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Abstract: 

An accurate prognosis on the outcome of brain-injured patients with disorders of 

consciousness (DOC) remains a significant challenge, especially in the acute stage. In 

this study, we applied a multiple-technique approach to provide accurate predictions 

on functional outcome after 6 months in 15 acute DOC patients. Electrophysiological 

correlates of implicit cognitive processing of verbal stimuli and data-driven voxel-

wise resting-state fMRI signals, such as the fractional amplitude of low-frequency 

fluctuations (fALFF), were employed. Event-related electrodermal activity, an index 

of autonomic activation, was recorded in response to emotional words and pseudo-

words at baseline (T0). On the same day, patients also underwent a resting-state fMRI 

scan. Six months later (T1), patients were classified as outcome-negative and 

outcome-positive using a standard functional outcome scale. We then revisited the 

baseline measures to test their predictive power for the functional outcome measured 

at T1. We found that only outcome-positive patients had an earlier, higher autonomic 

response for words compared to pseudo-words, a pattern similar to that of healthy 

awake controls. Furthermore, DOC patients showed reduced fALFF in the posterior 

cingulate cortex (PCC), a brain region that contributes to autonomic regulation and 

awareness. The event-related electrodermal marker of residual cognitive functioning 

was found to have a significant correlation with residual local neuronal activity in the 

PCC. We propose that a residual autonomic response to cognitively salient stimuli, 

together with a preserved resting-state activity in the PCC, can provide a useful 

prognostic index in acute DOC.
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1. Introduction 

Anoxic, haemorrhagic, or traumatic brain injuries may result in disorders of 

consciousness (DOC). At the acute stage, these disorders are characterised by the 

impairment of the two main aspects of consciousness, i.e., wakefulness and awareness 

(Laureys, 2005). DOC are commonly assessed in the clinical practice using such tools 

as the Coma Recovery Scale–Revised (CRS-R; Giacino et al., 2004), which is 

primarily based on the patients’ behavioural responsiveness to stimuli. However, 

several aspects of awareness could be preserved in chronic DOC patients in the 

absence of an explicit behavioural interaction with the environment (Andrews et al., 

1996; Childs et al., 1993; Demertzi et al., 2008; Eickhoff et al., 2008; Fernandez-

Espejo et al., 2008; Giacino et al., 2009; Majerus et al., 2005; Monti et al., 2009; 

Owen et al., 2002, 2006, 2005; Rosanova et al., 2012; Schnakers et al., 2009). For 

instance, in a seminal study, Owen and colleagues (2006) used a motor imagery 

paradigm during fMRI to detect the neural correlates of command-following in one 

patient diagnosed as behaviourally vegetative. Since then, several studies have 

replicated this finding in similar chronic patients (see also the recent meta-analysis by 

Berlingeri et al. 2019 for further details). For example, Monti and colleagues (2010) 

studied a group of 54 patients using a similar fMRI paradigm. They found that only 5 

patients were able to modulate their brain activity wilfully. In three of these patients, 

additional bedside clinical assessment revealed some signs of awareness. One patient 

was able to use their technique to answer yes or no to questions during the fMRI 

experiment. Moreover, Cruse et al. (2011, 2012) expanded these results further using 

an EEG task involving motor imagery to detect command following responses at 

patients’ bedsides. However, the adoption of unimodal neuroimaging markers for both 

diagnosis and prognosis of DOC in clinical routine is still debated. According to the 



most recent guidelines of the American Academy of Neurology (Giacino et al., 2018), 

there is currently insufficient evidence to support or refuse the routine clinical use of 

functional neuroimaging (fMRI, EEG, PET) in DOC, and available results fail to 

outline a clear-cut picture (Berlingeri et al., 2019). Nonetheless, multimodal 

evaluations incorporating specialised functional imaging or electrophysiological 

indices are considered promising as they might reduce the risk of misdiagnosis 

associated with neurobehavioural assessments (Giacino et al., 2018). Accordingly, 

one of the primary aims of the research agenda is to develop prognostic approaches 

based on multiple and complementary techniques (Cavaliere et al., 2018; Coleman et 

al., 2009; Giacino et al., 2014; Gibson et al., 2014; Gosseries et al., 2014; Owen et al., 

2009).

