MATHEMATICS OF COMPUTATION
VOLUME 57, NUMBER 195
JULY 1991, PAGES 73-108

AN ADAPTIVE FINITE ELEMENT METHOD FOR TWO-PHASE
STEFAN PROBLEMS IN TWO SPACE DIMENSIONS.
PART I: STABILITY AND ERROR ESTIMATES

R. H. NOCHETTO, M. PAOLINI, AND C. VERDI

ABSTRACT. A simple and efficient adaptive local mesh refinement algorithm is
devised and analyzed for two-phase Stefan problems in 2D. A typical triangula-
tion is coarse away from the discrete interface, where discretization parameters
satisfy a parabolic relation, whereas it is locally refined in the vicinity of the dis-
crete interface so that the relation becomes hyperbolic. Several numerical tests
are performed on the computed temperature to extract information about its
first and second derivatives as well as to predict discrete free boundary locations.
Mesh selection is based upon equidistributing pointwise interpolation errors be-
tween consecutive meshes and imposing that discrete interfaces belong to the
so-called refined region. Consecutive meshes are not compatible in that they are
not produced by enrichment or coarsening procedures but rather regenerated.
A general theory for interpolation between noncompatible meshes is set up in
L?-based norms. The resulting scheme is stable in various Sobolev norms and
necessitates fewer spatial degrees of freedom than previous practical methods
on quasi-uniform meshes, namely 0(1_3/ 2) as opposed to 0(1'2) , to achieve
the same global asymptotic accuracy; here 7 > 0 is the (uniform) time step.
A rate of convergence of essentially 0(11/ 2 ) is derived in the natural energy
spaces provided the total number of mesh changes is restricted to O(T-l/ 2) s
which in turn is compatible with the mesh selection procedure. An auxiliary
quasi-optimal pointwise error estimate for the Laplace operator is proved as
well. Numerical results illustrate the scheme’s efficiency in approximating both
solutions and interfaces.

1. INTRODUCTION

A common feature in dealing with degenerate parabolic equations is the in-
trinsic lack of regularity of solutions across the interfaces (or free boundaries)
which, in turn, are not known in advance. For the two-phase Stefan problem,
for instance, the temperature 6 cannot be better than Lipschitz continuous and
the enthalpy u (or energy density) typically exhibits a jump discontinuity across
the interface. They satisfy the PDE

(1.1) u,— div(k(6)V6) = f(8) inQx (0, T),
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subject to the strongly nonlinear constitutive relation 6 = f(u), where B van-
ishes on [0, 1]. The situation is more intricate when cusps and/or mushy regions
develop. This lack of smoothness makes finite element approximations, defined
on quasi-uniform meshes, perform worse than expected according to the inter-
polation theory. In other words, the singularity located on the interface pollutes
the numerical solution everywhere. Numerical experiments for the Stefan prob-
lem indicate that the rate of convergence for temperature is never better than
linear [17, 18]. Theoretical results are even more pessimistic [4, 8, 12, 13, 14,
17, 24].

Methods studied so far are not completely satisfactory in that they do not
take advantage of the fact that singularities are located in a small region com-
pared with the entire domain {2, at least whenever mushy regions do not occur.
Consequently, a possible remedy is to be found in terms of a suitably designed
adaptive algorithm. In fact, we would like to use a finer mesh near singularities
in order to equidistribute interpolation errors but still preserve the number of
degrees of freedom, and thus the computational complexity. We refer to [1,
14] for an account of the state-of-the-art on this topic along with numerous
references.

In this light, the aim of this paper is to present and analyze an adaptive mesh
refinement method for two-dimensional two-phase Stefan problems. We em-
phasize that such problems are strongly nonlinear in that singularities do not
smooth out as time evolves and, more notably, they may even develop. This is
a striking contrast between degenerate and purely parabolic equations. There-
fore, even though various adaptive algorithms have been recently introduced for
standard parabolic equations [1, 5, 14], ours appears to be the first one with a
rigorous mathematical foundation for Stefan problems. We refer to [15], where
a summary of some preliminary results can be found.

The finite element mesh cannot be modified in an arbitrary manner for the
discrete scheme to be stable and convergent. Several tests are carried out on the
computed temperature to extract information about its first and second deriva-
tives as well as about the location of the discrete interface. Upon failure, the
current mesh is discarded and a new one completely regenerated by an effi-
cient automatic mesh generator [19]. Since the new mesh is not produced by
enrichment or coarsening procedures, it happens to be noncompatible with the
previous one. It is designed to be coarse away from the discrete free boundary,
where the typical meshsize is O(tl/ 2) , and locally refined near the interface for
triangles to reach a size O(7); hereafter, 7 > 0 stands for the (uniform) time
step. These relations, which come from elementary interpolation considera-
tions, reflect the physical property that the Stefan problem behaves as parabolic
away from the interface but possesses a first-order hyperbolic-like structure in its
vicinity. On the other hand, even though the cost of generating a mesh at every
single time step is asymptotically negligible compared to that of solving the as-
sociated nonlinear algebraic systems, frequent remeshing should be avoided for
practical purposes. In addition, the interpolation process used to transfer infor-
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mation between consecutive meshes incorporates an error O(7) that eventually
accumulates in time. To prevent such an error from compromising accuracy, a
restriction on the total number of admissible mesh changes is enforced, namely
0(1_1/ 2) . As the current mesh is thus to be kept fixed for a prescribed number
of time iterations and discrete interfaces are supposed to lie within the so-called
refined region, a further refinement is required for our strategy to succeed. This
is accomplished by predicting the “small” region to be occupied by the discrete
interface between consecutive mesh changes, as well as checking that it actually
remains there within safe limits. The resulting scheme is stable, convergent and
necessitates fewer degrees of freedom than previous methods on fixed meshes,
namely 0(1_3 /2 ) instead of 0(‘:'2 ) for well-behaved interfaces, to achieve the
same global asymptotic accuracy. Moreover, it exhibits a superior performance
as expressed in terms of computing time for a desired accuracy. This improve-
ment is even more dramatic when accuracy is measured in the maximum norm.

The paper is organized as follows. In §2 we formulate the continuous and
discrete problems along with the corresponding assumptions. In §3 we comment
on certain heuristic aspects of our local refinement strategy, which is fully dis-
cussed in §4. In §5 and Supplement §S1 we prove several L”-based interpolation
estimates for noncompatible meshes that account for mesh change effects and
play a major role in our analysis. Discrete stability in various norms is then
derived in §6 and Supplement §S2. As a result, in §7 we demonstrate a rate
of convergence of essentially 0(11/ 2) for both 8 and u in the natural energy
norms, provided the total number of mesh changes is limited to O(t'l/ 2) . This
result agrees with previous ones [4, 17, 24] obtained for a fixed mesh under the
stronger assumption that the meshsize is O(t). We also prove, in Supplement
8S3, an auxiliary quasi-optimal pointwise error estimate for the Laplace opera-
tor, that may have some independent interest in that it extends the techniques
in [21, 22, 23] to general meshes; it is based upon a new discrete Caccioppoli
estimate. To simplify the presentation, we assume that conductivity k = 1
and that mushy regions do not occur. These interesting situations are, how-
ever, treated in some detail in Supplement §S4 along with a modification of
the local mesh refinement algorithm. We conclude in §8 with several numerical
experiments to illustrate the superior performance of the Adaptive Method in
approximating both solutions and interfaces. Various computational issues are
discussed in §8 as well.

Further numerical results and comparisons with the Fixed Mesh Method as
well as implementation details will appear elsewhere [16]. They indicate a (prac-
tical) linear rate of convergence, namely O(t), which is much better than our
theoretical prediction. This topic deserves further investigation.

2. PROBLEM STATEMENT

Let Q c R’ be a bounded domain with 9Q € C"'! and T > 0 be fixed.
The case of polygonal domains will be considered in §S4.4. Let f: R — R be
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a continuous and nondecreasing function which satisfies

O0<l<p(9)<Ly<oo, [B"() <Ly <00, a.e. s €R\[0, 1],

(2.1)
B(s)=0, vselo,1];

hence Ly and Ly are the Lipschitz constants of # and ', respectively. A
typical example is B(s) := ¢;5° + ¢,(s — 1)*, where ¢, <0 < ¢, are fixed;
this corresponds to an ideal material with constant thermal properties. Let Uy
indicate the initial enthalpy. Let 6, := f(u,) denote the initial temperature
and let I, := {x € Q: 6 (x) = 0} be the initial interface. They satisfy

(2.2) 8, € W, Q) n W™ (Q\1,),
(2.3) I, is a Lipschitz curve.

Therefore, u is of bounded variation, u, € W2’°°(Q\IO) and it has a jump
discontinuity across /;. In §S4.2 we will allow the initial interface I, to de-
generate into a mushy region. The source term f is also Lipschitz continuous,
namely,

(2.4) f(s) = fs)I S Lyls, —s,l,  Vs,,5,€R

For the moment, the conductivity k verifies kK = 1; see §S4.3 for the general
case. The continuous problem then reads as follows: find 6 and u such that

(2.5) 0eL*0,T; Hy(Q), uelLl™0,T;LQ)nH 0, T;H ' (Q),
(2.6) 0(x,t)=Pulx,t), ae. xeQ, te(0,7),
(2.7) u(-, 0) = u,

and forae. t€(0,7) andall g € H&(Q) the following equation holds:
(2.8) (u,, ) +(V0, Vo) =(f(6), ¢).

