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Universal low-frequency vibrational modes in silica glasses
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It was recently shown that different simple models of glass formers with binary interactions define
a universality class in terms of the density of states of their quasi-localized low-frequency modes.
Explicitly, once the hybridization with standard Debye (extended) modes is avoided, a number of
such models exhibit a universal density of state, depending on the mode frequencies as D(ω)∼ω

4.
It is unknown however how wide is this universality class, and whether it also pertains to more
realistic models of glass formers. To address this issue we present analysis of the quasi-localized
modes in silica, a network glass which has both binary and ternary interactions. We conclude that
in 3-dimensions silica exhibits the very same frequency dependence at low frequencies, suggesting
that this universal form is a generic consequence of amorphous glassiness.

Introduction – Theoretical considerations pointed
out for quite some time [1–4] that low-frequency vibra-
tional modes in amorphous glassy systems are expected
to present a density of states D(ω) with a universal de-
pendence on the frequency ω, i.e.

D(ω)∼ω4 . (1)

In spite of the fact that numerical simulations of a va-
riety of model glass formers proliferated in recent years,
the direct verification of this prediction was late in com-
ing. The reason for this is that the modes which are ex-
pected to exhibit this universal scaling are quasi-localized
modes that in large systems hybridize strongly with low
frequency delocalized elastic (Debye) extended modes,
whose density of states is expected to depend on fre-
quency like ωd−1 where d is the spatial dimension. To
observe the universal scaling Eq. (1) one needs to dis-
entangle these types of modes. A simple and success-
ful idea was presented in Ref. 5, using the fact that low
frequency Debye modes have a lower cutoff that is deter-
mined by the system size. By analyzing small enough sys-
tems one could isolate the relevant quasi-localized modes
and their density of states, keeping the lowest available
Debye mode cleanly above the observed frequency range.
Other methods were introduced to examine the density
of states of the glassy modes, see e.g. Refs. 6–8.
Invariably, the demonstration of the universal fre-

quency dependence Eq. (1) was limited so far to models
with binary interaction only. The theoretical analysis of
Refs. 1–4 is, however, much more general, describing low
frequency glassy modes as resulting from soft oscillators
in the neighborhood of stiffer ones, and with long-range
interactions between the soft oscillators. It is therefore
timely and relevant to examine whether the universality
class extends to glass formers of more realistic interac-
tions. Here we present results for silica glass which has

both binary and ternary interactions. We need to find be-
low how to avoid the influence of low lying Debye modes,
and discuss how to choose the system size to explore the
density of quasi localized modes.

System and protocols – Our model of silica glass is
simulated in 3-dimensional cubic boxes for three different
system size:

• N =222 atoms composed by NSi=74 silicon atoms
and NO=148 oxygen atoms. Box length L=15Å,
1000 configurations.
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FIG. 1. Density of vibrational modes D(ω) (circles) for three
different system sizes. The dashed line represents the scaling
law D(ω)∝ω

4. One learns that the scaling law is obeyed
with a diminishing range when the system size increase. It is
shown below that this is due to invasion of the low frequency
range by extended phonon modes that can hybridize with the
quasi-localized modes.
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• N =1032 atoms composed by NSi=344 silicon
atoms and NO=688 oxygen atoms. Box length
L=25Å, 1000 configurations.

• N =4008 atoms composed by NSi=1336 silicon
atoms and NO=2672 oxygen atoms. Box length
L=39.3Å, 250 configurations.

The interaction between atoms is given by the Watan-
abe’s potential [9] following Refs. 10 and 11. Units in the
following are defined on the basis of energy, length, and
time, being eV, Å, and ps, respectively. The preparation
protocol starts with randomly positioned Si,O atoms,
with density ρin=2.196g/cm3, followed by an annealing
procedure:

1. After an initial 2 ps of Newtonian dynamics with
Lennard-Jones interatomic interactions, viscously
damped with a rate of 1/ps and atomic veloci-
ties limited to 1 Å/ps, we switch to our reference
Watanabe’s potential for silica [9].

2. We perform subsequent 8 ps of damped Newto-
nian dynamics. iii) We then heat up the system
up to 4000K and then quench to 0K in 100ps.
Analysis on such initial samples compares well
with experimentally observed density [12] and with
previous calculations of atomic coordination [13].
The so-produced configurations are then minimized
through the fast inertial relaxation engine (FIRE)
[14] until the total force on every atom satisfies
|Fi|≤ 10−10 eV/Å.

The low frequency vibrational modes – Denote as
U(r1, r2, · · · rN ) the total potential energy of the system
with {ri}

N
i=1

being the coordinates of the particles. As
usual [15–17], the modes of the system in athermal con-
ditions (T =0) are obtained by diagonalizing the Hessian
matrix [18]:

Hαβ
ij ≡

∂2U(r1, r2, · · · rN )

∂rαi ∂r
β
j

=−
∂Fα

i

∂rβi
. (2)

The mode frequencies ω are obtained by the square
root of the Hessian eigenvalues, and we define ωmin as
the lowest frequency after removing the three transla-
tional zero modes. The eigenvectors provide informa-
tion on which modes are localized and which are not,
as seen below. In our simulations, the Hessian matrix
is computed numerically from the first-order derivatives
of inter-particle forces, cf Eq. (2). Each element Hαβ

ij is
obtained by calculating the force Fα

i on particle i result-
ing from a displacement of particle j by a small amount,
∆(rβj )=10−7 Å along positive and negative β-direction,
and by applying the difference quotient. All the simula-
tions have been performed using the LAMMPS simulator
package [19], and visualized with the OVITO package [20].
Results – In Figure 1 we report the density of states

for the lowest frequencies in each of the three simulated

FIG. 2. Participation ratio of all the modes whose frequency
ω<1 as a function of the frequency. The highlighted line is
the average over the participation ratios of modes in the same
band of frequencies.

