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AN ADAPTIVE FINITE ELEMENT METHOD FOR TWO-PHASE

STEFAN PROBLEMS IN TWO SPACE DIMENSIONS.
PART I: STABILITY AND ERROR ESTIMATES

R. H. NOCHETTO, M. PAOLINI, AND C. VERDI

Abstract. A simple and efficient adaptive local mesh refinement algorithm is

devised and analyzed for two-phase Stefan problems in 2D. A typical triangula-

tion is coarse away from the discrete interface, where discretization parameters

satisfy a parabolic relation, whereas it is locally refined in the vicinity of the dis-

crete interface so that the relation becomes hyperbolic. Several numerical tests

are performed on the computed temperature to extract information about its

first and second derivatives as well as to predict discrete free boundary locations.

Mesh selection is based upon equidistributing pointwise interpolation errors be-

tween consecutive meshes and imposing that discrete interfaces belong to the

so-called refined region. Consecutive meshes are not compatible in that they are

not produced by enrichment or coarsening procedures but rather regenerated.

A general theory for interpolation between noncompatible meshes is set up in

LP -based norms. The resulting scheme is stable in various Sobolev norms and

necessitates fewer spatial degrees of freedom than previous practical methods
— 3/2 —2

on quasi-uniform meshes, namely 0(r ) as opposed to 0(x ), to achieve

the same global asymptotic accuracy; here r > 0 is the (uniform) time step.
112

A rate of convergence of essentially 0(x ' ) is derived in the natural energy

spaces provided the total number of mesh changes is restricted to 0(x~ ' ),

which in turn is compatible with the mesh selection procedure. An auxiliary

quasi-optimal pointwise error estimate for the Laplace operator is proved as

well. Numerical results illustrate the scheme's efficiency in approximating both

solutions and interfaces.

1. Introduction

A common feature in dealing with degenerate parabolic equations is the in-

trinsic lack of regularity of solutions across the interfaces (or free boundaries)

which, in turn, are not known in advance. For the two-phase Stefan problem,

for instance, the temperature 6 cannot be better than Lipschitz continuous and

the enthalpy u (or energy density) typically exhibits a jump discontinuity across

the interface. They satisfy the PDE

(1.1) ut - div(k(0)V6) = f(8)     inux(0,T),
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subject to the strongly nonlinear constitutive relation 6 = ß(u), where ß van-

ishes on [0, 1]. The situation is more intricate when cusps and/or mushy regions

develop. This lack of smoothness makes finite element approximations, defined

on quasi-uniform meshes, perform worse than expected according to the inter-

polation theory. In other words, the singularity located on the interface pollutes

the numerical solution everywhere. Numerical experiments for the Stefan prob-

lem indicate that the rate of convergence for temperature is never better than

linear [17, 18]. Theoretical results are even more pessimistic [4, 8, 12, 13, 14,

17,24].

Methods studied so far are not completely satisfactory in that they do not

take advantage of the fact that singularities are located in a small region com-

pared with the entire domain Q, at least whenever mushy regions do not occur.

Consequently, a possible remedy is to be found in terms of a suitably designed

adaptive algorithm. In fact, we would like to use a finer mesh near singularities

in order to equidistribute interpolation errors but still preserve the number of

degrees of freedom, and thus the computational complexity. We refer to [ 1,

14] for an account of the state-of-the-art on this topic along with numerous

references.

In this light, the aim of this paper is to present and analyze an adaptive mesh

refinement method for two-dimensional two-phase Stefan problems. We em-

phasize that such problems are strongly nonlinear in that singularities do not

smooth out as time evolves and, more notably, they may even develop. This is

a striking contrast between degenerate and purely parabolic equations. There-

fore, even though various adaptive algorithms have been recently introduced for

standard parabolic equations [1, 5, 14], ours appears to be the first one with a

rigorous mathematical foundation for Stefan problems. We refer to [15], where

a summary of some preliminary results can be found.

The finite element mesh cannot be modified in an arbitrary manner for the

discrete scheme to be stable and convergent. Several tests are carried out on the

computed temperature to extract information about its first and second deriva-

tives as well as about the location of the discrete interface. Upon failure, the

current mesh is discarded and a new one completely regenerated by an effi-

cient automatic mesh generator [19]. Since the new mesh is not produced by

enrichment or coarsening procedures, it happens to be noncompatible with the

previous one. It is designed to be coarse away from the discrete free boundary,
1 II

where the typical meshsize is 0(x ' ), and locally refined near the interface for

triangles to reach a size 0(x) ; hereafter, x > 0 stands for the (uniform) time

step. These relations, which come from elementary interpolation considera-

tions, reflect the physical property that the Stefan problem behaves as parabolic

away from the interface but possesses a first-order hyperbolic-like structure in its

vicinity. On the other hand, even though the cost of generating a mesh at every

single time step is asymptotically negligible compared to that of solving the as-

sociated nonlinear algebraic systems, frequent remeshing should be avoided for

practical purposes. In addition, the interpolation process used to transfer infor-
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TWO-PHASE STEFAN PROBLEMS IN TWO SPACE DIMENSIONS. PART I 75

mation between consecutive meshes incorporates an error O(x) that eventually

accumulates in time. To prevent such an error from compromising accuracy, a

restriction on the total number of admissible mesh changes is enforced, namely
— 1/2

0(x ' ). As the current mesh is thus to be kept fixed for a prescribed number

of time iterations and discrete interfaces are supposed to lie within the so-called

refined region, a further refinement is required for our strategy to succeed. This

is accomplished by predicting the "small" region to be occupied by the discrete

interface between consecutive mesh changes, as well as checking that it actually

remains there within safe limits. The resulting scheme is stable, convergent and

necessitates fewer degrees of freedom than previous methods on fixed meshes,
_-a/2 _2

namely 0(x ' ) instead of 0(x ) for well-behaved interfaces, to achieve the

same global asymptotic accuracy. Moreover, it exhibits a superior performance

as expressed in terms of computing time for a desired accuracy. This improve-

ment is even more dramatic when accuracy is measured in the maximum norm.

The paper is organized as follows. In §2 we formulate the continuous and

discrete problems along with the corresponding assumptions. In §3 we comment

on certain heuristic aspects of our local refinement strategy, which is fully dis-

cussed in §4. In §5 and Supplement §S1 we prove several Lp-based interpolation

estimates for noncompatible meshes that account for mesh change effects and

play a major role in our analysis. Discrete stability in various norms is then

derived in §6 and Supplement §S2.  As a result, in §7 we demonstrate a rate
1 ¡2

of convergence of essentially 0(x ' ) for both 6 and u in the natural energy

norms, provided the total number of mesh changes is limited to 0(x~ ' ). This

result agrees with previous ones [4, 17, 24] obtained for a fixed mesh under the

stronger assumption that the meshsize is O(x). We also prove, in Supplement

§S3, an auxiliary quasi-optimal pointwise error estimate for the Laplace opera-

tor, that may have some independent interest in that it extends the techniques

in [21, 22, 23] to general meshes; it is based upon a new discrete Caccioppoli

estimate. To simplify the presentation, we assume that conductivity k = 1

and that mushy regions do not occur. These interesting situations are, how-

ever, treated in some detail in Supplement §S4 along with a modification of

the local mesh refinement algorithm. We conclude in §8 with several numerical

experiments to illustrate the superior performance of the Adaptive Method in

approximating both solutions and interfaces. Various computational issues are

discussed in §8 as well.

Further numerical results and comparisons with the Fixed Mesh Method as

well as implementation details will appear elsewhere [16]. They indicate a (prac-

tical) linear rate of convergence, namely O(x), which is much better than our

theoretical prediction. This topic deserves further investigation.

2. Problem statement

Let Q c R2 be a bounded domain with dCl e C1'1 and T > 0 be fixed.

The case of polygonal domains will be considered in §S4.4. Let ß : R —> R be
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76 R. H. NOCHETTO, M. PAOLINI, AND C. VERDI

a continuous and nondecreasing function which satisfies

0<lp<ß'(s)<Lß<oo,    \ß"(s)\<Lß, <oo, a.e. J€R\[0,1],

ß(s) = 0,       V5G[0,1];

hence L„ and Lßl are the Lipschitz constants of ß and ß', respectively. A

typical example is ß(s) := cxs~ + c2(s - l)+, where c, < 0 < c2 are fixed;

this corresponds to an ideal material with constant thermal properties. Let u0

indicate the initial enthalpy. Let 60 := ß(uQ) denote the initial temperature

and let I0 := {x e Q : 00(x) = 0} be the initial interface. They satisfy

(2.2) dQeW0x>°°(n)nW2'°°(Q\l0),

(2.3) I0   is a Lipschitz curve.

Therefore, u0 is of bounded variation, u0 e W2'°°(Çl\I0) and it has a jump

discontinuity across I0. In §S4.2 we will allow the initial interface I0 to de-

generate into a mushy region. The source term / is also Lipschitz continuous,

namely,

(2.4) \f(sx)-f(s2)\<Lf\sx-s2\,        Vi,,s2eR.

For the moment, the conductivity k verifies k = 1 ; see §S4.3 for the general

case. The continuous problem then reads as follows: find 6 and u such that

(2.5) 6£L2(0,T;HX(Ci)),     u G L°°(0, T; L°°(Q)) nHX(0, T; H~\0)),

(2.6) 6(x, t) = ß(u(x, t)),       a.e. xeQ,    t£(0,T),

(2.7) u(-,0) = u0

and for a.e. t € (0, T) and all <p e Hq (Q) the following equation holds:

(2.8) (ut,<p) + (Vd,V<p) = (f(d),(p).