Hereafter, (-, -) stands for the inner product on LZ(Q) . Itis to be observed that
the vanishing Dirichlet boundary condition on @ is assumed only for simplicity
and, in addition, that the interface I(t) := {x € Q: 6(x, t) = 0} does not
include 9Q . Existence and uniqueness for this problem are known as well as
the following further regularity results [6, 8, 10]:

(29) € H'(0, T; LX(Q)NL™(0, T; Hy(Q)), A8 e L™(0, T; M(Q)),

where M (Q) stands for the space of finite regular Baire measures. In the
classical situation, the free boundary motion is governed by the so-called Stefan
condition

(2.10) VO (x, 1) =V (x, )] v, =V(x),

where x € I(t), v, is the unit vector normal to /(f) and V(x) is the nor-
mal velocity of I(t), both at point x. Consequently, if V' (x) # 0, the flux
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VO(x, t) presents a jump discontinuity at x € I(¢) which prevents # from be-
ing better than globally Lipschitz continuous. Equation (2.10) may fail to hold,
though, whenever cusps develop. Let [[-] denote the jump operator on I, that
is [VO] := (V8" -vo7)| ;- The interface I may also degenerate into a mushy
region, in which case (2.10) is to be replaced by the more general expression

(2.11) IVO(x, ] v, = [u(x, D] V(x), xe€dl()nQ.

As already said, this interesting situation is treated in some detail in §S4.2. For
the moment, we suppose that mushy regions do not occur.

We now introduce the finite element approximation. Denote by 7 := T/N
the time step and by %" a partition of Q into triangles; .*" is assumed to be
weakly acute and regular uniformly in 1 < n < N. The first condition means
that for any pair of adjacent triangles the sum of the opposite angles with respect
to the common side does not exceed 7. Given a triangle S € %", h ¢ stands for
its size and verifies At < hg < At'? (0 <4, A fixed) whereas pg denotes the
diameter of the biggest ball contained in S. The second condition above is then
equivalent to requiring pg > ohg for all S € ", where 0 < g <1 is a fixed
constant (independent of n and N!) [2, p. 132]. The discrete domain Q" :=
Usesn S does not coincide with Q. However, since the technical arguments
to handle their discrepancy were introduced in [17], we omit them here by
simply assuming Q" = Q. Nonetheless, the influence of the pollution effect
due to corners will be examined in §S4.4. Let V" C Hol (Q) indicate the usual
piecewise linear finite element space over .%*" and II": C°(Q) — V" the usual
Lagrange interpolation operator [2, p. 94]. Finally, let {x } =1 denote the
nodes of " and {y] } ;=1 the canonical basis of V". The discrete initial
enthalpy U° € V! is defined at a generic node x} of #%:=.%" 10 be

(212)  U'(x))i=uy(x)), Vx, ey, U'(x):=1, Vx el

J

Hence, U° is easy to evaluate in practice. Set e’ = H'GO (= I'II[B(UO)]).
Given U"™', "' € V"' the discrete scheme then reads as follows: for any
1<n<N select " and find U", 0" € V" such that

(2.13) e"=1"pU"),

(2.14) ol=mutt,  el=mputhy,

(215) U0 )"+ (V" V) = (8", )", VxeV',
where (-, )" is defined by

(2.16) /n 0x)d Vo, xeCQ).

Note that the integral in (2.16) can be easily evaluated element-by-element
via the vertex quadrature rule, which is exact for piecewise linear functions
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[2, p. 182]. The discrete interface and refined region are then defined to be
F':={xe€Q:08"(x)=0} and Z" :={S € #": hy = O(1)}, respectively.
In view of (2.16), the equation (2.15) can also be written as follows:

2.17) T U =U" L 0 (Ve V) = (FBWUTTY), )", VeV,

thus eliminating the definitions in (2.14). It is to be stressed that the nodes of
" are then used for the numerical integration of piecewise linear functions
defined in V*~'. The interpolation error so incurred may destroy convergence
as well as stability. The mesh selection strategy of §4 will account for such an
effect.

Observe that, if we first decompose the integral (Vg , V) over all triangles
of " and next integrate by parts, we get

(2.18) (Vo,Vx) =Y ([Vel, v, x)., Vo,xeV,

ec&”
where &" := {e: e is a side (or edge) of S in Q, S € ¥}, (-, *), denotes the
L*-scalar product on e, v, is the unit vector normal to e and [-], indicates
the jump operator on e forall e € &”". Let S| denote the interior of supp £}
for 1 <j<J" and set h, :=length(e) for e € &" . Then (2.18) results in

(2.19)  2(Ve,Vx))=> hlIVel,-v,, VeeV' K vi<j<J"

eCs;
In view of (2.16) and (2.19), another useful relation equivalent to (2.15) reads

Z he|IV8n]]e ‘v,
(2.20) ecs;

= % meas(S?)(f(é"—l(x;x)) — Ut - Un—l)(xj'_')).

From now on, C > 0 will denote a constant independent of 7 but not
necessarily the same at each occurrence. Moreover, C may depend on the
given data as well as on the various constants to be introduced in §4. The
notation - = O(t’) will be often used instead of - < Ct”. As usual, |x| will
stand for any norm of x € R’.

3. HEURISTIC GUIDELINES

We now give a heuristic motivation for the local refinement strategy of §4.
We first consider the following 1-D problem discretized only in time:

(3.1 U-18(U),, =y, in (-1,1),
where B(s):=(s—1)" =57, V:=y,—y, >0 and uy(x):= pEe -1V +1

if x>0, uy(x) := yl(eV" - 1)/V if x < 0. Since u(x, 1) = yy(x + V1),
the interface I(¢), initially at 0, reaches —V'7 at time 7. Let  denote the
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position of the discrete-time interface F . It is not difficult, but tedious, to see
that (8 := g(U))

(32) 18 = 8(1)ll ey 1)y = O() 2 V71,

(3.3) 6=-Vi+0(",

(3.4) 8. ()= Ox(6+) =7+ 0(1'/2) (smearing effect!),
(3.5) 6,(0)=7,+0(r'"%),

(3.6) e, (x)=1"'+0(1), Vé<x<O.

On the other hand, suppose (—1, 1) is partitioned into equal intervals of size
h. Then, in view of the shape of 6(7) := B(u(r)) and (3.6), the pointwise
interpolation errors in space satisfy

16(1) = I1'6(7)[| yoo 1y < VH/4+ O(R?),

18 ~I1'6] ooy 1y < 777" /8+ O(7).

What we learn from this relevant example can be expressed as follows. Since
we expect to deal with Lipschitz continuous temperatures, the local meshsize
hg near F and interface velocity Vg should verify Ag ~ Vst to balance the
interpolation errors in space (3.7) with the truncation error in time (3.2). In
addition, no condition similar to (2.10) is valid for the semidiscrete problem
at F, even though the free boundary moves correctly. To retrieve the proper
jump condition, however, we just have to move a distance ¢ backwards along
the normal to F because, by virtue of (3.4) and (3.5),

(3.8) 8 (0)-8 (67 )=V+0(z'",

X X
or, equivalently, V' = [ 60 O, . (s)ds+ 0(1'/ 2) . Consequently, an overrefinement
near the interface is extremely dangerous in that we may lose information on
the interface velocity without gaining accuracy and, as a result, we might be in
trouble to predict its future position. We thus realize that enforcing these two
observations would require a stepwise control of the relation hg ~ Vi1, where
Vs could be determined by means of (3.8) with ¢ being replaced by Ag. On
the other hand, there is an interval O(t)-long behind F, namely (J, 0), on
which second derivatives are O(t™').
Away from the interface 7, problem (1.1) is strictly parabolic, namely,

(3.9) c(8)8, — A6 = f(0),

(3.7)

which is a mildly nonlinear heat equation; c(s) := 1/ B'(B~'(s)) forall se

R\[0, 1]. Hence the discretization parameters should verify the usual parabolic
constraint Ay = ot'?).

These two distinct behaviors, rephrased here in terms of local regularity, must
be reflected in the local refinement algorithm, for instance, as illustrated in §4.
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Let us now explore some heuristic properties of the fully discrete
scheme (2.15). Near the discrete interfaces, where the best we can say is
|(U"—U"'l)(x;')|SC, (2.20) results in |, g» £, [VO"],-v,| < C1™' meas (S7)-
Hence, except for a very unlikely cancellation in the above summation, we can
expect discrete second derivatives D, to verify

(3.10) D, :=h'|[ve"],| < Ct~'h]* meas (S}) < 1.