One of the main challenges facing multimodal brain-based assessments in 

acute DOC patients is the routine use of sedation in this population. An example of 

this is provided by a recent study by Edlow et al. (2017). The authors studied 16 acute 

DOC patients using multiple task-based fMRI and EEG protocols. They found a 

cortical response for bottom-up language, music stimulation, and motor imagery in 

four out of 16 patients, although these patients did not present a significant association 

between the functional MRI data and the results of the Glasgow Outcome Scale-

Extended (GOS-E; Wilson et al., 1998). Unfortunately, most of the patients included 

in their study (8/16) were under propofol sedation during the EEG or fMRI tasks. 

Only one out of these eight patients showed cognitive motor dissociation, although 

the authors reported that the type of sedation was not associated with functional 

MRI/EEG responses or level of consciousness at the time of assessment. A more 

extreme case was presented by Huang et al. (2018), where one out of five participants 

exhibited specific fMRI signatures of volitional mental imagery while behaviourally 



unresponsive due to propofol sedation, making the interpretation of findings in DOC 

patients under sedation, if anything, more complicated.

The need for approaches based on multiple and complementary techniques to 

develop reliable prognostic markers received further support from a recent multi-

dimensional prognostic model capable of predicting outcome after one year (Song et 

al., 2018). The model was based on a combination of resting-state fMRI measures, 

aetiology, onset age, and DOC duration. However, the study of Song et al. (2018) was 

based on patients tested at varying time intervals from the onset, mostly far later than 

the acute stage (i.e., when a prognostic evaluation is crucial). Furthermore, the 

proposed model lacks indicators of residual cognitive activity in the patient 

population. 

To summarise, there is encouraging evidence that a combination of imaging 

techniques using a variety of tasks could support the evaluation of DOC. However, 

suitable protocols that may help to formulate a reliable prognosis that can be adopted 

easily in the clinical setting (e.g., bedside evaluation tools or basic imaging 

techniques) are still to be identified. Here, we report our efforts to improve the 

outcome predictions in acute DOC patients. A bedside event-related Skin 

Conductance Response (SCR) paradigm that addresses the differential autonomic 

responses to emotionally salient words as compared to pseudo-words was employed 

in the early-stage DOC patients (16.6 ± 9.5 days from the onset). We combined event-

related SCR with structural MRI and resting-state fMRI markers with the following 

aims: i) to test the possibility of detecting early signs of residual cognitive functioning 

in response to linguistic stimuli, ii) to investigate the prognostic value of such 

responses, and iii) to correlate the electrodermal prognostic marker with entirely data-

driven voxel-wise measures of resting-state fMRI (i.e., the fractional amplitude of 



low-frequency fluctuations (fALFF) a known marker of preserved neurofunctional 

activity that can be used to detect cerebral regions with abnormal local functioning 

(Chen et al., 2015; Zou et al., 2008)). Patients were followed up 6 months later (T1) 

with a standardised functional outcome measure (GOS-E) that allowed us to classify 

them in terms of a positive or negative outcome. According to our hypotheses, we 

expected an earlier differential physiological response to emotionally salient words 

compared to pseudo-words in outcome-positive patients. The physiological response 

should also correlate with the residual power of local neuronal activity in regions 

involved in the regulation of autonomic responses to external stimuli and, arguably, in 

critical nodes of the so-called “Consciousness Network” (Vogt and Laureys, 2005). 



2. Materials and Methods 

2.1 Event-related physiological study and patients classification

2.1.1 Participants 

Patients were recruited at the Department of Neuroresuscitation and Intensive 

Care of the “ASST Grande Ospedale Metropolitano Niguarda” in Milan from 2016 to 

2018. Only patients who met the following inclusion criteria were enrolled in the 

study: i) age range between 18 and 80 years old; ii) native Italian speakers (or highly-

proficient bilingual in one case); iii) absence of previous psychiatric, neurological, or 

drug abuse history; iv) free from sedatives and anxiolytic and analgesic medication 

for at least 5 days (according to the patient’s pharmacological therapy and physical 

biometric data); v) right-handedness; vi) no hearing deficits documented by the 

evoked potentials; and vii) no contraindications for the MRI exam. From a cohort of 

1535 patients’ admissions, 31 subjects were tested. Fifteen right-handed DOC patients 

(6 males) between 43–77 years of age (M = 63.9, SD = 8.3) met the inclusion criteria 

and were enrolled (clinical details in Supplementary Table 1). Thirty-five healthy, 

right-handed adults (16 males) between 21–74 years of age (M = 33.2, SD = 14.9) 

were also enrolled. All participants were native Italian speakers, had normal hearing, 

and had no previous history of mental or neurological illness. The Ethical Committee 

Milano Area C approved the study (study protocol ID667). Healthy individuals and 

patients’ relatives gave written informed consent in accordance with the Declaration 

of Helsinki.

