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A probabilistic numerical method
for optimal multiple switching problem in high dimension *
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This revised version: December 13, 2013

Abstract

In this paper, we present a probabilistic numerical algorithm combining dynamic program-
ming, Monte Carlo simulations and local basis regressions to solve non-stationary optimal mul-
tiple switching problems in infinite horizon. We provide the rate of convergence of the method
in terms of the time step used to discretize the problem, of the regression basis used to approxi-
mate conditional expectations, and of the truncating time horizon. To make the method viable
for problems in high dimension and long time horizon, we extend a memory reduction method
to the general Euler scheme, so that, when performing the numerical resolution, the storage of
the Monte Carlo simulation paths is not needed. Then, we apply this algorithm to a model of
optimal investment in power plants in dimension eight, i.e. with two different technologies and
six random factors.

1 Introduction

This paper presents a probabilistic numerical method for multiple switching problem. Our approach
in this paper takes advantage of the considerable progress made in the last ten years by numerical
methods for high-dimensional American options valuation problems. For an up-to-date state of the
art on this subject, the reader is referred to the recent book [9].

In this paper, we first adapt the resolution of American options problems by Monte-Carlo methods
and regression ([28, 35]), to the more general class of optimal switching problems. The crucial choice
of regression basis is done here in the light of the work of [7], so as to obtain a stable algorithm
suited to high-dimensional problems, aiming at the best possible numerical complexity. The memory
complexity, often acknowledged as the major drawback of this Monte Carlo approach (see [10]), is
drastically slashed by generalizing the memory reduction method from [12, 13, 14] to any stochastic
differential equation. We provide a rigorous and comprehensive analysis of the rate of convergence
of our algorithm, taking advantage of the works of, most notably, [6], [33] and [18]. Note that such
unusual features as infinite horizon and non-stationarity are encompassed here.

Finally, we apply our algorithm to a long-term investment model for electricity generation based on
a structural model for the spot price of electricity developed in [3] and [1]. This model has been
shown to suitably reproduce the statistical and dynamical properties of the spot price of electric-
ity. Nevertheless, to suit the purpose of long-term electricity price modeling, it has been adapted
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and extended in several directions (cointegrated fuels and CO4 prices, stochastic availability rate of
production capacities, new scarcity function). The resolution of this problem using our algorithm
is illustrated on a simple numerical example with two different technologies, leading to an eight-
dimensional problem (demand, COq price, and, for each technology, fuel price, random outages and
the controlled installed capacity). The time evolution of the distribution of power prices and of the
generation mix is illustrated on a forty-year time horizon. To the knowledge of the authors, the high-

est dimension considered so far in the case of long-term investment models in electricity generation
was three ([29, 5]).

The contribution of the paper is twofold. Firstly, it provides a comprehensive analysis of convergence
of a regression-based Monte-Carlo algorithm for a class of infinite horizon optimal multiple switching
problems, large enough to handle realistic short term profit functions and investment cost structures
with possible seasonality patterns. Secondly, we implement successfully our algorithm to a new
stylized investment model for electricity generation, by adapting and generalizing a memory reduction
method. A numerical resolution of this investment problem with our algorithm is illustrated on a
specific example, providing, among many other outputs, an electricity spot price dynamics consistent
with the investment decision process in power generation.

The outline of the paper is the following. Section 2 presents the class of optimal switching problems
studied here, including the detailed list of assumptions considered. Section 3 describes the resolution
algorithm and analyzes its rate of convergence, in terms of the discretization step, of the choice of
regression basis, and of the truncating time horizon. Section 4 details the computational complexity of
the algorithm, as well as its memory complexity, along with the construction of the memory reduction
method. In Section 5, we implement and illustrate numerically our algorithm on an investment model
in electricity generation based on an extended structural model of power spot price. Finally, Section
6 concludes the paper.

Notation

Here are some notation that will be used throughout the paper:
e The notation 1{.} stands for the indicator function.

e Throughout the paper, C' > 0 denotes a generic constant whose value may differ from line to line,
but which does not depend on any parameter of our scheme.

 For any stochastic process X = (Xj),-, taking values in a given set X', and any (¢,z) € Ry x X,
we denote as X“* = (X1*) ., the stochastic process with the same dynamics as X, but starting
from x at time t: X" = .

e For any (a,b) € R xR, a Ab:=min(a,b) and a V b := max (a, b).

¢ Vp > 1, the norms |.[[, and H”L,, denote respectively the p—norm and the L,- norm: Yz € R”
and any R-valued random variable X such that E [|X|"] < oo:

Sl

1
lell, = iy l=al”)? X, =E X[

p—1

We recall that Vp > 1, Vo € R", ||z, < [lz[|; <n'7 [z,

2 Optimal switching problem

2.1 Formulation

Fix a filtered probability space (Q, F.F= (]:t)tzo ,]P’), where F satisfies the usual conditions of right-

continuity and P-completeness. We consider the following general class of (non-stationary) optimal



switching problems:

v(t,z,i) = sup E /t I (S,Xz’z,lso‘) ds — Z k(Tn, Cn) (2.1)

aGAt,i >t
where:

o XUT = (X17) ., is an R%-valued, F-adapted Markovian diffusion starting from X; = z € R%, with
generator L.

o 1% = (I),50 is a cad-lag, Rd,—valued, F-adapted piecewise constant process. It is controlled
by a strategy «, described below. We suppose it can only take values into a fixed finite set
I, = {i1,42,... .44}, ¢ € N* with i3 =0 (6 ]Rd,), which means that equation (2.1) corresponds to
an optimal switching problem.

« An impulse control strategy o corresponds to a sequence (7, tn), oy Of increasing stopping times

Tn > 0, and F;, -measurable random variables ¢,, valued in I,. Using this sequence, I* = (I$) <,
is defined as follows: -

I?:L01{0§S<T0}+an1{7'n§S<Tn+1}€]1q
neN

Alternatively, « can be described by the sequence (7, C”)nEN’ where (;, 1= 5, —tp—1 (and (o := 0).

Using this alternative sequence, I“ can be written as follows:

Ig:LO“‘ZCnEHq

T <s

o A is the set of admissible strategies: a strategy a belongs to A if 7,, — 400 a.s. as n — oo.

o For any (t,i) € Ry x I, the set A;; C A is defined as the subset of admissible strategies o such
that I;¥ = 1.

e f and k are R-valued measurable functions.

2.2 Assumptions

We complete the above formulation with the following relevant assumptions.

Assumption 1. [Diffusion] The R%-valued uncontrolled process X is a diffusion process, governed
by the dynamics

dX, = b(s,Xs)ds+ o (s, Xs)dW, (2.2)
Xog = mzp€eR?

where W is a d-dimensional Brownian motion, and b and o are respectively R*-valued and R¥*?-
valued functions.

Assumption 2. [Lipschitz] The functions b: R, x R? = R? and o : Ry x R — R¥*? gre Lipschitz-
continuous (uniformly in t) with linear growth: 3Cy,Cy > 0 s.t. YVt € Ry, YV (z,2') € (]Rd)Q:

b(t,z) —b(t,2')] < Cylz—2|
b(t,z)] < Cp(1+]x])
lo(t,z) —o(t,2")] < C,lo—2|
lo(t,x)] < Co(1+|2])

Remark 2.1. Assumption 2 is sufficient to prove the existence and uniqueness of a strong solution to
the SDE (2.2) (see for instance Theorem 4.5.3 in [23]).



Remark 2.2. Under Assumption 2, there exist, for every p > 1, positive constants C, and p, such
that Vs >t > 0 and Vz € R%:

E [|X17["] < Cp (1+ la]”) exp (py (s — 1)) (2.3)

(use Burkholder-Davis-Gundy inequality and Gronwall’s Lemma, see for instance [23] Theorem 4.5.4
for the even power case).

Assumption 3. [Lipschitz& Discount] The functions f and k decrease exponentially in time: Ip > 0
stV (t,x,0,5) € Ry x RY x (1)

flta,i) = e "f(t )
k(tj—i) = e "k(tj—1)
where the functions f and k are Lipschitz continuous with linear growth:
2
3C;, Ch > 0 s.t. V{(t,2,i,5), (¥, a',i",§')} € {R+ x R x (ﬂq)2} :
| (t,a,0) = f (¢, 2',7)| Cp(ft =t + |z —a'| + i — ')

| (t,2,4)] Cr (L +z])
k(t,j—i)—k(t. 5 =) < Ce(lt—t|+|G—1i)— (@G —))

<
<

Moreover, we assume in the following that p > p1 where py is defined in equation (2.3).

Assumption 4. [Fized costs] The cost function k : Ry x RY — Ry is such that:
e Vte Ry, k(t,0)=0.
e Ik >0st VEERY, V(i j) € (I)% {i # 5} = {k(t,j —i) > &}
o (triangular inequality) Vt € Ry, ¥V (i,7,k) € (Hq)3 with i # j and j # k:
kE(t,k—i) <k(t,j—i)+k(t,k—j).
Remark 2.3. The economic interpretations of Assumption 4 are the following:
1. There is no cost for not switching, but any switch incurs at least a positive fixed cost.

2. At any given date, it is always cheaper to switch directly from 4 to k than to switch first from i
to j and then from j to k.

Remark 2.4. Under those standard assumptions, the value function v from equation (2.1) is well-

defined and finite. Indeed, using equation (2.3), V (to,t,z,7) € Ry x Ry x R? x RY with ¢, < t and
Ya € Ato,i:

5[ Wexenmla) < o [Terarrljxe])a
t t

oo
Cr (e et lal) [ ereentmas )
t
Cy (1+ faf) 770t (24)

IN

A

where p := p — p; > 0 (Assumption 3). In particular, the costs being positive (Assumption 4), and
recalling (2.1), it holds that:
v (t,2,1) < Cf (L4 [af) e (2.5)



2.3 Outline of the solution

From a theoretical point of view, the value functions v; := v (.,.,4), ¢ € I, from equation (2.1) are
known to satisfy (under suitable conditions on f;(.,.) := f(.,.,4) and k, see for instance [32] in
a much more general setting) the following Hamilton-Jacobi-Bellman Quasi-Variational Inequalities
(HIBQVI): V (t,z,i) € Ry x R? x I,

v, o
min { — 2 (t,z) — Lo (t,x) — fi (t,x) , v (t,x) — max (v (t,x) —k(t,j—1i) =0 (2.6)
ot J€lp, j#i
together with suitable limit condition, which ensure existence and unicity of the solution to this
system (cf. [20] for instance).

Alternatively, the process v (t, X¢,7), ¢ > 0 can be characterized as the solution of a particular
Reflected Backward Stochastic Differential Equation ([21, 16]).

Moreover, the value function (2.1) satisfies the well-known dynamic programming principle, i.e., for
any stopping time 7 > t:

v(t,xz,i) = sup E / f(s,Xﬁ’z,IS‘)ds— Z k:(Tn,Cn)—i-v(T,Xﬁ’“,If‘) : (2.7)
t

(lE.At,i t<Tn<T

From a practical point of view, apart from a few simple examples in low-dimension, finding directly the
solution of the HIBQVT (2.6) is usually infeasible, and the numerical PDE tools become cumbersome
and inefficient in the multi-dimensional setting. Instead, probabilistic methods based on (2.7), in the
spirit of [10], are usually more practical and versatile.

Indeed, as the diffusion X is not controlled, this optimal switching problem can be seen as an extended
American option problem. This suggests that, up to some adjustments, the probabilistic numerical
tools developed in this context (see [7] for instance) may be adapted to solve (2.1).

