 0.33 (0.25 – 0.63) 1.9 (1.4 – 3.7) 

F9 - Polluted marine aerosol 0.28 (0.20 – 0.81) 1.6 (1.1 – 4.6) 

 351 
Table 1 Absolute and relative average source apportionment in the nine-factor constrained 352 
solution; in parentheses, the 10

th
 and 90

th
 percentiles from the bootstrap analysis are reported. 353 

 354 

Factor 1 was identified as biomass burning because it was characterised by high EVF for OA 355 

(0.57), Rb (0.51), and K (0.54) (Amato et al., 2016; Reid et al., 2005). In the chemical profile, OA 356 

concentration contributed for 81 % of the total mass apportioned to the source; the second highest 357 

contribution was 13 % given by NO3
-
, followed by K (2.5 %), EC (1.7 %), and SO4

2-
 (1.3 %). Rb 358 

was less relevant in terms of mass contribution (about 0.01 %). The biomass burning source had a 359 

dominant contribution during the night, with highest values in the time interval 23:00 - 02:00 LT 360 

(temporal pattern in Fig. 2). Perrino et al. (2019) already highlighted a similar temporal behaviour 361 

of levoglucosan concentrations (tracer of biomass burning emissions) in wintertime in the city 362 

centre of Rome; it was likely related to biomass burning products originated in the peri-urban area 363 

and then transported towards the city centre. The biomass burning primary contribution to PM2.5 364 

estimated by Perrino et al. (2019) was in the range 7.2 % – 23.3 % during 2013 – 2016 winter 365 

months. In this work, the biomass burning source explained 32 % of the PM2.5 mass, a bit higher 366 
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than the previous estimate as also aged organic aerosol contribution was accounted for as explained 367 

in Sect. 3.3. Influence of aerosol ageing in a chemical profile of biomass burning from PMF was 368 

already reported in the literature (Piazzalunga et al., 2011). 369 

Factor 2 was related to a source called nitrate and aged aerosol. In fact, NO3
-
 and NH4

+
 showed 370 

EVF of 0.65 and 0.44, respectively, and non negligible EVF values were also found for K, Zn, Rb, 371 

and OA. This observation suggested that, as already found in factor 1, the chemical profile of factor 372 

2 showed some mixed contributions from biomass burning and nitrate. However, nitrate formation 373 

at urban sites is expected mainly from NOx traffic emissions thus justifying the share of EC in the 374 

chemical profile (4.7 % of the apportioned mass, higher than in the biomass burning one) and the 375 

optical absorption contribution (see Sect. 3.2). The average mass contribution of this factor was 25 376 

%. 377 

Factor 3 was characterised by very high EVF (0.74) for EC and the only other significant chemical 378 

component in terms of EVF was Fe (0.35). The mass contribution of this source was ascribed to two 379 

major contributors, i.e. EC and OA accounting together for about 96 % of the apportioned mass. 380 

The factor was thus identified as traffic (exhaust emissions) and impacted, on average, for 16 % of 381 

the PM2.5 mass. Peaks in concentration values appeared in the evening approximately at 22:00 LT 382 

(Fig. 2). Similar traffic emission concentration patterns were previously observed in Rome, 383 

independently of the season, and they were associated to boundary layer dynamics (Struckmeier et 384 

al., 2016). The observed modulation was also confirmed by the temporal pattern of natural 385 

radioactivity due to Radon progeny detected in the atmosphere during the CARE campaign (Fig. 3; 386 

details in Costabile et al., 2017a); as well known, measurements of natural radionuclides can be 387 

used to trace the temporal evolution of atmospheric dispersion in the boundary layer and estimates 388 

for the mixing layer height (see e.g. Salzano et al., 2016; Vecchi et al., 2019; and references 389 

therein). The traffic (exhaust) source is the main contributor to aerosol light absorption in the 390 

atmosphere, confirming the factor-to-source assignment (see Sect. 3.2). 391 
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 392 

Fig. 3 Mean diurnal cycle of natural radioactivity during the CARE campaign. 393 

 394 

Factor 4 was assigned to sulphate, since SO4
2-

 and NH4
+
 showed high EVF. V and Ni were 395 

characterised by EVF slightly higher than the other elements, suggesting some mixing with ship 396 

emissions. In terms of mass, the most significant contribution in the chemical profile was given by 397 