Hereafter, (•, •) stands for the inner product on L (Q). It is to be observed that

the vanishing Dirichlet boundary condition on 6 is assumed only for simplicity

and, in addition, that the interface I(t) := {x e Q : 6(x, t) = 0} does not

include du,. Existence and uniqueness for this problem are known as well as

the following further regularity results [6, 8, 10]:

(2.9) deHX(0,T;L2(il))nL°°(0,T;Hl(Q)),        AÖ e L°°(0, T; Af(0)),

where Af(fí) stands for the space of finite regular Baire measures. In the

classical situation, the free boundary motion is governed by the so-called Stefan

condition

(2.10) [V6+(x, t) - V9~(x, t)] ■ vx = V(x),

where x € I(t), vx is the unit vector normal to /(/) and V(x) is the nor-

mal velocity of I(t), both at point x. Consequently, if V(x) ^ 0, the flux
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V6(x, t) presents a jump discontinuity at x e I(t) which prevents 6 from be-

ing better than globally Lipschitz continuous. Equation (2.10) may fail to hold,

though, whenever cusps develop. Let [[•] denote the jump operator on 7, that

is [V0]] := (V0+ - V9~)\r . The interface I may also degenerate into a mushy

region, in which case (2.10) is to be replaced by the more general expression

(2.11) lV6(x,t)]-vx = lu(x,t)lV(x),      xedl(t)nü.

As already said, this interesting situation is treated in some detail in §S4.2. For

the moment, we suppose that mushy regions do not occur.

We now introduce the finite element approximation. Denote by x := T/N

the time step and by ¿f1 a partition of Q, into triangles; S?n is assumed to be

weakly acute and regular uniformly in 1 < n < N. The first condition means

that for any pair of adjacent triangles the sum of the opposite angles with respect

to the common side does not exceed it. Given a triangle S e 5^n , hs stands for
1 I")

its size and verifies Àx < hs < Ax ' ( 0 < X, A fixed) whereas ps denotes the

diameter of the biggest ball contained in S. The second condition above is then

equivalent to requiring ps > o~hs for all S e 5?n , where 0 < a < 1 is a fixed

constant (independent of n and N\) [2, p. 132]. The discrete domain Q" :=

Use^" S does not coincide with Ù. However, since the technical arguments

to handle their discrepancy were introduced in [17], we omit them here by

simply assuming Q" = Ù. Nonetheless, the influence of the pollution effect

due to corners will be examined in §S4.4. Let V" c 770' (Q) indicate the usual

piecewise linear finite element space over S"n and n" : C°(Ù) -» V" the usual
j"

Lagrange interpolation operator [2, p.   94].   Finally, let {*,} ,=i  denote the

nodes of S?n and {#?}<_] the canonical basis of V". The discrete initial

enthalpy U  e V   is defined at a generic node x, of S? := S?x to be

(2.12) U°(xx):=u0(xx),    Vx]eQ\/0,       U°(xx):=l,    V x) e 70.

Hence, U° is easy to evaluate in practice. Set 6° := n'ö0 (= Ux[ß(U0)]).

Given Un~ , Q"~ e V"~ , the discrete scheme then reads as follows: for any

1 < n < N select S*n and find Un , 6" e V such that

(2.13) en = Unß(U"),

(2.14) 0"~l :=nnUn~l,       ê"_1 :=U"[ß(U"~x)],

(2.15)   r V - u"'1, X)n + (ve", vX) = (f(ên~x), x)n,     v x e v",

where (•, •)" is defined by

(2.16) (<p,X)n:= [ nn(<pX)dx,        Vtp,xeC°(Ù).

Note that the integral in (2.16) can be easily evaluated element-by-element

via the vertex quadrature rule, which is exact for piecewise linear functions
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[2, p.   182].  The discrete interface and refined region are then defined to be

Fn:={xeQ: On(x) = 0} and &n := (j{S e &R : hs = 0(x)}, respectively.

In view of (2.16), the equation (2.15) can also be written as follows:

(2.17) x~x(un - un~x, x)n + <ve", vx) = (f(ß(un~1)),x)\     vx e V" ,

thus eliminating the definitions in (2.14). It is to be stressed that the nodes of

S*n are then used for the numerical integration of piecewise linear functions

defined in V"-1. The interpolation error so incurred may destroy convergence

as well as stability. The mesh selection strategy of §4 will account for such an

effect.

Observe that, if we first decompose the integral (Vtp, Vx) over all triangles

of S?n and next integrate by parts, we get

(2.18) (V<p,VX) = Y,^V(Ph-ve>xh'      vp,*ev\

where i"1 := {e : e is a side (or edge) of S in Q, S € S?n} , ((•, -))e denotes the

L -scalar product on e, vg is the unit vector normal to e and \\-\\e indicates

the jump operator on e for all fef". Let S" denote the interior of supp x]

for 1 < j < J" and set he := length(e) for ee^". Then (2.18) results in

(2.19) 2(V<p, vx") = ¿2 KW<P% -ve'       VpeV",Vl<i</.
eCS)

In view of (2.16) and (2.19), another useful relation equivalent to (2.15) reads

£ Ä#ive"i, • ve
(2.20) eç-s">

= \ m^(S]){f(Qn-X(xnj)) - x-x(Un - Un-X)(xn])).

From now on, C > 0 will denote a constant independent of x but not

necessarily the same at each occurrence. Moreover, C may depend on the

given data as well as on the various constants to be introduced in §4. The

notation • = 0(xy) will be often used instead of • < Cxy. As usual, \x\ will

stand for any norm of x 6 R2.

3. Heuristic guidelines

We now give a heuristic motivation for the local refinement strategy of §4.

We first consider the following 1 -D problem discretized only in time:

(3.1) U-xß(U)xx = u0        in (-1,1),

where ß(s) := (s - 1)+ - s~ , V := y2 - yx > 0 and u0(x) := y2(eVx - 1)/K+1

if x > 0, u0(x) := yx(eVx - l)/V if x < 0. Since u(x, x) = u0(x + Vx),

the interface 7(f), initially at 0, reaches -Vx at time x. Let 6 denote the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TWO-PHASE STEFAN PROBLEMS IN TWO SPACE DIMENSIONS. PART I 74

position of the discrete-time interface F . It is not difficult, but tedious, to see

that(B:=ß(U))

(3.2) \\e-e(T)\\L~((-l,1)) = o(T)>v2T,

(3.3) o = -Vx + 0(xy2),

(3.4) Qx(<n = ©;t(<?+) = ?i + 0(x1'2)       (smearing effect!),

(3.5) ex(0) = y2 + O(r1/2),

(3.6) exx(x) = x~x + 0(1),       V(5<jc<0.

On the other hand, suppose (-1, 1) is partitioned into equal intervals of size

h. Then, in view of the shape of 6(x) := ß(u(x)) and (3.6), the pointwise

interpolation errors in space satisfy

l!ö(T)-n1(9(T)||jLOo     x))<vh/4 + o(h2),
(3.7)

ye - n'ei^oo^ 1)} < /zV'/s + o(h2).

What we learn from this relevant example can be expressed as follows. Since

we expect to deal with Lipschitz continuous temperatures, the local meshsize

hs near 7^ and interface velocity Vs should verify hs « Vsx to balance the

interpolation errors in space (3.7) with the truncation error in time (3.2). In

addition, no condition similar to (2.10) is valid for the semidiscrete problem

at F , even though the free boundary moves correctly. To retrieve the proper

jump condition, however, we just have to move a distance ô backwards along

the normal to F because, by virtue of (3.4) and (3.5),

(3.8) ex(0)-ex(o~) = v + o(xx/2),

or, equivalently, V = ¡s Qxx(s)ds + 0(xx/2). Consequently, an overrefinement

near the interface is extremely dangerous in that we may lose information on

the interface velocity without gaining accuracy and, as a result, we might be in

trouble to predict its future position. We thus realize that enforcing these two

observations would require a stepwise control of the relation hs « Vsx, where

J^ could be determined by means of (3.8) with S being replaced by hs . On

the other hand, there is an interval f9(r)-long behind F , namely (ô, 0), on

which second derivatives are 0(x~ ).

Away from the interface 7, problem (1.1) is strictly parabolic, namely,

(3.9) c(d)6l-A9 = f(6),

which is a mildly nonlinear heat equation; c(s) := l/ß'(ß~x(s)) for all 5 e

R\[0, 1]. Hence the discretization parameters should verify the usual parabolic

constraint hs = 0(x ' ).

These two distinct behaviors, rephrased here in terms of local regularity, must

be reflected in the local refinement algorithm, for instance, as illustrated in §4.
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Let us now explore some heuristic properties of the fully discrete

scheme (2.15). Near the discrete interfaces, where the best we can say is

\(Un-On-l)(x])\<C, (2.20) results in \EeCy heWe%-ve\<Cx-x meas (s") ■

Hence, except for a very unlikely cancellation in the above summation, we can

expect discrete second derivatives Dg to verify

(3.10) De := A^live"]!,! < Cx~xh;2 meas (S") < Cx~x.

This is consistent with (3.6). Moreover, away from the discrete free boundaries,

we can expect \(U" - Û"~x)(x")\ < C\(S"-ê"~x)(x")\ < Cx, because of (2.1),

(2.13), (2.14) and the strict parabolicity of (3.9). Thus | ¿ZeCS» MVe"]|f-i/J <

C meas (S"). Therefore, arguing as before, we conclude that

(3.11) De< Ch~2 meas (S")<C,

for all e in the parabolic region. The heuristic observations (3.10) and (3.11)

regarding De, as well as the smearing effect (3.4), were confirmed by 2-D nu-

merical experimentation. It also revealed the validity of the following L'-type

a priori estimate:

(3.12) Y,hlDe<C-
eeg"

This property is a discrete analogue of (2.9), i.e., Ad e 7_°°(0, T; M(Q)). It

is still in good agreement with numerical evidence. Indeed, actual computa-

tions show the occurrence of a strip 0(r)-wide behind the discrete interface

Fn where Dg = 0(x~x), which in turn is consistent with (3.6) and (3.10). In

this case, since the local meshsize near F" should be he = 0(x), (3.12) imposes

a severe regularity restriction on the interface, namely,

(3.13) lengthtO^        £       he < C £ h2De < C.
e6&" : ?nf 70 eeff"

Such a condition is quite reasonable for practical purposes but is not known

to hold in a general setting. We stress that without some kind of additional

regularity it is probably hopeless to improve upon the Fixed Mesh Method [4,

8, 12, 13, 17, 24]. In this light, (3.12) is always assumed at the mesh changes and

used in §§6, 7, S4, though it constitutes a limitation of the Adaptive Method. It

is however partially justified by Lemma 6.5 which, being implicitly guaranteed

by the scheme, combines with (2.20) to yield

j"

(3.14)   £ EMtoV",
ecs;

<2¡n"(\f(ê" x)\ + x x\u"-ûn '|)<c,
Jo.

for all time steps n between consecutive mesh changes. We then see that only a

cancellation in the above summation could lead to a bound weaker than (3.12).