To be more specific, define a finite time grid II = {tx =0<t; < ... <ty =T} for a fixed T > 0,
and consider the function v defined as v (equation (2.1)) but with the strategy set A replaced by
Al ¢ A, defined as the subset of strategies that can be modified only at the dates ¢t € II. In other
words, the switching decisions can now only take place on the time grid II. Suppose, moreover, that
the cost function & is such that at most one switch can occur on a given date ¢, (triangular condition).
Then Vi €1, , Vx € R?, and Vit € II, the dynamic programming principle (2.7) becomes:

o™ (g, ,0) = max {Ej (tr, o) =k (te, J — 1) Lgj2a ) (2.8)
where:
E;(T,z):=F [/Oo fi (s, XI7) ds] (2.9)
Ttk+1
B (ty,z) :=E [/tk fi (5, X57) ds + ™! (tk_H, Xf;;jj,i)} ,k=N-1,...,0 (2.10)

which is explicit in the sense that v'! (¢, .,.) directly depends on v'! (tgxy1,.,.).

In practice, apart from the potential approximation of the stochastic process X and of the final values
(2.9), the difficulty lies in the efficient computation of the conditional expectations (2.10).

In the American option literature, various approaches have been developed to solve (2.8) efficiently.
Notable examples are the least-squares regression approach ([28, 35]), the quantization approach and
the Malliavin calculus based formulation (see [7] for a thorough comparison and improvements of
these techniques). In the spirit of [11], one may also consider non-parametric regression (see [24] and
[34]) combined with speeding up techniques like Kd-trees or the Fast Gauss Transform in the case of
kernel regression.

Here, we intend to solve (2.1) on numerical applications which bears the particularity of handling
stochastic processes in high dimension (dim (X) = d > 3, with however dim (I) = d’ & 3, see Section
5). For such problems, the most adequate technique so far seems to be the local regression method
developed in [7]. We are thus going to make use of this specific method to solve (2.8) in practice.

In the following, we provide a detailed analysis of the above suggested computational method.



3 Numerical approximation and convergence analysis

This section is devoted to the precise description of the resolution of (2.1), along the lines of the
discussions from Subsection 2.3. Moreover, the convergence rate of the proposed algorithm will be
precisely assessed.

3.1 Approximations

Recall equation (2.1) defining the value function v (¢,z,1%) :

v(t,z,i) = sup E / f(s D Io‘ ds — Zk Try Cn) (3.1)
t

OzGAf,,i T >t
We are going to consider the following sequence of approximations:
o [Finite time horizon] The time horizon will be truncated to a finite horizon T.

o [Time discretization] The continuous state process X and investment process I will be discretized
with a time step h.

o [Space localization] The R9- valued process X will be projected into a bounded domain D,, pa-
rameterized by €.

o [Conditional expectation approzimation] The conditional expectation involved in the dynamic
programming equation will be replaced by an empirical least-squares regression, computed on a
bundle of M Monte Carlo trajectories, on a finite basis of local hypercubes with edges of size 4.

The rate of convergence of the algorithm will then be provided, as a function of these five numerical
parameters: T, h, ¢, M and 6.

3.1.1 Finite time horizon

The first step is to reduce the set of strategies to a finite horizon:

T
r(t,z,i) = sup E / I (s,Xﬁ’w,Iﬁ‘) ds — Z k (T, Cn) + 95 (T, X%I,I%) (3.2)
ac AT, t t<mn<T
g (T,z,i) = E {/ f (S,XZ’I,i) ds} (3.3)
T

where 0 <t < T < 400, and Agi C A, is the subset of strategies without switches strictly after
time T'. Hence the final value g corresponds to the remaining gain after 7'

Alternatively, one may choose, for convenience, another final value g instead of gy, as long as it is
Lipschitz-continuous and satisfies a suitable condition (cf. equation (3.20)). The set of such functions
will be denoted as ©4,. The difference between the two value functions is quantified in Proposition
3.1.

This freedom on the final values will be used in practice to avoid a computation on an infinite interval
[T, 00[ as in the definition of g;.

From now on, we choose and fix one such g € O,
3.1.2 Time discretization

Then, we discretize the time segment [0, 7]. Introduce a time grid I = {tx =0<t; < ... <ty =T}
with constant mesh h. Consider the following approximation:

T
n(t,z,i)= sup E / f s, X0", 1) ds — Z k (Tn,Ga) + g (T, X5°, 1) (3.4)
ac Al ¢ t<rn <T



where Agi - Agi is the subset of strategies such that switches can only occur at dates 7, € IIN[¢, T.
Now, with a slight abuse of notation, we can safely switch from the notation o = (75, ¢n),,5( to the

notation @ = (7, tn),>o (remember Subsection 2.1), replacing the quantity >, 7k (7n, () by

Soicr <k (T, I8 1) or by Yook (Tn,ytn—1,tn), Where k(t,i,7) = k(t,j —i). The error
between v and vy is quantified in Proposition 3.2.

Next we also approximate the stochastic process X by its Euler scheme X = (XS) g<s<qs With
dynamics: o
dXs = b(’/T (S),Xﬂ(s)) dS+0'(7T(S),Xﬂ.(S)) dWs, 0<s<T (35)
Xo = X9 € Rd

where Vs € [0,T], 7 (s) := max {t € II;# < s}. More precisely, we substitute the piecewise constant
X for Xy. (Note that at this stage the process I is already piecewise constant). The new value
function reads:

T
on (¢, x,1) = sup E / f (7r (s) ,Xfr’(xs),ls) ds — Z kE(Tnstn—1,tn) + ¢ (T, Xfr’(xT),I%)
ac Ay, t t<Tn <T
(3.6)
The error between vy and vy is computed in Proposition 3.3.

3.1.3 Space localization

In order to derive a rigorous convergence analysis, our subsequent choices in terms of conditional
expectation approximation (Subsection 3.1.4 below) and specific choice of basis (Assumption 5) will
require the underlying state process X to lie into a bounded set (cf. equation (3.16)). Thus, we
explicitly build such an approximation and assess the associated error. Remark, though, that the
usefulness of this step is more theoretical (for a proper convergence speed to hold) than practical (on
a finite sample, this localization step would be somewhat redundant, and may safely be omitted).

Hence, let D = [—R, R]d7 R > 0, be a bounded convex domain of R¢ that contains xy. For every

i=1,...,d, define the stopping time 7; and the killed process X*P = (X'f’p) as follows:
0<t<T

7 = inf {t €[0,7]; X} ¢ [-R, R]}
Xti)D = XZ/\’TI' s te [OaT]

1<i<d

In other words the d—dimensional process XP = (Xi’D> e is equal to X most of the time (i.e.
0<t<T

when X; € D), except when one component of X, gets outside D, in which case the corresponding
component of X7 is killed and remains on the border of the domain D (the other components being
unaffected). In particular, the killed process X is bounded and Markovian.

Finally, one can choose R sufficiently large such that

sup E[| X, — XP|] <e (3.7)
t€[0,T]

for some € > 0 (in which case R = R(T,¢)). This is the parameterization of the domain D = D,
that we adopt in the following.

replaced by (X' De

Define of; as the value function vy from equation (3.6) with(X, ) 7T(t)) cpep
0<t<

0<t<T
The error between those two value functions is computed in Proposition 3.4.

Example 3.1. To clarify this construction of space localization, we explicit it on the very simple
example of a d-dimensional standard brownian motion (Wt)te[o 7] In this case, X; = X; = W;. In

this example, equation (3.7) can be shown to hold by choosing for instance R (T, &) = 4/2T log (27?—?)



3.1.4 Conditional expectation approximation

Now that the problem has been localized, and in order to prevent the notation from becoming too
cumbersome and clumsy, we are going to drop the € index in the following final approximation step,
i.e. X; will stand for XtDE7 and vy for v.

Remark that the discrete process (X,)
ming principle applied to vy yields:

neo.. n is a Markov chain. Therefore, the dynamic program-

on (T, z,i) = g (T, x,1)
U (tnvxvi) = max{hf (tn,fﬂ,j) - k(tnvi;j) +E {'DH (tn—&-l;Xf:_ﬁvj)]} = N — 17~ e ﬂO (38)

J€ly

The last step is to approximate the conditional expectation appearing in equation (3.8). As discussed
in Subsection 2.3, we choose to approximate it by least-squares regression. Consider basis functions
(ek ()1 <perer K € NU{+oc}, z € R% For suitable functions ¢ : II x R? x I, — R, define:

K 2
A= A" () = arg min E (so (bns1s Xtpprod) = Y ke (th)> (3.9)
k=1

Now, before using this projection, it is more cautious to truncate it within known bounds (see [6, 19,
33]). Hence, suppose that there exist known bounds I'**** (¢) and o (p) around E [gp (th, X[ z)}

tnt1?
x vin,r - =tn,T
% () SE [ (tasn, X027500) | < T () (3.10)

Then, Vi € I, the quantity E [gp (tn+1, Xtt:ﬁ , z)} is approximated by:

x

K
E [gp (tn+1,)_(f:ﬁ7i)} =D (0) VY Meer (2) AT () (3.11)
k=1

which is used to define the next approximation oy of the value function:
TJH (T,Z‘,’L) =g (T,x,Z)

1 (b, ) = max {hf (tn, @, 5) — k (tn,i,5) + E [@H (tnﬂ,)‘(fﬁﬁ,j)” ,n=N—1,...,0 (3.12)
s ;

Interesting discussions on the choice of function basis can be found in [7]. In particular they advocate
bases of local polynomials, which is numerically efficient and well-suited to tackle large-dimensional
problems (see Subsection 4.1). However, for the sake of simplicity, we will restrict our study in this
section to a basis of indicator functions on local hypercubes (cf. [33] and the numerical experiments
of [19]) (which is the simplest example of local polynomials). Assumption 5 below states this specific
choice.

Assumption 5. The regression basis is set to a basis of indicator function on disjoint local hyper-
cubes, as described in Definition 3.1 below.

Definition 3.1. For every t,, € II, consider a partition of the domain D, into hypercubes (Blc ) ol K

ie., Ug=1,. K. Bt’“n =D, and Bfn N Bg’n = () Vi # j. It may be deterministic, or computed from a
sample of X. We only assume that there exists (J,6) € Ri with & < § such that the lengths of the
edges of the hypercubes, in each dimension, belong to [d, d] (in particular, the volume of each hyper-
cube Bfn belongs to {Qd, (5d] ). This liberty over the definition of the partition enables to encompass

to some extend the kind of adaptative partition described in [7]. Then, the basis functions considered
here are defined by e} (z):=1{z € Bf },z € R 1<k <K..

Under Assumption 5, the error between vy and 9y is computed in Proposition 3.5.



Finally, let (Xm) 1zm<1i\f4

replace the regression (3.9) by a regression on this sample:

be a finite sample of size M of paths of the process X. The final step is to

M

2
A=A (p) = arg)\rgﬂlar}k % Z (ap (thrh A ) Z)\kek ) . (3.13)

m=1

tn41?

Then Vi € I, the quantity E [ ( netls Xt”’c” )} is approximated by:

K
fE [gﬁ (th, Xt z)} =D (p) VY Aer (1) AT () (3.14)

leading to the final, computable approximation o1 of the value function:

on (T,z,i) = g(T,x,19)
N oy e e b N
a (tn,x,1) = Ijneaﬂx{hf (tn,z,j) — k(tn,z,j)—l—E[vn ( n+1,th+1 )}} ,n=N—1,...(315)

Under Assumption 5, the error between oy and 0y is given in Proposition 3.6. This proposition will
make use of the following quantity:

— k
p(T,d,e) = IgélllllBI)}lCI%EP(Xt € By) (3.16)

which is strictly positive, as the domain D, is (purposely) bounded.

