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Abstract—When moving large and heterogeneous data collections to the cloud, a key requirement concerns the selection of the most

suitable (set of) cloud service(s) for outsourcing. Not only can different resources have different characteristics and requirements, but

different cloud providers can also offer different services and security guarantees, and can have different costs. Selecting a single

service for outsourcing an entire data collection can result in a non-optimal solution, as a single service satisfying, at reasonable costs,

all the requirements specified by the data owner might not exist. Selecting a set of services could instead ensure the satisfaction of the

requirements, possibly with economic advantages. In this paper, we address this problem and present a flexible and expressive, yet

simple model for supporting data owners in identifying a proper allocation of their resources to a set of cloud services. Our model

allows data owners to specify in an easy and intuitive way protection requirements operating at the granularity level of single resource

(or class thereof), and representing the minimum security guarantees that a cloud service must offer to store resources. Resources can

be outsourced in plaintext or encrypted form, depending on their requirements and on what is the most convenient allocation. Data

owners can then also specify global allocation requirements that apply to the overall allocation, to reduce the burden on their side and

to avoid excessive fragmentation of the resource collection. We solve the problem of finding an allocation that satisfies both the

protection and the global allocation requirements, while minimizing economic costs, by formulating it as a binary programming problem,

thus allowing the use of existing techniques for its efficient solution.

Index Terms—Multicloud, Allocation, Protection requirements, Global allocation requirements
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1 INTRODUCTION

R ELYING on cloud services for data storage and man-
agement has became a popular solution for almost any

data owner, ranging from individual users storing their
photos to external services for freeing space on their smart-
phones, to big organizations leveraging commercial cloud
platforms to outsource their information systems. Since the
cloud market offers a multitude of services characterized
by different features, the first step when moving data to
the cloud requires to select the right service(s). This task
can be complex and entail some critical evaluations. First, it
is necessary to understand the characteristics and require-
ments of the data (e.g., are they sensitive? are they subject
to specific regulations and restrictions? how frequently and
how do they need to be accessed?). It is then necessary
to understand the characteristics of the available cloud
services, to determine which are acceptable with respect
to resource protection requirements. Also, since different
cloud services come at different price points, a proper cost
evaluation needs to be done.

The definition of requirements and their evaluation with
respect to potential services may be complicated even for
scenarios where small data collections with simple require-
ments are outsourced, and becomes more complex when-
ever the resources to be outsourced are multiple, critical, and
with specific, contrasting, or non-comparable requirements.
This can be the case, for example, of mid- or large-size
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organizations or public entities, wishing to move to the
cloud their entire informative content, where data can be
heterogeneous and range from sensitive data with strin-
gent confidentiality requirements, to general information
whose public accessibility should be guaranteed. In this
case, each resource (or class of resources) can have peculiar
needs, based on its nature: while sensitive data need ser-
vices trusted for security/confidentiality, public data would
benefit from a service offering high availability. In such a
scenario, one possible solution would be the selection of
a single cloud service for storing the entire data collection
(e.g., [1], [2]). This strategy could produce solutions that
either do not satisfy all requirements (as a single service
perfectly satisfying all requirements of all resources might
not exist) or are non-cost-effective (e.g., when selecting
a costly service to satisfy the requirements of the most
critical resources). A second option can be to rely on a
set of providers/services for data storage to ensure that
all requirements are satisfied and the cost is acceptable.
This strategy, pursued in this paper, can accommodate fine-
grained requirements of heterogeneous resource collections.

Finding a set of cloud services to store a heterogeneous
data collection can be a difficult problem in itself, and entails
a number of questions that need to be solved. For instance,
a contract with a cloud service provider inevitably requires
some management overhead, so relying on too many ser-
vices might not be an effective strategy. Hence, how many
services are to be selected? Are enough resources stored at
each provider, so to compensate the burden of a contract
management? Should resources expected to be frequently
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accessed together be managed by the same service? Should
a set of resources not be jointly visible at the same service?
These are examples of aspects that should be addressed
when computing a multicloud allocation. In this paper,
we address these problems and propose a model for a
security-aware data allocation in multicloud scenarios. Our
approach accounts for the possible application of owner-
side encryption, so to take into account the possibility of
relying on more affordable (but possibly not fully trusted)
cloud services to store a (protected) portion of the resources.