This is consistent with (3.6). Moreover, away from the discrete free boundaries,
we can expect |(U”" — U"_l)(x;')l < C|(®" —é"—l)(xj'-')l < Cr, because of (2.1),
(2.13), (2.14) and the strict parabolicity of (3.9). Thus |}, h,[VvO'], v, <
C meas (Sj'.') . Therefore, arguing as before, we conclude thatl

(3.11) D, < Ch;* meas (S7) < C,

for all e in the parabolic region. The heuristic observations (3.10) and (3.11)
regarding D, , as well as the smearing effect (3.4), were confirmed by 2-D nu-
merical experimentation. It also revealed the validity of the following Ll-type
a priori estimate:

(3.12) Y KD, <C.

e e =
ec&”

This property is a discrete analogue of (2.9), i.e.,, A € L™(0, T; M(Q)). It
is still in good agreement with numerical evidence. Indeed, actual computa-
tions show the occurrence of a strip O(t)-wide behind the discrete interface
F" where D, = 0(1'1) , which in turn is consistent with (3.6) and (3.10). In
this case, since the local meshsize near F" should be 4 , = O(7), (3.12) imposes
a severe regularity restriction on the interface, namely,

(3.13) length(F')< Y. h,<C> KD,<C.

e e —
e€&" : eNF"#0 ee&"
Such a condition is quite reasonable for practical purposes but is not known
to hold in a general setting. We stress that without some kind of additional
regularity it is probably hopeless to improve upon the Fixed Mesh Method [4,
8,12, 13, 17, 24]. In this light, (3.12) is always assumed at the mesh changes and
used in §§6, 7, S4, though it constitutes a limitation of the Adaptive Method. It
is however partially justified by Lemma 6.5 which, being implicitly guaranteed
by the scheme, combines with (2.20) to yield

J’I

(3.14) 3|3 AIVE"], v, <2 / m'(/@" i+ WU -0 <C,
j=1 |ecs? e

for all time steps n between consecutive mesh changes. We then see that only a

cancellation in the above summation could lead to a bound weaker than (3.12).
This seems to be unlikely for locally smooth interfaces, as well as for cusps,
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because of their local character. At the same time, Lemma 5.10 shows that
(3.12) is preserved for ©". This somehow explains the fact that (3.12) was
never violated in our numerical experiments. Designing an algorithm for which
(3.12) is implicitly guaranteed constitutes a challenging open problem, though.
Note that mushy regions may occur as long as their boundaries are also well-
behaved. On the other hand, regarding first derivatives, the following L2-type
a priori estimate is implicitly guaranteed (see (6.6)):

(3.15) 3 hgve'lgf < C.
N34

We finally comment upon the effect of interpolation between noncompatible
meshes. Let {: R — R be sufficiently smooth and S € %" be a generic element.
Proceed then formally, as if 0" ! were smooth, to deduce that

120" = I"[£(O" )l o s)

(3.16) 2(1in2an-1 —1,2

< Chig(ID°0" = 5) + 1DB" ' 0(s))
where D and D’ denote discrete first and second derivatives, respectively. In
§5 we give proper justification for (3.16). Since we want this interpolation error
to be O(1), the new local meshsize should satisfy

(3.17) hg < 7'* min (u,||Dze"“||;J!fS), u2||1)e"“||;;(s,).

This in turn allows second derivatives to blow up without violating hg >
At as long as [|[D*@" || =5 < (4;/4)’t"", which is consistent with (3.10).
First derivatives may also degenerate without violating Ag > At provided
||D6"'1|| L=(s) < (uz/l)t"l/ 2. Such a degeneracy is expected only whenever
cusps develop, this being a local phenomenon. In addition, having control of
quadrature errors introduced by (2.16) leads to restrictions on triangle diame-
ters wherever |[DO"'|| L=(s) €xceeds a certain tolerance; this is accomplished
via (3.17) as well.

On the other hand, forall S € % n-l intersecting the discrete interface F -l
we have {x e S:0< U ”'l(x) < 1} # &. For sample problems having a nicely
behaved continuous free boundary and verifying a nondegeneracy property, nu-
merical experiments indicate that U" ™" may vary from 0 to 1 within one single
element. Consequently, even a slight perturbation of triangles S traversed by
F"™! would produce an error |U""' -I1"U""! Il (s, = O(1) and a subsequent
optimal lower bound ||U"~'-IT"U"""|| «@ = C7, which could be attained pro-
vided length (F ""l) = O(1). This property of F "~ is not enough, however,
to ensure the validity of another crucial interpolation estimate (Lemma 5.6),
namely ||V(6"' - é"'l)lle(Q) < Ct'%, unless vO"™! is bounded on F"!;
strong stability would thus break down too (Lemma 6.4). Since such a further
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constraint on V"' rules out the formation of cusps, we should not modify
triangles crossed by F "~1 " For computational purposes, it is always prefer-
able not to impose this constraint, which is feasible whenever the interface is
“smooth”; see §S4.1.

4. LOCAL REFINEMENT STRATEGY

The aim of this section is to describe the relation between two successive and
noncompatible meshes, say . "=l and ", along with the necessary numerical
tests to be performed on ©"~'. The initial mesh #° (=.%') is constructed
along the same lines with 6, in place of ©"~'. Since no confusion is possible,
for simplicity we remove the superscripts and use the following notation: % :=
PN F =, =g =", R =F" T =", 1] =
n', o=n", v:=0v""0:=0""=1U), 6:=6""! =),
6 := ﬁﬂ(U) and F:= F"! ,for 2< n < N. In §4.1 we introduce three local
parameters that represent the expected value of local meshsize. We discuss the
mesh selection algorithm in §4.2 and conclude with several comments in §4.3.

4.1. Local mesh parameters. Note that VO|g, VU| € [PO(S)]2 forall Se€.~.
Set dg :=|VO[g|, Dg :=|VU|g|, dg := hgdg for all S €& and

b
(4.1) 3,:= V8|5, ~VOls | =|[VL,l, D,i=75, Veek,

e
where S|, S, € & aresothat e =S, NS, ; set &, :={S,, S,}. Note that these
quantities are easy to evaluate in practice. We then introduce the following
local parameters:

12
5 T
(42) he:=,ull—);7, Veeg\g,
. TI/Z
(4.3) b=, Tmy VS eSS,
S

where S = {S e :SNF #3}, & ={ec & :eCdS,S e}
and & = U, &, S. Here, u,;,u, > 0 are arbitrary constants which, in
practice, result from computational considerations as well as specific proper-
ties of the problem at hand; the same comment applies to A, A. The two
local parameters above account for the effect of interpolation between non-
compatible meshes, as motivated by (3.17). In case they violate the constraint
iz iz > A1, we say that discrete derivatives are badly-behaved. This situation
w111 require special care, even though it was never observed in practice. To this
end, we set 7 1= {S € A\F%: mmeew\g eCc’)S(hS’ h ) < At}, & = {e €
E\& e Cc0S,Se A}, B = USEZ,S and % = .5’\(5’ U5’) &, :
ENEUE), Q):=Q\(F UZF).

We now focus our attention on the local meshsize near F for problems
without mushy regions. Inspired by (3.8) and subsequent heuristics hg ~ V1,
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for each S € % crossed by the discrete interface F, we compute a discrete
interface velocity ¥ using a suitable discretization of condition (2.10), namely,

(4.4) Vgi= (V6|5 — V8l ) v,

where S, S, € & belong to each phase, are displayed on the direction v
(unit vector normal to F) and satisfy dist(S,, S) > hg (i =1, 2). We next
consider a cone % of axis v, vertex at S, opening #/2 and height ,u3VSrl/ 2
as being the region most likely to contain the evolution of Fg := SN F for at

least O(r"/ 2 ) time steps. The local parameter associated with the interface is
defined by

(4.5) izFS := tmin{max(4, V), M}.

The above two new constants u, and M are arbitrary at this stage. The same
rules of selection as for the previous four constants apply; u, may depend on
n.

The union of all cones % constitutes the predicted refined region % whose

width is O("/%). Note that # C Z . Thesize of & enables discrete interfaces
to remain within &% for at least 0(1_'/ 2) time steps, as desired.

4.2. Mesh selection algorithm. As already said, the initial mesh . ! is built with
the required pointwise information extracted from 6,. Assuming now that we
have a mesh %, we would like to discuss the three tests to be performed on
the computed solution © to either accept or discard ..

The first test consists of checking whether the discrete interface F is within
the refined region % or not. In the event F escapes from % , we say that the
test has failed.

The second test ascertains that interpolation errors are still equidistributed
correctly:

(4.6) h,<u h,, Vee&,  hg<uyhs, VSe;

here uj, u; > 1 are suitable constants. This rules out the possibility of an
excessive refinement induced by large discrete derivatives. However, the new
local meshsize might be much smaller than the current one, if influenced by the
new refined region Z . The example in §8.3, for instance, makes (4.6) fail; see
also [16, §7].

Sometimes the interface velocity may vary substantially during an 0(11/ 2)
period of time so as to make (4.5) inadequate. More specifically, the local
truncation error (3.2) would not be properly reflected in the local meshsize and
also, in case the current meshsize becomes too small, the computation of V
via (4.4) might be inaccurate because of the smearing effect (3.4). In addition,
the fact that triangles of #; are fixed and new nearby elements might have a
n)ych smaller size would create serious programming difficulties in specifying
Z . To prevent that from happening, a third test is enforced, namely,

(4.7) uyhe <hg<pihe, VSeF,
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where 4, <1< /1; are suitable constants. A relevant example that makes
(4.7) fail is that in [16, §7.3].

If any one of the above tests fails, then the current mesh & is rejected as
well as the solution {©, U}, which is overwritten with the previously computed
solution. A new graded mesh & with the following properties is then generated.
To preserve the constraint h§ > At, we must keep #; fixed because discrete
derivatives are badly-behaved. In addition, in accord with the last heuristic
observation of §3, we must not modify ;.. Hence,

(4.8) SeZ, VSe%HU,
is the first restriction on .% . The second one reads
(4.9) Ar<hg< min _ At kg by kg, VSeZ
S'eS  §iNS#D s
S€%,e€8, : SNS#D,eCOS
This accounts for both the equidistribution of pointwise interpolation errors

(3.17) and the definition of refined region Z . The effective implementation of
(4.9) will be discussed in §8.1; see also [16, §6].

4.3. Further properties. The information about discrete derivatives could be
extracted from U rather than © because, in view of (2.1) and (2.13), they are
equivalent on €. In fact, for all e € &, and S ¢ 5%, we have

B '\VUlg = VUG | < CUy'D, + Lyly (s +dg)), S, €4,

(4.10) e e
D < Cl3'dg.