2.1.2 Behavioural examination and outcome assessment 

Immediately before administering the experimental paradigms (at T0), the 

patients’ level of consciousness was assessed using the Coma Recovery Scale-



Revised (CRS-R). Functional outcome at 6 months (T1) was assessed using the GOS-

E. Alternatively, patients or their surrogates were assessed through a validated GOS-E 

phone questionnaire (Pettigrew et al., 2003). In line with previous studies (Chennu et 

al., 2017; Stender et al., 2014), a GOS-E score threshold of two was used to classify 

patients as either “outcome-negative” (GOS-E score ≤ 2), or “outcome-positive” 

(GOS-E score > 2).

2.1.3 Event-related skin conductance response 

Participants received instructions as if they could fully understand and follow 

what the examiner said. Subjects were required to pay attention to 30 emotionally 

salient words and 30 pseudo-words presented through headphones in random order, 

with an onset-to-onset time interval of 12s, while the skin conductance response 

(SCR) is recorded. Words were retrieved from a pool of stimuli classified according 

to their level of arousal and significance (Dindo and Fowles, 2008). The 30 words 

with the highest ranking of arousal and significance were selected from the list and 

were used to create 30 pseudo-words by changing the letter order of each word, thus 

maintaining word length and the number of syllables (see the list of stimuli in the 

Supplementary Table 3). As a final step, we checked that the obtained pseudo-word 

stimuli were not meaningful. Stimuli were recorded through a vocal synthesiser to 

avoid any familiarity effect due to the human voice. This ad hoc paradigm aimed to 

maximize the chance of detecting even the smaller electrodermal signs of lexical-

semantic processing by contrasting the event-related SCRs elicited by emotional 

words (i.e., lexical entries with both a meaning and an emotional value), with event-

related SCRs elicited by pseudo-words (i.e., verbal stimuli that do not have meaning 

or emotional value). Because the two categories of stimuli can be considered 



physically identical, we hypothesised that SCR differences during the processing of 

words and pseudo-words could be ascribed to lexical-semantic processing.

During the experiment, SCR was measured using the BIOPAC MP-150 Data 

Acquisition System (BIOPAC Systems, Inc., Goleta, CA) and the EDA-100C module. 

The electrodermal signal was recorded from two electrodes attached to the index and 

middle fingers of the participants’ non-dominant hand. SCR was measured with a 

sensitivity of 0–100 lS, the signal sampled at 500 Sa/s 16-bit, low-pass filtered at 5 Hz 

(Scott et al., 2011). 

2.1.4 Data pre-processing and analyses 

For each trial, SCR was determined as the difference between the maximum value 

detected in 8-s post-stimulus and the baseline calculated as the average value of a 3-s 

pre-stimulus (peak-to-base measure; Rhudy et al., 2007; Romano et al., 2014). The 

peak-to-base measures were then normalised within-subjects and converted to z-

scores to reduce the effect of the inter-subject variability of SCR, which is commonly 

large. The SCR signals extracted from the group of healthy controls and the group of 

patients were analysed separately. In the case of healthy controls, after ensuring that 

the data followed a normal distribution, we applied a paired-sample t-test to assess the 

physiological correlates of the implicit discrimination between words and pseudo-

words. In a second step, we computed an SCR delta index for each participant, 

namely the SCR mean difference between the two classes of stimuli. This measure 

was used to investigate the predictive power of our task over the functional outcome. 

In particular, we first computed the median value of the SCR delta index in healthy 

controls, hypothesising that patients with residual lexical-semantic skills may present 

with a comparable physiological response. Due to the relatively small sample size of 



the outcome-negative patients’ group, we adopted a robust statistical approach based 

on non-parametric tests. The median value of the SCR delta index in healthy controls 

was taken as the reference value under the null hypothesis in a one-sample Wilcoxon 

Signed Ranked test, using SPSS 20 (Statistical Package for the Social Sciences, IBM 

Corp. Released 2011. IBM SPSS Statistics for Macintosh, Version 20.0. Armonk, 

NY: IBM Corp). We also compared outcome-positive and outcome-negative patients’ 

SCR delta indices. The frequentist analysis was supplemented with a Bayesian 

approach (JASP Team, 2018).