OA (14 %) after SO4
2- 

and NH4
+
 (63 % when added together). During the campaign, the average 398 

mass apportionment of this source was 14 %. 399 

Factor 5 was associated to the mineral dust source because of high EVF for Al (0.88), Ti (0.86), Si 400 

(0.82), and Mg (0.34). These variables are all crustal elements and tracers for mineral dust; it is 401 

noteworthy that the diagnostic ratios between these elements apportioned in the chemical profile are 402 

consistent with literature values (Amato et al., 2016). During the CARE campaign, a desert dust 403 

transport episode lasting less than two days (24
th 

- 25
th

 February) was clearly identified exploiting 404 

optical properties (Valentini et al., 2020). Even if the impact of desert dust was dominant in this 405 

factor - with concentration values as high as 25 times the average over the whole campaign (see 406 

Fig. 2) - the source retrieved by the model probably included minor contributions also from local 407 

soil resuspension. The mass contribution of this source over the whole campaign was 3.8 %, but 408 

during the mineral dust advection it accounted for a relevant fraction (49 % on average) of the 409 

PM2.5 mass concentration.  410 

Factor 6 was identified as a marine aerosol source being characterised by EVF = 0.89 for Cl, with 411 

the second highest EVF being 0.27 for Na. Typical diagnostic ratios for this source, i.e. Mg/Na and 412 
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Cl/Na, were respectively 0.13 and 1.9, very similar to what expected for bulk sea salt aerosol (0.12 413 

and 1.8, respectively) (Seinfeld and Pandis, 2006). It is noteworthy that local atmospheric 414 

circulation for the area under investigation allows the inland penetration of weak sea breezes, even 415 

if Rome is about 30 km from the nearest sea cost. This episodic source contributed on average for 416 

about 3.6 % of the total PM2.5 mass, up to 47 % on average during the advection (Fig. 2). 417 

Factor 7 was assigned to traffic non-exhaust emissions (including road dust resuspension), since 418 

high EVF were associated to main tracers for this source: Ca (0.57), Zn (0.38), Fe (0.34), Mn 419 

(0.42), and Cr (0.45) (Thorpe and Harrison, 2008; Jeong et al., 2019). EVF for Cu was a bit lower 420 

(0.20), because this element was found with higher concentrations (11.8 ng m
-3

 compared to 2.5 ng 421 

m
-3

) in the chemical profile of a factor that was associated to local emissions (see afterwards). 422 

Connection with traffic emissions was also confirmed by the presence of EC in the chemical profile 423 

(14 %), likely due to road dust resuspension. The average contribution of traffic non-exhaust 424 

emissions to PM2.5 over the CARE campaign was quite low (2.2 %), as already found for same 425 

fraction by e.g. Amato et al. (2016). 426 

Factor 8 showed a strong episodic character (see Fig. 2) and presented a high EVF for Cu (0.78) 427 

and Pb (0.61). The high EC contribution in the chemical profile was likely associated to combustion 428 

emissions and the optical absorption profile of this factor (see Sect. 3.2) suggested an influence of 429 

fossil fuel combustion (α ≈ 1). This is the first time that a similar factor has been detected in the 430 

urban area of Rome and – as far as we know - it was not reported in previous literature works; 431 

therefore, this factor was tentatively assigned to local emissions but further investigation is needed 432 

in the future to identify the specific source. The local feature of the source is evidenced in Fig. 5S in 433 

the Supplement - realised through the Openair R package (Carslaw and Ropkins, 2012; Carslaw 434 

2019) - which shows variation in source contributions by wind speed and wind direction. The 435 

episodic and late evening contribution of this source (Fig. 2) is also likely influenced by boundary 436 

layer dynamics (Fig. 3). The average mass contribution of this source was very low (1.9 %). 437 
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Factor 9 was associated with polluted marine aerosol. Indeed, main tracers of aged sea salt aerosol 438 

are Na and Mg which showed EVF values of 0.67 and 0.34, respectively; moreover, EVF for V 439 

(0.41) and Ni (0.26) were also of interest as they are elemental markers for heavy oil combustion 440 

here likely related to ship emissions, as already highlighted by Valentini et al. (2020) for the CARE 441 

campaign. Mg-to-Na ratio in the chemical profile was 0.14 (i.e. in fair agreement with 0.12 reported 442 

in the literature) and the chemical profile did not contain Cl; opposite, the chemical profile was 443 

clearly enriched in SO4
2-

 and NO3
-
, highlighting the ageing of sea salt aerosol (Seinfeld and Pandis, 444 