This seems to be unlikely for locally smooth interfaces, as well as for cusps,
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because of their local character. At the same time, Lemma 5.10 shows that

(3.12) is preserved for 8". This somehow explains the fact that (3.12) was

never violated in our numerical experiments. Designing an algorithm for which

(3.12) is implicitly guaranteed constitutes a challenging open problem, though.

Note that mushy regions may occur as long as their boundaries are also well-

behaved. On the other hand, regarding first derivatives, the following L -type

a priori estimate is implicitly guaranteed (see (6.6)):

(3.15) £ h2s\ven\s\2<c.
sef"

We finally comment upon the effect of interpolation between noncompatible

meshes. Let C : R -» R be sufficiently smooth and S e 5"" be a generic element.

Proceed then formally, as if &"~x were smooth, to deduce that

HC(e"-1)-n"[C(e"-1)]||rc(5)

-1 < cAj(||z>2e"-V(S) + iiDe-'iii-^),

where D and D denote discrete first and second derivatives, respectively. In

§5 we give proper justification for (3.16). Since we want this interpolation error

to be 0(x), the new local meshsize should satisfy

(3.17) hs < t    min (px\\D 8"~ \\^J,S), p2\\DQ"~ ||¿«>(5)j.

This in turn allows second derivatives to blow up without violating hs >

Xx as long as \\D 8"~ ||L°o(S) < (px/X) x~x, which is consistent with (3.10).

First derivatives may also degenerate without violating hs > Xx provided

117)0"" ||¿°o(S) < (p2/X)x~ ' . Such a degeneracy is expected only whenever

cusps develop, this being a local phenomenon. In addition, having control of

quadrature errors introduced by (2.16) leads to restrictions on triangle diame-

ters wherever ||D8"~ \\L°°(S) exceeds a certain tolerance; this is accomplished

via (3.17) as well.

On the other hand, for all 5 e S?n~x intersecting the discrete interface Fn~x

we have {x e S : 0 < U"~ (x) < 1} ̂  0 . For sample problems having a nicely

behaved continuous free boundary and verifying a nondegeneracy property, nu-

merical experiments indicate that Un~ may vary from 0 to 1 within one single

element. Consequently, even a slight perturbation of triangles S traversed by

F"~ would produce an error \\U"~ -YlnU"~ \\L°°<S) = 0(1) and a subsequent

optimal lower bound ||Í7"_ -n"í7"_1||¿i a > Cx, which could be attained pro-

vided length (F"~x) = 0(1). This property of F"~x is not enough, however,

to ensure the validity of another crucial interpolation estimate (Lemma 5.6),

namely HV^"1 - 8"_1)||L2(Í2) < Ct1/2, unless V8""1 is bounded on F"~x ;

strong stability would thus break down too (Lemma 6.4). Since such a further

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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constraint on V8n_ rules out the formation of cusps, we should not modify

triangles crossed by F"~x. For computational purposes, it is always prefer-

able not to impose this constraint, which is feasible whenever the interface is

"smooth"; see §S4.1.

4. Local refinement strategy

The aim of this section is to describe the relation between two successive and

noncompatible meshes, say 3i"l~x and S?n , along with the necessary numerical

tests to be performed on 8"_1. The initial mesh 3* (= 3?x) is constructed

along the same lines with 0O in place of 8"~ . Since no confusion is possible,

for simplicity we remove the superscripts and use the following notation: 3? :=

S""'1,3° := 3>n, r := r""1, f := r", 31 := 32n~x ,3Ï := 31", n :=

n"-1, n := n", u -.= u"~x, û -.= û"~l(= ñu), e := e"_1(= nß(u)),
8 := Uß(U) and F := F"~x, for 2 < n < N. In §4.1 we introduce three local

parameters that represent the expected value of local meshsize. We discuss the

mesh selection algorithm in §4.2 and conclude with several comments in §4.3.

4.1. Local mesh parameters. Note that V8|5, VU\S e [P°(S)f for all 5 e 3".

Set ds := \ve\s\, Ds := \VU\S\, Ss := hsds for all S € S9 and

(4.1) á,:=|ve|Si-ve|S2| = invehí,   De-.= Sf,     v^r,
e

where Sx, S2e3p are so that e = SX DS2 ; set stfe := {Sx, S2} . Note that these

quantities are easy to evaluate in practice. We then introduce the following

local parameters:

(4.2) ke:=ßl*t       veer\g>,
e

xx/2

(4.3) hs:=p2-j-,        V5e 3>\3'F,
as

where 3PF := {S e 3* : S n F ¿ 0}, &F := {e e r : e c dS, S e 3>F]

and !F := [JSe¿* S. Here, px,p2 > 0 are arbitrary constants which, in

practice, result from computational considerations as well as specific proper-

ties of the problem at hand; the same comment applies to X, A. The two

local parameters above account for the effect of interpolation between non-

compatible meshes, as motivated by (3.17). In case they violate the constraint

he, hs > Xx, we say that discrete derivatives are badly-behaved. This situation

will require special care, even though it was never observed in practice. To this

end, we set 3>B := {S e 3*\3*F : min^g.^. eCdSChs, he) < Xx}, %B := {e e

%\%F : e c dS, S e 3*B}, 38 := [JSe^ S and 3"0 := 3°\(3>F u 3*B), f0 :=

r\(rf ur,,), Q0:=n\(^u^).
We now focus our attention on the local meshsize near F for problems

without mushy regions. Inspired by (3.8) and subsequent heuristics hs « Vsx,
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for each S e 3* crossed by the discrete interface F, we compute a discrete

interface velocity Vs using a suitable discretization of condition (2.10), namely,

(4.4) Vs:=(Ve\s¡-VG\S2)-v,

where Sx, S2 €.3* belong to each phase, are displayed on the direction v

(unit vector normal to F ) and satisfy dist(5¿, S) > hs (i = 1, 2). We next

consider a cone %?s of axis v , vertex at S, opening n/2 and height p3 Vsx '

as being the region most likely to contain the evolution of Fs := S n F for at

least 0(x~x' ) time steps. The local parameter associated with the interface is

defined by

(4.5) hF :=xmin{max(X, Vs), M}.

The above two new constants p} and M are arbitrary at this stage. The same

rules of selection as for the previous four constants apply; p3 may depend on

n.

The union of all cones ^ constitutes the predicted refined region 3! whose

width is 0(x1' ). Note that 31 c 32 . The size of 32 enables discrete interfaces

to remain within 32 for at least 0(x   ' ) time steps, as desired.

4.2. Mesh selection algorithm. As already said, the initial mesh 3"x is built with

the required pointwise information extracted from 90 . Assuming now that we

have a mesh 3", we would like to discuss the three tests to be performed on

the computed solution 8 to either accept or discard 3*.

The first test consists of checking whether the discrete interface F is within

the refined region 32 or not. In the event F escapes from 32 , we say that the

test has failed.
The second test ascertains that interpolation errors are still equidistributed

correctly:

(4.6) he<p\he,    Veer0,       hs<p2~hs,    V5e^0;

here p*, p*2 > 1 are suitable constants. This rules out the possibility of an

excessive refinement induced by large discrete derivatives. However, the new

local meshsize might be much smaller than the current one, if influenced by the

new refined region 32 . The example in §8.3, for instance, makes (4.6) fail; see

also [16, §7].
1 II

Sometimes the interface velocity may vary substantially during an 0(x ' )

period of time so as to make (4.5) inadequate. More specifically, the local

truncation error (3.2) would not be properly reflected in the local meshsize and

also, in case the current meshsize becomes too small, the computation of Vs

via (4.4) might be inaccurate because of the smearing effect (3.4). In addition,

the fact that triangles of 3PF are fixed and new nearby elements might have a

much smaller size would create serious programming difficulties in specifying

32 . To prevent that from happening, a third test is enforced, namely,

(4.7) p~hFs < hs < pi hF ,       VSeyf,
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where p3  < 1 < p3   are suitable constants.  A relevant example that makes

(4.7) fail is that in [16, §7.3].
If any one of the above tests fails, then the current mesh 3" is rejected as

well as the solution {8, U} , which is overwritten with the previously computed

solution. A new graded mesh 3* with the following properties is then generated.

To preserve the constraint h~>Xx, we must keep 3PB fixed because discrete

derivatives are badly-behaved. In addition, in accord with the last heuristic

observation of §3, we must not modify 3PF . Hence,

(4.8) S&37,       VSe3*Bu3'F,

is the first restriction on 3*. The second one reads

(4.9) Xx<h-< min ^ (Axx/2, hFi, he, hs),       VSeJ^.
S'€5*F:%.,r\S¿0 s'

SeS"0 ,e€%0: SnS¿0 ,ecdS

This accounts for both the equidistribution of pointwise interpolation errors

(3.17) and the definition of refined region 32 . The effective implementation of

(4.9) will be discussed in §8.1; see also [16, §6].

4.3. Further properties. The information about discrete derivatives could be

extracted from U rather than 8 because, in view of (2.1) and (2.13), they are

equivalent on Q0 . In fact, for all eelj, and S 6 3*Q , we have

ClvtfU, - vt/y < c(ißxDe + Lß,rß\d\ + d¡2)),     st e *t,

Ds < Clßxds.

1 II
Since 3P was designed to be adequate for at least 0(N ' ) time steps, the

1 /2
number of expected mesh changes is at most 0(N ' ). This goal was always

achieved in practice.

To avoid rejecting the computed solution {8, U} owing to failure of the first

test, we always check if the discrete interface F has just reached the boundary

of the refined region 32 , called red zone, which in turn alerts that an imminent

remeshing must be done; see Figures 9.1 and 9.2. On the other hand, to prevent

the program from performing a useless time step owing to failure of either

(4.6) or (4.7), these tests can be carried out with more stringent constants. In

that case, their failure will only warn that 3* cannot be kept any longer. This

trick actually succeeds because discrete derivatives may exhibit large oscillations

solely near the discrete interface F, and thus within 32 where the current

(local) meshsize is already 0(x). Hence, remeshing is mostly dictated by the

free boundary location, as observed in practice.