Since ¥ was designed to be adequate for at least O(N 1 2) time steps, the
number of expected mesh changes is at most O(N 1 2). This goal was always
achieved in practice.

To avoid rejecting the computed solution {©, U} owing to failure of the first
test, we always check if the discrete interface F has just reached the boundary
of the refined region # , called RED ZONE, which in turn alerts that an imminent
remeshing must be done; see Figures 9.1 and 9.2. On the other hand, to prevent
the program from performing a useless time step owing to failure of either
(4.6) or (4.7), these tests can be carried out with more stringent constants. In
that case, their failure will only warn that . cannot be kept any longer. This
trick actually succeeds because discrete derivatives may exhibit large oscillations
solely near the discrete interface F, and thus within &# where the current
(local) meshsize is already O(t). Hence, remeshing is mostly dictated by the
free boundary location, as observed in practice.

In the subsequent analysis of §§6, 7, S4, we will assume the following struc-
tural property which, in view of §3, is partially justified by Lemma 6.5 and
numerical evidence:

(4.11) Y kD, <C.
ec&
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The definition of the sets & and & might be contradictory unless & C & ,
thatis hg = O(7) forall S € 7. Discrete derivatives D, and d are typically
well-behaved outside %, because this is a parabolic region where D, , dg <
C at the previous mesh change. Consequently, we do not expect any rapid
variation of either D, or dg on Q\# , which means & C # and also & C
Z . The set B , though, was always empty in our numerical experiments. Note
that & ¢ Z as well.

For a well-behaved interface, (4.5) coincides asymptotically with the usual
hyperbolic relation h = O(t). This was proposed here as a means to balance
interpolation errors and attenuate the smearing effect, rather than for stability
purposes. Stability is always built into the scheme regardless of the number of
mesh changes, as shown in §6. Our algorithm is still a fixed domain method, even
though we predict the region to be invaded by the discrete interface. Indeed, we
do not use predicted interfaces to solve uncoupled (nonlinear) heat equations,
as customary for front-tracking methods, but rather as a refinement indicator.
The behavior of D, and dg depend certainly upon regularity of the underlying
problem. We may think of these quantities as being bounded uniformly in
7 away from F, where 6 is expected to be smooth; see (3.11). Expressions
(4.2) and (4.3), combined with (4.9), then result in A = 0(11/ 2), which is the

usual parabolic relation. We finally observe that the assumption 9Q € C bt
avoids further refinements to alleviate the pollution effect produced by corner
singularities; see §5S4.4.

5. INTERPOLATION ESTIMATES FOR NONCOMPATIBLE MESHES

Our goal now is to show that the above criteria for mesh selection guarantee
a satisfactory error control. The results/in §5.1 are valid in general for regular
and noncompatible meshes ¥ and % and possess some intrinsic interest.
They are next applied to the present setting in §§5.2, 5.3. We will stick with the
notation of §4.

5.1. The basic estimates. Let us first introduce some further notation and a

number of useful geometric properties. Given W C Q, set

Sy ={SeFA:SNW#D}, &, :={ec&:enW #3}, W= U S.
Se%,

Let B(x, r) indicate the ball of center x and radius r. The following facts

are simple consequences of the regularity of .#: there exists 0 < a < 1 such
that for all S € 7

(5.1) pg >ahg, VS €%,
(5.2) dist(x, ) > ahg,  Vxe€Q\S,
(5.3) card &, card & = O(1).

It is then possible to introduce a smooth function A(x) which is locally com-
parable with the meshsize (see Lemma 5.1 in Supplement §S1).
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In deriving the interpolation estimates below we shall distinguish between two
opposit\e situations according to the relative size of triangles in both meshes .
and 7. It is worth noting that there is no assumption on the relative size or
location of new and old triangles at this stage. Set 5/’; = P \(&F UF%) and
define the derefinement case to be

(5.4) given S € 5/’3, ahg < hg forall S € %
By contrast, the refinement situation reads as follows

(5.5) given Se 5/’3 , thereexists S¢€ 5% such that ahg > h§.

These two cases are obviously mutually exclusive. In addition, for all S’s
satisfying (5.5) we have

(5.6) ScS forsome Se€%, card &, card %= 0(1),

as results from (5.1), (5.2) and (5.3). Let 5/’? (resp. 5’; ) indicate the set of all
S°s satisfying (5.4) (resp. (5.5)). Let V' be a generic piecewise linear function
defined on .. Let {:R — R be so that {' € W' ®(R). Let L, and Ly

denote the Lipschitz constants of ¢ and (', respectively. Let dg,dg, d, and
D, indicate, for the moment, derivatives extracted from V. We now state,
and then prove in Supplement §S1, two crucial estimates, their difference lying
essentially in their derivation and further application. The first one refers to the
derefinement case and can be viewed as a discrete analogue of that in [2, p. 115].
It roughly asserts that regularity (of %) is the sole property that matters for
a “discrete” interpolation estimate to hold. The second and more elementary

estimate refers to the refinement case (5.5).

Lemma 5.2. Let S € 5” Then

I0EV) = TEV ) g + AIVITIEY) = Tl 5,
1/p 1/p
Snpl| L, | Y hdd |, 1<p<co,
(5.7) < Ch} e€& Se
L,maxD, + L, maxd , D = oo.
Z~ Se %

s
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Lemma 5.3. Let S € 3’; . Then
vy - fig(v)

1/p 1/p
CLAZP (6| +CLph2? [ Y 6] , 1<p<oo,
(58) < ec& Se%
2
CL{h§§é%59+CLC, ?é‘}%‘ss’ p =00,
and
VL) = N g,
1/p 1/p
CRIP\L | Yo7 +Lp| Y hsds , 1<p<oo,
(59) < & S€%
2
CL, fé%,’;ée +CLy gé‘}’%(hsds)’ p = oo.

Remark 5.1. Consider the simplest case { = Identity; thus Lc' =0. We
point out that we need control on interpolation errors even for the refinement
situation, simply because meshes . and . are not compatible. If they were,
these errors would simply vanish.

5.2. Error estimates. The first result, whose proof is given in Supplement §S1,
deals with the initial triangulation % ' and the choice (2.12) for the discrete
initial enthalpy U 0

Lemma 5.4. We have
4 = Ul ) < Celloge]”.

We now come to the subtle issue of changing the mesh. Our first task is to
apply the two basic interpolation estimates to U . To thisend, let V' = U and {
be as in Lemmas 5.2 and 5.3. Note that the choice { = # is allowed because, in
view of (4.8), it is enough to deal with § € . . Recall that derivatives of U in
Q, can be expressed in terms of quantities extracted from O, as stated in (4.10).
Hence, let dg, d, J,, and D, denote from now on derivatives extracted from
© . The following error estimates illustrate the connection between Lemmas 5.2
and 5.3 and the mesh selection algorithm.

Lemma 5.5. The following sharp pointwise error estimate holds:
(5.10) ITI(U) = I (U)]|yq < CT.

Proof. Let first S € 5/’? . On using (5.7) and (4.10), in conjunction with (4.2),
(4.3) and (4.9), we easily obtain

INE(V) = ALV 5, < Cmax(h5D,) + C max(hidy) < C.

N
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Likewise, let us take S € 3’; and make use of (5.8) and (4.10), together with
(4.2), (4.3), (4.6) and (4.9), to arrive at

|¢(U) - TIZ(U )”L°°(S < Cmax(hAh D,)+ Cmax(h d + hghg d: )< Cr
This concludes the proof because (5. 10) is obviously sharp. O

Remark 5.2. Since meshes .% and .# are not compatible, we cannot expect
a pointwise error estimate for VU to hold. To maki this claim apparent, we
consider, for instance, the refinement case (i.e., Se &) and suppose that { :=
Identity (i.e., L, =0). We can write (5.9) as follows:

from which we conclude that || V(U — f/)an@) = O(1) provided D, = O(h'),
as is expected to happen near the interface F. In any event, setting 71§ =
mineegsﬁe, we can rewrite (5.9) in the form

e e e)<CT’

hellv(U - 17)||L 5 < ChAmag;;& < Cmgg;;(h

as results from (4.2) and (4.6). When iz§ = O(rl/ 2) , as happens away from F,

we see that R "

V(U = Ol g < €

It is worth noting that the critical parameter is hg rather than hg (hs < 7z§!) .
Similar conclusions hold also for the derefinement case. R

In spite of this negative result, we still have an error bound for V(U - U)

in energy norm. Under the assumptions (4.11) and (3.15), the following lemma

yields |VIIZ(U) = [IL(D)lll 2, < €72
Lemma 5.6. The following sharp L*-error estimate holds:

(5.11)  VII(U) - T(U)lI32q) < CT (LC S KD, +Ly Y h§d§) .

€&, ses,
Proof. We proceed as in Lemma 5.5 by first examining the derefinement case,

namely S € 5’ By virtue of (4.2), (4.3), (4.9) and (4.10), together with (5.7),
we easily obtam

S IV ) - T UIEg < € 3 | SSRDKID, + 3 (Wd3)hid;

Se5, §es \ee& sek
2 2 ;2
t| Y mD,+ > hydg|.
e€g; Se,
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Note that we could replace dout}le summations by single ones begguse, as a
consequence of (5.4), card{S € ] :enS #J} =0(1) forall e € & . On the

other hand, for all S € 2 (refinement case) the above properties, coupled now
with (4.6) and (5.9), lead to

S IVIW) - WG <€ Y (Z(hgﬁe)z + 3 (hédé)(h%dé))

Se$ Ses \e€& Se%
<o 5 (Sinshons ¥ i
:9\65% ee& Sef

To proceed further, we need the following elementary inequalities:

(512) Y he<Ch,, Vec&, Y K<Chy, ¥Se%,
Se? Se

where .5/’?:= {S‘ef’gzerﬁ;&@} forall e € & and 3’?:={§€5’;:Sﬂ§¢

@} forall S € 5. Indeed, this yields

ILEPILELI ML hoft

ecé&, ecé&, SeS  Se 5’,;2 Se&

whence

S IVI(U) - T U)]z:6 < Ct (Z WD, + Y h;d;) .