Example 3.2. Carrying on with Example 3.1 of a d-dimensional Brownian motion, we explicit a
lower bound for p(T,d,¢) in this simple case. First, P (WT € B?) ka fwr () dx where fuw,

is the density of Wr. As Vk, BY C D¢, with R(T,e) = /2T log (27‘3—?), it holds that Vz € D¢,
d d d d d
fwr (@) > (fW% (R (T, 5))) = W. Hence P (W; € Bf) > (2d)€dT% Vol (Bf) > (;WQ . As
a conclusion, p (T, d,¢) > B d; 570 6% . Remark however that this lower bound is very crude, and that
2
it can be very far below p (T, ¢, ¢) for large 4.
Combining all these results, we obtain a rate of convergence of o5y towards v:
Theorem 3.1. Vp > 1, 3C, > 0 such that:
max [v (to, Zo, 1) — dm (to, o, )|
i€l Ly
~ 3 1) 1+ R(T, 1+ R(T,
< O L+ |mo) e T+ (1+ |zo))2 VA+e+ o+ ( 51) . (T.)
h ' p, /Mp (T, 6,)' 72 hMp (T, 6,¢)

In particular, or (0,20,i) —r, v (0,0,7) uniformly in i € 1, when T — oo, h — 0, € =+ 0, § = 0

and M — oo with % — 0, L+ R(Te) — 0 and LHETe)

— LtR(Te) LER(T)
h\/ﬁp(T,é,e)lim hMp(T0,¢)

The proof of Theorem 3.1 will be given at the end of the next Subsection 3.2.

Remark 3.1. If the cost function k (recall Assumption 3) were to depend on z, then, under a usual
Lipschitz condition on & (similar to that of f), Theorem 3.1 would still hold, replacing only the term

(1+ |zo]) % VA by (1 + |x0\g) hlog (3F) (recalling Remark 3.4).



Remark 3.2. The adaptative local basis can be such that each hypercube contains approximately
the same number of Monte Carlo trajectories (see [7]). This means that ﬁ ~ b where b is the

number of functions in the regression basis. With this remark in mind, the leading error term in

Theorem 3.1 behaves like h:/[bﬁ for p = 2. This is close to the corresponding statistical error term in
[27] ( bl(;gi]\(jw)) in the context of BSDEs. The advantage of their approach is that it can handle any

(orthonormal) regression basis, while our approach (in the context of optimal switching) provides a
bound on the L, error for every p > 1.

Example 3.3. In the case of a d-dimensional Brownian motion, the rate of convergence of Theorem
3.1 can be explicited further, using the upper bound on R (T, ¢) from Example 3.1 and the lower
bound on p (T, §, €) from Example 3.2. Moreover, one can express the rate of convergence as a function
of only one parameter, choosing the five numerical parameters T, h, €, § and M accordingly. For

instance, assuming § = ¢, and minimizing over J, h, € and 7', one can get a convergence rate upper
3

bounded by C, (1 + |z|)? z by choosing M ~ z~2[6@+DI* " This is admittedly highly demanding in
terms of sample size M, but remember that this expression suffers from the crude lower bound on
p(T,9,e) we chose previously.

3.2 Convergence analysis

From now on, we suppose that all the assumptions from Subsection 2.2 are in force.

3.2.1 Finite time horizon

Lemma 3.1. There exists C > 0 such that ¥ (t,z,i) € [0,T] x R% x RY :

0 <wv(t,z,i) —vr (t,,i) < C(1+ |z]) e PVT=rt,

Proof. First, we introduce the following notations:

T

H(t,T,z,a) := / f (s, X0" 1) ds — Z k(Tn,Cn) (3.17)
t t<7, <T

J(t,T,x,a) = E[H(T,za) (3.18)

for any admissible strategy a € A ;. In particular:

v(t,x,i) = sup J(t,+o0,z,«) , ovr(t,x,i)= sup J(t,+o0,x, ) . (3.19)
acA; ; QE‘A;FJ

Fix (t,2,i) € Ry x R4 x RY . Using equation (3.19):

vr (t,x,4) = sup J(t,00,z,a) < sup J (¢, 00,2z,a) =wv(t,x,i)
(’YEA;TJ €A ;

which provides the first inequality. Consider now the second inequality. Choose ¢ > 0. From the
definition of v (equation (3.1)) there exists a strategy a® € A, such that:

v(t,x,i) —e < J(t,00,z,0°) < v(t,x,i)

Define the truncated strategy o, € Af; such that Vs € [t,T], 197 = I and Vs > T, 07 = I In
order not to mix up the variables 7,, and (,, from different strategies, we add the name of the strategy

10



in index when needed. Then:

H(t,oo,x,oﬁ) - H(t,OO,Z‘,O(%)

/toof (s,ngI,I;f) ds — Z k (TSE,CZ‘E) — /toof (s,Xﬁ"T,ISagT) ds — Z k (7’3;, f{T)

Tﬁ‘fzt o

|
——

T T >t

=[x )as- Y k()

t TffE >t

tvT R o] R . .
- / f(&X?xr[sa )d8+/ f(SaX?xv tavT) ds — Z k(T;zX 7<7($ )

t tvT T STt >t
— [ r(sxtmrYas [ p(sxeagn)ds- 3 k(m)

tvT tvT o> EVT

< / f (s,XQ-”f,I;f) ds —/ f (S,Xﬁ’r,lf\‘jT) ds
T VT

as k(s,0) = 0 and k > 0 (Assumption 4). Hence, using Jensen’s inequality and equation (2.4),
3C > 0 such that

|J(tv oo,m,of) - J(ta OO,I,OL%” < E HH (ta OO,I,O&E) - H (ta OO,I,O‘%)H
< E U ’f (s,Xﬁ’I,IS“E) ds] +E U ‘f (s,X;vf,Ing)‘ds}
tvT tvT
< C(1+|z))ePtvI=—rt

Finally, given that v (t,z,i) < € + J (t,00,z,0°) and vrp (t,x,i) > J(¢,00,2,05), the following
holds:

e+ J(t,00,2,0%) — J(t, 00,2, a7)
e+ C(1+|z|)ePVT—mt,

v (t,x, i) —or (t,x,i) <
<

Since this is true for any € > 0, and that C, p and p; do not depend on e, the proposition is
proved. O

Now, we focus on the final boundary g¢. For the time being, denote the value function (3.2) as vgf
to emphasize the dependence of v on the terminal condition. As a consequence of equation (2.4),
V (z,i) € R x I

l97(T,2,0)] < C (L + |z]) e (3.20)
Hence, define the class O, of Lipschitz functions from R X R? x I, into R such that Vg € ©
V(T,z,2',i) € Ry x R4 x R? x I;:

|g(T,.’,U, 7’) - g(T7 xlvi)|
l9(T,0,4)|

9§

Cye T |z — 2| (3.21)

<
< Cue T (3.22)

for some Cy > 0. In particular, the growth rate of such functions is at most linear in x:
9(T,,8)] < Cye™™ (1+ |a]) - (3.23)

Obviously g5 € ©4,. Now, for any g € ©,,, denote as v§ the value function defined as in equation
(3.2) with ¢ instead of gy. We are going to show that the precise approximation error due to the
choice of final value g does not matter much as long as g is chosen in this class ©,.

Lemma 3.2. There exists C > 0 such that ¥ (t,r,i) € Ry x R? x I,:

lvf (t,2,4) — v (t,2,8)| < C (1 + |z]) e PVT—Prt

11



Proof. Fix (t,x,i) € Ry x R? x I,. To shorten the proof, we assume that v/ (resp. v¥) admits an
optimal strategy o € Afi (resp. a* € A?l) (this assumption can then be relaxed using e-optimal
strategies as in the proof of Proposition 3.1)!. Therefore, recalling the notations H (equation (3.17))
and J (equation (3.18)) introduced in the proof of Lemma 3.1:

.
Xy

¥ (i) — b (ta,1) = J (6, T,2,03) + E [gf (T, XL I )} —J(t,T,z,a*) —E [g (T, X;I,I%*)}
J(t,T,z,03) +E [g (T, X%IJ;})} —J(tT,z,0*)—E [g (T, X%‘”,I%*)}

+E [gr (T, X537, 177 ) — g (T X557, 13|

E

C

o7 (7. x5, 177 ) = g (T X5 187 |

< (1 +E HX;@H) e—pT < C(l + |$|) e—ﬁt\/T—plt

Symmetrically, the same inequality holds for v (¢, z,4) — v3? (¢,z,4), ending the proof. O
Proposition 3.1. There exists C > 0 independent of T such that ¥ (t,z,i) € Ry x R? x I, and
Vg € Oy,:

v (t,2,i) — v (t,2,1)| < C (1 + |x]) e PV Pt

Proof. Combine Lemmas 3.1 and 3.2. O

From now on, we choose and keep one final value function g € ©,,, and remove the index g from the

notation of v and its subsequent approximations.

gf»

3.2.2 Time Discretization
Proposition 3.2. There exists a positive constant C' such that for any (t,z,i) € Il x RY x I, :

lor (¢, 2,6) — vir (£, 2,7)] < Ce™?t (1 + |x\%) hb (3.24)

Proof. Under the assumptions from Subsection 2.2, one can apply Theorem 3.1 in [18] to prove (3.24),
noticing that the cost function £ does not depend on the state variable x.

Use the discounting factor in the definition of f to factor the e™# term and to get that C' does not
depend on T O

Remark 3.3. Another alternative to get this rate of h? is to work with the reflected BSDE represen-
tation of vy, as in [10] (adapting [6]) or [15].

Remark 3.4. Were the cost function k to depend on the state variable, the upper bound in Proposition
3.2 would only be Ce™** (1 + |x|g) (hlog (2F))?, as stated in [18] (making use of results from [17]).

Proposition 3.3. There exists C > 0 such that for any (t,x,i) € Il x RY x I, :

lon (¢, 2,4) — omp (¢, 2, 1)| < Ce Pth?

INote that under the assumptions from Subsection 2.2, one may use Theorem 3.1 from [22] to get the existence of

2
a unique optimal strategy a* for the value function (3.2), satisfying E UZOQ’M <r k (rg* ) Cff*) ’ :| < 00

12



Proof. T and g being fixed, we can define, in the spirit of equations (3.17) and (3.18), the following
quantities:

T

H(t,z,q) ::/ f (s, X0% 1) ds — Z k(T tn_ 1,Ln)+g(T,X$x,I%) (3.25)
¢ t<7, <T

J(t,z,a) =E[H (t,z, )] (3.26)
T

H(t,z,a) ;:/t f( (s), X;g;),fg) ds— Y k(Tnitno1,tn) + g (T, X3°, I7) (3.27)

t<mp, <T
J(t,z,0) :=E[H (t,z,0a)] (3.28)

for any admissible strategy a € AEZ.. For these discretized problems, the existence of optimal controls
a® and o is granted. Hence:

n(t,x,i) —on (tx,4) = J (tx, %) — J(t,z,a")

= J(t,a") = J(tw, ") +{J (t,z,07) = T (t,x,a7) }
gJ(txa) j(t,x,a*)
= [ e 7 (sxtn ) - 7 (o) X2 ) s

) { (T X I%*) _g (TJ_(;’””,I%*)}
T

< Of/ e"°E [|xt - X1,
t

< Ce PR [ sup ’Xﬁw Xfr(r)
t<s<T

}ds—i—C’e PTE [| X3° — X5°|]

} < Ce Pthz

using the strong convergence speed of the Euler scheme on [t,T]. Symmetrically, the same inequality
holds for oy (¢, z,4) — vy (¢, x, 1), ending the proof. O

3.2.3 Space localization

Recall from Subsection 3.1.3 the definition of the bounded domain D¢.
Proposition 3.4. 3C > 0 such that Ve > 0 and ¥ (z,1) € R? x [,

|om (0,2, 1) — o (0, z,4)| < Ce

Proof. Recall the definitions of H (t,z,) (equation (3.27)) and J( ;) (equation (3.28)), and
define the quantities H* (t, 2, ) and J® (t,z,a) like H (t,z, ) and J (¢, 2, ) but with X, replaced

by X}r)(.). Then, for every (¢,z,i) € Il x R? x I, and a € ‘At,i

J(t,x,0) = J° (t,z,a) + /tTE [f (7r (s),X (g)J?) S (ﬂ' (s) ,Xf(s’)tm,lf‘ﬂ ds
+E [g (T, Xi*, 19) — g (T, X?svtv””,l%ﬂ

But:

T
/ E[f (7 (), X0 12) = f (7 (s), X0, If)}ds—#E{g(T,X%I,I%)—g(T,X%’t’m,I%)H
t

]

T
gcf/ e PE[|XEE - KB
t

} ds + Cye *TE HX';I — XDete

It follows that:

T
o (t,2,0) — 77 (D] < Oy [ e P B[R0 - X0
t

} ds + Cye "TE Hng _ XDete

}
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In particular, at t = 0, using equation (3.7), 3C > 0 such that:
li_jl'[ (0,.13, Z) - 1_}1621 (Oa Z‘,Z)| < Ce

3.2.4 Conditional expectation approximation

From now on the domain D, is fixed once and for all, and, with a slight abuse of notation, we will
drop ¢ from the subsequent notations.