system sizes. In general we see that the predicted power
law ω4 fits very well the low frequencies tail. Interest-
ingly, for the smallest system with N =222 the power law
extends throughout, whereas for the larger two systems
we see the peak belonging to elastic modes sneaking in
from above, invading lower frequencies for the largest sys-
tem with N =4008. To substantiate this, we computed
the participation ratio associated with the modes in the
pure power law regime and with modes whose frequency
is larger than 0.3 THz.
To understand the range of frequencies for which the

universal law (1) is expected to hold, we note that for
the smallest system with N =222 (cf. Fig. 1) this range
extends up to ω≈ 0.4. For the larger systems the range
is smaller, up to about ω≈ 0.3 for N =1032, becoming
smallest for N =4008 where it ends just about ω≈ 0.2.
We show now that this is due to the invasion of extended
modes which do not belong to the quasi-localized modes
of interest. To establish this we compute the participa-
tion ratio of all the modes, and present the results in
Fig. 2. The participation ratio PR is defined as usual

PR=

∑N
i=1

(ei · ei)
2

[
∑N

i=1
(ei · ei)]2

, (3)

where ei is the ith element of a given eigenvector of the
Hessian matrix. Localized modes are characterized by
a low participation ratio, below PR≈ 0.2, whereas fully
extended modes have PR=O(1). Examining Fig. 2, we
see that for N =222 modes with PR< 0.2 go all the way
to ω≈ 0.4 whereas for N =1032 and N =4008 the range
ends around ω≈ 0.3 and ω≈ 0.2 respectively. This ap-
pears to correlate very nicely with the range of scaling
seen in Fig. 1.
An example of such localized modes, corresponding
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FIG. 3. Orthogonal view of the eigenvector corresponding to
ωmin, for one of the N =4008 samples. Arrows are colored
with respect to the modulus e of the vectors, from black (e=0)
to red (e=0.6). Arrows have been magnified by a factor of
10.

to the smallest ω value for one of the largest N =4008
samples, is shown in Fig. 3. This eigenvector is asso-
ciated to an ω=0.122THz, and a participation ratio
PR=0.00111∼ 4/4008,meaning that on average just one
thousandth of the atoms is involved by this mode.
To further solidify the universal scaling behavior of the

low frequency quasi-localized modes, we turn now to ex-
tremal statistics. Since we have many configurations in
our simulations, we can determine the minimal frequency
obtained from the diagonalization of the Hessian matrix
in each and every configuration, denoting it as ωmin. The
average of this minimal frequency over the ensemble of
configurations is 〈ωmin〉. Referring to the argument first
presented in Ref. 21, we expect that in systems with N
particles,

∫ 〈ωmin〉

0

D(ω)dω∼N−1 . (4)

Using Eq. (1) we then expect that in three dimensions

〈ωmin〉∼N−1/5∼L−3/5 . (5)

Moreover, since the different realization are uncorrelated,
the values of ωmin are also uncorrelated. Then the cel-
ebrated Weibull theorem [22] predicts that the distribu-
tion of ωmin should obey the Weibull distribution

W (ωmin)=
5

〈ωmin〉5
ω4

min e
−
(

ωmin

〈ωmin〉

)

5

. (6)

Indeed, in Fig. 4 the distribution of ωmin for the three sys-
tem size is shown, together with the expected distribution
Eq. (6). Finally, the scaling shown by Eq. (5) indicates
that these distribution can be collapsed by plotting them
as a function of the rescaled minimal frequency ωminL

3/5.
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FIG. 4. Distribution of the minimal vibrational frequency
P (ωmin) for the three investigated sizes. The dashed lines
are the corresponding Weibull distribution Eq. 6.
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FIG. 5. Distribution of the minimal vibrational frequency

P (ωmin) plotted as a function of the rescaled frequency ωL
3

5 .
The continuous black line represents the Weibull distribution.

The rescaling of the curves by L3/5 is reported in Fig. 5.

Summary and Conclusions – The main aim of the
Letter was to examine whether the universality class that
is expressed in Eq. (1) extends beyond glass formers with
binary interactions. As already mentioned, quite con-
vincing theoretical considerations predict that this uni-
versality class should be wider [1–4]. Hybridization of
the glassy quasi-localized modes with regular phonon ex-
tended modes obscured for a long time the validity of
Eq. (1) for the former. By considering small systems this
hybridization can be avoided, exposing the universal na-
ture of the density of states of the quasi-localized modes.
The results presented above show that a structural glass
like silica, with many-body interactions much exceeding



4

the spherical symmetry, also exhibits a dependence of
the density of quasi-localized modes on their frequency
according to Eq. (1) .

We note that this and other demonstrations of the
universal law Eq. (1) are achieved in athermal glasses
at T =0. A separate discussion is necessary for ther-
mal system. In that case, the configurations involved are
time dependent, and there is a question on which Hessian
is appropriate for describing the relevant modes. Some
ideas relevant to this question are presented in Ref. 17,
but the computation of the density of states remains a
task for future research.

After the completion of this work, we learned of a re-
lated work by Gonzales Lopez et al [23] that supports
our conclusions.
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