2006). Moreover, the presence of EC in the profile suggested the influence of ship emissions and 445 

the contamination due to air mass transport from the coast. The average mass contribution of this 446 

source was 1.6 % at the receptor site. 447 

A bootstrap analysis with 100 convergent runs was performed to evaluate the uncertainties 448 

associated with source profiles (Crespi et al., 2016); results are shown in Fig. 4. Main tracers of 449 

each source were characterised by small interquartile ranges (blue bars, with values expressed in ng 450 

m
-3

 or Mm
-1

 on a logarithmic scale). Mapping of factors was always 99 %, supporting the goodness 451 

of the solution presented in this work. 452 
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Fig. 4 Box plot of the bootstrap analysis on the nine-factor constrained solution. The red dots 454 

represent the output values of the solution, the black lines the medians from the bootstrap analysis, 455 

the blue bars the 25
th

 and 75
th

 percentiles, the dotted lines the interval equal to 1.5 times the 456 

interquartile range, and the black dots the outliers from this interval.  457 

 458 

3.2 Model results exploiting optical variables  459 

As mentioned in the previous section, the source apportionment of the light absorption coefficients 460 

at different wavelengths (see Fig. 1b) strengthens the identification of sources giving additional 461 

information about their contribution to light absorption in the atmosphere. In addition, the multi-462 

variable modelling approach introduced by Forello et al. (2019) allows the retrieval of relevant 463 

source-dependent optical parameters – such as the absorption Ångström exponent and the mass 464 

absorption cross section - without any a-priori assumption. 465 

In Table 2 the bap apportionment at different wavelengths is shown; traffic exhaust and local source 466 

emissions are added together to consider total fossil fuel emissions. 467 

 468 

 370nm 470nm 520nm 590nm 660nm 880nm 950nm 

Biomass 

burning 

17 % 

(14-18) 

8.5 % 

(6.8-9.0) 

6.0 % 

(4.9-6.4) 

4.1 % 

(3.4-4.4) 

2.5 % 

(2.0-2.7) 

0 % 

(0-0) 

0 % 

(0-0) 

Nitrate 

and aged 

aerosol 

12 % 

(8.9-22) 

9.2 % 

(5.9-19) 

8.5 % 

(5.2-18) 

8.1 % 

(4.6-18) 

7.8 % 

(4.3-17) 

7.1 % 

(3.6-17) 

6.9 % 

(3.4-17) 

Mineral 

dust 

0.9 % 

(0.8-1.1) 

0.7 % 

(0.6-0.8) 

0.6 % 

(0.5-0.6) 

0.4 % 

(0.3-0.5) 

0.4 % 

(0.2-0.4) 

0.3 % 

(0.2-0.4) 

0.3 % 

(0.2-0.4) 

Fossil 

fuel 

70 % 

(62-73) 

78 % 

(69-81) 

80 % 

(71-83) 

82 % 

(72-84) 

83 % 

(73-86) 

86 % 

(75-89) 

86 % 

(76-89) 
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Table 2 Average contribution to total reconstructed bap; in parentheses, the 10
th

 and 90
th

 percentiles 469 

are reported. 470 

 471 

As expected, the relative contribution to the total reconstructed bap ascribed to the factors related to 472 

biomass burning and mineral dust decreases with increasing λ, in contrast to the contribution from 473 

fossil fuel combustion. The most significant contribution to bap at all wavelengths is given by the 474 

traffic exhaust emission source (significant also in terms of EVF, ranging from 0.63 to 0.77 and 475 

increasing with increasing wavelength), followed by the factor assigned to the local source. These 476 

two main contributors to optical absorption in the atmosphere are related to fossil fuel combustion 477 

(traffic exhaust + local source emissions) as highlighted by the value of the absorption Ångström 478 

exponent (α) that is 1.1 (1.0 - 1.1 as 10
th

 - 90
th

 percentile from the bootstrap analysis); in fact, α 479 

values near 1 are typically associated to light absorption contribution dominated by fresh black 480 

carbon (BC) emissions. In Fig. 5a, the wavelength dependence of bap for fossil fuel emissions is 481 

reported; the line corresponds to the data fitting considering bap ∝λ
–α

. 482 

 483 
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Fig. 5 bap dependence on λ for (a) fossil fuels, (b) biomass burning, (c) nitrate and aged aerosol, 484 

and (d) mineral dust. 485 

 486 

Even if the other sources do not contribute as much as fossil fuel emissions to the absorption in the 487 

atmosphere, useful information can be retrieved considering source-dependent optical parameters. 488 