We start with preliminary remarks. First, regarding the choice of regression basis, Assumption 5 is
now supposed to hold. Then, recalling Subsection 3.1.4, and taking advantage of the orthogonality of
the basis, one can easily compute the explicit solution of the minimisation equations that define the

regression coefficients A\ () = (Xf”k (<p)) (equation (3.9)) and 5\2“ (p) = (5‘:”1@ (gp))

1<k<K 1<k<K.

(equation (3.13)). Namely:

E [ (tnt1, X,y001) 1{ X0, € BY }]
P (X:, € B})

M "
ﬁ Zm:1 ® (tn—&-lathJrl, ) {X S Bk }
M
ﬁ Zm:l 1 {th: € Bfn}
Extending these equations, define

E [ (tnt1, Xt,10,0) 1{Xs, € By, (2)}]

S‘Z"k (¢) =

=E[¢ (tns1, Xt,p0,1)| Xs, €BE] 1<k <K

A (1) = L 1<k<K

N (o) 1= =E[p(thi, X )| X:, € B 2

)\; (50) P (th c Bt (ZII)) [90( n+1, tn,+171)| t, € Dy, (1')] (3 9)
1 M

o 3 2ot @ (o, X)) L{XP € By, ()} o

A:nv (¢) = ( — + ) =— E <p(tn+1,XZZ+l,7,> (3.30)

S {(X € B, () g2

for every (t,,x,i) € Il x D x I, where Vo € D, By, () is the unique hypercube in the partition
which contains x at time t,,, M = {m € [1,M], X[" € By, (z)} and M} := #M7 .

Finally, recalling the approximated conditional expectations (3.11) and (3.14),

define for any (t,,x,7) € Il x D x I, and any measurable function ¢ : I x R% x I, — R, the following
quantities:

O () = B[ (tarr, X05)] (3.31)
B 0) = Ele (ten X15)] =D () VAR () AT () (3.32)
() = B (ter X5) | = DT (@) VAT () AT () (3.33)

=tn,T

where (recalling equation 3.10) I'"* () and T'"" (¢) are lower and upper bounds on <I>§-"’m (¢):

T n,T =ln,
L' (p) < B (9) < T ()

Remark 3.5. These definitions are useful to express the dynamic programming equations (3.8), (3.12)
and (3.15). Indeed, these equations become:

on (T, z,i) = g(T,x,i)

on (tn,x,1) = grleaﬂx{hf tn, 2, J) — k(ﬁn,i,j)—|—<I>§-”’3E (tm)} , n=N-1,...,0

on (T, z,i) = g(T,xz,i)

on (tn,x,1) = Ijneaﬂx{hf tn, @, J) — k(tn,i,j)—I—(i’z”"x (tn)} , n=N—-1,...,0

on (T, z,i) = g(T,z,1)

’Un<tn7$,i) = gIleaHX{hf(tn,J},])_k(tn,l,j)ﬁ-é;"’z(@n)} ) n:N_1770
q
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Remark 3.6. For ¢ = vy, we can easily explicit bounding functions I'** (vr) and A (o) of
@;”’x (o). Indeed, using the growth conditions on f and g, the nonnegativity of k£ and the definition
of R(T,¢) (see Paragraph 3.1.3), there exists C' > 0 such that V (t,,,z,j) € Il x D x I;:

|on (tn,2,7)] < Ce P (14 R(T,¢)) (3.34)
|5 (bp)| < T (on) := Ce™#'" (14 R(T,¢)) (3.35)

Moreover, the same is true for ¢ = ¥y;: there exists C' > 0 such that V (¢, z,7) € Il x D x I;:

o (tn, 2,7)] < Ce P (1+ R(T,¢)) (3.36)
|95 (tn)] < T' (9n) := Ce " (1+ R(T,¢)) (3.37)

Finally, we impose the same bound for the definition of 9y, i.e. T (dr7) := I'*» (vpy).

Now we can start the assessment of the regression error.

Lemma 3.3. Consider a measurable function ¢ : 11 x R? x I, — R. Suppose that, for a fized
tni1 € IL, it s Lipschitz with constant Cpi1, uniformly in j: V (z1,22,7) € R4 x R? x [,

|o (tns1,21,7) — @ (tng1, 2, 5)| < Crgr |21 — 22| (3.38)
Then <I>§""T (@) is Lipschitz with constant Cyy1 (14 Lh), uniformly in j, where L := Cy +% >0
Proof. Choose (ty,,j,z1,22) € Il x I, x R? x RY. Then:
‘]E { ( n+1,Xt:f11’j> —p ( n+17Xf:fi27j)} ‘
i (tnir: Xiz3205) = (i X3

tn, . tn» >
Hgo (t"“’therll’J) v ( "“’thf?’])‘ L

2577 (0) = 27" ()]

IN

1

IN

2

Now, using equations (3.38) and (3.5), and G denoting a d-dimensional standard Gaussian random
variable, we have

2
]E|:(90(n+laanrwll7j) So(tn+17Xt:J’rwl27j>) :|

S 02+1E |:(Xttn-ﬁl Xt:-:-112)2:|

< [(171 2y 4 B (b (tny 1) — b (b 22)) + VA (0 (b 1) — 0 (s 22)) G)2]

— 2, { w1 — 3+ h (b(tn, 21) — b(tn, 22)))? + hE [((0 (tn, 1) — 0 (tn, 22)) G)Q] }
< Oy (21— 22)” {1+ (20 + C2) h+ CZh?}

< 2, (01— )’ (c,, + C:) <cb+1c N h)?

Thus: oL
0171 () — 07 ()] < Co (1 + (Ob + 2) h) o1 = 2
O

Lemma 3.4. Consider again a function ¢ : 11 x R? x I, — R such that (3.38) holds for a given
tny1 € II. Then, V(x,j) € D x I;:

|5 (p) = B ()| < Crugad (L+ L)
In particular:

| @57 () — @77 ()] < Cny1d (14 Lh) (3.39)
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Proof. Recalling the definitions of By, (), of Xﬁ"m (p) (equation (3.29)) and of <I>§-"’I (p) (equation
(3.31)), simply remark that:

min ®T () gcb;”’l' (p) < max q;;_mi (p)

#€By, (x) 7 " #eBy, (x)
in o7 < Nomo® < BT ()
somin | ®; (p) <A (p) < Jpax @ (¢)

Now, using Lemma 3.3:

\tn,z tn,T tn,T . tn,T
AT () = @ (p)] < s @ )= Juin 27" (p)
< Cpt+1(1+Lh) max |z — x3|

(z1,22)€By,, (x)?

< Cpy1(1+Lh)S
O
Lemma 3.5. V(t,,x1,x0,1) € II X (Rd)2 x I,:
|on (tn, 1,%) — Om (tn, T2,0)| < Cp 21 — 2 (3.40)
where:
Cy = e "Gy,
C, = hCpe " +Cpy1(1+Lh), n=N-1,...,0 (3.41)
In particular, 3C > 0 such that Vn =0,1,...,N:
C,, < Ce Plneb(T=tn) (3.42)

Proof. Recall Remark 3.5. We prove the lemma by induction. First, remark that, using hypothesis
(3.21), it holds for n = N. Now, suppose that it holds for some (n + 1) € [1,..., N]. Then, using
Lemma 3.3:

’EH (tnvxlvi)

= max {hf(tn, z1,7) = k(tn,i,7) + 7" (on) }

Jj€lg

:Ijnax{hf tn»mQaj) _k( n717])+q)tn’z2( )+h(f(tn7x1a]) f(tnal?a )) ((I)t xl( ) CDtmz2( H))}

< i (1 (b, 2,) — klt,.3) + @7 (0m) £ he " Cp o1 = @] + o (L4 L) — ]}
J

= U (tn, (EQ,’i) + (he_”t"C’f + C’n+1 (1 + Lh)) |(E1 — (EQ‘

Symmetrically, the same inequality holds for vy (¢, z2,) — v (tn, 21, 1), yielding equations (3.40)
and (3.41). Finally, use the discrete version of Gronwall’s inequality to obtain equation (3.42) O

Proposition 3.5. 3C > 0 s.t. V(¢,z,i) € Il x R? x [,
1)
|on (¢, 2, 4) — Omp (8, 2, 1)| < Cﬁe_pt .

Proof. For each t,, € II, we look for an upper bound F,, independent of x and i, of the quantity
|on (tny @, 1) — On (L, @, 7)|. First:
o (T, @) — on (T ,0)| = g (T 2,0) — g (T, 0)| = 0
Hence En = 0. Fix now n € [0, N — 1]. Using Remark 3.5:
max {hf (tn, @, ) = k (tn, 1, 4) + ®" (o) }

= max {hf (tn,,J) = k (tn,,5) + 27" (vn)
J&lq

f}l—[ (tna‘ra 7’)

+OUT () — D57 (vm) }



Using Lemmas 3.4 and 3.5, iz”’m (Un) — @;”’x (o) < Cp416 (14 Lh) where Cp,41q is the Lipschitz
constant of vy at time ¢, (see Lemma 3.5). Moreover,

‘521 (On) — i’§w (vm) E [on (tn+1, th+1,j) —Un (tn+17th+17j)‘ Xy, € By, ()]

<
S En+1 .

Hence:
171'[ (tn,J?,i) S 1_)1'1 (tn,x, Z) + Cn+15 (1 + Lh) + E71,+1

Symmetrically, the same inequality holds for oy (T, z, %) — 0r (¢, x, 1), leading to:
|1_)H (tna z, 7’) - ’DH (tn7 z, Z)| < En

where:
Eny = 0

E, = Cpp16(14+Lh)+Epsq.
Consequently, using equation (3.42):
al 5
Ep=0(1+Lh) Y Cp<Cye ™
k=n+1

where C' > 0 does not depend on t,, nor T. O
The following lemma measures the regression error. It is an extension of Lemma 3.8 in [33] (itself
inspired by Theorem 5.1 in [6]).

Lemma 3.6. Consider a measurable function ¢ : 11 x R? x I, — R. For any p > 1, there exists
Cp > 0 such that ¥V (t,, 1, j) € II x [1, M] x L,:

C L () + ot C @'
<= + L . (3.43)
L VMP (X, €B, (X)) 7 ME X € B (X))

atn, XL =tn, X}
QT () =@ ()

where @'~ € Ry is such that |<p (tn+1,th+1,j)‘ < @i" a.s. .

Proof. Define the following centered random variables:

M
1 o Natom _ N o _
5 () = LS b, X3V LRE € Bo(RE) Y — B[ (turn, X1, ) 1K € Bu(KL))]

— M _ _ _ _
e Xt (1) = — S 1{Xp € By, (X))} —P (X" € By, (%))

M
m=1

Then

Atn’}_(i ~tn,)_(tln Atn,th ~t"’)_(in n
& () — & '(so)’= B () — @ ( )'“Ft (%)

tn, X! tny X

L st |
< [N (o) — i ()| 1 _ < -+ 2T (p)1 TV
<[ 0= 8 |1 s ey <2 (O e )
and

tn, X!