2.2 Neuroimaging study 

2.2.1 Participants

DOC patients also underwent an rs-fMRI scan. One patient did not participate 

due to technical problems, and the final sample included 14 participants (5 males, age 

range 43–77 years-old, M=63.6, SD=8.5). Fourteen healthy, age-matched controls (5 

males, age range 43–72 years-old, M=64.1, SD=6.87) with no previous history of 

mental or neurological illness were also recruited.

This study was carried out in accordance with the recommendations of the 

Ethical Committee Milano Area C (study protocol ID667) with written informed 

consent from the participants. Healthy individuals and patients’ relatives gave written 

informed consent in accordance with the Declaration of Helsinki.

2.2.2 Resting state imaging 

MRI scans were performed by using a General Electrics 1.5 T Signa scanner 

equipped with gradient-echo echo-planar (Flip angle 90°, TE = 60 msec, TR = 3000 

msec, FOV = 280 × 210 mm; matrix = 96 × 64). Each volume consisted of 35 



contiguous oblique images (thickness = 4 mm, gap = 0 mm) acquired along the AC-

PC plane. A total of 200 volumes were acquired (acquisition time = 10 min). During 

the fMRI scan, healthy participants and DOC patients were instructed to keep their 

eyes closed, not to move, and to avoid thinking about anything in particular. 

Moreover, for each participant, a T1-weighted anatomical scan was acquired using a 

3D-SPGR sequence (Flip angle = 20°, TE = 2.92 ms, TR = 9.16 ms, acquisition 

matrix = 256 × 256, slice thickness = 1 mm, interslice gap = 0 mm, and voxel size = 1 

× 1 × 1 mm). The volumetric MRI scan included 150 slices acquired on oblique 

sections parallel to the AC-PC line to cover the entire brain volume.

Although the eyes-closed resting condition can lead to participants falling 

asleep during scanning and to more variability among responses (Agcaoglu et al., 

2019; Patriat et al., 2013; Tagliazucchi and Laufs, 2014), this choice was driven by 

methodological considerations. Firstly, DOC patients at the acute stage very rarely 

present with spontaneous eye-opening. Thus, we decided to apply this procedure to 

both healthy controls and patients to keep the experimental condition as homogeneous 

as possible. Secondly, in an eyes-open condition, brain-damaged patients, whose 

lesions could involve the attentional system, might explore space around them 

differently from healthy individuals, which could lead to confounding between-groups 

differences. Lastly, our approach is in line with the methodology of previous studies 

that have investigated fALFFs in DOC patients (He et al., 2014; Huang et al., 2014). 

2.2.3 Data pre-processing and analyses

The resting-state analyses were conducted using the DPARSF − Advanced 

Edition toolbox (DPARSF-A; http://rfmri.org/DPARSF). The fMRI scans were 

realigned, and the volumetric T1 image was coregistered to the functional ones. Once 



coregistered, the T1 image was passed to the unified segmentation algorithm 

(Ashburner and Friston, 2005) to obtain the grey, white, and cerebrospinal fluid maps. 

At this stage, signal decomposition was applied to partial out the effects of global 

signal, of the rigid body transformation (six parameters), and of white matter and 

cerebrospinal fluid signals. The fMRI images were then normalised to the MNI EPI 

template and rescaled to obtain isotropic voxels of 3 × 3 × 3 mm. After normalisation, 

we checked for the quality of warped images by using the “normalisation check” 

option in DPARSF-A. None of the patients showed significant deformations of the 

brain caused by potential problems during the preprocessing of the data when lesions 

are present. The normalised images were finally smoothed with a Gaussian FWHM 

filter of 4 × 4 × 4 mm. 