§€§; e€&) SeS,

It only remains to demonstrate (5.12). The second estimate in (5.12) is obvious
in view of (5.5), whereas the first one comes from the following consideration.
Let 5/’? = {§k}f=1 be ordered on e, and let x,, x, _, be the end points of
the segment e N §k . We would like to replace 4, := hgk by Clx, — x,_,|, but
this may not be true for a triangle which is crossed by e near a vertex. We

can however argue as follows to overcome the difficulty. The regularity of &
yields card % = O(1), where .7 :={j: S;NB(x, ah,) #J} for 1 <k <K.
Hence,

K
thg ZEP‘ -X;_ l|<CZ|xk—xk || < Ch,.
=1

k=1j€%

Since (5.11) is sharp according to the discrete regularity dealt with, the lemma
is thus proved. O

Remark 5.3. In view of the pointwise estimate (5.10) and the a priori discrete
L'-bound (4.11), the energy error estimate (5.11) for { = Identity may be
regarded as a 2-D interpolation result, say between L™(Q) and wi! (Q).
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In §5.3 we will need two trace estimates for the interpolation error © — 2}
that are stated in Lemmas 5.7 and 5.8 (see Supplement §S1). They correspond
to either the derefinement or the refinement situation.

5.3. A priori estimates. In this subsection we state a priori estimates related
to the crucial bound (4.11) as well as (3.15). Their proofs are reported in
Supplement §S1. We begin with (4.11) for the discrete initial temperature
e’ = g 0)] = 1'1100. The symbol D, stands here for second derivatives
extracted from €°.

Lemma 5.9. We have

0 2
IV€° |l + Y h:D, < C.
ees!

We finally state, in Lemmas 5.10 and 5.11, that (4.11) and (3.15) are inherited
by & and ©. Let D, denote the obvious analogue of (4.1) with © replaced
by 6.

Lemma 5.10. The following discrete a priori w2 -bound is valid:
(5.13) S KD, <C|LyS D, +Ly Y hgds |
écg ec& Ses

Observe that o° Vg s hsds < [IVOl|7g) < Tses f§d; is valid as well
as the obvious analogue with © and d replaced by © and d; := VO],

respectively.

Lemma 5.11. The following discrete a priori H '-bound holds:

(5.14) 19832y < (1 + CLy )|V 12, + CT Y hD,.
e€g)

Note that the coefficient in front of ||V8||iz(m becomes 1 whenever g is
piecewise linear, i.e., LB’ =0.

6. STABILITY

Our present purpose is to show that the local refinement method (2.13)-(2.15)
is stable in various Sobolev norms as soon as the refinement strategy proposed
in §4 is enforced. We start by recalling that . " is weakly acute, i.e., the sum
of the opposite angles with respect of the common side of any pair of faced
triangles does not exceed 7. As a consequence, we readily have the following
form of the discrete maximum principle: let ¢ € V" attain its maximum at the
internal node xj'.' and let x;’ € V" be the corresponding basis function; then

(6.1) (Vo,Vy;)20.

This will serve to exploit monotonicity properties of the problem at hand which
in turn compensate for the lack of regularity. Note once more the difference
between our approach and that for purely parabolic problems [1, 5]. The first
result, proved in Supplement §S2, reads as follows.
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Lemma 6.1. The following a priori maximum norm estimate holds:

n n

The following well-known result is also a consequence of (6.1) [3]. We include
its proof in Supplement §S2, just for the sake of completeness.

Lemma 6.2. Let o € W (R) satisfy 2(0) =0 and 0 < o'(s) < L, < oo for
ae. s€R. Then

(6.3) IVIT"a()ll32q) < L,(Ve, VIT'a(p)), VeV

In proving the following lemmas, we shall extensively make use of the equiv-
alence of continuous and discrete L’-norms for discrete functions, namely

2 2
lliz2q) < (0, 0)" < Clloll g, YoeV

Our next step is to demonstrate a weak a priori estimate in energy norm. The
first term in (6.4) may be thought of as a discrete H'/ 2(O, T, Lz(Q))-norm.

Lemma 6.3. The following a priori estimate holds:

N N
Fyn—1)2 2
(6.4) > U =T N2 + 2 TIVE 12, < C.
n=1 n=1

Proof. Take y = tU" € V" as a test function in (2.15), and next add the
resulting expression over n for 1 <n<m (< N). We have

m m
I+1:=Y(U"-0"", U+ «(ve", vu'

n=1 n=1

= i (f(©"), UM =1L

n=1

Using (2.16) together with the elementary identity
(6.5) 2a(a-b)=a’-b*+(a-b), Va,beR,

the first term can be further split as follows ( .= )
2 = ELnn[(Unf]_nn[(Un—l)2]+Hn[(Un_Un—l)Z]
n=1
— = nn Un2 _I-In—l Un—l 2
> [ - )
- nn—l Un—l 2 _Hn Un—l 2
3 [t -

m
+ Z/Qn”[(u” UY=L 4L 4L
n=1
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We now evaluate these three terms separately. We first obtain
m mym 0 0,1 m2 0,2
Il=(U , U ) (U ’U) Z”U ”LZ(Q)_C”U ”LZ(Q)a
and

m
13 — Z(Un _ i‘]n—l ’ Un _ Un—l)n > E "Un _ Un-lnil(g)-
n=1

The remaining term, which occurs only when the mesh is changed, can be han-
dled by Lemma 5.5 with {(s) = 52, Indeed, since U”" satisfies (6.2), { can be
suitably modified outside the range of U” in such a way that {' € w! "(R).
Hence I, > -CY_;",7 = —C. On the other hand, (2.13) in conjunction with
(2.1) and Lemma 6.2 yields

m

2
Y TlIVO |l 2q) < LIl

n=1

For the remaining term III we make use of (6.2) to arrive at
“ 12 1
ANn— n
) < er(|f<0>| meas(@)"”” + L 18"l 2 ) 10"l 20y < C»
n=
because ©"~! = IT"[B(U"™")]. The proof is thus complete. O

We now derive a strong a priori estimate in energy norms. To this end, we
need the structural assumption (4.11).

Lemma 6.4. Let (4.11) hold. Then

N
-1 n Aan—1,2 n
(6.6) Elz 18" ~ 8" |3, + max [IVE"| ) < C.
n= - -

Proof. We argue by induction. Let 1 =:n, < n, <--- < nxg < N denote the
indexes corresponding to the mesh changes; set n, , := N+ 1. We want to
prove the following inequality for all m between two successive mesh changes,
say n, <m<n

m
o -1 -lyaf  Aanr—1;2 n2
A= QL) 301718 = 6" [, + max |V

n=1

< C,, 1= exp(CLym7) (C(By + Hme + V€'l ) »

where B, 1= max, ., 2, g h2D"~" . Since this estimate is obviously valid
for m =0, assume, by induction, that it holds for all m < n, as well.
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Take y = 8" - 8""! € V" as a test function in (2.15) and next add the
resulting equality from n=n, to n=m (<n, ). We end up with

[+11:= Z T-—I(Un _ 1-InUn—] , nn[B(Un) _ B(Un—])])n
+ f‘_,we", V(e -6"")
- i(f(é"“), 8" -8" )" =1L

The first term can be easily evaluated as follows:

e / U" - U )BU") - BU" )]

“/ (AU - B )]

IV
‘°°I

le" -e"" '||§2

Since "' = 8" for all n, <n<n,,,asaby-product of (6.5), the next
term becomes

m
2 Aan—1,2 An—1,,2
21 = |[V8" |2, — 1V0™ |2y + Y V(8" = 8" )|}z

n=n,

By virtue of the induction assumption we can use (5.14) to arrive at

A 1 —1,2 2 _
[ve"~ uLz(Q) (14 CLy7)|VO™ 2+ CT Y hDM!

L’Eg}:k_l
< (1+ CLy 1) exp(CLy (n, — )1)(C(B_, + D)(m — 1)t + ||ve°||iz(m)
n.—1
+CBt—((2Ly) " +C) Y 710" - 8" |32 g
n=1

whence

nk—l
198 @y + 2Ly ™ 3 710" = 8" 2q,

n=1

< exp(CLyn, 1) (C(By_, + 1)(n, = )7+ (V€ N2, ) + CB,1,

because 1 + CLﬂr < exp(CLﬂr). It only remains to examine term III, for
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which we have

m

| < Y (1/0)] meas(@)'"? + L1168 2)) 16" ~ 8"l 2

n=n,

Aan—1,2

m
<SCm-m +1)1+Q2Ly) " Y 7 8"-8"" |1

n=n,

because (6.2) yields [|6" ||z < C[8" || g, < C. Collecting all partial
results, we get the following estimate, for any n, <m<n,,,
0,2
4, < exp(CLﬂ,nkt)(C(Bk_l +1)(n, - )1+ |VO ||Lz(9))
+CBt+C(m—n, + 1)t
0,2
< exp(CLﬂ,m‘t)(C(Bk + 1)me+ VO ||L2(Q)) =C

-
The induction argument is thus complete. Finally, the desired estimate follows
from Lemma 5.9 and assumption (4.11). O

Remark 6.1. As a by-product of the above argument, combined with (2.1),
(2.13) and the fact that F"™', F" ¢ %" forall 1 <n < N, we deduce

C>Zt/ [U U"”/ﬁsu+( )U”'l)dsl
N
n—1,2
24,300 /M" (W - v,

whence

N
2
(6.7) S U - 0 g < €

n=1
Our final estimate is a discrete analogue of (2.9): u, € L*(0, T; M(Q)).
Lemma 6.5. Let (4.11) hold. Then

(6.8) max 1" = 0" g < C.