Aty X! s tn, X! e (1)’ 1
& (p) =T (0] 1 = TR

R (“”)’ P (X, € By, (X},)) ~ 2
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X! = t,, X! P(X:, € By, (X))
"(p)— D, ™ (p T n)/)_ _
e )ﬁfo:ll{Xt’ZéBtn (X))}

N () ) ' 1
! M Xme L{Xi € By, (X))}

gt"’)_(tn (1)‘ 1
— b < 5
P (X, € B, (X],)) ~ 2

AT (p) +

3 Lot L{XE! € By, (X))}

St XL, (1)‘

Etn,)?fn (1)‘
= = 1 = =
M Xm L{XP € By, (X1)) P (X, € By, (X{,))

=tn, X}

P, (¢)

IN
DN =
——

tn, X1, :
t (w)’ NS () +

2 vl
< v > Et"’X‘n 1 ’ Ft" } 1
P (X,, € B, (XL)) { (DT (¢)

Now, for any p > 1:
P

At"’)zl'n Nt"”xln
O () =@ ()

23p—2
TR Al
P (X, € By, (X1))
€tn,)7(tln (1)’

! {p e c B (X)) ;} I () {p X, < B., (X))~ : }
and:
d ]
=P (X, 62 B;tj(xgn))p {E H
+2%7H (I ()" P (

=P, e 18; &) {E H

using Markov’s inequality. We then obtain upper bounds for E [

2 tn, X} = tn, X}
QT () =@ ()

tn, X!

N P(X;, € By, (thn))p>

XL, (1)”’} }

et Xt (1)

o

vl

ejf”"xfn (go)‘ A 5Tt (go)ﬂ +{T% (p)}'E { p” (3.44)
%!

p} andE[ Kn () p]

using Lemma A.1 in Appendix A. Suppose that Ip'» € R, s.t. ’gp (tn+17th+1aj)| < pin as. .
Then, using Lemma A.1, 3C}, > 0 such that:

tn, X}
g " (1)

ctn X1, (1)

tn
€j

E [ gtn X, <1>)p] < Sp [11 {Xi.€ By (XL)} =P (Xp.€ By (X)) \W} 7% (3.45)
2
tn?‘)?ln b (@tn )p 1 v . v v
E |: {—:j t (90) :| < Cp { P + M% E Hg@(tn_;'_l,th_H,]) l{XfWEBtn(thw)}
—E [¢(tni, Xt » §) 1{X¢, € Be (X)) }] |pV2} M} (3.46)

where, for the second inequality, the term m = [ in the sum was treated separately. Then:

D

E ([ (tat1, Kny1s9) 1{K0€ Bu(XE)} = E [ (tar, Kepind) {0 € Bu (K] ) 1777
< (2R [0 1 (K Bu(XE)} +E[(6) 1 {Ke B(61,))]])

<2 (¢")'P (X, € By, (K1) (3.47)
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In a similar manner:

_p_
pVZ

E[[1{X., € B (X))} — P (X, € B, (X )] <P (X, € B, (X)) (3.48)

Finally, the combination of inequalities (3.44), (3.45), (3.46), (3.47) and (3.48) proves equation (3.43).
O

We now apply Lemma 3.6 to vy in the following Corollary:

Corollary 3.1. For every p > 1, there exists Cp, > 0 s.t. V(tn,1,j) € II x [1, M] x I;:

Stn,Xi, o b, X4, _ 1+ R(T, 1
&5 (o) — @5 ()| | < et —LERUTE) :
Ly VMp (T, d,e) »v2 VMp (T, d,e)72

Proof. First, recall from equation (3.36) and (3.37) that there exists C' > 0 such that for every
(tn,j) € I x L;:
F; (tn) = Ce P (1+ R(T,¢))
|6H (tn+15th+17j)| < Ceiptn (1 + R(T7 5))

Hence one can apply Lemma 3.6 to oy with these upper bounds. The final step is to recall that the
minimum probability p (T4, ¢) defined in equation (3.16) is a lower bound on P (X;, € By, (X}, ))
for any (t,,1) € II x [1, M]. O

Using this result, we can now assess the error between vy and ory.

Proposition 3.6. Vp > 1, 3C, > 0 s.t. V(t,,0) € I x [1,M] :

< v LT RMDe) ( " 1 )
. Wip(T.6.2) 77 \ /Mp(T,6.)7

sup |on (¢, X{ 1) — o (¢, X ,4)]

iell

where ]Iév is the set of Fiy-measurable random variables taking values in L.

Proof. For each t,, € II, we look for an upper bound F,,, independent of [, such that:

sup | o (¢, X! i) — on (¢, X} ,4)]

i€l

<E,.
LP

First:

sup |on (T, Xb, i) — o (T, X%, 4) || =

iellY

=0
LP

sup |g (Ta X%,’L) -9 (T7 X’é",z”

i€l

Ly

Hence Ex = 0. Fix now n € [0, N — 1]. Recall the dynamic programming equations from Remark
3.5, and, for every (i,1) € I} x [1, M], introduce j* (resp. j*) the argmax for or (resp. orr) at point
th , l.e.:

l

/171_[ (tantln7i) = hf (tnaXiﬂj*) —k (tnaz7.}*) + (i);:“Xt" (171_[)
on (b0 X1 00) = Af (0, XD 5°) — K (i J7) + 8575 (on)
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Now:
ou (b, X1 00) = hf (tan XELT7) = K (b0 7) +
S A% . Ak ~tn,)_(f ~
= {hf (tnaXénm] ) -k (t’nmlvj ) + 5* " (UH)}

st X b, XL st XL atn, XL
+{¢3—* () = @ (vﬂ)}+ O (o) — T (UH)}

J J
. tn, Xy, tn, Xp, o o
< On (b, X7 0) + ) | @) (Tn) — @, (0rr)
J€ly
"tnv)zl ~ "tn,7Xl ~
+ sup |@,"7 " (o) — ;7 (On)
jery
Symmetrically:
~ v . ~ v . =1, ! ~ tnvxl ~
o1 (tn,X,fn,z) < (t”,Xén,z) + Z cI)J, " (Byg) — @ tn (Un)‘
J€lq
1 vl
+sup |7 (o) — & ()
jery
Combining these two inequalities:

. A I = . atn, X{ =t X1
sup |UH (truth"vZ) — v (tn; Xéna Z)| < Z (I’j " (UH) - q)j " (UH)‘
ieﬂé\’ jel,

~ vl ~ vl
+ sup (I);mxm (ﬁﬂ) _ (I);thn ("DH)
e

Hence, using the triangular inequality, Corollary 3.1, equation (3.30), and the induction hypothesis:

_ _ 1+ R(T
sup |17H (tn,Xén,i) — O (tn,X,fn,i)‘ < FE, = Cpe_pt” + RS ’?_L
ielly L \% Mp (T7 57 6) P2
P
. 1+ R(T,¢)
C ptn ’ E,
T T Mp (e
for some constant C), > 0 which depends only on p. Consequently:
1 T 1
E, < Cpe " + R ’51) — 1+ :
hWMp (T, b,e) 72 VMp (T, d,e)72
where C}, > 0 depends only on p. O

Finally, the combination of Propositions 3.1 3.2, 3.3, 3.5 and 3.6 at time ¢ = ¢y proves Theorem 3.1.

4 Complexity analysis and memory reduction

4.1 Complexity
4.1.1 Computational complexity
The number of operations required by the algorithm described below is in (’)(q2 -N-M ), where we

recall that ¢ is the number of possible switches, IV is the number of time steps and M is the number
of Monte Carlo trajectories.
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o The ¢? term stems from the fact that for every i € I, one has to compute a maximum on j € I,
(see equation (3.15)). However, this ¢® can be reduced to ¢ as soon as the two following conditions
are satisfied:

1. (Irreversibility) The controlled variable can only be increased (or, symmetrically, can only be
decreased)

2. (Cost Separability) There exists two functions ki and ke such that V(¢,4,5) € Ry x I, x I,

-
k(t,i,7) = ki (t,9) + ko (¢, ). For instance, this is true of affine costs.
Indeed, under those two conditions, equation (3.15) becomes:

o1t (b, @, 8) k1 (tn,i) = max {hf (tn, @, 7) — ko (tn,5) + E {@H (tnﬂ,)’(fw,j)” n=N-1,...,0
J€lg,5>i ntt

These maxima can be computed in O(q) instead of (’)(q2) by starting from the biggest element
i = iy down to the smallest element ¢ = 41 (in lexicographical order) and keeping track of the partial
maxima.

Note that these two conditions hold for the numerical application from Section 5, providing the
improved complexity O(q- N - M).

e The N term comes from the backward time induction.

e The M term corresponds to the cost of a regression, which is in O (M) (by using either the
Cholesky decomposition or the more stable Thin SVD decomposition) .

4.1.2 Memory complexity

The memory size required for solving optimal switching problems (as well as the simpler American
option problems and the more complex BSDE problems) by Monte Carlo methods is often said to
be in O(N - M), because, as the Euler scheme is a forward scheme and the dynamic programming
principle is a backward scheme, the storage of the Monte Carlo trajectories seems inescapable. This
fact is the major limitation of such methods, as acknowledged in [10] for instance.

Since such a complexity would be unbearable in high dimension, we describe below a general memory
reduction method to obtain a much more amenable O(N + M) complexity (or, more precisely, of
O(m-N+gq-M) with m < M). This improvement really opens the door to the use of Monte
Carlo methods for American options, optimal switching and BSDEs on high-dimensional practical
applications. Note that this tool can be combined with all the existing Monte Carlo backward
methods which (seem to) require the storage of all the trajectories.

A drawback of this tool is that it is limited to Markovian processes. However, one can usually
circumvent this restriction by increasing the dimension of the state variable.

4.2 General memory reduction method
4.2.1 Description

The memory reduction method for Monte Carlo pricing of American options was pioneered by [12]
for the geometric Brownian motion, and was subsequently extended to multi-dimensional geometric
Brownian motions ([13]) as well as exponential Lévy processes ([14]). These papers take advantage
of the additivity property of the processes considered. However, as briefly hinted in [37], the memory
reduction trick can be extended to more general processes. In particular, it can be combined with
any discretization scheme, for instance the Euler scheme or Milstein scheme, as long as the value of
the stochastic process at one time step can be expressed via its value at the subsequent time step.

From a practical point of view, the production of “random” sequences usually involves wisely cho-
sen deterministic sequences, with statistical properties as close as possible to true randomness (cf.
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[25] for instance for an overview). These sequences are usually set using a seed, i.e. a (possibly
multidimensional) fixed value aimed at initializing the algorithm which produces the sequence:

{set seed s} — $1 — 89 — e — Sn
rand() rand() rand() rand() (4.1)
' ! ' ' '
£1 E9 £3 En

The rand() produces a new random value € and changes the internal seed value s. The internal
value of the seed can be read (getseed()) and changed (setseed()). Now two useful aspects can be
stressed. The first is that one can usually recover the current seed at any stage of the sequence. The
second is that, if the seed is set later to, say, once again the seed s from equation (4.1), then the
following elements of the sequence will be once again €1, €2, ... In other words, one can recover any
previously produced subsequence of the sequence (g,),,~,, provided one stored beforehand the seed
at the beginning of the subsequence. This feature is at the core of the memory reduction method,
which we are going to discuss below in a general setting.