The contribution of the paper is threefold. First, we
provide an approach to express protection requirements
that enable abstracting from low-level characteristics in
their specification. Our separation of security properties
from requirements nicely fits complex scenarios where pro-
tection requirements may need to consider directives and
security conditions specified at a more general level (e.g.,
organization-wide). Second, we identify additional global
allocation requirements enabling the specification and en-
forcement of restrictions on the overall resource allocation
(in contrast to requirements on individual resources). Third,
we provide a possible formulation of the problem of finding
an allocation that satisfies protection and global allocation
requirements while minimizing economic costs of external
data management.

The remainder of this paper is organized as follows.
Section 2 illustrates our reference scenario and introduces
the notion of resource allocation to services taking into
account owner-side encryption. Section 3 presents our secu-
rity model, based on abstract security properties and their
mapping to parameters and metadata of services. Sections 4
and 5 illustrate how such security model is used for classi-
fying available cloud services and for formulating resource
protection requirements. Section 6 introduces global allo-
cation requirements. Section 7 illustrates when an alloca-
tion of resources (characterized by protection and global
allocation requirements) to services (classified according to
our security model) can be considered correct with respect
to all specified requirements, and minimal with respect to
economic costs. Section 8 introduces a formulation of the
problem of computing a correct and minimal allocation as a
binary programming problem, easily solvable using existing
techniques. Section 9 discusses the possible advantages of
owner-side encryption. Section 10 discusses related work.
Finally, Section 11 concludes the paper.

2 REFERENCE SCENARIO

We consider a reference scenario characterized by cloud
providers offering cloud service plans (cloud services, for
short) and data owners wishing to outsource the manage-
ment of their resources to external cloud providers. The
goal of this paper is to support data owners in allocating
resources to cloud services that better match their require-
ments. Such requirements represent the security needs of
the resources (e.g., sensitive resources should be managed
by cloud services offering “strong” security guarantees) as
well as constraints on the overall allocation of resources to
cloud services (e.g., some resources often accessed together
should be managed by the same cloud service). Our solution
allows data owners to express their requirements in an easy

s1 s2 s3 s4 s5 s6 s7
provider Ghost Cloudy Amaron Mist Mhard GoGo NewCloud

loc EU US EU US EU US EU
cert certA certA certC certA certB
audit auditA auditB

uptime 99.999 99.998 99.970 99.980 99.997 99.960

Figure 1. An example of cloud services

way by referring to high-level properties, in contrast to low-
level configuration parameters describing the characteristics of
cloud services. In the following, we model the resources to
be outsourced as a set R and the cloud services offered by
cloud providers as a set S. Note that our model is agnostic
with respect to the granularity of resources, which may be
single data items or (as expected) collections thereof. In the
following, we simply use the term resource in a generic
sense, to refer to either individual resources or classes
thereof depending on the specific application scenario.

Cloud services are characterized by a set A of attributes.
In our work, we do not restrict our approach to any spe-
cific predefined set of attributes and assume to refer to a
generic set of attributes encompassing all possible proper-
ties to be considered, including configuration parameters
(e.g., uptime) and metadata associated with cloud services
(e.g., name of the cloud provider). We assume names and
values of the attributes to be taken from a known ontol-
ogy/vocabulary [1]. A cloud service can then be seen as a
tuple containing the values for the applicable attributes in
A. We use notation s[a], with a ∈ A, to denote the value of
attribute a for cloud service s ∈ S. Figure 1 illustrates the
cloud services of our running example, considering set A of
attributes: provider, the name of the provider offering the
cloud service; loc, the geographical location of the storage
servers used by the provider; cert, the security certification
for the service; audit, the authority in charge of the security
auditing; and uptime, the service uptime guaranteed in the
Service Level Agreement. Note that, in the figure, empty
cells denote the fact that, for a cloud service, the value of
the corresponding attribute is unknown or not defined. For
instance, the value of attribute audit is undefined for s1.

Accounting for owner-side encryption, as common in
many emerging scenarios, we consider that resources can be
outsourced in plaintext or in encrypted form. The advantage
of outsourcing resources in encrypted form is that they are
also protected from the service storing them and therefore,
in principle, they can be managed by potentially less trusted,
but more affordable, providers. The allocation of a resource
to a cloud service must then also specify whether the re-
source is outsourced in plaintext or encrypted. Allocation is
formally defined as follows.