In the subsequent analysis of §§6, 7, S4, we will assume the following struc-

tural property which, in view of §3, is partially justified by Lemma 6.5 and

numerical evidence:

(4.11) J2hlDe<C-
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The definition of the sets 3§ and 32 might be contradictory unless 38 c32 ,

that is hs = 0(x) for all S e 3Í'B. Discrete derivatives Dg and ds are typically

well-behaved outside 32, because this is a parabolic region where De, ds <

C at the previous mesh change. Consequently, we do not expect any rapid

variation of either Dg or ds on Q\32 , which means 3t c 32 and also 38 c

32 . The set 38 , though, was always empty in our numerical experiments. Note

that ^ c 32 as well.
For a well-behaved interface, (4.5) coincides asymptotically with the usual

hyperbolic relation h = 0(x). This was proposed here as a means to balance

interpolation errors and attenuate the smearing effect, rather than for stability

purposes. Stability is always built into the scheme regardless of the number of

mesh changes, as shown in §6. Our algorithm is still a fixed domain method, even

though we predict the region to be invaded by the discrete interface. Indeed, we

do not use predicted interfaces to solve uncoupled (nonlinear) heat equations,

as customary for front-tracking methods, but rather as a refinement indicator.

The behavior of De and ds depend certainly upon regularity of the underlying

problem. We may think of these quantities as being bounded uniformly in

t away from F, where 6 is expected to be smooth; see (3.11). Expressions

(4.2) and (4.3), combined with (4.9), then result in h§ = 0(xl/2), which is the

usual parabolic relation. We finally observe that the assumption öQ € C '

avoids further refinements to alleviate the pollution effect produced by corner

singularities; see §S4.4.

5. INTERPOLATION ESTIMATES FOR NONCOMPATIBLE MESHES

Our goal now is to show that the above criteria for mesh selection guarantee

a satisfactory error control. The results in §5.1 are valid in general for regular

and noncompatible meshes 3* and 3* and possess some intrinsic interest.

They are next applied to the present setting in §§5.2, 5.3. We will stick with the

notation of §4.

5.1. The basic estimates. Let us first introduce some further notation and a

number of useful geometric properties. Given W c Ù, set

3>fV:={Se3*o:SnW¿0},    $w := {e e £0 : ef) W ¿ 0},    W ■=  [j S.
s&yw

Let B(x, r) indicate the ball of center x and radius r. The following facts

are simple consequences of the regularity of 3* : there exists 0 < a < 1 such

that for all Se 3%

(5.1) PS'>ahs,       VS'e3's,

(5.2) dist(x, S) > ahs,       VxeÛ0\5,

(5.3) card^, card £s = 0(1).

It is then possible to introduce a smooth function h(x) which is locally com-

parable with the meshsize (see Lemma 5.1 in Supplement §S1).
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In deriving the interpolation estimates below we shall distinguish between two

opposite situations according to the relative size of triangles in both meshes 3"

and 3*. It is worth noting that there is no assumption on the relative size or

location of new and old triangles at this stage. Set 3*0 := 3^\(3^F 113g) and

define the dereftnement case to be

(5.4) given S e3\\,    ahs < h~    for all S e 3~.

By contrast, the refinement situation reads as follows

(5.5) given S e3*0,     there exists   Se 3^    suchthat   ah<¡ > h~.s - "s-

These two cases are obviously mutually exclusive.   In addition, for all S's

satisfying (5.5) we have

(5.6) ScS    for some    Se3"~,        cardg-, card 3^ =0(1),

as results from (5.1), (5.2) and (5.3). Let 3?x (resp. 3^ ) indicate the set of all

S's satisfying (5.4) (resp. (5.5)). Let F be a generic piecewise linear function

defined on 5*. Let Ç: R - R be so that C' € WUoo(R). Let Lç and L¡.,

denote the Lipschitz constants of C and Ç', respectively. Let Ss, ds, 6e and

De indicate, for the moment, derivatives extracted from V. We now state,

and then prove in Supplement §S1, two crucial estimates, their difference lying

essentially in their derivation and further application. The first one refers to the

dereftnement case and can be viewed as a discrete analogue of that in [2, p. 115].

It roughly asserts that regularity (of 3* ) is the sole property that matters for

a "discrete" interpolation estimate to hold. The second and more elementary

estimate refers to the refinement case (5.5).

Lemma 5.2. Let S e3?x. Then

pc(K) - nav)\\LP{~ + Adivinan - nc(K)]||L,(?)
\ Up r \ i/p

(5.7) <CAf

MEw    +M£*k2Â2p

5
ee¡Sx

s J SeS<k
s J

L, max D + L,, max d?,
ç etWz    e 4  56^   ■*

,      1 < p < OC ,

p = 00.
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Lemma 5.3. Let S e3%. Then

\\nç(v)-nç(v)\\LP~

i/p

(5.8)    <{

CLrhl+2lP £4 + CLr,Ai/p

CX,A~maxr5 + CL< maxcL,
4  56.5s-,6%

1 < p < 00,

p = 00,

and

llv[nf(K) nf(K)]||
L'(S)

(5.9) < <

CA2/p

i/p i/p

+ Lf, E^S
,5€^?

1  </? < 00,

CL, maxr5 + CLr, ma\(hvdv), 00.

Remark 5.1. Consider the simplest case £ = Identity; thus Lw = 0. We

point out that we need control on interpolation errors even for the refinement

situation, simply because meshes 3* and 3" are not compatible. If they were,

these errors would simply vanish.

5.2. Error estimates. The first result, whose proof is given in Supplement §S1,

deals with the initial triangulation 3* and the choice (2.12) for the discrete

initial enthalpy U°.

Lemma 5.4. We have

ir -i(0) <Cr|logT 1/2
II "0       ~   ll/T

We now come to the subtle issue of changing the mesh. Our first task is to

apply the two basic interpolation estimates to U. To this end, let V = U and Ç

be as in Lemmas 5.2 and 5.3. Note that the choice Ç = ß is allowed because, in

view of (4.8), it is enough to deal with S e 3\]. Recall that derivatives of U in

Q0 can be expressed in terms of quantities extracted from 8, as stated in (4.10).

Hence, let Ss, ds, ôe, and De denote from now on derivatives extracted from

8. The following error estimates illustrate the connection between Lemmas 5.2

and 5.3 and the mesh selection algorithm.

Lemma 5.5. The following sharp pointwise error estimate holds:

(5.10) ||nf(£7)-fiC(C7)||L»(0)<CT.

Proof. Let first S e3?x. On using (5.7) and (4.10), in conjunction with (4.2),

(4.3) and (4.9), we easily obtain

\\UÇ(U) - ñC(t/)|U^ < Cmax(h¡D) + Cmax(h¡d¡) < Cx.
s s
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Likewise, let us take S e 3^ and make use of (5.8) and (4.10), together with

(4.2), (4.3), (4.6) and (4.9), to arrive at

linCCC/) - nÇ(U)\\Lo°,s) ^ C™f (%W + c™fSh¡d¡ + hshs4) < Ct.

This concludes the proof because (5.10) is obviously sharp.   D

Remark 5.2. Since meshes 3* and 3* are not compatible, we cannot expect

a pointwise error estimate for VÍ7 to hold. To make this claim apparent, we

consider, for instance, the refinement case (i.e., S e 3^ ) and suppose that f :=

Identity (i.e., Lf- =0). We can write (5.9) as follows:

\\V(U-Û)\\LX~<CmaxheDe,

from which we conclude that ||V(C7- Û)\\L°°{s} = °0) provided De = 0(h~x),

as is expected to happen near the interface F. In any event, setting A- :=

mingeg^he, we can rewrite (5.9) in the form

A?||V(<7 - t/)|Loo,Ä < CÀ?max<?e < Cmax(heheDe) < Cx,
S C    \b) ¿ eg^    e eçg^     e   e    e

as results from (4.2) and (4.6). When A- = 0(t1/2) , as happens away from F,

we see that
||V(C/-t7)||£00(S-)<CT1/2.

It is worth noting that the critical parameter is À- rather than A- (A- < À-!).

Similar conclusions hold also for the derefinement case.

In spite of this negative result, we still have an error bound for V(U - Û)

in energy norm. Under the assumptions (4.11) and (3.15), the following lemma

yields ||V[nC(£/) - nC(t0]||jr*(O, ^ c^ß ■

Lemma 5.6. The following sharp L -error estimate holds:

(5.11)       \\V\mU) - ñaU)]\\2L\Q) < Cx f Lr ¿2 h2eDe + Lc £ A2¿
V      eeê?0 5€^0

Proof. We proceed as in Lemma 5.5 by first examining the derefinement case,

namely S e 3'x. By virtue of (4.2), (4.3), (4.9) and (4.10), together with (5.7),

we easily obtain

( \

ee3~ ses^ i

2j2

£||V[nc(c/)-nc(c/)]|¿í(?)<cX;
se^ 5 5

< Cx W h]De + £ A2<
2 j2

S

,eÇ8?0 S€S>0
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Note that we could replace double summations by single ones because, as a

consequence of (5.4), card{5 e 3"x : e n S ¿ 0} = 0( 1) for all e e £0. On the

other hand, for all S e3?2 (refinement case) the above properties, coupled now

with (4.6) and (5.9), lead to

E \\V[UC(U) - nc(L/)]||22(?) < c E    EW + £ (h¡d¡)(h¡d2s)
se¿?2 seß2 Ve€g? SeSís

2 j2

seß2 W% s^

To proceed further, we need the following elementary inequalities:

(5.12) £A?<CAe,    V^F0,        £aJ-<CA2,    V5ey0,

s&32 se3¡*

where ¿7% := {S e ¿72 : enS ¿ 0} for all e 6 ro and «^ := {S e 3% : SnS ±
0} for all S e3*0. Indeed, this yields

EM>* £ a?<c£A>e,    £ ¿j £ a|<c £ a5Í.

whence

*<> Ss^f efeeo JfcJo       56^¿

E liv[nc(c/) - nc(c/)]||22(?) < Ct  £ aX + E hk2-f2
5

se^0

It only remains to demonstrate (5.12). The second estimate in (5.12) is obvious

in view of (5.5), whereas the first one comes from the following consideration.