Consider a Markovian stochastic process (X¢),~, for instance the solution of the stochastic differen-
tial equation (2.2), recalled below:

Xo = x0€ Rd
dXs = b(s,Xs)ds+ o (s, Xs)dWy
The application of the Euler scheme to this equation can be denoted as follows:
o = () (42)
f(ze) == z+b(t,x)h+o(t,z)evh (4.3)

where Vi € [0, N —1] and Vj € [1,M], ¢/ € R? is drawn from a d-dimensional Gaussian random
variable. Suppose that for any ¢ € Rfl, the function x — f (z,¢) is invertible (call fi,, its inverse).
Then, starting from the final value x{N of the sequence (4.2), one can recover the whole trajectory
of X:

xi = finy (Ii},wé‘?) (4.4)
as long as one can recover the previous draws 53\,_1, e 5%. The following pseudo-code describes an
easy way to do it.

Algorithm 1 Euler Scheme Inverse Euler Scheme
% Initialization
for j from 1 to M
X[j] <= xj
end for
% LOOP 1: Euler scheme 1 % LOOP 2: Inverse Euler scheme
for i from 0 to N-1 2 for i from N-1 down to O
S[i] <— getseed() 3 setseed (S[i])
for j from 1 to M 4 for j from 1 to M
E <— rand(d) 5 E <— rand(d)
X[i] <= f(X[i].E) 6 X[j] < finv(X[j] E)
end for 7 end for
end for 8 end for
S[N] <— getseed () 9 setseed(S[N])

The first column of Algorithm 1 corresponds to the Euler scheme, with the addition of the storage
of the seeds. At the end of the first colum, the vector X contains the last values X7., j =1,..., M.

From this point, one can recover the previous values thi, i=N-1,...,0,7=1,..., M as done in
the second column.
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Inside this last loop, one can perform the estimation of the conditional expectations required by the
resolution algorithm of our stochastic control problem (equation (2.10)). Compared to the standard
storage of the full trajectories X,fi7 1=0,...,N,j=1,..., M, the pros and cons are the following:

e The number of calls to the rand () function is doubled.

¢ The memory needed is brought down from O (M x N) to O (M + N) (storage of the vector space
and the seeds).

In other words, at the price of doubling the computation time, one can bring down the required
memory storage by the factor min (M, N), which is a very significant saving. Moreover, the theoretical
additional computation time can be insignificant in practice, as the availability of much more physical
memory makes the resort to the slower virtual memory much less likely.

Remark 4.1. Even though the storage of the seeds does take O (N) in memory size, the constant may
be much greater than 1. For instance, on Matlab®, a seed from the Combined Multiple Recursive
algorithm (refer for instance to [25] for a description of several random generators) is made of 12
uint32 (32-bit unsigned integer), a seed from the Multiplicative Lagged Fibonacci algorithm is made
of 130 uint64, and a seed from the popular Mersenne Twister algorithm is made of 625 uint32.

In order to relieve the storage of the seeds, we now provide a finer memory reduction algorithm
(Algorithm 2). Although Algorithm 2 requires three main loops, it enables to perform the last loop
without fiddling the seed of the random generator, and without any vector of seeds locked in memory,
which will thus be fully dedicated to the regressions and other resolution operations. Moreover, the
first two main loops can be performed beforehand once and for all, storing only the last values of the
vector X as well as the first seed S[0]. Finally, if the random generator is able to leapfrop a given
number of steps, the first loop can be drastically reduced.

Algorithm 2 General Memory Reduction Method

% LOOP 1: Seeds storage 1 % LOOP 2: Euler scheme
for i from 0 to N-1 2 for i from 0 to N-1
S[i] <— getseed() 3 setseed (S[N-i —1])
for j from 1 to M 4 for j from 1 to M
E <— rand(d) 5 E <— rand(d)
end for 6 X[i] <= f(X[j].,E)
end for 7 end for
8 end for
% Initialization 9 setseed(S[0]) ; free(S)
for j from 1 to M 10
X[i] <= xj 11 % LOOP 3: Inverse Euler scheme
end for 12 for i from N—1 down to O
% 13 for j from 1 to M
% 14 E <— rand(d)
% 15 X[j] <= finv(X[j].E)
% 16 end for
% 17 end for

4.2.2 Numerical stability

Theoretically, the trajectories produced by the Euler scheme (4.2) and the inverse Euler scheme (4.4)
are exactly the same. In practice however, a discrepancy may appear, the cause of which is discussed
below.

On a computer, not all real numbers can be reproduced. Indeed, they must be stored on a finite
number of bits, using a predefined format (usually the IEEE Standard for Floating-Point Arithmetic
(IEEE 754)). In particular, there exists an incompressible distance ¢ > 0 between two different
numbers stored. This causes rounding errors when performing operations on real numbers.
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For instance, consider 2 € R and an invertible function f : R — R. Compute y = f (z) and then
compute & = finy (y). One would expect that £ = x, but in practice, because of rounding effects, one
may get & = = + €z for a small € > 0, where z is a discrete variable, which can be deemed random,
taking values around zero. This phenomenon is illustrated on Figure 4.1, which displays a histogram
of 2 — x for n = 107 different values of x € [0, 1] and for the simple linear function f (z) = 2x + 3.

100%;
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60%}

40%}

20%}
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B -4 -2 0] 2 4 6

x10"°

Figure 4.1: Histogram of rounding errors

We now describe how this affects our memory reduction method. Recall equation 4.2:
tly = 1 (le])

Now, instead of equation (4.4), the inverse Euler scheme will provide something like:

Uy = Tiy
ygl = finv <y€i+1 ’ 53) + EZZJ (45)
for a small € > 0, where z{, 1=0,...,N, 5 =1,...,M, can be deemed realizations of a discrete

random variable Z, independent of W. The distribution of Z is unknown, but data suggests it may
be innocuously assumed centered, symmetric, and with finite moments.

We are now interested in studying the compound rounding error y;, — x:, as a function of e. Of
course, its behaviour depends on the choice of f (equation (4.3)). Below, we explicit this error on
two simple examples: an arithmetic Brownian motion and an Ornstein-Uhlenbeck process. These
two examples illustrate how the compound rounding error can vary dramatically w.r.t. f.

First example: arithmetic Brownian motion Consider first the case of an arithmetic Brownian
motion with drift parameter p and volatility parameter o. Here f and its inverse are given by:

f(z,e) = x+ph+oVhe
finv (2,6) = @ —ph—ovVhe
Hence, using equation (4.5), for every j =1,..., M:

N-1

J Jj _ E J
yti—xti_e 2k

k=i

In other words, the compound rounding error behaves as a random walk, multiplied by the small
parameter e. Hence, as long as ¢ < h (which is always the case as real numbers smaller than e cannot
be handled properly on a computer), this numerical error is harmless.

Remark that a similar numerical error arises from the algorithms proposed in [12] , [13] and [14],
but, fortunately, as discussed above, this error is utterly negligible.
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Second example: Ornstein-Uhlenbeck process Now, consider the case of an Ornstein-Uhlenbeck
process with mean reversion o > 0, long-term mean p and volatility o. Here:

fze) = z+a(p—2z)h+oVhe

finv (€)= 1—1ah (w—auh—aﬁg)

Using equation (4.5), for every j =1,..., M the compound error is given by:

N-1
J Jo_ J
Yp, — Xy, = € k

1
—_—Z
—~ (1—ah)""

As (1—ah)™ ~ exp(aT) when h — 0, one can see that, as soon as T > —m((j), this error may
become overwhelming. This phenomenon is illustrated on Figure 4.2a on a sample of 100 trajectories.

In order to mitigate this effect, we propose to modify the Algorithm 2 as follows: in its second loop
(usual Euler scheme), instead of saving only the last values 7., one may define a small subset II C II

and save the intermediate values xiﬂ t; € II. Then, in the last loop (inverse Euler scheme), every
time that ¢; € II, the current value of the set xi may be recovered from this previous storage.

Figure 4.2b illustrates the new behaviour of the compound rounding error with this mended algorithm,
on an example with 7" = 10 years and 4 intermediate saves (in addition to the final values).

The drawback of this modification, of course, is that it multiplies the required storage space by the
factor #II. However, this remains much smaller than the O (M x N) required by the naive full
storage algorithm.
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5
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4
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(a) Without intermediate saves (b) With intermediate saves

Figure 4.2: Compound rounding error for the Ornstein-Uhlenbeck process

5 Application to investment in electricity generation

This section is devoted to an application of the resolution method studied in Section 3 to an invest-
ment problem in electricity generation.

Since our intention here is to show that the algorithm described in Section 3 can handle high-
dimensional problems, our modeling of the electric system focuses on the various fundamental drivers
of the electricity spot price formation mechanism that are electricity demand, available capacities
and above all fuel prices.

Thus, were neglected some strategic aspects of investment, like construction delays and network
constraints. We did not consider dynamic constraints of production either, which are known to
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increase spot price during peak hours and to decrease them during off peak hours (see [26]), as we
consider these effects to be negligible compared to the effect induced by a lack or an excess of capacity.

We based our model on [3, 1] where the electricity spot price is defined as a combination of fuel
prices adjusted by a scarcity factor. This model exhibits the main feature wanted here, which is
that the spot price, being determined both by the fuel prices and the residual capacity, is directly
affected by the evolution of the installed capacity. When the residual capacity tends to decrease,
spot prices will tend to increase, making investment valuable. Thus, in this model, investments are
undertaken not on the specific purpose of satisfying the demand but as soon as they are profitable.
Energy non-served and loss of load probability may still be adjusted through the price cap on the
spot market.

In this section, we first detail the chosen modeling and objective function (which will be shown to be
encompassed in the general optimal multiple switching problem (2.1)), and then solve it numerically
using the general algorithm developed in the previous sections.

5.1 Modeling

The key variable in order to describe our electricity generation investment problem is the price of
electricity. More precisely, the key quantities are the spreads between the prices of electricity and
other energies. To model these spreads accurately, it may be worth considering a structural model
for electricity (cf. the survey [8]). Here we choose such a model, mainly inspired by those introduced
in [3] and [1], albeit amended and customized for a long-term time horizon. All the variables involved
are detailed below.

5.1.1 Electricity demand

The electricity demand, or electricity load, at time ¢ on the given geographical zone considered is
modelled by an exogenous stochastic process (Dy);:
Di=fo(t)+ 27 (5.1)
where Z° is an Ornstein-Uhlenbeck (henceforth O.U.) process:
dZ? = —ag Z0dt + BodW P

where g and [y are constants, and fy is a deterministic function that takes into account demand
seasonalities.

5.1.2 Production capacities

Let d’ be the number of different production technologies. Denote as I; = (Itl, e ,Itd/> the installed

production capacities at time t. They represent the maximum amount of electricity that is physically
possible to produce. These fleets can be modified: at a given time 7,, one can decide to build (or
dismantle) an amount ¢, of capacities:

I, =1I_-+C,n>0 (5.2)

Denote as & = (7p,(n),,»; the corresponding impulse control strategy, where (7,), - is an increasing
sequence of stopping times with 7,, ,/* co when n — oo, and ((,),>, is a sequence of vectors
corresponding to the increases (or decreases) in capacities. Apart from these variations, I; will be
deemed constant, i.e.:

Li=To-+ Y o (5.3)

n, T, <t

Now, denote as Cy = (C’tl, ey C'td/) the available production capacities. Because of spinning reserves,

maintenance and random outages, these quantities are lower than the installed capacities I;, which
represent their physical maximum. In other terms, C; is a fraction of I;:

Cy =1} x A (5.4)
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for every 1 < i < d’, where A! corresponds to the rate of availability of the i** production technology.
Therefore one must choose a model for the process A; that ensures that it stays within the interval
[0,1]. One could use the bounded Jacobi process (cf. for instance [36] and references therein), but
here we choose a simpler modeling. Adapting the (bounded) wind power infeed efficiency model from

[38], we model (Ai)lgigd/

£>0 as follows:

Al=T (fi (¢) + ZZ) (5.5)
where Z, f and T are chosen as follows:

e Z%'is an O.U. process : ,
dZ} = —; Zidt + BidWF'

where a; > 0, 5; > 0 and (Wtzi) is a Brownian motion.
t>0

e The deterministic function f; accounts for the seasonality in the availability of production capaci-
ties, which stems from the maintenance plannings, which usually mimic the long term seasonality
of demand (which in turn originates in the seasonality of temperature).

e The mapping 7 : R — [0, 1] is here to ensure that Vt > 0, A; € [0, 1]d/.