Definition 2.1 (Allocation). Given a set S of cloud services
and a set R of resources, an allocation for R over S is
a function α:R→ S × {◦, •} that associates with each
resource r ∈ R a pair 〈s,m〉, with m ∈ {◦, •}.

Given a resource r, α(r) = 〈s,m〉 states that resource r

is allocated to cloud service s and that r is visible (m = ◦),
meaning that the resource is outsourced in plaintext form, or
encrypted (m = •), meaning that the resource is encrypted
at the owner side before outsourcing. We denote the allo-
cation mode (plaintext or encrypted, respectively) with a
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(empty or full, respectively) circle to connect formal notation
to our graphical representation that will use gray boxes to
denote application of encryption.

3 ABSTRACT SECURITY PROPERTIES

We now introduce our security model, based on abstract
security properties, which will be used to classify cloud
services (Section 4) as well as for formulating resource
protection requirements (Section 5).

Abstract security properties are high-level concepts as-
sociated with a domain of labels each of which corresponds
to the satisfaction of given formulas over the attributes of
the cloud services. There are two main advantages in using
abstract security properties. First, the data owner can reason
about the needed requirements without worrying about the
specific attributes of the cloud services that contribute to
obtain the desired need/protection. Second, the mapping
between the requirements and the attributes is made only
once, thus facilitating the management of requirements that
will just need to refer to high-level concepts. This sep-
aration between abstract properties and attributes results
even more advantageous in scenarios of cloud brokering
services or of large organizations where one entity (the bro-
ker or the company) can define the abstract properties and
their correspondence in terms of attributes, and resource
owners/administrators can then specify requirements on
resources with reference to such abstract properties.

Natural abstract security properties are the classical CIA:
Confidentiality, Integrity, Availability, but others can also be
added depending on the richness (or granularity) desired.
Our model considers a generic set P of properties defined
by the data owner/broker. Values associated with properties
are high-level labels that characterize a level of satisfaction
with respect to the property. We assume labels to be ordered,
with higher labels representing better satisfaction of the
property (intuitively corresponding to stronger conditions
over the low-level attributes of cloud services).

To maintain examples easy to follow and draw, in
the paper, we refer to a set P={C,A} of two properties
(Confidentiality and Availability) each with three security
labels corresponding to High (HC and HA), Medium (MC

and MA), and Low (LC and LA) values. A default bottom
label ⊥ is assumed for all properties, denoting the label to
be considered when the property is of no interest.

The correspondence between property labels and at-
tributes of the cloud services is defined by rules associated
with property labels. More precisely, each property p ∈P is
defined as a triple comprising: the labels associated with the
property, the correspondence between the labels and values
of attributes of cloud services, and a total order relationship
among labels, as formalized by the following definition.

Definition 3.1 (Security properties). Given a set A of at-
tributes, a set P of security properties over it is a set where
each property p ∈ P is a triple 〈Lp , ep ,≻p〉 with:

• Lp a set {l1, . . . , lm} of labels;
• ep :Lp → E a function that associates with each label

li∈L
p an expression ep(li)∈E over attributes in A;

• ≻p a total order relationship over Lp .

Property p Label l Expression ep(l)

C

HC loc=EU ∧ cert=certA
MC cert=certA ∨ audit=auditA
LC cert=certB ∨ audit=auditB
⊥ true

A

HA uptime>99.99%
MA uptime>99.95%
LA uptime>99.90%
⊥ true

Figure 2. Security properties of the running example

We do not impose any restriction on the expressions as-
sociated with labels via function ep . Our model is there-
fore agnostic with respect to this and can accommodate
any function over the attributes, from basic conditions to
more expressive languages (e.g., [1]). This being said, for
concreteness and without loss of generality, in this paper
we consider expressions to simply be Boolean formulas
combining conditions over the values for the attributes
characterizing services. In the following, given two labels
li, lj ∈ Lp we write li�

p lj iff li≻
p lj or li=lj .