Let 3*e := {Sk}k=x be ordered on e, and let xk, xk_x be the end points of

the segment er\Sk . We would like to replace hk := Aj by C\xk - xk_x\, but

this may not be true for a triangle which is crossed by e near a vertex. We

can however argue as follows to overcome the difficulty. The regularity of 3"

yields card Jrk = 0(1), where Jrk := {j : Sjr\B(xk, ahk) / 0} for 1 < k < K.

Hence,

K K K

£\ <CEE i*,-*,-ii * c£i**-*fc-ii * CK-
k=\ k=\ j€Sk k=\

Since (5.11) is sharp according to the discrete regularity dealt with, the lemma

is thus proved.   D

Remark 5.3. In view of the pointwise estimate (5.10) and the a priori discrete

L -bound (4.11), the energy error estimate (5.11) for Ç, = Identity may be

regarded as a 2-D interpolation result, say between L°°(Q) and W2'l(Q).
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In §5.3 we will need two trace estimates for the interpolation error 8-8

that are stated in Lemmas 5.7 and 5.8 (see Supplement §S1). They correspond

to either the derefinement or the refinement situation.

5.3. A priori estimates. In this subsection we state a priori estimates related

to the crucial bound (4.11) as well as (3.15). Their proofs are reported in

Supplement §S1. We begin with (4.11) for the discrete initial temperature

8° := Ux[ß(U0)] = n'ö0. The symbol De stands here for second derivatives

extracted from 8 .

Lemma 5.9. We have

liveV(n) + £ AX < c
eey'

We finally state, in Lemmas 5.10 and 5.11, that (4.11 ) and (3.15) are inherited

by 3* and 8. Let Dê denote the obvious analogue of (4.1) with 8 replaced

by 8.
2    i

Lemma 5.10. The following discrete a priori W ' -bound is valid:

(5.13) £aX < C \LßY,h2eDe + Lßl £ h¡d¡ I .
ê€È V     *ef ses*        J

Observe that o2Y^Se¡yh2sd2s < ||V0||¿2(Í2) < Usg^s^s *s va^ as we^

as the obvious analogue with 8 and ds replaced by 8 and d-g := |V8|-|,

respectively.

Lemma 5.11. The following discrete a priori Hx -bound holds:

(5.14) IIV8||22(ii) < (1 + CLß,T)||V8||2-2(íi) + Ct E h]üe.
e€ër0

Note that the coefficient in front of ||V0||^2(£2;| becomes 1 whenever ß is

piecewise linear, i.e., LB< = 0.

6. Stability

Our present purpose is to show that the local refinement method (2.13)—(2.15)

is stable in various Sobolev norms as soon as the refinement strategy proposed

in §4 is enforced. We start by recalling that 3"" is weakly acute, i.e., the sum

of the opposite angles with respect of the common side of any pair of faced

triangles does not exceed n . As a consequence, we readily have the following

form of the discrete maximum principle: let <p e V" attain its maximum at the

internal node x" and let x] € V be the corresponding basis function; then

(6.1) <Vp,V^;)>0.

This will serve to exploit monotonicity properties of the problem at hand which

in turn compensate for the lack of regularity. Note once more the difference

between our approach and that for purely parabolic problems [1, 5]. The first

result, proved in Supplement §S2, reads as follows.
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Lemma 6.1. The following a priori maximum norm estimate holds:

(6.2) max ||E/"||roo,n, + max \\@n \\ rx ,n, < C.
l<n<N L   (">       \<n<N L    ^l> ~

The following well-known result is also a consequence of (6.1) [3]. We include

its proof in Supplement §S2, just for the sake of completeness.

Lemma 6.2. Let a e WX'°°(R) satisfy a(0) = 0 and 0 < a'(s) < La < oo for

a.e. s e R. Then

(6.3) \\Vnna(<p)\\2L2{Cl) < La(V<p, V\Ta((p)),        Vf£V".

In proving the following lemmas, we shall extensively make use of the equiv-

alence of continuous and discrete L -norms for discrete functions, namely

IHIl2(0) ̂  (<P ' I*)" ̂  CIHIL2(£i) .      V Ç? € V".

Our next step is to demonstrate a weak a priori estimate in energy norm. The

first term in (6.4) may be thought of as a discrete Hx/2(0, T; L2(£2))-norm.

Lemma 6.3. The following a priori estimate holds:

(6-4) £i|c/" - ün-x\thCl) + £T||veli2(£2) < c.
n=\ n=l

Proof. Take x — tU" e -V"  as a test function in (2.15), and next add the

resulting expression over n for 1 < n < m  (< N). We have

m m

i + il := £(c/" -û"-x, u")" + ET(ve", vu")
n=l n=\

m

= £i(/(ê"-1), U")"=: III.
n=l

Using (2.16) together with the elementary identity

(6.5) 2a(a-b) = a2-b2 + (a-b)2,       \/a,beR,

the first term can be further split as follows ( n° := n1 ):

m      ~

= E / n"[(<7")2]-n"[(«7'!"1)2] + n',[(<7n-«7""1)2]

m      .

= £/n"
7r,JQ

[(U")2]-U"  X[(U"  X)2]
n=\

m     ¡.

+ Y   n"-x[(u"-x)2]-n"[(un-x)2]

nT2Jsi

+ £/n"[(iy"-L/"-1)2]=:i1+i2 + i3.
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We now evaluate these three terms separately. We first obtain

i, = (um, um)m - (u\ u°)x > \\u%>{Q) - c\\u°\\2L>{a),

and
m m

h = ZX - ü"~] >u" - vn~l)n > £ \wn - vn-%(Cl).
n=l n=\

The remaining term, which occurs only when the mesh is changed, can be han-
2 n

died by Lemma 5.5 with Ç(s) = s . Indeed, since U satisfies (6.2), ( can be

suitably modified outside the range of U" in such a way that £' e WX'°°(R).

Hence I2 > -C^™2: = -C. On the other hand, (2.13) in conjunction with

(2.1) and Lemma 6.2 yields

m

Eriivel^vi.
n=\

For the remaining term III we make use of (6.2) to arrive at

m

|III| < £t(|/(0)| meas(n)1/2 + L/||Ô',-1||L2(n))||i/"||LJ(n) < C,

because 8""' = Yln[ß(Un~x)]. The proof is thus complete.   D

We now derive a strong a priori estimate in energy norms. To this end, we

need the structural assumption (4.11).

Lemma 6.4. Let (4.11) hold. Then

(6.6) ¿T-'iie" -e-l|¿J(n) + m« ||ve-nL,(Q) < c.
H=l -

Proof. We argue by induction. Let 1 =: nx < n2 < ■■■ < nK < N denote the

indexes corresponding to the mesh changes; set nK+x '.= N + 1. We want to

prove the following inequality for all m between two successive mesh changes,

say nk < m < nk+x :

m

K ■■= (2^)"' £ T-1 lie" -ê-'iii^ + maxjve"\\2LHa)
n=l -

< Cm := exp(CLß,mx) (c(Bk + l)mx + ||Ve°|¿2(n)) ,

2 y.     _   I

where Bk := max1<|<A. 5Ze6r««-1 KDe¡ • Since this estimate is obviously valid

for m = 0, assume, by induction, that it holds for all m < nk as well.
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Take x = ©" - ê"_1 e \" as a test function in (2.15) and next add the

resulting equality from n = nk to n = m  (< nk+x). We end up with

m

i + ii := E i~l(u* - n"^""1 - n"[£(i/") - ß(u"~x)])n

n=nk

m

+ £(ve",v(8"-8"-1))
n=nk

m

=   ^(f(êH~l),Bn -ê"')" =:HI.

n=nk

The first term can be easily evaluated as follows:

m p

i = £ r1 / n"[(c/" - u"~x)(ß(u") - ß(u"~1))]
n=nk JO

m *

>VEr'    n"[(ß(u")-ß(u"-x))2]
n=nk Jçi

m

> L~x Y"t"1II8"-8'!-1II22

n=nk

Since 8"_1 = 8"_1 for all nk < n < nk+x , as a by-product of (6.5), the next

term becomes

m

211 = ||vo"|¿1(0) - live"*"1 ii^^ + E liv(8" - e"-1)!!^,.
n=nk

By virtue of the induction assumption we can use (5.14) to arrive at

«t-li.2 „ ,,    .    ~T        ,,,„„«,-11,2
llve^-'ii^n^ii + CL^Tjiive^-'n^ + CT £ W

< (1 + CL^TjexpíCL^Í^ - l)t)(c(ß,_, + l)(nk - l)x + ||V8°||22(n))

■*-«

+ C5,t- ((2L/?)-' + ct) £ T-'ne" -e"-1!!^,,
n=\

whence

int-1,,2 ,~r   s-1 V—»    -l„n"      Än-1,,2
l|ve"-1||22(í2) + (2L/?r1E^1lieM-e"-1||22(n)

n=\

< exp(CLß,nkx)(C(Bk_x + l)(nk - l)x + ||V8°||22(£i)) + CBkx,

because  1 + CL„t < exp(CLnt).   It only remains to examine term III, for
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which we have

m

|III| < £ (|/(0)| meas^'^ + L^lê"-1!!^,)^" -ê""1!!^
(O)

<C(m-nk + l)x + (2Lß)~x E ^'lie" -ë"-l\\2L^a),

because (6.2) yields ||8" 1\\L2,a\ < C||8" 'lli«,™ < C. Collecting all partial

results, we get the following estimate, for any nk < m < nk+x,

Am < exp(CLß,nkx)(c(Bk_x + l)(nk - l)x + ||Ve°||^(Q))

+ CBkx + C(m-nk + l)x

< exr)(CLßlmx)(KC(Bk + l)mt + ||Ve°||22(£i)) = Cm.