5.1.3 Fuels and CO; prices

For each technology i, denote as S; the price of the fuel i to produce electricity at time ¢. In the
particular case of renewable energies, which, per se, do not involve traded fuels, the corresponding
S? can be chosen to be zero. Moreover, define S as the price of CO5. Denote as S; the full vector

(S?,Sg, .. .,sg’).

Now, we introduce the multiplicative constants needed to convert theses quantities into €/MWh.
For each technology i = 1,...,d’, let h; denote its heat rate, and h{ denote its COy emission rate.
Hence, the quantity B _

i=hdS? + h;Si (5.6)

expressed in €/MWHh, corresponds to the price in € to pay in order to produce IMWh of electricity
using the sth technology. We note h? = (h(l), ey ho,) €R? and h = (hy,...,hg) € RY.

Remark 5.1. One can choose to add a fixed cost into the definition of S{. This is all the more so
relevant for technologies whose fixed costs outweigh the cost of fuel (e.g. nuclear).

Over long time horizons, it is crucial to take into account the existence of long-term relationships
between energy prices (c.f.[30] for instance). Thus, extending the model of cointegrated Brownian
motions from [4], we model S; as cointegrated geometric Brownian motions:

dS; = 2S,dt + diag (S;) LdW;°

where = is the (d' + 1) x (d' 4+ 1) cointegration matrix (which models the long term relations), ¥ is
the (d' + 1) x (d' + 1) covariance matrix (which models the short term behaviour), and (Wts)p0 isa
(d’ + 1)-dimensional Brownian motion. We assume that 1 < rank (Z) < d (so as to produce “true”
cointegration, see [4]), and that for every ¢ # j, Z; ; > 0 (so as to ensure that the process S stays

positive, see Appendix B).

5.1.4 Electricity price

We model the price of electricity using a long-term structural model. We model it as the sum of two
building blocks: the marginal cost of producing electricity (cf. [3] for more details) plus a power law
scarcity premium (along the lines of [1]), this sum being capped at a fixed upper bound !.

1Indeed, in the French, German and Austrian markets for instance, power prices cannot be set outside the
[—3000, 3000]€/MWh range, see http://www.epexspot.com/en/product-info/auction..
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For any time ¢ > 0, define the permutation (1),...(d") of the numbers 1,...,d’, such that gt(l) <
. < gt(d/). Then, define 6?) as the total capacity available at time ¢ from the ¢ first technologies,

i.e. éii) = ngi Ct(j).

Now, from two points (z1,y1) and (z2,%2) in R?, one can always find three positive constants a :=

a(x1,x2,91,Y2), b :=0b(x1,22,y1,y2) and ¢ := ¢ (x1, T2, y1,y2) such that the function:

T
p(2) =p (@520, 02,1, 40) = —— +¢ (5.7)

satisfies p (x1) = y1 and p (z2) = y2 .

Using this notation, we model the price P; of electricity as follows:

P = §V1({D, <0} + {gg) ‘o (Dt;()ff),@“),gg?))} ) {0 . 6§1>}
ilz_;l {gt(%) +p (Dt;agi_l)’éii), §t(i), §t(i+1))} 1 {6Ei—1) <D, < éii)}

5 4 (bt A0 )1 e <)

where Ppax > 0 is a fixed upper bound on the price of electricity. In particular, the last term, the one
involving Pyax, enables price spikes to occur (when the residual capacity is small). Remark that the
price of COy emissions is explicitly included in the marginal cost (through equation (5.6)). Finally,
remark that thanks to the knitting function (5.7), the electricity price P is a Lipschitz continuous
function of the structural variables D, C' and S.

5.1.5 Objective function

We now explicit the objective function of the investor in electricity generation. Suppose that, at time
t, the level of installed capacity of type j € [1,d'] is changed from I} to I =1} + {7, s >t . It
generates the cost:

/if++ijp+ , ¢ >0
k(¢7) =150 , (I =0
/1 — CJK , ¢ <0
where /{j * and n§+ are the fixed and proportional costs of building new plants of type j, and /{j -

and /@? ~ are the fixed and proportional costs of dismantling old plants of type j.

Summing up the gains of the whole fleet of power plants on a given geographical zone, discounted to
time 0 using a constant interest rate p > 0, and maximising its expectation along the potential new
plants yield the following value function (cf.[2] for more details):

v(t,z,i) = sup E Z/ ps <m1n CJ, D, C(] 1)} X (PS —§g)+ —Iii> ds — Z e "™k (¢7)

aEAt i Tp >t
(5.9)
where the strategies « affect the installed capacities (equations (5.3)), hence also the available ca-
pacities (equation (5.4)) as well as the power price (equation (5.8)).
Replacing P in (5.9) by its definition (5.8), it is patent that this objective function fits into the mould
studied thoroughly in Section 3. In Subsection 5.2 below, we apply our algorithm to this specific
objective function.

5.2 Numerical results
Finally, we solve the control problem described in Subsection 5.1 on a numerical example, using the

algorithm detailed in Subsection 3 combined with the general memory reduction method described
in Subsection 4.2.
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Our purpose here is not to perform a full study of investments in electricity markets, but a more
modest attempt at illustrating the practical feasibility of our approach, with some possible outputs
that the algorithm can provide.

We consider a numerical example including two cointegrated fuels (in addition to the price of COs):
one “base fuel” and one “peak fuel”, starting respectively from 40€/MWh and 80€/MWh. Hence,
using the notations from Subsection 5.1, d’ = 2 (two technologies) and d = 6 ( electricity demand,
COgy price, two fuel prices and two availability rates). The main choices of parameters for this
application (initial fuel prices and volatilities, initial fleet and proportional costs of new power plants)
are summed up in Table 5.1. Moreover, the demand process starts from Dy = 7T0GW and does not
integrate any linear trend.

il S [o [ & A
1] 406/MWh | 5% | 67GW | 0.24 10°€/GW
2 | 80€/MWh | 15% | 33GW | 2.00 10°€/GW

Table 5.1: Model parameters

In order to take into account the minimum size of one power plant we restrict the values of the
installed capacity process(5.3) to a (bi-dimensional) fixed grid A% with a mesh of 1GW. We make
the simplifying assumptions that investments are irreversible, and that no dismantling can occur
(recall from Subsection 4.1 the computational gain provided by this assumption).

Remark 5.2. If such a grid is indeed manageable in dimension d’ = 2, it may less be the case if
additional technologies were considered. However, as discussed in [33] equation (3.2), instead of
performing one regression for each i € A% one can solve equation (3.15) at time t; by only one
(d+ d’)-dimensional regression, by choosing an a priori law for the randomized control (;,. The error
analysis from Section 2 can be generalized to such regressions in higher dimension.

Finally, we consider the following numerical parameters. We choose a time horizon T' = 40 years and
a time step h = ﬁlo (i.e. two time steps per day, allowing for some intraday pattern in the demand
process) but allow for only one investment decision per year. For the regression, we consider a basis
of b = 2¢ = 64 adaptative local functions, chosen piecewise linear on each hypercube (which is a
bit more refined than the piecewise constant basis studied in Section 3) on a sample of M = 5000

trajectories.

With these numerical parameters, we obtain a non-parametric confidence interval of [3.731, 3.752] x
108 for the value function v (0, g, i0) at time 0 (cf. Appendix C on how these bounds are computed),
i.e. a relative error smaller than 1%, which is sufficiently small for the numerical results obtained,
displayed on Figures 5.1 and 5.2, to be considered relevant.

First, Figure 5.1 deals with the optimal strategies. Figure 5.1a displays the time evolution of the
average as well as the variability of the optimal fleet (only the new plants are shown). One can
distinguish a first short phase characterised by the construction of several GW of peak load assets,
followed by a much slower second phase involving the construction of both base load and peak load
assets. Moreover, the variability of the optimal fleet increases over time. The detailed histogram of
the optimal strategy at time 7" = 40 years is displayed on Figure 5.1b, where it is combined with
the price of fuel. One can see that the more the peak fuel is expensive (and hence both fuels are
expensive on average, as they are cointegrated), the more constructions of base load plants occur.
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Figure 5.1: Optimal strategies

The fact that the average fleet seem to converge is related to the fact that this numerical example
does not consider any growth trend in the electricity demand. Otherwise, more investments would
occur, indeed, to keep the pace with consumption.

Then Figure 5.2 provides information on the price of electricity. Figure 5.2a displays the time
evolution of the electricity spot price density. For better readability, each density covers one whole
year. One can see how the density moves away from the initial bimodal density (with prices clustering
around the initial prices of the two fuels) towards a more diffuse density. Moreover, the downward
effect of investments on prices can be noticed. This downward effect is even more visible on Figure
5.2b. It compares the effect on electricity prices of three different strategies: the optimal strategy,
the optimal deterministic strategy (computed as the average of the optimal strategy), and the do-
nothing strategy. For each strategy, the joint time-evolution of the yearly median price and the yearly
interquartile range are drawn. As expected, prices tend to be higher and more scattered without
any new plant. Nevertheless, on this specific example, the price distribution under the optimal
deterministic strategy is close to that under the optimal strategy (only slightly more scattered).
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Figure 5.2: Electricity spot price

These few pictures illustrate the kind on information that can be be extracted from the resolution of
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this control problem. Of course, as a by-product of the resolution, much more can be extracted and
analyzed (distribution of income, CO» emissions, optimal exercise frontiers, etc) if needed.

6 Conclusion

In this paper, we presented a probabilistic method to solve optimal multiple switching problems. We
showed on a realistic investment model for electricity generation that it can efficiently provide insight
into the distribution of future generation mixes and electricity spot prices. We intend to develop
this work in several directions in the future. First, we wish to take into account more generation
technologies, most notably wind farms, nuclear production, as well as solar distributed production.
These additions would raise the dimension of the problem from eight to fifteen. Yet another range of
innovations in numerical methods will be necessary to overcome this increase in dimension. Second,
we wish to take time-to-build into account. And last but not least, we wish to adapt the problem to
a continuous-time multiplayer game and contribute to the quest for an efficient algorithm to solve it.