After pre-processing, the signal was filtered to isolate low frequency 

fluctuations within the 0.01–0.08 Hz frequency ranges that are thought to reflect the 

spontaneous neuronal activity. For each participant, a voxel-wise approach was 

employed to extract the mean time course for fluctuations in the selected frequency 

range from the entire brain volume. This allowed us to create subject-specific 

fractional Amplitude of Low Frequency Fluctuations (fALFF) maps (Zou et al., 

2008). fALFFs have been defined as the power within the low frequency range (0.01–

0.1 Hz) divided by the total power in the entire detectable frequency range and, as a 

consequence, it represents the relative contribution of specific low-frequency 

oscillations to the whole frequency range. In particular, here we focused on the voxel-

wise distribution of fALFF for three main reasons: i) the detection of regional 

neurofunctional abnormalities is crucial to clinical studies as it has been revealed as a 

powerful instrument to detect neurological (Egorova et al., 2017), psychiatric 

(Hoptman et al., 2010) and developmental pathologies (Zang et al., 2007); ii) the 



adoption of whole-brain voxel-wise analysis allowed us to explore between-groups 

differences without relying on any a priori hypothesis, due to the relative lack of 

evidence in the literature; iii) the adoption of the fractional measure allowed us to 

control for the physiological noise induced by cardiac and respiratory pulsations (Birn 

et al., 2006; Hu et al., 1995; Lund et al., 2006; Shmueli et al., 2007; Wise et al., 2004) 

on the one hand, and to avoid the confounding effect that is typically observed in the 

CSF with raw ALFF (Zou et al., 2008) on the other. The fALFF maps were z-

transformed before the statistical analyses (zfALFF). Voxel-wise analyses were 

performed at the whole-brain level using the Statistical Parametric Mapping software 

(SPM12, Wellcome Department of Imaging Neuroscience, London, UK; 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). In particular, we compared the 

voxel-wise amplitude of the zfALFF between the healthy controls and the patients 

(two-sample t-test); the contrasts were thresholded at p<0.05 cluster-level FWE 

correction; this was followed by a p<.001 uncorrected at the voxel level (Worsley et 

al., 1996). The local maxima within the cluster were further explored by adopting a 

nested-taxonomy (Friston et al., 1996). From the neurofunctional point of view, this 

allowed us to depict the cluster extension of between-group differences better.

We used the thresholded map “Controls > Patients” obtained at p<.001 

(uncorrected) as a region of interest to explore the relationship between the SCR delta 

index and the amplitude of the low-frequency fluctuations in the patients’ group. The 

zfALFF maps were treated as a dependent variable and the skin-conductance SCR 

delta index as a predictor in a simple non-parametric regression using the SnPM 

toolbox (http://warwick.ac.uk/snpm). Results were displayed at p<.05 FWE-corrected 

at the voxel level. Finally, the volumetric images (T1-weighted) were processed with 

the toolbox ALI (Automatic Lesion Identification; Seghier et al., 2008) to detect 



subject-specific brain lesions automatically. The resulting lesion maps were then 

passed to the “lesion overlap mapping” step available in ALI to obtain a 

comprehensive and quantitative map of the lesions detected in the entire sample of 

DOC patients (the results are reported in Figure 3). The resulting lesion maps were 

visually inspected to confirm the validity of the automated process. This last step was 

performed to check whether the voxel-wise results of the between-groups comparison 

ran over the zfALFF maps that fell within damaged areas.



3. Results

3.1. Event-related physiological study

As a first step, we evaluated whether our experimental paradigm could be adopted to 

detect significant electrodermal differences between words and pseudo-words in 

healthy controls. The data passed the Kolmogorov–Smirnov test for normality (SCR 

words: D(35) = 0.089; p = 0.200; SCR pseudo-words: D(35) = 0.114; p = 0.200). Results 

showed a significant difference between the mean physiological response associated 

with words (SCR Mean = +0.15 SD = 0.11) and pseudo-words (SCR Mean = −0.16 

SD = 0.13; t(34) = 7.52; p < 0.001; Bayesian Factor BF10 = 1.314e + 6, i.e., a very 

strong evidence for the alternative hypothesis). Moreover, it is worth noting that the 

delta value “words > pseudo-words” did not correlate with age (rs(34) = −0.07, p = 

0.698), gender (rs(34) = 0.07, p = 0.671), and education (rs(34) = 0.12, p = 0.501), 

providing further support for the generalisability of our approach. In the healthy 

group, the median value of the difference between the electrodermal activity 

generated from words and pseudo-words was 0.28. This value was taken as a 

reference point to evaluate the physiological responsiveness in the two samples of 

patients. 

The prognostic value of the delta index extracted from our experimental 

paradigm was tested by classifying the patients in outcome-positive (N=10) and 

outcome-negative (N=5) according to the criteria reported in the previous section. 