The induction argument is thus complete. Finally, the desired estimate follows

from Lemma 5.9 and assumption (4.11).   D

Remark 6.1. As a by-product of the above argument, combined with (2.1),

(2.13) and the fact that F"~x ,F"c32" for all 1 < n < N, we deduce

c>fr' in" (u"-u"-x)2 f ß'(su" + (i-s)u"-x)ds
n=x      Ja      [ Jo

H£T_1 /    n"[(u"-u"-x)2],
n=\       Jn\&

whence

N

(6.7) Et-'ll^-^-'ll^^^C.
-lIITTn       f-r«-lii2

X

n=\

Our final estimate is a discrete analogue of (2.9):  ut e L°°(0, T; M (SI)).

Lemma 6.5. Let (4.11 ) hold. Then

(6.8) max ||£7" - t>"_1|L,,0, < Cx.
\<n<N L (il>

Proof. It is enough to prove (6.8) for all steps between two successive mesh

changes, say 1 < nk < m < nk+x. Moreover, we can assume without loss of

generality that ß is strictly increasing because the asymptotic constant in (6.8)

is independent of the lower bound of ß'. As a result, ß~x is well defined and

monotone increasing. Subtract now two consecutive discrete equations (2.15)

for nk< n < nk+x to arrive at

(6.9) (dU" -OU"'1, x)"k + r(Vde", Vx) = x(df(Gn~x), X)"k,
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where dz" := x x(zn-z" x) and 8"* 2 := 8"* '. For notationalconvenience,

we have used U"k~x to denote U"k~x = Yl"k(U"k~x) e\"k, 8"*"1 to designate

è"k~x =n"kß(U"k~l)e \"k and, finally, U"k~2 e \"k to indicate the solution

of the following auxiliary problem:

x-x(u"k~x - u"k-2,X)"k + (ve""-1, vX) = (f(e"k~x),X)"k,   vxev\

By virtue of (2.15), (2.18) and (6.2), we readily have for all x € V*, IMIz^q)
<1,

\(dU"k~X ,x)nk\<\(mnk~),X)"k\+Y. \il™nk~\-"e>X))e\

ee^k

<cil+£A>r
V      e£^"k

Let y/£ e C°° (R) be a monotone approximation of the function sgn such that

y/e(0) = 0, |^(s)| < 1 and y/t(s) -» sgn(i) as e | 0 for all 5 e R\{0}. Set

X := U"k[ipE(dU"k~x)] in the above inequality and let e | 0. Since 8"*_1 is

either the initial discrete temperature or that corresponding to a mesh change,

it satisfies either Lemma 5.9 or Lemma 5.10. We infer that

(6.10) f U"k\dU"k~x\<C,
Jq

because of (4.11) and (3.15). To proceed further, take x ■= n"*[^(ö6")] € V"*

as a test function in (6.9) and next add the resulting expressions from nk to

m < nk+x. We obtain

m

I + II := £ (d(Un - U"'x), n"*[^(r38")])"*

n=nk

m

+ £ x(vde",vu"k[y/E(de")])
n=nk

m

= £ 1(9/(8"-'), n"k[y,E(den)])"k =: III,

n=nk

which is now examined in detail. By virtue of (6.3) we have II > 0. For III

we make use of (6.6) to arrive at

m-\

|III|<C£TL/||r38"||L2(n)<C.
n=nk

For the remaining term I we reason as follows. We first observe that

0<dU"~x(x"k)ipe(dQ"(x"k)) < \dU"~l(x"k)\,

for all nodes x"k of 3""k. Secondly, we take the limit as e | 0 to obtain

dU"(x"k)y/e(de"(x"k)) -» dU"(x"k) sgn(de"(x"k))

= dU"(x"]k)s%n(dUn(x"]k)) = \dUn(x"Jk)\,
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for ail x"k such that ÔUn(x"k) ¿ 0 or, equivalently, 98"(x"k) ¿0. Note that

it is precisely here where we need ß to be strictly increasing. Therefore, term

I becomes

E f n"k\du"\- f n"k\du"~x\ = [ n"k\dum\- f n"k\du"k~x\.
n^¡ Ja Ja Ja Ja

Collecting the previous estimates and making use of (6.10), combined with the

fact that ||zll¿i(n) ^ fa ^"k\x\ f°r a^ JteV"', the assertion easily follows with

an asymptotic constant independent of the lower bound of ß'.   D

7. Energy error estimates

In this section we derive error estimates in the natural energy spaces for our

Adaptive Method. We also state a quasi-optimal error estimate in the maxi-

mum norm for an auxiliary elliptic problem which may have some independent

interest. Its proof is reported in Supplement §S3. We stress once again that

technical arguments to handle the discrepancy between continuous and discrete

domains were introduced in full detail in [17] and are thus omitted here by

simply assuming Si" = Si.

We start by recalling a well-known interpolation estimate for the quadrature

formula (2.16), namely, for all S e 3"" we have

(7.1) f\x<P-n"(x<p)\dx<Chs\\x\\L2{S)\\Vtp\\L2{S),        Vz.peV".

Let G: H~x(Si) -» 77g1 (Q) designate the Green's operator, that is,

(7.2) (VGy,V<p) = (y/,(p),        VtpeHx(Si).

Since Si is smooth, the operator G is regular [2, p. 138]:

(7.3) \\Gw\\H2m<C\\tp\\L2m,        Vv/eL2(Q).

In addition, the norm in 77" (£2) can be represented in terms of G as follows:

(7-4) ||^||//-,(ri) = ||VG^||L2(ii) = (^,G^)1/2,       Vt/e/T1^).

The discrete Green's operator G" : H~ (Si) —> V" is defined by

(7.5) (VG"¥,VX) = (V,X),        V*eV",

and satisfies the following error estimates.   Set hn := max56^,„ hs,   p„ '■=
1 II

min5€^n hs and recall that Xx < pn < hn < Ax ' , as results from (4.9). We

have first

(7.6) ||(G - Gn)v\\L2{Q) < CA„2||^||L2(£2),        V^G L2(Si),

under the sole assumption of regularity of both 3*" and G [2]. If, in addition,

A„ < Cpyn with 0 < y < 1, we will prove in §S3.2 the following quasi-optimal

pointwise estimate; in the present case y = 1/2 .
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Lemma 7.1. There holds   \\(G - Gn)\p\\L«,(Q) < CA2|logAJ7||^||LOo(i2),  for all

y/eL°°(Si).

Its proof is based on having suitable local energy estimates as in [21, 22, 23].

However, the novelty here is that 3Pn is not quasi-uniform nor does it have any

a priori structure as in [22]. Such a new difficulty is responsible for the extra

power of the logarithm.

We now introduce the error equations. Integration of (2.8) on the interval

/" := (t"~x, t"] results in

(7.7)

(u-u   x ,tp) + ([ V6(t)dt,V(p\

= 11' J(6(t))dt, <p\ , V<peHx(Si), l<n<N,

where t" := nx and u" := u(t").   At the same time, (2.15) can be written

equivaleritly as

(Un-U"-X,<p) + x(VQ",Vx)

= (u"-Ûn'x,x)-(un-û-x,x)n

+ (un - û-x, <p - x) + (ûn-x - u-x, <p)

+ x(f(ê"-x),x)\       V<peHxn(Si), xe\", l<n<N.

Subtraction of (7.8) from (7.7) yields the error equation

(e"u - e"~x, <p) + {j Vee(t)dt, V<p^ + x(VG" , V(<p - X))

(7.9) = {u" - O"'1, X)n - (U" - Û"-X, x) + (Û"-X -U",<p-x)

+ {un-x -û"-x,<p) + (j f(d(t))dt, y") -T(/(ê"-'), x)n,

for all <p e 770 (Si), ^ e V" , where we have set, for any 1 < n < N,

eu(t) := u(t) - U" ,    ee(t):=d(t)-e",    V f e i" ,        and      e"u := eu(t").

Theorem 7.1. Let (4.11 ) hold and the number of mesh changes be bounded above

by 0(x~xl2). Then

(7.10) \K\\V(H,T;H-Im) + Weeh\0, T;L\a)) ^ Ct'/2| logT|7/2.

For the practical range of time steps x, the above rate is essentially 0(xx' ).

The restriction on the number of mesh changes accounts for the accumulation

of interpolation errors Un~x - Û"~ which, by Lemma 5.5, are 0(x). The

mesh selection algorithm of §4.2 is so designed as to make such a restriction

and (4.11) acceptable constraints. The key issue in Theorem 7.1 is the underly-

ing set of graded meshes {3*"}^=x for which it holds and constitutes the first

rigorous result.   In fact, similar rates of convergence have been obtained for
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quasi-uniform meshes [4, 8, 17, 24]. The improvement upon those results is

thus to be expressed in terms of spatial degrees of freedom, as explained in §8.2.

Proof of Theorem 7.1. Take first <p := Ge"u e Hx(Si) and x ■= G"e"u e V" in

(7.9), next add over n from 1 to m  (< N) and use (7.2) and (7.5) to arrive at

m m     i   * \

£<<-C^V£(//eM^:)=:i + n
n=\ n=\   W/ '

m

= J^[(U" - Û"-x, G"e"u)" - (U" - O"'1, G"e"u)]
n=\

(7.11)
+ £(&-' -U",(G- G")e"u) + £(1/"-' - Û"'x, Ge"u)

n=\

m

n=\

+ £ ((/. nmdt, C7e„") - x(f(ë"-x, G"e"u)n)
17=1

=: III + • • + VI.

The rest of the proof consists simply of evaluating these six terms separately.

In order to simplify notation, set

, ii   «ii2
Am := max \\eu \\H-i,QV

By virtue of Lemma 5.4, (6.5) and (7.4), the first term yields

21 = He
m.,2
u H//-'(Í2)

n n-\.,2 m.,2rr0||2 ,   V^ m   " "-1i|2 ^   ii   m,,2 „
Mo - U Wh-1{Q) + ¿^ Weu - eu    \\h-\0) ^ K lljz-'(n) - Ct-

f!=l

In view of the constitutive relations (2.6) and (2.13), term II can be further split

as follows:
m     p

II, + II2 + II3 := £ I (e9(t), u(t") - u(t))dt
«=i

+ ^l(ß(u(t))-ß(U"),u(t)-U")dt
n=\ Jl"

m     p

^2l(ß(U")-n"ß(U"),eu(t))dt.
-—I JI

We first make use of (2.5) and (6.4) to evaluate term II, as follows:

m      . ~f

II,|<£/j|Ve0(f)||L2(£i)   /   utfdi
n=\Jl Jl

dt < Cx.