References

[1] R. Aid, L. Campi, and N. Langrené. A structural risk-neutral model for pricing and hedging
power derivatives. Mathematical Finance, 23(3):387-438, July 2013. (Cited on pages 1, 26,
and 27)

[2] R. Aid, L. Campi, N. Langrené, and H. Pham. A probabilistic numerical method for optimal
multiple switching problem in high dimension. Preprint, 2012. (Cited on page 28)

[3] R. Aid, L. Campi, A. Nguyen Huu, and N. Touzi. A structural risk-neutral model of electricity
prices. International Journal of Theoretical and Applied Finance, 12(7):925-947, 2009. (Cited
on pages 1, 26, and 27)

[4] G. Benmenzer, E. Gobet, and C. Jérusalem. Arbitrage free cointegrated models in gas and
oil future markets. Technical report, GDF SUEZ and Laboratoire Jean Kuntzmann, Grenoble,
2007. (Cited on page 27)

[5] A. Botterud, M. Ilic, and I. Wangensteen. Optimal investments in power generation under
centralized and decentralized decision making. IEEE Transactions on Power Systems, 20(1):254—
263, 2005. (Cited on page 2)

[6] B. Bouchard and N. Touzi. Discrete-time approximation and Monte-Carlo simulation of back-
ward stochastic differential equations. Stochastic Processes and their Applications, 111(2):175—
206, 2004. (Cited on pages 1, 8, 12, and 17)

[7] B. Bouchard and X. Warin. Monte-Carlo valorisation of American options: facts and new
algorithms to improve existing methods. In R. Carmona, P. Del Moral, P. Hu, and N. Oudjane,
editors, Numerical Methods in Finance, volume 12 of Springer Proceedings in Mathematics, 2012.
(Cited on pages 1, 5, 8, 10, and 35)

8] R. Carmona and M. Coulon. A survey of commodity markets and structural models for electricity
y y
prices. In F. Benth, V. Kholodnyi, and P. Laurence, editors, Quantitative Enerqy Finance:
Modeling, Pricing and Hedging in Energy and Commodity Markets, 2013. (Cited on page 26)

[9] R. Carmona, P. Del Moral, N. Oudjane, and P. Hu. Numerical Methods in Finance. Springer,
2012. (Cited on page 1)

[10] R. Carmona and M. Ludkovski. Pricing asset scheduling flexibility using optimal switching.
Applied Mathematical Finance, 15(5):405-447, 2008. (Cited on pages 1, 5, 12, and 21)

[11] J. Carriere. Valuation of the early-exercise price for options using simulations and nonparametric
regression. Insurance: Mathematics and Economics, 19(1):19-30, 1996. (Cited on page 5)

31



[12]

[21]

[22]

[23]

[24]

R. Chan, Y. Chen, and K.-M. Yeung. A memory reduction method in pricing American options.
Journal of Statistical Computation and Simulation, 74(7):501-511, 2004. (Cited on pages 1, 21,
and 24)

R. Chan, C.-Y. Wong, and K.-M. Yeung. Pricing multi-asset American-style options by memory
reduction Monte Carlo methods. Applied Mathematics and Computation, 179(2):535-544, 2006.
(Cited on pages 1, 21, and 24)

R. Chan and T. Wu. Memory-reduction method for pricing American-style options under expo-
nential Lévy processes. East Asian Journal on Applied Mathematics, 1(1):20-34, 2011. (Cited
on pages 1, 21, and 24)

J. Chassagneux, R. Elie, and I. Kharroubi. Annals of Applied Probability, (3):971-1007. (Cited
on page 12)

B. El Asri. Optimal multi-modes switching problem in infinite horizon. Stochastics and Dynam-
ics, 10(2):231-261, 2010. (Cited on page 5)

M. Fischer and G. Nappo. On the moments of the modulus of continuity of It6 processes.
Stochastic Analysis and Applications, 28(1):103-122, 2009. (Cited on page 12)

P. Gassiat, I. Kharroubi, and H. Pham. Time discretisation and quantization methods for
optimal multiple switching problem. Stochastic Processes and their Applications, 122(5):2019-
2052, 2012. (Cited on pages 1 and 12)

E. Gobet, J.-P. Lemor, and X. Warin. A regression-based Monte Carlo method to solve Backward
Stochastic Differential Equations. The Annals of Applied Probability, 15(3):2172-2202, 2005.
(Cited on page 8)

S. Hamadene. Optimal switching systems of reflected bsdes and systems of variational inequal-
ities with interconnected obstacles. In J. Blath, P. Imkeller, and S. Roelly, editors, Surveys in
Stochastic Processes, Series of Congress Reports, 2011. (Cited on page 5)

S. Hamadéne, J.-P. Lepeltier, and Z. Wu. Infinite horizon reflected bsdes and applications in
mixed control and game problems. Probability and Mathematical Statistics, 19(2):211-234, 1999.
(Cited on page 5)

Y. Hu and S. Tang. Multi-dimensional BSDE with oblique reflection and optimal switching.
Probability Theory and Related Fields, 147:89-121, 2010. (Cited on page 12)

P. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations, volume 23
of Stochastic Modelling and Applied Probability. Springer, 3rd edition, 1999. (Cited on pages 3
and 4)

M. Kohler. A review on regression based Monte Carlo methods for pricing American options.
In L. Devroye, B. Karasozen, M. Kohler, and R. Korn, editors, Recent Developments in Applied
Probability and Statistics, Physica-Verlag, pages 39-61, 2010. (Cited on page 5)

D. Kroese, T. Taimre, and Z. Botev. Handbook of Monte Carlo methods, volume 706 of Wiley
series in probability and statistics. Wiley, 2011. (Cited on pages 22 and 23)

N. Langrené, W. van Ackooij, and F. Bréant. Dynamic constraints for aggregated units: Formu-
lation and application. IEEE Transactions on Power Systems, 26(3):1349-1356, August 2011.
(Cited on page 26)

J.-P. Lemor, E. Gobet, and X. Warin. Rate of convergence of an empirical regression method for
solving generalized backward stochastic differential equations. Bernoulli, 12(5):889-916, 2006.
(Cited on page 10)

F. Longstaff and E. Schwartz. Valuing American options by simulation: a simple least-squares
approach. Review of Financial Studies, 14(1):113-147, 2001. (Cited on pages 1 and 5)

32



[29] B. Mo, J. Hegge, and I. Wangensteen. Stochastic generation expansion planning by means of
stochastic dynamic programming. IEEE Transactions on Power Systems, 6(2):662-668, 1991.
(Cited on page 2)

[30] J. Obermayer. An analysis of the fundamental price drivers of EU ETS carbon credits. Master’s
thesis, KTH Royal Institute of Technology, Stockholm, 2009. (Cited on page 27)

[31] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Springer, 3rd edition,
1999. (Cited on page 34)

[32] R. Seydel. Existence and uniqueness of viscosity solutions for QVI associated with impulse
control of jump-diffusions. Stochastic Processes and their Applications, 119(10):3719-3748, 2009.
(Cited on page 5)

[33] X. Tan. A splitting method for fully nonlinear degenerate parabolic PDEs. Electronic Journal
of Probability, 18(15):1-24, 2013. (Cited on pages 1, 8, 17, and 29)

[34] N. Todorovié. Bewertung Amerikanischer Optionen mit Hilfe von regressionbasierten Monte-
Carlo-Verfahren. PhD thesis, University of Saarland, 2007. (Cited on page 5)

[35] J. Tsitsiklis and B. Van Roy. Regression methods for pricing complex American-style options.
IEEE Transactions on Neural Networks, 12(4):694-703, 2001. (Cited on pages 1 and 5)

[36] A. Veraart and L. Veraart. Stochastic volatility and stochastic leverage. Annals of Finance,
8(2-3):205-233, 2012. (Cited on page 27)

[37] V. Volpe. The Electricity price modelling and derivatives pricing in the Nord Pool market. PhD
thesis, Universita della Svizzera italiana, 2009. (Cited on page 21)

[38] A. Wagner. Residual demand modeling and application to electricity pricing. Technical Report
213, Fraunhofer ITWM, Department for Financial Mathematics, 2012. (Cited on page 27)

A L, convergence speed of empirical mean

Lemma A.l. For every p > 1, there exists C, > 0 such that for any i.i.d. sample X1,...,Xp of
R-valued random variables such that E[X1] =0 and E |:‘X1|p\/2:| < o0, the following holds:

C
< 2 X Al
< L%l (A1)

1 M
37 2 Km

m=1

Ly

Proof. Using Marcinkiewicz-Zygmund’s inequality, there exists C,, > 0 such that:

M p M 5

E||> Xm| | <CE (Z |Xm|2>
m=1 m=1

Multiplying both sides by ﬁ

M P M 5

1 C 1 2

E||l— Xl | < =ZE|| = X A2
2o | < (3 2 ) &

If p > 2, then § > 1 and, using Jensen’s inequality:

1 M
2
Doy
m=1

Taking expectations on both sides:

P
2

1M » 1 M
<= Xm2)2:— Xl
_Mmz_l(| | MmZ:l\ |
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(S

1 X )
E (Mmz_lwm) <E[|XP) (A3)

Now, if p < 2, then £ < 1 and, using Jensen’s inequality:

o) ool ()

Then combine inequalities (A.2), (A.3) and (A.4) and take the power % to obtain inequality (A.1). O

NS

-E[x.f]* (A.4)

B Positivity of cointegrated geometric Brownian motions

Let (92, F,P) be a probability space. Consider the following d-dimensional process:
dS; = ZS.dt + diag (S;) XdW,
SO > 0

where W is a F-adapted, d-dimensional Brownian motion, = is a d X d cointegration matrix, and X
is a d X d covariance matrix.

Proposition B.1. § >0 a.s. if and only if Vi # j, Z;; > 0

Proof. First, suppose that Vi,j =1,...,d, i # j, Z; ; > 0. Consider the following stopping time:
T=inf{t >0;3j € [1,d] st. 5. =0}
i.e. 7 is the first time when one component of S reaches 0. In particular, S; > 0 a.s. Vt € [0, 7].
Now, suppose that 7 < oo. There exists at least one component i such that S¢ = 0. Recall the
dynamics of S%:
d _ d '
dSi= (> =88 | dt+ 5 | Y% ;dwi
j=1 j=1
By Girsanov’s theorem, there exists a probability measure Q° , equivalent to P, such that
asi= | > S8 |dt+5; | > iAW
1<j<d;j#i j=1

where W is a d-dimensional Q*-Brownian motion. Then, using Proposition (2.3) from [31] (Chapter
IX):

t
Si=¢&(X%),{ 8 +/ XN Y =8 ds (B.1)
0 1<j<dj#i
where X} := Z?:l Eiydetj, and £ (Xl) denotes the exponential martingale of X*. At time 7, it
yields:

-
0=38.=€(X") S8 +/ XN Y Emiys|dsy >0
0 1<) <dsji
using the positivity of S§ and of the exponential martingale, as well as the non-negativity of Z; ;,
i # j, and of S before 7. This contradiction means that S¢ > 0. As the same reasoning can be
applied for every i € [1,d], this means that 7 = oo, i.e. that S >0 a.s. .
Next, suppose that S > 0 a.s. . Choose i € [1,d]. Using equation (B.1) and the positivity of S, we
obtain: .
So+ Y. E]/ £(XY), Slds >0 as.
1<j<d;ji 0
As S§ > 0 and the coefficients fot & (Xl);l Sids are a.s. positive with support R, the only possibility

for the above inequality to hold a.s. is that Z; ; > 0 for all § # j. O

34



C Empirical confidence intervals

This Appendix describes how to obtain an empirical confidence interval for v (0, zg,i9). Here we
adapt arguments from [7] to our optimal switching problem.

We assume that the parameters T' (time localisation) and h (discretization) are chosen such that the
error between v and vyy is negligible (the space localization being redundant in practice), and focus
on the error between v and ory.

First, from equation (3.8), the dynamic programming principle for the process v (tn, X, ,4) reads:
U (T; XT) 7’) =g (T7 XT? 7’)
6l_[ (tn,th,i) = buﬂp {hf (tnath,aj) - k(tn,l,j) +E’ [EH (tn-‘rlathJrlyj) |ftn]} , = N — 1a s 70
jelr
(1)

where [7 is the set of F; -measurable random variables taking values in I,. Suppose that the ap-

proximated conditional expectation & [.|F;, ] is unbiased, i.e. that

E[E[I7,]] =E[|F]

Then, using equation (3.15) and Jensen’s inequality, the following holds:
E [on1 (tn, Xs,,4)] > su]lp {nf (tn, Xe,.5) =k (tn,5,5) + E [on (tns1, Xepirod) [Fen ]} sn=N—1,...,0
jely
(C.2)
Combining equations (C.1) and (C.2), an induction argument yields:

E [0 (tn, X¢,,4)] > E [0n (tn, X4,,,1)]

In particular, E[og (0,z0,4)] > o (0,20,¢). This reasoning means that o (0,zg,7) can be used

approximatively as an asymptotic upper bound for vy (0, 2o, 7).

For the lower bound, simply use the estimated optimal control &, which is a side-product of the
computation of 9y, and compute equation (3.6) by replacing the supremum over every control « by
this specific &. By definition of the supremum, this yields a lower bound for oy (0, zg, 7).
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