The wavelength dependence of bap apportioned to the biomass burning source is reported in Fig. 5b 489 

where the α value from the fitting is 4.4 (4.4 - 4.5 as 10
th

 - 90
th

 percentile); it is higher than typical 490 

literature α values for biomass burning (e.g. Sandradewi et al., 2008; and references therein) but the 491 

significant role played by brown carbon (BrC, i.e. light absorbing organic carbon) in this source can 492 

account for it (Laskin et al., 2015). In the literature, BrC was already found in particles enriched in 493 

nitrate (that is the second highest contributor in the source chemical profile, after OA) and poor in 494 

BC, with a BC-to-OA ratio below 0.05 ± 0.03 (Costabile et al., 2017b); considering EC as a proxy 495 

for BC, the ratio in the biomass burning chemical profile was 0.02. 496 

The wavelength dependence of bap for the nitrate and aged aerosol source is reported in Fig. 5c; α 497 

value is 2.1 (1.6 – 2.6 as 10
th

 - 90
th

 percentile from bootstrap analysis), consistent with a mixed 498 

contribution from both BC and BrC. 499 

Even if the mineral dust source is characterised by very low values of bap it has a clear wavelength 500 

dependence (Fig. 5d), in contrast to the other remaining sources giving negligible contributions to 501 

light absorption. For this source, α is 2.9 (2.6 – 3.5 as 10
th

 - 90
th

 percentile), i.e. comprehended in 502 

the typical range for desert dust reported in the literature (e.g. Caponi et al., 2017; and references 503 

therein). This result is noteworthy because values for the absorption Ångström exponent of mineral 504 

dust are still relatively scarce in the literature.  505 

Absolute bap values apportioned in the mineral dust source are much lower (ranging from 0.9 % to 506 

0.3 % of the total reconstructed bap - depending on the wavelength - see Table 2) than the ones from 507 

fossil fuels combustion and biomass burning; this result can be expected since the transport episode 508 

of mineral dust is very short (lasting less than two days over the whole campaign). The picture is 509 
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totally different when considering the time interval covering the transport event (from 24
th 

February 510 

12:00 until 25
th

 February 15:00 LT, estimated considering the temporal pattern in Fig. 2); indeed, 511 

even if the dominant contribution is still given by fossil fuels combustion (from 59 % to 75 % of the 512 

total reconstructed bap, increasing with increasing wavelength), the mineral dust impact on light 513 

absorption ranges from 25 % at λ = 370 nm to 10 % at λ = 950 nm. 514 

Another relevant result from this modelling approach is the estimate of the ratio between bap(λ) and 515 

EC - here considered as a proxy for BC concentrations - for each source. It is noteworthy that when 516 

BC is the only absorbing component, bap(λ)-to-EC ratio provides the mass absorption cross-section 517 

of BC (MACBC) at different wavelengths; this assumption can be considered valid for fossil fuel 518 

emissions (for which α = 1.1). 519 

Calculations of bap(λ)/EC for biomass burning, fossil fuel, and nitrate and aged aerosol sources are 520 

reported in Fig. 6 and Table 2S in the Supplement.  521 

In the case of the fossil fuel emissions source during the CARE campaign, MACBC(λ) resulted to 522 

be: 18.3 (17.6 – 18.6 as 10
th

 – 90
th

 percentile from the bootstrap analysis) m
2 

g
-1

 at λ = 370 nm; 14.5 523 

(13.9 – 14.7) m
2 

g
-1

 at λ = 470 nm; 12.7 (12.2 – 12.9) m
2 

g
-1

 at λ = 520 nm; 11.1 (10.7 – 11.3) m
2 

g
-1

 524 

at λ = 590 nm; 9.7 (9.3 – 9.9) m
2 

g
-1

 at λ = 660 nm; 7.2 (6.9 – 7.4) m
2 

g
-1

 at λ = 880 nm; 6.9 (6.6 – 525 

7.0) m
2 

g
-1

 at λ = 950 nm (Table 2S in the Supplement). The average MAC value for BC – not 526 

related to the specific sources – was estimated by Costabile et al. (2017a) during the same campaign 527 

as 8.7 m
2
g

-1
 at λ = 637 nm.  528 
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Fig. 6 bap-to-EC ratio dependence on λ for biomass burning, fossil fuels, and nitrate and aged 531 

aerosol. Error bars represent the 10
th

 and 90
th

 percentiles from the bootstrap analysis. 532 

 533 

It is noteworthy the large difference at shorter wavelengths among the various sources, which is due 534 

to the contribution of BrC. The difference is clearly more significant for biomass burning, where 535 