Proof. It is enough to prove (6.8) for all steps between two successive mesh
changes, say 1 < n, < m < n,_,. Moreover, we can assume without loss of
generality that S is strictly increasing because the asymptotic constant in (6.8)
is independent of the lower bound of B’. As a result, 8 ~! is well defined and
monotone increasing. Subtract now two consecutive discrete equations (2.15)
for n, <n<mn, , toarrive at

(6.9) (QU"-aU"", ) +1(Vae", Vx) =1(af(0"""), 1)™,
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where 82" 1=t !(z"=z""!) and %2 := @™ . For notational convenience,
we have used U™ ™! to denote U™ ™! = IT™ (U™ ") e V', €™ 10 designate
6% = I B(U™ ") € V™ and, finally, U™ ? € V' to indicate the solution
of the following auxiliary problem:

U U ) (v T vp) = (f@™ T, 0™, Y xe V™.
By virtue of (2.15), (2.18) and (6.2), we readily have for all y € V", ”X”Loo(n)

<1,
U™, ™ <A@, 0™+ Y I(IVe™ 1,5, 2).|
€&
sc(1+ > hﬁDZ*'l)
e€&"k

Let y, e C “(R) be a monotone approximation of the function sgn such that
w,(0) =0, |y, (s)| <1 and w,(s) — sgn(s) as ¢ | O for all s € R\{0}. Set
x ="y, (0 U™™Y] in the above inequality and let ¢ | 0. Since ™' is
either the initial discrete temperature or that corresponding to a mesh change,
it satisfies either Lemma 5.9 or Lemma 5.10. We infer that

(6.10) /n"k|au"k“| <c,
Q

because of (4.11) and (3.15). To proceed further, take x := IT"[y,(06")] € V"
as a test function in (6.9) and next add the resulting expressions from n, to
m<n, . We obtain

I+1:= Y (@(U" - U"™"), ™[y, (08")™

+ i ©(Va®", VII'[y,(60")])

n=n,

m
Y 100", My, (80")™ =111,
n=nk
which is now examined in detail. By virtue of (6.3) we have II > 0. For III
we make use of (6.6) to arrive at
m—1
mj<cd L /[|166"] 2, < C.

n=n,

For the remaining term I we reason as follows. We first observe that
0< U™ (x[ )y, (96" (x]*) < 19U (x|,
for all nodes xj'."‘ of %" . Secondly, we take the limit as ¢ | 0 to obtain

5Un(x;k)'//e(36n(x;'*)) - 8U"(x;*) sgn(ae"(xj'.'*))
=0U"(x}*) sgn(dU" (x7)) = [0U" (x}*)],
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forall x* such that dU"(x*) # 0 or, equivalently, 88" (x*) # 0. Note that
it is precisely here where we need f to be strictly increasing. Therefore, term
I becomes

m
Z/n"k|aU”|—/n"kgaU""|=/n"k|aUm[—/n"k|aU"k“|.
nom, 10 Q Q Q

Collecting the previous estimates and making use of (6.10), combined with the
fact that ||x||,1q) < JoTI™|x| forall x € V™, the assertion easily follows with

an asymptotic constant independent of the lower bound of . O

7. ENERGY ERROR ESTIMATES

In this section we derive error estimates in the natural energy spaces for our
Adaptive Method. We also state a quasi-optimal error estimate in the maxi-
mum norm for an auxiliary elliptic problem which may have some independent
interest. Its proof is reported in Supplement §S3. We stress once again that
technical arguments to handle the discrepancy between continuous and discrete
domains were introduced in full detail in [17] and are thus omitted here by
simply assuming Q" = Q.

We start by recalling a well-known interpolation estimate for the quadrature
formula (2.16), namely, for all S € " we have

(7.1) /Slxqo — 1" (x9)ldx < Chgllxll 25 IVl 25y, VX, 9 €V

Let G: H _'(Q) — H(: (Q) designate the Green’s operator, that is,

(7.2) (VGy, Vo) =(v,p), VoeH Q.

Since Q is smooth, the operator G is regular [2, p. 138]:

(7.3) 1GW i) < ClWll g ¥ weLX(Q.

In addition, the norm in H "'(Q) can be represented in terms of G as follows:
(7.4) Wy = IVGWl 2 = (W, GW)'*, Yy e HT'(Q).

The discrete Green’s operator G": H - (Q) — V" is defined by

(7.5) (VG'y,Vx)=(y, 1), VYxeV',

and satisfies the following error estimates. Set h, := maxg o hg, p, =
ming, o hg and recall that A1 < p, < h, < At'/?, as results from (4.9). We
have first

2 2
(7.6) (G~ G"Wlxg < Chllvl gy ¥ ¥ € LYQ),

under the sole assumption of regularity of both .*" and G [2]. If, in addition,
h,<C pz with 0 < y < 1, we will prove in §S3.2 the following quasi-optimal
pointwise estimate; in the present case y = 1/2.
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Lemma 7.1. There holds |(G - G”)!//MLOO(Q) < Chilloghn|7||y/||Loo(Q), Sor all
weL®(Q).

Its proof is based on having suitable local energy estimates as in [21, 22, 23].
However, the novelty here is that " is not quasi-uniform nor does it have any
a priori structure as in [22]. Such a new difficulty is responsible for the extra
power of the logarithm.

We now introduce the error equations. Integration of (2.8) on the interval
I":= (""", "] results in

W'—-u""" )+ < vo(r)dt, V(o>
(1.7) r

= ([rewnar.o). voem@. 1<nsn,

where t"‘ := nt and u" := u(¢"). At the same time, (2.15) can be written
equivalently as
(U"-U"", p)+1(ve", Vy)
— (" - o 0= (U" = Un—l’x)n
U ot 0— 1)+ (Un—l _ur, 0)
+7(f®"), 1)", VeeH)Q), xeV', 1<n<N.
Subtraction of (7.8) from (7.7) yields the error equation

€ =™ or+ ([ Vep(nidt, 9p) + 298", Vip - )
(7.9) (U -0 )" = U =0 (O U - )
n—1 ~n—1 an—1 n
LU =0 g+ ([ 001, o) - (78, 0"

(7.8)

forall ¢ € HOI(Q) , X € V", where we have set, forany 1 <n< N,
e, ()=u(t)-U", e,(1):=6(t)-0", Viel", and e :=¢(").

Theorem 7.1. Let (4.11) hold and the number of mesh changes be bounded above
by O(t™"*). Then

1/2 7/2

(7.10)  lleylly=(0. 7551y + ol 0. 712y < €7/ 1logr] "2,

For the practical range of time steps 7, the above rate is essentially 0(11/ 2) .
The restriction on the number of mesh changes accounts for the accumulation
of interpolation errors U"' — U"~' which, by Lemma 5.5, are O(t). The
mesh selection algorithm of §4.2 is so designed as to make such a restriction
and (4.11) acceptable constraints. The key issue in Theorem 7.1 is the underly-
ing set of graded meshes {y"}:’:l for which it holds and constitutes the first
rigorous result. In fact, similar rates of convergence have been obtained for
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quasi-uniform meshes [4, 8, 17, 24]. The improvement upon those results is
thus to be expressed in terms of spatial degrees of freedom, as explained in §8.2.

Proof of Theorem 7.1. Take first ¢ := Ge, € H;(Q) and x :=G"¢, € V"
(7.9), next add over n from 1 to m (< N) and use (7.2) and (7.5) to arrive at

f_:(e:—e : +Z</ ndt, e>=:I+II

n=1
i n 1 Gnen) _ (Un _ (7n—1 , Gne:)]
710 + i(f/’"'l -U", (G-GMely + f:w”“ -0, Gel
n=1 n=1
3 <</ £6()dt, Ge > —e(f®"", G”e;’)”)

= III+~ + VL

The rest of the proof consists simply of evaluating these six terms separately.
In order to simplify notation, set

o n,2
A, = 12:a‘sxm ||eu||H_|(Q).