Interestingly, the SCR results collected at T0 (i.e., in the acute phase) showed that the 

outcome-positive patients’ median value (median=0.27) did not differ from the 

healthy controls’ one (Wilcoxon Z= -0.459; p= 0.646; BF10= 0.37, i.e., moderate 

evidence for the null hypothesis). Conversely, the Wilcoxon signed-rank test indicated 

that the outcome-negative patient’s median value (median= -0.07) was significantly 



lower than the healthy group’s median value (Wilcoxon Z= -2.023; p= 0.043; BF10= 

2.80, i.e., moderate evidence for the alternative hypothesis; see Figure 1). 

Furthermore, the Mann-Whitney U test computed to compare the delta values 

between outcome-positive and outcome-negative patient groups was significant (Z= -

2.205; p= 0.028; BF10= 3.69, i.e., moderate evidence for the alternative hypothesis). 

When taken together, the results of the event-related physiological study suggest that 

it is possible to detect early signs of residual cognitive functioning in response to 

linguistic stimuli in acute DOC patients and that these signs may have a prognostic 

value.

Figure 1. The figure shows the SCR delta index value (words > pseudo-words) of the outcome-

negative and outcome-positive patients groups against the median value of the healthy control group 

that is represented by the red line (median=0.28). 



3.2 Neuroimaging study

As a first step, we isolated the voxel-wise between-groups differences in the level of 

zfALFF. The direct comparison between healthy controls and DOC patients showed a 

significant between-group difference in a cluster centred in the right posterior 

cingulate cortex (PCC: x = 6, y = -45, z = 24, Z-score = 5.0, p < .05 FWE-corrected 

cluster level). In the same cluster, we also found a reduction of the amplitude of low-

frequency fluctuations in the homologue area of the left hemisphere (extending from 

the midline x = 0, y = -33, z = 24 to x = -6, y = -40, z = 22 and x = -3, y = -38, z = 24), 

and in the right precuneus (see Table 1 and Figure 2). The reverse contrast, namely 

“DOC patients > Controls,” did not yield any significant result, even at a less 

conservative threshold.

MNI Coordinates

x y z Z score x y z Z score

Brain regions Left hemisphere Right hemisphere

Posterior Cingulate Gyrus 0 -33 24 4.51 6 -45 24 5.02*

Precuneus 9 -54 24 3.95

Table 1. Brain regions (MNI coordinates) that showed a significant reduction of the zfALFFs in DOC 

patients (i.e., linear t-contrast “healthy controls > DOC patients” thresholded at p < .001 uncorrected 

voxel-level, p<.05 FWE-corrected cluster level). The asterisk indicated that the result also survived the 

most conservative thresholding method available in SPM (i.e., at the p < .05 FWE voxel-level 

corrected). 



The result of the between-group comparison was further explored by adopting 

a non-parametric approach to test whether the electrodermal prognostic marker (i.e., 

the delta index that was extracted from the event-related physiological study) 

correlated with spontaneous neural activity. To this end, the SCR delta index was 

entered as a predictor in a non-parametric regression analysis. The results showed a 

positive relationship between the SCR delta index and the zfALFF signal of the PCC 

(x = 6, y = -36, z = 24, p < .05 FWE-corrected voxel-level; Spearman Rho = .55, pone-

tailed = .02; Figure 2). Furthermore, a positive relationship was observed between the 

SCR delta index and GOS-E scores (Spearman Rho = .56, ptwo-tailed = .031).

Figure 2. Left panel: The figure shows the results of the linear t-contrast “Healthy Controls > DOC 

Patients” (at p < 0.001 uncorrected voxel-wise; p < 0.05 FWE-corrected cluster level). Right panel: The 

upper graph shows the effect-size of the linear t-contrast “HC > DOC” in the PCC; the lower panel 

shows the relationship between the patients’ electrodermal responses (on the x-axis) and the level of 

zfALFF (on the y-axis) in the PCC: the higher the SCR Delta Index, the higher the zfALFF in the PCC 

(Spearman Rho = .54, pone-tailed = .02). Here it is worth noting that the circles in light green represent 

outcome-negative (ON) patients, and the squares in dark green depict outcome-positive (OP) patients. 



Interestingly, none of these effects fell within the lesion overlap map (see 

Figure 3), to further suggest that a spurious effect of brain lesions did not bias our 

findings (see also supplementary materials for additional analyses).