BrC resulted to be dominant (α = 4.4), while significant differences in the nitrate and aged aerosol 536 

are present only at λ = 370 nm (α for this source was 2.1) compared to fossil fuels.  537 

 538 

3.3 Comparison between ME-2 modelling and ACSM results on organics 539 

In order to obtain more insights on the OA apportionment, results from the modelling approach 540 

presented in this work coupling chemical and optical variables (ME-2all, in the following) were 541 

compared with an independent source apportionment study previously performed on the organic 542 

fraction OA measured by the ACSM (ME-2org, in the following) (see paragraph 2.2.3). Using the 543 

latter approach, three factors were recognised: HOA (hydrocarbon-like organic aerosol), BBOA 544 

(biomass burning-like organic aerosol), and OOA (oxygenated organic aerosol); HOA and BBOA 545 

(i.e. primary OA components) accounted for about 12 % of the OA mass each, while OOA was the 546 

main component accounting for the remaining apportioned mass fraction.  547 

Results from the application of ME-2all showed that the main contributors to organic aerosol 548 

concentrations in the atmosphere (see also Fig.1a) were biomass burning (accounting nearly for 58 549 

% of the total OA concentrations reconstructed by the model), nitrate and aged aerosol (almost 24 550 

%), and traffic exhaust emissions (almost 14 %).  551 

As an original contribution of this work, in Figure 7 a comparison between temporal patterns 552 

related to OA apportioned by ME-2all (hereafter referred to as OA_biomass burning, OA_nitrate and aged aerosol, 553 

OA_traffic exhaust) vs. BBOA, OOA, and HOA obtained by ME-2org is reported.  554 
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The first noteworthy result is that HOA and OA_traffic exhaust retrieved by the two different approaches 555 

are similar in temporal patterns (R
2
 = 0.85) but – more importantly – fairly comparable in terms of 556 

absolute values (within 10 % difference on average) (Fig. 7a)  557 

Also OA_nitrate and aged aerosol shows similar features to OOA (R
2
 = 0.74) in terms of temporal 558 

behaviour thus confirming that secondary aerosol and ageing processes impact on the source 559 

identified by ME-2all as nitrate and aged aerosol. Correlation between the fraction of semi-volatile 560 

OOA (SV-OOA) and NO3
-
 was already observed in Rome (Struckmeier et al., 2016), in agreement 561 

with other literature studies (DeCarlo et al., 2010). OA_nitrate and aged aerosol absolute values are much 562 

lower than OOA from ME-2org (Fig. 7b), suggesting that part of the OOA is apportioned to other 563 

sources by ME-2all.  564 

The biomass burning source retrieved by ME-2all is characterised by a more complex mixture of 565 

organics showing a significant correlation with both BBOA (R
2
 = 0.74) and OOA (R

2
 = 0.75) from 566 

ME-2org. However, one relevant difference is related to BBOA absolute concentration values, which 567 

do not account for all the OA apportioned by ME-2all to the biomass burning source. In addition, the 568 

decrease of BBOA concentration values steeply reaches zero (typically during the time interval 569 

from 11 to 17 LT) while the OA_biomass burning has higher concentration values (Fig. 7c), especially 570 

during the period characterised by atmospheric stability (from about 10/02 until 24/02, excluding 571 

18/02 and 19/02).  572 

The discrepancies in organic aerosol absolute values mentioned for the latter two cases are very 573 

interesting and deserve a further discussion as they were never reported in previous works. Indeed, 574 

this observation can be explained considering that a consistent part of the OOA – generically 575 

ascribed to aged aerosol in literature works (see e.g. DeCarlo et al., 2010) – is likely linked to the 576 

biomass burning source as shown by ME-2all results and better described in the following. As can 577 

be seen in Fig. 8, the temporal pattern of the difference between OA_biomass burning and BBOA is 578 

substantially overlapped with the difference between OOA from ME-2org and OA_nitrate and aged aerosol 579 