By virtue of Lemma 5.4, (6.5) and (7.4), the first term yields
m
2 0,2 1,2 2
A= ”e,:n“H—'(Q) = llug = Ul -1 gy + Z ”e: - 1) 2 ||e,:n||H"(Q) -Ct.
n=1

In view of the constitutive relations (2.6) and (2.13), term II can be further split
as follows:

I, +10, + 11, := Zm: /1 {eg(t), u(t") — u(r)dt
n=1
+ Z/”(ﬂ(u(t)) - BU™), u(t) - U")dt
n=1
+3° [ (BN - IR, e 0t
n=1

We first make use of (2.5) and (6.4) to evaluate term II, as follows:
dt<Crt.

m "
<3 [ Vel | [ nis)ds
n=1 H'(Q)

We next recall an elementary interpolation estimate. Let «a : R — R be a
continuous and nondecreasing function; then

la(p) — e (@)l o5
< Chg|[VIT'a(p) 5y, ¥SE€F", peV', 1<p <o

(7.12)
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Applying this inequality with o = # and p = 2, in conjunction with (6.4) and
the constraint hg < A7'? for all S €.%", we obtain

m m
- 2 - 2
I, > (2L,) "' Y /1 leg (DM@t — Lyt Y 1BU") =" BUM 2,
n=1 n=1

-1 2
> (2Lg) liegllz20, ¢, 12y — €T

The analysis of term II, will be split according to the local meshsize near the
discrete interface F" and far from it. Consider first S € & ={S € " :
SNF" # @}, for which hg = O(t) . The inequality (7.12) just used, now with
p =1, leads also to

IBU™) =TI BU")l1(5) < CTIVO |1 5)-

On the other hand, if S € %"\.#; we can exploit the further regularity of §,

together with (4.10) and the constraint Ag < At'? forall S €. " to arrive
at

2 2
IBU™) =TT BU™) 115 < ChID"BUI 1)
2 -1 2
< CLyt||VU 25y < CLylg V0" || 25 »

by virtue of a standard interpolation estimate. Hence, from (2.5), (6.2) and
(6.4) we readily have

<3 ( > B - H"B(U")IILI(S)) /, ey (Dl =gt

n=1 \ Ses&"

m
2
<CtY (VO g + 1V8"I2q)) < C.

n=1

In summary, for term II we have obtained the lower bound

-1 2
II> (2Lﬁ) ||e9||Lz(0‘tm L3Q) — Cr.

@)

The analysis of term III on the right-hand side of (7.11) will be also split ac-
cording to what happens within the refined region #" (defined in §2) and
out of it. More precisely, we decompose the integrals in III over all triangles
SeF ={SeF":SC A"}, where hg=0(1), and S € #"\F , where
hg < At'’? . Inequality (7.1) then yields

m
m <y Y / (U" — 0" )G e~ I[(U" — 0")G"e"dx
n=1s5e5" §

m
n ~Sn—1 1/2 n ~n—1 n n
SCY (@U" =T g+ IV = Ul 2ona)IVG el 20
n=1
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Hence, applying (7.4) and the property [VG"y/| 2 < IVGY/| 2, , together
with (6.4) and (6.7), we get

m
- 1,2 - 2
| < nd, +Cn~' (§:||U"-U" [ +§:z ot -0k Q\gn)

n=1
<nd, +Cn't,

where n > 0 is to be selected. The contribution due to IV can be handled by
means of (2.5), (6.2), (6.8) and Lemma 7.1 as follows:

m
#5n—1
V] < STIU" = 0" gy I(G = G™)el | o ) < Cllogr]”.

n=1

Term V is easy to evaluate in view of (5.10) and the fact that U""' # o"!
only whenever the mesh & n=l changes. In fact, we have

m
n—1 -1 n
VIS I =T i pglleg -1

m
<A YNV 0 g < €74, <nd, +Cr 7'

n=1
It only remains to estimate the contribution due to the source f. To evaluate
VI, we decompose it further as follows:

vi= ¥ < /, JB0)dt, (G- G")ef}>
n=1

+E</n[f(0(t))—f(9”)ldt,G"e,','> £ 3000 - F@), 6"l

n=1
+ Z ( ), G'el) = (f(®"), G"ep)") = VI, + -+ + VI,
We have ﬁrst
|Vlll < C“f(o)”]_w(o,r;[,z(g)) lglasxm (G - Gn)eZI|L2(Q) <Cr,

as results from (2.4), (2.5), (6.2), and (7.6), as well as

m
1/2 n
|V12|SCT E :”e()“L?([";LZ(Q))”eu“H—‘(Q)

n=1

m
2 -1 n,2
<nllegllzzo, . 12y + € § :rlleu [

n=1

We next use (6.6) together with (2.4) to obtain

m
~n—1 2
VLI < Ct) 118" - 8" |2 g llegll -1y < N, + CT.

n=1
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We then decompose VI, further and apply (7.1) in conjunction with (5.14) to
arrive at

V| <t

i - @', G"e"

ZH f(en 1 n n> (n f(en l) Gnen)

m
3 2 1
2SIV gy lefl -1 gy < 14, + C.

n=1

A proper choice of 7 finally allows terms A4, and ||e0||iz(0’tm; ) to be
absorbed into the left-hand side of (7.11). Therefore, forall 1 < m < N, we
have obtained the estimate

m
2 7 2
max. e l3-1qy + leglzz0, m: 2y < Cllog]” +C Y tllel 310,
n=1
The rightmost term can be removed after applying the discrete Gronwall lemma.
The desired estimate then follows from the property ue H 1(0, T,H 'I(Q)) C
0,1/2 -1 . n
C (0, T; H (Q)), which caq be used to replace max, ¢, <, lle, ||H_1(Q) by
le L=, 7. n1qy - The theorem is thus proved. O

8. COMPUTATIONAL ISSUES

To conclude this paper, we present several numerical experiments and com-
pare the proposed Adaptive Method (AM) with the Fixed Mesh Method (FMM).
We also comment on some crucial computational issues. Full implementation
details as well as many other relevant numerical tests will appear in Part II [16].

8.1. Implementation. Let M" := ((x;', x})" ) _; and K" := ((Vx[, VX,)), j=1
denote the mass matrix and the stiffness matnx respecuvely The equation
(2.15) can then be written in matrix form as follows:

(8.1) M'U" +1K'®" =M" (0" +1£(8"")),

where we have identified piecewise linear functions with the vector of their
nodal values. Since 8" = IT"[#(U")], the algebraic system (8.1) is (strongly)
nonlinear. However, as M" is diagonal, (8.1) can be easily and efficiently
solved by a nonlinear SOR method that is known to converge; see [16, 17, 18].
Based on a linear majorant, an approximate optimal relaxation parameter can
be determined in advance so as to accelerate the convergence of this iterative
method [16].

In order to implement (4.9) efficiently, an auxiliary (or superposed) uniform
square mesh & of size p := 0(11/ 2 ) is used. Such a mesh is created and kept
fixed from the beginning in such a way that Q c | ree R. We associate with
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each square R a value of desired meshsize, defined as the minimum of the local
parameters of §4.1 and §S4.2. This leads to the following piecewise constant
function:

(82) h|p:= min Atk h, kg, VRea.

S'€eS}  &INRD s
SeSy ec&) : SNR#D,eCOS

Such a function may be very oscillatory and thus not appropriate as a meshsize
indicator. An efficient smcothing postprocess then constructs a piecewise con-
stant function h” satisfying the following compatibility property forall Re & :

(8.3) b, >h"|,, VPe&: dist(P,R)<h’|.
This is achieved, for instance, by defining h” to be

(8.4) h"|R = rrpeig (max(]'1"|1D , dist(P, R) - p)), VRed.

The function h” is then used by the automatic mesh generator of [19] to produce
an admissible triangulation. In fact, by virtue of (8.3), we have it < Ay <
h"(x) < At'/? forall S € %" and x € S, which in turn implies (4.9). This
topic is further discussed in [16].

Since several remeshing operations are to be performed during the solution
process, mesh generator efficiency is a crucial issue. We used the mesh gener-
ator ADVFRONT of [19], which produces weakly acute meshes for general pla-
nar domains with quasi-optimal computational complexity O(S" logS"), where
S” := card(*"). This is so because binary search techniques are employed
on suitable quadtree structured data to update the advancing front. Similar
ideas were applied to determine U"”!, the interpolant of U™ in .%". More
specifically, this crucial interpolation process requires a computational labor of
O((S"~" + J™")log J"), which is also nearly optimal; recall that J" is the num-
Ler of nodes of %" . Such techniques are essential for the Adaptive Method to
be competitive. See [16] for more details.

8.2. Degrees of freedom. Suppose that there is no discrete mushy region and
any discrete interface F" is a polygonal curve with finite length uniformly in
7, which in turn is consistent with (3.13). Then the refined region %" is just a
strip 0(1” 2)-wide around F". Since the local meshsize is O(t), the number of
triangles within #" is 0(1'3/ 2 ). Except possibly for a small transition region,
triangles outside of #" are 0(1'/ 2 ). Consequently, the number of triangles
outside of #" becomes O(t™'); so the required computational labor in #"
dominates! Hence, the number of spatial degrees of freedom (DOF) for every
mesh " is

(8.5) DOF = 0(t™*?),

for a global accuracy O(rl/ 2). This quantity compares quite favorably with
similar ones for practical methods involving a single quasi-uniform mesh and is
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reflected in Tables 8.1-8.3. In fact, in that case iy = O(t) for all 5 € 5 and

so DOF = 0(1—2) for the same global accuracy [4, 17, 24]. We also stressed
that even with mushy regions, we need fewer DOF. A relevant example is fully
discussed in [16].

Consider now the Fixed Mesh Method with preliminary regularization [8,
12, 13, 17]). Assuming that a global nondegeneracy property is valid, a result
similar to (8.5) can be obtained [17], but at the expense of a much worse local
approximation quality, as numerical evidence indicates [16, 17, 18]. Such a
local property is extremely important in determining interfaces and explains the
much better resolution associated with the present method. We also underline
that the example below does not satisfy a global nondegeneracy property.