H-\a)

We next recall an elementary interpolation estimate.   Let a :   R —► R be a

continuous and nondecreasing function; then

(7.12)
\a(<p)-n"a(tp)\\LP{S)

< Chs\\VYl"a((p)\\LP{S),    V 5 e 3*", tp e V", 1 < p < oo.
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Applying this inequality with a = ß and p = 2, in conjunction with (6.4) and

m

the constraint h<, <Axx/2 for all S e 3"" , we obtain

II2 > (2LBfx £ I  \\ee(t)\\2L2{ri)dt - L-ßxx-£\\ß(U") - U"ß(Un)\\2L2m
„_i ■'/ «_in=\"' n=\

^ \2Lß)   lFell¿2(o,í'";L2(n)) ~~ Ci-

The analysis of term II3 will be split according to the local meshsize near the

discrete interface F" and far from it. Consider first S e 3"F = {S e 3*" :

S n F" / 0} , for which A5 = 0(x). The inequality (7.12) just used, now with

p = 1, leads also to

\\ß(un)-u"ß(u")\\Li{S)<Cx\\ve"\\Ll(S).

On the other hand, if S e 3e'"\3i'F we can exploit the further regularity of ß ,

together with (4.10) and the constraint As < At1/2 for all S e 3?n , to arrive

at

\\ß(u")-n"ß(u")\\Ll(S) < ch2s\\D2ß(un)\\vL'(S) - ^"S""   r\~    >"L'(S)

(5) - ^^ß'lß III/(S)< cl„,t||vc/"||22(5) < cLß,rßxx\\vQ"\\2u{S),

by virtue of a standard interpolation estimate.  Hence, from (2.5), (6.2) and

(6.4) we readily have

ln3l<£( £ \\ß(Un)-n"ß(U")\\Ll{S)) / \\eH{t)\\L,.ia)dt

n=i \ses*
m

<CT£t(||ve"||Ll(£2) + ||v8"É2(ri))<CT.
n=i

In summary, for term II we have obtained the lower bound

— 1 2

II > (2L^)    \\ee\\L2(o,tm;L2(a)) ~ Cx.

The analysis of term III on the right-hand side of (7.11) will be also split ac-

cording to what happens within the refined region 32" (defined in §2) and

out of it. More precisely, we decompose the integrals in III over all triangles

S e3?F":={S e3?" :S c 32"} , where hs = 0(x), and S e 3yn\3>R", where
117

hs < Ax ' . Inequality (7.1) then yields

m

|III| < £ £  / \(U" - Û"-x)G"e"u - U"[(U" - Û"~x)G"e"u]\dx

m

< c£(t||c/" - t>"-'||L2(ii) + t1/2||í7" - ¿/"-'ii^^iivcry

B=l

«H¿2(Í2)-
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Hence, applying (7.4) and the property ||V<jV||¿2(£í) < ||V(r>||£2(n), together

with (6.4) and (6.7), we get

(m m \

Eii^-^-'ii^+E^ii^-^-'iiW»)
n=\ n=\ )

< r\Am + CrfXx,

where r\ > 0 is to be selected. The contribution due to IV can be handled by

means of (2.5), (6.2), (6.8) and Lemma 7.1 as follows:

m

|IV| < £ \\U" - Û"-\t(a)\\(G- Gn)eX°°{a) Ï Cr|logT|7.
B=l

Term V is easy to evaluate in view of (5.10) and the fact that U"~x ^ Û"~x

only whenever the mesh 3""~x changes. In fact, we have

|V|<£||C/-B   -t/1""'!^,«
n—\      i>n— 11, i,   «m

(n)lleull//"'(£2)
n=\

m
.1/2 v^ „„«-I       i>«-l|l   .       ^^1/2^1/2^      A*    ¿ V^  II TTn~l f>"-I|l ^    fi     '    2   A[    ¿    ^ A .     é~>     — 1

< K, £ II tf      -V     h\a) $ Cx    A¿   < r\Am + Ctj   x.
n=l

It only remains to estimate the contribution due to the source /. To evaluate

VI, we decompose it further as follows:

Vl=Jt(jinfmt))dt,(G-Gn)ety

m     i  p \ m

+ £(/„[/(0(í))-/(e")]ú?í'G"e") + £T^(e'!)-^(e""1)'G',0
n=l    w' ' n=\

m

+ £T((/(ê"-1),G\")-(/(8"-1),C7"0")=:VI,+..- + VI4
n=\

We have first

|VI,| < C||/(e)||L-(0ir:¿í(Q)) maxJ(G-Gn)e"u\\LÎ(ÇÏ) < Cx,

as results from (2.4), (2.5), (6.2), and (7.6), as well as

m

|VI2| < Ct1/2£||*JL2{/. ,L2m\\eHu\\H-l{a)
n=\

m

^l\\ee\\W,r;û(n)) + Cl~lYlr\\eu\\2H-\ay
n=\

We next use (6.6) together with (2.4) to obtain

m

|VI3| < Ct£ ||8" - &-XHa)\\eX-H*) * «Am + C*2-
«=i
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We then decompose VI4 further and apply (7.1) in conjunction with (5.14) to

arrive at

|VI4| < T J^(f(ên-x)-n"f(e"-l),G"enu)
i

m

J2(Yl"f(ê"-x), G"e"u) - (U"f(ê"-X), Gne"u)"
n=\
m

^     3/2 V^ in-rA"-! m il   "m ^       a       .   ri<x< Ellve     ll^(ij)lk„IU-'(n) < ̂ „ + Ct.

+ T

A proper choice of r\ finally allows terms Am and lke||¿2(0 t*-L2<a)) to be

absorbed into the left-hand side of (7.11). Therefore, for all 1 < m < N, we

have obtained the estimate

m

i™<Xml|e'"ll"~1(") + ML2(0,i";£2(n)) ^ CTllogT|7 + C £ T||<l¿->(0)-
- 71=1

The rightmost term can be removed after applying the discrete Gronwall lemma.

The desired estimate then follows from the property ueHx(0, T; H~ (Si))c

C ' ' (0, T; H~x(Si)), which can be used to replace max1</1<WJ H^U^-i,™ by

IKIIl00«) T-H'Ua)) • ^ne theorem is thus proved.   G

8. COMPUTATIONAL ISSUES

To conclude this paper, we present several numerical experiments and com-

pare the proposed Adaptive Method (AM) with the Fixed Mesh Method (FMM).

We also comment on some crucial computational issues. Full implementation

details as well as many other relevant numerical tests will appear in Part II [16].

8.1. Implementation. Let M" := ((X-, x])")fj=l and K" := ((Vx", VX]))fj=l
denote the mass matrix and the stiffness matrix, respectively. The equation

(2.15) can then be written in matrix form as follows:

(8.1) M"U" + xK"e" = M"(<7"-' + t/(8"-')) ,

where we have identified piecewise linear functions with the vector of their

nodal values. Since 8" = Tl"[ß(U")], the algebraic system (8.1) is (strongly)

nonlinear. However, as M" is diagonal, (8.1) can be easily and efficiently

solved by a nonlinear SOR method that is known to converge; see [16, 17, 18].

Based on a linear majorant, an approximate optimal relaxation parameter can

be determined in advance so as to accelerate the convergence of this iterative

method [16].

In order to implement (4.9) efficiently, an auxiliary (or superposed) uniform

square mesh ¿f of size p := 0(xx' ) is used. Such a mesh is created and kept

fixed from the beginning in such a way that Q c \JR€íf R ■ We associate with
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each square R a value of desired meshsize, defined as the minimum of the local

parameters of §4.1 and §S4.2. This leads to the following piecewise constant

function:

(8.2) hV= ,     min (AT1/2,ÂF/,Âe,Â5),        V 7? e¿f.

SeS^ , eeg'o : SnR¿0, eCdS

Such a function may be very oscillatory and thus not appropriate as a meshsize

indicator. An efficient smoothing postprocess then constructs a piecewise con-

stant function h" satisfying the following compatibility property for all Rea":

(8.3) ii"\p>h"\R,       \/Pe@:    dist(P, R) <h"\R.

This is achieved, for instance, by defining h" to be

(8.4) h"\R:=min(max{h"\p,dist(P,R)-p)),       V 7? e <f.

The function h" is then used by the automatic mesh generator of [ 19] to produce

an admissible triangulation.  In fact, by virtue of (8.3), we have Xx < hs <

h"(x) < Axx/2 for all S e 3?" and x e S, which in turn implies (4.9). This

topic is further discussed in [16].

Since several remeshing operations are to be performed during the solution

process, mesh generator efficiency is a crucial issue. We used the mesh gener-

ator advfront of [19], which produces weakly acute meshes for general pla-

nar domains with quasi-optimal computational complexity 0(S" logS"), where

S" := card(^"). This is so because binary search techniques are employed

on suitable quadtree structured data to update the advancing front. Similar

ideas were applied to determine Ûn~x, the interpolant of U"~x in 3"" . More

specifically, this crucial interpolation process requires a computational labor of

0((S"-' + J")log/"), which is also nearly optimal; recall that J" is the num-

ber of nodes of 3"" . Such techniques are essential for the Adaptive Method to

be competitive. See [16] for more details.

8.2. Degrees of freedom. Suppose that there is no discrete mushy region and

any discrete interface Fn is a polygonal curve with finite length uniformly in

x, which in turn is consistent with (3.13). Then the refined region 32" is just a

strip 0(xx' )-wide around F" . Since the local meshsize is O(x), the number of

triangles within 32" is 0(x~ ' ). Except possibly for a small transition region,
w 1 f)

triangles outside of 32 are 0(x ). Consequently, the number of triangles

outside of 32" becomes 0(x~ ) ; so the required computational labor in 32"

dominates! Hence, the number of spatial degrees of freedom (DOF) for every

mesh 3"n is

(8.5) DOF =0(t"3/2),

t II
for a global accuracy 0(x ' ). This quantity compares quite favorably with

similar ones for practical methods involving a single quasi-uniform mesh and is
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reflected in Tables 8.1-8.3. In fact, in that case hs = 0(x) for all S e3* and

so DOF= 0(x~ ) for the same global accuracy [4, 17, 24]. We also stressed

that even with mushy regions, we need fewer DOF. A relevant example is fully

discussed in [16].