Figure 3. Panel “a” shows the neuroanatomical distribution of the lesions in the entire sample of 

patients (n=14; results extracted from the analysis performed with the ALI toolbox). The region in 

green corresponds to the cluster centred in the posterior cingulate cortex (x=6; y=-45; z=24) to show 

that this region is anatomically preserved in the entire sample of DOC patients. Panel “b” and “c” show 



the neuroanatomical distribution of the lesion in the outcome-positive and outcome-negative patient 

groups, respectively. 

4. Discussion 

Severely brain-injured patients with DOC represent a major challenge 

concerning prognosis and consequent daily care. Innovative multiple-technique 

approaches that are independent of patients’ overt behavioural responses may provide 

useful information regarding the outcome. To better explore residual lexical-semantic 

processing of emotionally salient linguistic stimuli in DOC patients, we implemented 

a simple event-related SCR paradigm based on implicit discrimination of auditorily 

presented words and pseudo-words. Only the group of patients with a positive 

functional outcome after six months presented an electrodermal-evoked response for 

the emotionally salient words comparable to those of healthy controls at baseline.

Few studies combined electrodermal response recording with the presentation 

of auditory stimuli in DOC patients, and most of them included chronic DOC patients 

(see Supplementary Table 2 for further details). In five out of the seven available 

studies, low-level stimuli were employed (e.g., electrical stimuli). These simple 

stimuli might have elicited automatic responses unrelated to higher-level cognitive 

processing. Furthermore, no available studies reported a follow-up of the patients’ 

functional outcomes after the initial assessment. For example, in the study by 

Daltrozzo and colleagues (2010), event-related SCR associated with the presentation 

of emotional and non-emotional sounds were collected in a sample of 13 low-

responsive (minGCS = 4, maxGCS = 6) acute (mean days from brain damage = 3.9) 

patients. In this sample, as in the healthy control group, a significant SCR effect was 

detected in the emotional vs. neutral sound condition. However, the relative 

prognostic value of their findings was not reported with follow-up data.



Of note, meaningful fMRI results from an entirely data-driven index mirrored 

the electrodermal pattern in our study. In particular, we found that DOC patients had a 

significant zfALFF reduction clustered in the retrosplenial cortices, a pivotal region 

for conscious information processing (“Consciousness Network”; Vogt and Laureys, 

2005), and a well-known hub of the Default Mode Network (Fransson and Marrelec, 

2008; Greicius et al., 2009; Raichle et al., 2001) and the “Default Self Network” (Qin 

and Northoff, 2011). The functional connectivity of the PCC and the precuneus has 

been associated with the severity of impairment in DOC and is also considered a 

neuroimaging marker to differentiate vegetative state, minimally conscious state, and 

coma patients from healthy controls (Vanhaudenhuyse et al., 2010). Moreover, our 

finding is in line with the results of a previous study on severely brain-injured patients 

“with impaired consciousness” scanned in the very early phase of the disease (<24 

hours) (Tsai et al., 2014). The authors reported a significantly lower ALFF in patients 

within a region of the PCC that largely overlaps with the one reported here. This 

marker appears to be specific for acute patients. Indeed, previous studies have shown 

that between-group differences in ALFF may also extend outside the posterior 

cingulate area when considering chronic DOC patients (He et al., 2014; Huang et al., 

2014). Taken together, these findings suggest that the resting state signal captured by 

ALFF may weaken over time and that the functional integrity loss of the low-

frequency fluctuation might progressively spread from the PCC to other brain regions, 

following structural and neurofunctional connections (Cauda et al., 2018). Albeit 

indirectly, this evidence further supports the prognostic value of our findings, 

according to which an adequate level of low-frequency fluctuation may represent a 

significant marker of subsequent consciousness recovery in acute DOC patients. 

Beyond these neurofunctional correlates, one crucial aspect of the current 



study is represented by the relationship observed between the differential autonomic 

responses for words and pseudo-words (i.e., the SCR delta index) and the spontaneous 

activity of the PCC: the higher the differential electrodermal response, the higher the 

residual resting-state activity in the PCC region. This result is in line with previous 

task-related fMRI evidence of posterior cingulate cortex activity in the comprehension 

of simple and complex verbal stimuli (Maddock et al., 2003; Whitney et al., 2009). In 

an fMRI study, Maddock and colleagues (2003) asked healthy participants to evaluate 

the emotional valence of words presented through headphones. Results have shown 

that the evaluation of the valence of both unpleasant and pleasant words was 

associated with significant activation of the PCC bilaterally. The PCC has also been 

identified as part of a more complex neural system subserving narrative 

comprehension. For instance, Whitney and colleagues (2009) have shown increased 

activation of the PCC and precuneus in response to narrative shifts in a story 

comprehension task, suggesting that the PCC activity would subserve the ability to 

follow the plot, evaluating and integrating ongoing linguistic information, in order to 

accept or reject its integration with prior knowledge (Maguire et al., 1999; Mar, 2004; 

Martín-Loeches et al., 2008; Whitney et al., 2009; Xu et al., 2005). Moreover, the 

activity of this brain region had already been associated with emotional word 

processing (Cato et al., 2004).