8.3. Numerical experiments. To illustrate the superior performance of our
Adaptive Method with respect to fixed mesh techniques, we have chosen the
severe test below. It is a classical two-phase Stefan problem with an interface
that moves up and down. The exact temperature is given by the following
expression:

0.75(r* - 1), r<l,

86 00y :={ (15-d(Osing)r=1), r21,

where r:= (x> + (v — a(1)))"?, a(t) := 0.5 + sin(1.25¢), sing := (y — a(0))/r,
Q:=(0,5)x%(0,5) and T := n/1.25. Dirichlet boundary conditions are im-
posed at y =0,y =5 and x = 5, and a homogeneous Neumann condition
is prescribed at x = 0. Since the exact interface I(¢) is a circle with cen-
ter (0, a(t)) and radius 1, the velocity V(x, y, t) normal to I(¢) at (x,y)
exhibits a significant variation along the front, which makes this example an
extremely difficult test for our numerical method. Moreover, since V(x, y, ?)
vanishes at both (x, y, T/2) and (1, a(¢), t), and is thus very small nearby,
this test constitutes a fair measure of robustness under degenerate situations.

Several numerical experiments were performed with both our Adaptive
Method (with and without fixed triangles as in §4.2 and §S4.1) and the Fixed
Mesh Method [3, 4, 8, 12, 13, 17, 24]. For the latter, the constant of propor-
tionality between 7 and the (uniform) meshsize was chosen so as to minimize
llegll L2(0) for a desired number of DOF, where Q := Q x (0, 7). The various
constants introduced in §§4, S4, 8 are as follows: A =15, A=5, M =35,
p=0.75/7, u, =222, u, =5.59, average value of u,~ 1.2, uj =pu, =3.5,
Uy =0.5, u; =2,C = ||D200||Lm(9), G, =3|IVOli = q)» C3 =2 length(ly),
C,=Cih.

Results are reported in Tables 8.1-8.3, where we have employed the follow-
ing notation: N := number of (uniform) time steps, J := average number
of nodes, S; := average number of triangles within the refined region, S, :=
average number of triangles in the rest of Q, S := total number of trian-
gles (uniform mesh), C := number of mesh changes (and number of com-
puted solutions rejected, if any), CPU := CPU time in seconds (on a VAX
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TABLE 8.1
Adaptive method (with fixed triangles)

N|J |Sg|S|C|E|E|E°|E®|CPU
40 | 319 | 496 | 148 [4(1) [ 16.1[354 [ 113 [ 537 58
60 | 593 | 957 | 233 | 4(1) | 10.5]29.1| 6.65 | 4.44 | 132
80 | 875 | 1430 | 328 | 4 |7.54|242 523|345 224
120 [ 14132320 | 510 | 5 [5.34)22.7|3.93 | 260 | 546
160 | 2089 | 3504 | 679 | 6(1) | 4.07 [ 19.6 | 3.14 | 2.08 | 1111
240 | 3620 | 6201 | 1042 | 8(1) | 2.82 | 17.7| 2.41 | 1.65 | 2998

TABLE 8.2
Adaptive method (without fixed triangles)

N | J |Sg|Sp|C|E|E |E®|E®|CPU
40 | 339 | 536 | 144 | 3 [18.8[37.0] 107 [ 583 | 50
60 | 592 | 957 | 231 | 4 |11.3[28.8| 7.42 | 501 | 126
80 | 818 | 1306 | 334 | 5 |7.59[26.1|5.17 | 3.26 | 235
120 | 1406 | 2306 | 510 | 6 |5.73|23.3|3.92 | 2.66 | 583
160 | 2110 | 3563 | 662 | 6 | 4.60 | 20.8 | 3.44 | 2.32 | 1068
240 | 3631 | 62451023 | 8 |2.99 | 18.5| 2.58 | 1.72 | 2916
TABLE 8.3

Fixed mesh method

N|J | s |E |E |E|E°|CPU
50 | 448 | 942 [159]39.7]208 | 13.8 | 37
75 | 1017 | 2104 | 10.5|30.4 [ 153 | 9.40 | 113
100 | 1812 | 3718 | 7.81|26.8 | 12.4 | 6.88 | 292
150 [ 4107 | 8356 | 5.57 [22.3 | 7.78 | 5.65 | 919
200 | 7361 | 14912 | 4.52 | 18.6 | 6.31 | 3.53 | 2264

[e o]

8530, vMs 4.6) and Ej := lle;l 200> Ei = lle,ll2g» ES = legll =g
Ej’° = max, .,y dist(/(nt), F "), where the errors are scaled by 10%. More-
over, ||0”L2(Q_) ~ 33.16, 101l L gy = 13.38, ||u||Lz(Q) ~ 39.81, with an error of
one unit in the fourth digit.

In light of these (partial) results, we can certainly claim a superior perfor-
mance of the Adaptive Method in that it requires less computational labor,
say CPU, for a desired global accuracy. Moreover, the proposed local refine-
ment strategies of §4.2 and §S4.1, with and without fixed triangles, perform
quite similarly. The L*-error for temperature Ef, behaves linearly in 7, thus
much better than predicted. We also have a (linear) pointwise error EZ° that

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use




TWO-PHASE STEFAN PROBLEMS IN TWO SPACE DIMENSIONS. PART 1 105

N=80
mesh I
Sp=1226
Sp=336

n=1:12

JAVAN
SN AANAYAV

FIGURE 8.1
AM, N =80, . U, free: Mesh 1 and zoom of refined region

is far from being theoretically explainable. The same happens with Ei and
E;" . The improvement gained in L™ is clearly more pronounced than that in

L*. The free boundary is located within one single element, thus confirming
the aforementioned local approximation quality. Therefore, we have a practical
O(t)-rate of convergence in distance for interfaces, the best one can hope for.
Since approximability and nondegeneracy are tied together [14], it is worth
noting that the nondegeneracy property is not uniform in the present case.

We finally conclude with several pictures corresponding to the case N = 80
without fixed triangles. The first mesh together with the corresponding Refined
Region is depicted in Figure 8.1. The boundary of the Refined Region, called
RED ZONE, appears blackened in Figure 8.1b, which also shows the first and
last discrete interfaces computed with mesh I. Note that the last interface has
escaped from the Refined Region and should thus be discarded as indicated in
84.2. To avoid rejecting a computed solution owing to failure of the free bound-
ary location test, a more flexible strategy for the case without fixed triangles
has been designed in [16]. The remaining meshes, generated automatically by
ADVFRONT are illustrated in Figure 8.2. Observe the proper grading produced by
ADVFRONT. We see how the refined region moves up and down accompanying
the interface motion. Note that even in the upmost position, when the interface
is motionless, the proposed strategy is successful. Figure 8.3 is a zoom of both
the exact and discrete interfaces for a number of time steps. The agreement
between these curves is quite remarkable as compared with the local meshsize.
Part of the RED ZONE, blackened triangles, can be seen in the second zoom as
well. The exact and discrete interfaces obtained with the FMM for N = 100
are depicted in Figure 8.4. It is worth comparing this picture with Figure 8.3:
the interface location is drastically improved by the AM.
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N=80 N=80
mesh 11 — mesh 111
Sp=1557 Sx=1058
Sp=299 Sp=339
n=13:38 n=39:54

N=80

mesh V
Sp=1253
Sp=379

n=66:80

FIGURE 8.2
AM, N =80, S U, free: Consecutive meshes

N=80
interfaces

(zoom)

i — computed interfaces

n=0 ! ...... exact interfaces

FIGURE 8.3
AM, N =80, S U5 free: Interfaces at n =8k (0 <k <5);
zoom of Mesh 11
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(FMM)
N=100

$=3718

inter

(zoom

10.

11.

12.

13.

14.
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(zoom)

faces

)

—— computed interfaces
...... exact interfaces

FIGURE 8.4
FMM, N = 100: Interfaces at n =10k (0<k <5);
zoom of the mesh
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Supplement to

AN ADAPTIVE FINITE ELEMENT METHOD FOR TWO-PHASE
STEFAN PROBLEMS IN TWO SPACE DIMENSIONS.
PART I: STABILITY AND ERROR ESTIMATES

R. H. NOCHETTO{ M. PAOLINI{ anp C. VERDIY

S1. Supplement to Section 5.
LEMMA 5.1. For all regular meshes S there exists a C®-function h: @ — R* satisfying
(S1.1) D*h(z)=0(hy%), VzeSeS, k>0

Proof. For each S € S there exists a (finite) covering {B;} of S such that card {B;} =
O(1), where B; := B(zi,7;), zi € S and r; := ahs/2; thus (5.2) yields B; := B(z;,2r;) C
S. By virtue of (5. 3) this gives rise to a covering {B;}/_, of Q satisfying bs := card
{B;: SNB; # 0} = O(1) for all S € S (nonoverlapping property !). Let §, € C§°(B(0,1))
satisfy fR, 0 =1,0< 8y <1, 6(z)=1forall z € B(0,1/2) and & is radially symmetric
(mollifier function). Set pi(z) := 8o((z — z;)/(2r;)) for all z € Q and note that

supp i = B; C S, 152#:‘(1)317, Vzeq,

where b depends only on the regularity of §; we certainly have b < bg = O(1) for all S € S.
Define now h € C*=(Q) to be

I
:=%Z,,u, Vze

Since ps' < hg for all S’ € Sg, it is easily seen from (5.1) that, if z; € S, then

a? &3 a2 a
. —_r; = — < — < h - ' = .
(S1.2) br 2bhs"‘>b Illélnspg (z) < 5 & a.xps < = hs Ti Vzé€B;
Hence B(z, h(z)) C Bi(C §) for all z € B;. Since
I
D*h(z) = % 3 riD*pi(x cz 1=kDkso((z — 2;)/(2r:)), VzeQ,

=1 =1

the desired result easily follows from (S1.2).

tDepartment of Mathematics and Institute for Physical Science and Technology, University of Maryland,
College Park, MD 20742 USA.
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