from ME-2all (in the following, OOA-OA_nitrate and aged aerosol). Consistently, adding the contribution 580 
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from OOA-OA_nitrate and aged aerosol to BBOA apportioned by ME-2org, the correlation with the biomass 581 

burning source from ME-2all significantly increases (R
2
 = 0.92 vs. 0.74) and also absolute 582 

concentration values are very similar, within 4 % on average. Therefore, OOA-OA_nitrate and aged aerosol 583 

can be considered a rough minimum estimation of the biomass burning contribution to OOA and on 584 

average it accounts for 60% of OOA concentrations, corresponding to 43 % of total OA measured 585 

by ACSM.  586 

This is the second noteworthy result of this work, as it represents an estimate of the secondary 587 

contribution to OA due to biomass burning; therefore, it could be added to the 12 % estimated as 588 

BBOA (typically associated only to primary aerosol content), evidencing the eminent role of 589 

biomass burning (> 50 %) - with its primary and secondary contributions - in explaining the total 590 

OA measured during the CARE campaign. 591 

 592 

 593 

Fig. 7 Hourly temporal patterns of (a) HOA from ME-2org and OA apportioned to traffic exhaust by 594 

ME-2all, (b) OOA from ME-2org and OA apportioned to nitrate and aged aerosol by ME-2all, (c) 595 
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BBOA from ME-2org and OA apportioned to biomass burning by ME-2all for February 2017. 596 

Vertical lines show midnight for each day. 597 

 598 

 599 

Fig. 8 Hourly temporal patterns of the difference between OA apportioned by ME-2all to the 600 

biomass burning source and BBOA from ME-2org (OA_biomass burning – BBOA) and the 601 

difference between OOA from ME-2org and OA in the nitrate and aged aerosol source from ME-2all 602 

(here denoted as OOA-OAn&aa) for February 2017. Vertical lines show midnight for each day. 603 

 604 

In contrast to the other two sources, the chemical profile of traffic exhaust from ME-2all seems to be 605 

constituted mainly by primary emissions since OA_traffic exhaust from ME-2all corresponds to HOA 606 

from ME-2org: thus, OOA contributions related to secondary organic components can be considered 607 

negligible in this source. Secondary organic compounds due to traffic emissions are likely mixed in 608 

the chemical profile of the nitrate and aged aerosol source from ME-2all, so that minimum 609 

estimation of their contribution is not possible in this case. 610 

 611 

4. Conclusions 612 

In this work, the multi-time ME-2 was applied to a multi-variable dataset comprising high-time 613 

resolution chemical and optical variables collected at an urban site impacted by episodic sources. 614 

The peculiar aerosol characteristics – which were heavily influenced by both anthropogenic and 615 

natural sources – together with the availability of information about organic aerosol apportionment 616 
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retrieved by ACSM, made it possible to further test the robustness of the approach recently 617 

introduced by Forello et al. (2019) and to show new potentialities.  618 

A noteworthy result of this work is the possibility to gain knowledge on the OA source 619 

apportionment and to relate primary and secondary OA contributions to their emission sources; at 620 

the state of the art, this is still an important area of investigation in receptor modelling. In particular, 621 

biomass burning was estimated to contribute to OA for about 55 % and the biomass burning 622 

secondary contribution (typically accounted for in OOA by literature works dealing with ACSM 623 

data) was found to be dominant respect to the primary one (12 %), i.e. the one included in the 624 

BBOA component given by ACSM.  625 

The added value of the insertion of the optical variables in the modelling procedure presented in 626 

this work is the assessment of optical absorption contribution from mineral dust. Its contribution 627 

was relevant (impacting on bap(λ) apportionment from 25 % to 10 %, decreasing with increasing 628 

wavelength) when a not negligible mineral dust transport episode was registered at the 629 

measurement site. In addition, source-dependent optical absorption parameters (e.g. the absorption 630 

Ångström exponent, α) were retrieved for fossil fuel and biomass burning emission sources as well 631 

as for mineral dust as output of the receptor model. The latter result can be of great interest e.g. for 632 

the Aethalometer model users as a-priori assumptions on the absorption Ångström exponent are still 633 

causing the large part of the uncertainties associated to the optical apportionment models results 634 

(Zotter et al., 2017).  635 

In perspective, our modelling approach paves the way to more powerful receptor models which 636 

have the potential of providing much more insights on aerosol properties and sources. 637 

 638 

Data availability. For any request, please contact Roberta Vecchi (roberta.vecchi@unimi.it). 639 

 640 
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