Intriguingly, the association between the PCC and the SCR signals has been 

repeatedly reported, albeit seldom discussed in the literature. According to 

Neurosynth (www.neurosynth.org), a toolbox that allows semantically oriented meta-

analyses of imaging data, at the time of consultation, 91 papers report a significant 

fMRI effect in the PCC for SCR indices (search term = “Skin Conductance”, 

Uniformity test and Posterior Probability=.75). Accordingly, the preserved 



functionality of this region may well be a prerequisite or a marker of the vigilance and 

awareness needed for higher-level cognitive functioning, hence representing a crucial 

area for consciousness (Vogt and Laureys, 2005). Notably, the disrupted activity and 

functional connectivity of the posterior cingulate cortex has previously been identified 

as a marker of DOC (Crone et al., 2015; Herbet et al., 2014). Our findings support the 

crucial connection between cortical autonomic regulation, autonomic responses to 

verbal stimuli, and the prediction of functional recovery of consciousness.

Of course, alternative hypotheses should always be considered in the 

interpretation of new data. One might argue that the physiological response recorded 

in outcome-positive patients could be considered an automatic sign of stimuli-related 

salience. Indeed, electrophysiological task-specific preparatory responses can be 

preserved during sleep (in the absence of awareness) in healthy subjects (Kouider et 

al., 2014). Accordingly, the salience of the stimuli, rather than implicit cognitive 

processing of their lexical-semantic content, might have merely triggered the 

physiological correlate of the distinction between words and pseudo-words. However, 

in this case, we would have expected to find a significant correlation between the 

SCR delta value and regions associated with what has been repeatedly defined as a 

“Salience Network” (Seeley et al., 2007), such as the dorsal anterior cingulate and 

orbital frontoinsular cortices. Our empirical findings do not support this hypothesis. 

Furthermore, pseudo-words may be as salient for other reasons and determine as 

much arousal due to their strange/unexpected nature, as shown by Plourde et al. 

(2006). Therefore, if the mere “salience” cannot explain our findings, it is striking to 

observe that emotionally relevant word stimuli can induce sizeable autonomic 

responses in patients with positive prognostic outcomes.

In conclusion, a relatively straightforward (neuro)physiological index, such as 



the event-related SCR, was efficiently adopted and combined with the residual power 

of a local neuronal activity (e.g., fALFF) to optimise the prognosis for acute DOC 

patients. Although preliminary, this evidence could represent a promising start in 

developing an easy-to-use marker of recovery of consciousness.

6. Limitations of the Study

The results reported in this study may have been inevitably influenced by the adoption 

of the eyes-closed condition during the fMRI scans. As detailed in the methodology 

section, we asked the participants to keep their eyes closed to mitigate, as much as 

possible, potential confounding effects associated with the clinical characteristics of 

the sample of patients, such as the inability of acute patients to keep their eyes open 

for 10 minutes. Nevertheless, we acknowledge that the eye-closed condition may lead 

some participants to fall asleep during the scanning session, causing a higher 

variability of the responses (Agcaoglu et al., 2019; Patriat et al., 2013; Tagliazucchi 

and Laufs, 2014). To control for this risk, we interviewed healthy participants after 

each resting-state fMRI session about their state of wakefulness. None of the healthy 

participants subjectively reported falling asleep. Concerning the patients’ sample, 

being in an acute phase of the pathology, when the sleep-wake cycle may not be 

recovered yet, the exact phase of the cycle was hardly discriminable. This is one of 

the main challenges of studying patients affected by DOC at an earlier stage.
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Highlights

1) Acute DOC patients with favourable outcome show preserved event-related electrodermal 

response. 

2) Acute DOC patients showed reduced fALFF in the posterior cingulate cortex.

3) Event-related electrodermal activity correlated with the fALFFs in the PCC at the acute 

phase.