Consider now the Fixed Mesh Method with preliminary regularization [8,

12, 13, 17]. Assuming that a global nondegeneracy property is valid, a result

similar to (8.5) can be obtained [17], but at the expense of a much worse local

approximation quality, as numerical evidence indicates [16, 17, 18]. Such a

local property is extremely important in determining interfaces and explains the

much better resolution associated with the present method. We also underline

that the example below does not satisfy a global nondegeneracy property.

8.3. Numerical experiments. To illustrate the superior performance of our

Adaptive Method with respect to fixed mesh techniques, we have chosen the

severe test below. It is a classical two-phase Stefan problem with an interface

that moves up and down. The exact temperature is given by the following

expression:

,8.6,        e{x,y,iy.^f-^ '<>■
{ (l.5-a(t)smtp)(r-I),       r>l,

where r := (x2 + (y - a(t))2)x/2, a(t) := 0.5 + sin(1.25f), sintp := (y - a(t))/r,

Í2:=(0,5)x(0,5) and T := n/1.25 . Dirichlet boundary conditions are im-

posed at y = 0, y = 5 and x = 5, and a homogeneous Neumann condition

is prescribed at x = 0. Since the exact interface 7(f) is a circle with cen-

ter (0,a(f)) and radius 1, the velocity V(x,y,t) normal to 7(f) at (x, y)

exhibits a significant variation along the front, which makes this example an

extremely difficult test for our numerical method. Moreover, since V(x, y, t)

vanishes at both (x, y, T/2) and (1, a(t), t), and is thus very small nearby,

this test constitutes a fair measure of robustness under degenerate situations.

Several numerical experiments were performed with both our Adaptive

Method (with and without fixed triangles as in §4.2 and §S4.1) and the Fixed

Mesh Method [3, 4, 8, 12, 13, 17, 24]. For the latter, the constant of propor-

tionality between x and the (uniform) meshsize was chosen so as to minimize

||e0||L2(ß, for a desired number of DOF, where Q := Si x (0, T). The various

constants introduced in §§4, S4, 8 are as follows: A=1.5,A = 5,Af=5,

p = 0.75y/x, px = 2.22, p2 = 5.59, average value of p} « 1.2, p\ = p2 = 3.5,

p.- = 0.5, p.\ = 2, C, = ||7)2Ö0||LOc(£i), C2 = 3||ve0||Lc.(n), C3 = 2 length(70),

C4 = Cj/.

Results are reported in Tables 8.1-8.3, where we have employed the follow-

ing notation: N := number of (uniform) time steps, J := average number

of nodes, SÄ := average number of triangles within the refined region, S/, :=

average number of triangles in the rest of Q, S := total number of trian-

gles (uniform mesh), C := number of mesh changes (and number of com-

puted solutions rejected, if any), CPU := CPU time in seconds (on a vax
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Table 8.1

Adaptive method (with fixed triangles)

N E CPU

40
60
80
120
160
240

319
593
875
1413
2089
3620

496
957
1430
2320
3504
6201

148
233
328
510
679
1042

4(1)
4(1)

4
5

6(1)
8(1)

16.1
10.5
7.54
5.34
4.07
2.82

35.4
29.1
24.2
22.7
19.6
17.7

11.3
6.65
5.23
3.93
3.14
2.41

5.37
4.44
3.45
2.60
2.08
1.65

58
132
224
546
1111
2998

Table 8.2

Adaptive method (without fixed triangles)

N E CPU

40

60
80
120
160
240

339
592
818
1406
2110
3631

536
957
1306
2306
3563
6245

144
231
334
510
662
1023

18.8
11.3
7.59
5.73
4.60
2.99

37.0
28.8
26.1
23.3
20.8
18.5

10.7
7.42
5.17
3.92
3.44
2.58

5.83
5.01
3.26
2.66
2.32
1.72

50
126
235
583
1068
2916

Table 8.3

Fixed mesh method

N E CPU

50
75
100
150
200

448
1017
1812
4107
7361

942
2104
3718
8356
14912

15.9
10.5
7.81
5.57
4.52

39.7
30.4
26.8
22.3
18.6

20.8
15.3
12.4
7.78
6.31

13.8
9.40
6.88
5.65
3.53

37
113
292
919

2264

KHl2(ô)> ET :=8530, VMS 4.6) and EJ := \\ee\\L2(Q),  E2 :=

E^° := max,<n<Ndist(7(/u), F"), where the errors are scaled by 102

over, |ö|Il2(ö) 33.16, ||0| L°°(Q) 13.38, \U\\L2{Q)

lL°°(ß)'

More-

39.81, with an error of

one unit in the fourth digit.

In light of these (partial) results, we can certainly claim a superior perfor-

mance of the Adaptive Method in that it requires less computational labor,

say CPU, for a desired global accuracy. Moreover, the proposed local refine-

ment strategies of §4.2 and §S4.1, with and without fixed triangles, perform
2 2

quite similarly. The L -error for temperature Ee behaves linearly in x, thus

much better than predicted. We also have a (linear) pointwise error ET that
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Figure 8.1

AM, N = 80, 3pFu3'B free: Mesh I and zoom of refined region

is far from being theoretically explainable. The same happens with E2 and

E^° . The improvement gained in L°° is clearly more pronounced than that in

L . The free boundary is located within one single element, thus confirming

the aforementioned local approximation quality. Therefore, we have a practical

0(t)-rate of convergence in distance for interfaces, the best one can hope for.

Since approximability and nondegeneracy are tied together [14], it is worth

noting that the nondegeneracy property is not uniform in the present case.

We finally conclude with several pictures corresponding to the case N = 80

without fixed triangles. The first mesh together with the corresponding Refined

Region is depicted in Figure 8.1. The boundary of the Refined Region, called

red zone, appears blackened in Figure 8.1b, which also shows the first and

last discrete interfaces computed with mesh I. Note that the last interface has

escaped from the Refined Region and should thus be discarded as indicated in

§4.2. To avoid rejecting a computed solution owing to failure of the free bound-

ary location test, a more flexible strategy for the case without fixed triangles

has been designed in [16]. The remaining meshes, generated automatically by

advfront are illustrated in Figure 8.2. Observe the proper grading produced by

advfront. We see how the refined region moves up and down accompanying

the interface motion. Note that even in the upmost position, when the interface

is motionless, the proposed strategy is successful. Figure 8.3 is a zoom of both

the exact and discrete interfaces for a number of time steps. The agreement

between these curves is quite remarkable as compared with the local meshsize.

Part of the red zone, blackened triangles, can be seen in the second zoom as

well. The exact and discrete interfaces obtained with the FMM for N = 100

are depicted in Figure 8.4. It is worth comparing this picture with Figure 8.3:

the interface location is drastically improved by the AM.
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N-80

mesh   V

S,-1253

S,-379

Figure 8.2

AM, N = 80, 3^F U 3'B free: Consecutive meshes

N-80

interfaces

(zoom)

computed Interfaces

exact Interfaces

Figure 8.3

AM, N = 80, 3*F U 3'B free: Interfaces at n = %k  (0 < k < 5) ;

zoom of Mesh II
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computed interfaces

exact Interfaces

Figure 8.4

FMM, N = 100 : Interfaces at n = 10k  (0<k<5);
zoom of the mesh
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Supplement to

AN ADAPTIVE FINITE ELEMENT METHOD FOR TWO-PHASE

STEFAN PROBLEMS IN TWO SPACE DIMENSIONS.

PART I: STABILITY AND ERROR ESTIMATES

R. H. NOCHETTOf M. PAOLINIJ and C. VERDItf

SI. Supplement to Section 5.

LEMMA 5.1.  For all regular meshes S there exists a C°°-function h: 0—>R+ satisfying

(Si.i) Dkh(x) = 0(h)rk),     VxeSeS, k>o.

Proof. For each S G S there exists a (finite) covering {Bt} of S such that card {B{} =

0(1), where B\ := B(xí,tí), i¡eS and rt- := ahs/2; thus (5.2) yields B¿ := B(xi,2r¡) C

S. By virtue of (5.3), this gives rise to a covering {B,}¡=1 of Ü satisfying bs := card

{B, : S n Bi ¿ 0} = 0(1) for all 5 € S (nonoverlapping property !). Let <50 G Cg°(B(0,1))

satisfy JR2 ¿o = 1,0 < 6o < 1, 60(x) = 1 for all x G B(0,1/2) and 6q is radially symmetric

(mollifier function). Set Pi(x) := S0((x — i¿)/(2r,)) for all a: € H and note that

/

supp /j, = Bi C S,        1 < 2_] Pi(x) < b,    V i e Ù,
i=i

where 6 depends only on the regularity of <S; we certainly have b < 65 = 0(1) for all S € S.

Define now h G C°°(Ü) to be

I

h(x) := - 2_^r,7i,(x), Vieil.
1=1

Since ps' < hs for all S' € <S*s, it is easily seen from (5.1) that, if X{ G S, then

232

(SI.2)      —r¿ = -—hs < —  min ps< < h(x) < - max ps, < -hs = r,, VieB¡.
0 zo io S'€Ss ¿ s'eSs ¿

Hence B(x, h(x)) C B,(C S) for all x G JB¿. Since

/ /

Dkh(x) = -bY,r,Dkii,(x) = CYjr)-kDk60((x - x,)/(2r,)),        V x G 0,
!=1 t=l

the desired result easily follows from (SI.2). Q

fDepartment of Mathematics and Institute for Physical Science and Technology, University of Maryland,

College Park, MD 20742 USA.
ílstituto di Analisi Numérica del CNR, 27100 Pavia, Italy.

ItDipartimento di Meccanica Strutturale, Università di Pavia and Istituto di Analisi Numérica del CNR.

27100 Pavia, Italy.
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