Figure 2 illustrates the properties (P={C, A}) and la-
bels (LC={HC, MC, LC, ⊥} with HC≻CMC≻CLC≻C⊥;
LA={HA, MA, LA, ⊥} with HA≻AMA≻ALA≻A⊥) of our
running example together with the expressions associated
with the labels. For instance, confidentiality label HC re-
quires location of the service to be EU and certification to
be certA, while confidentiality label LC requires either a
certification certB or audit authority auditB. Note that the
expressions associated with the security labels of the dif-
ferent properties are assumed to be independent, meaning
that the satisfaction of the expression associated with label li
does not necessarily imply the satisfaction of the expression
associated with label lj , with li≻

p lj . This is particularly
evident, for instance, whenever conditions associated with
labels are mutually exclusive. For instance, if audit authority
auditA is to be considered more trusted than authority
auditB, the confidentiality label associated with expression
‘audit=auditA,’ will clearly be higher than the one asso-
ciated with expression ‘audit=auditB’. At the same time,
however, satisfying the first condition clearly impedes the
satisfaction of the second condition (more details will be
given in Section 4).

The consideration of different properties (e.g., Confiden-
tiality and Availability in our running example) implies
the consideration of a tuple [li1 , . . . , lin ] of labels (with a
label for each property), which we call security class and
denote as c. For instance, [HC,HA] is a security class for
our running example. The total order relationship holding
within the labels of the different properties induces then a
partial order relationship on the security classes forming a
lattice as formalized by the following definition.

Definition 3.2 (Security lattice). Given a set P={p1, . . . , pn}
of security properties, a security lattice H over P is a pair
〈C,�〉 where C=Lp1 × . . .×Lpn and � is the dominance
relationship over C such that ∀ci, cj ∈ C, ci dominates
cj , denoted ci�cj , iff ci[k]�

pkcj [k], k=1, . . . , n.

In other words, a security class dominates another one iff
the dominance relationship holds for each of its components
(i.e., labels in the tuple). For instance, [HC,HA]�[MC,MA].
Figure 3 illustrates the lattice for the properties of our
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⊥ ⊥

LC ⊥ ⊥ LA

MC LA LC MA

HCMA MCHA

MC ⊥ LC LA ⊥ MA

HC LA MCMA LC HA

HC ⊥ ⊥ HA

HC HA

Figure 3. Security lattice over the security properties in Figure 2

running example. The expression associated with a security
class (i.e., the conditions corresponding to it) is the con-
junction of the expressions associated with its components.
Formally, given a security class c ∈ C, e(c) =

∧n
j=1 e

pj (c[j]).
For instance, with reference to Figure 2, e([HC,HA]) =
(loc=EU ∧ cert=certA) ∧ (uptime>99.99%).

4 CLOUD SERVICE CLASSIFICATION

The consideration of abstract security properties (to which
resource protection requirements will refer) allows data
owners to avoid worrying about the attributes characteriz-
ing cloud services. Before illustrating how resource require-
ments can be specified and enforced for selecting suitable
cloud services, we illustrate how services’ characteristics
map onto property labels and therefore onto security classes.

The expression associated with each property label dic-
tates the conditions that should be satisfied on the attributes
of cloud services for the label to apply. In other words,
the conditions that a cloud service should satisfy for being
considered suitable for resources having that label. This
introduces a natural mapping between services (their low-
level attributes) and property labels composing security
classes.

We say that a cloud service s satisfies a security label
l∈Lp , denoted s |= l, if the values of the attributes in s

satisfy expression ep(l), that is, they make it evaluate to true.
Similarly, a cloud service satisfies a security class c, denoted
s |= c, if the values of its attributes satisfy e(c). For instance,
with reference to our running example (services in Figure 1
and labels in Figure 2) s1 |= [HC,HA], s1 |= [HC,MA], s1 |=
[HC, LA], and s1 |= [HC,⊥]. Clearly, any service satisfies ⊥.

Note that, since we do not assume any implication
among expressions associated with labels, satisfaction of a
security class for a given service is not necessarily mono-
tone. Hence, a service s might satisfy a security class cx
but might not satisfy a class cy dominated by it, meaning
that the values of the attributes in s satisfy e(cx) but not
e(cy). For instance, s1 |= [HC,HA], but s1 6|= [LC,HA],
because s1 |= HC but s1 6|= LC. This non-monotonicity is
completely in line with the freedom in the specification of

expressions and the fact that, as already noted, expressions
might be mutually exclusive. This being said, given the
semantics of labels, it is clear that if a service is suitable for a
given security class it is also suitable for lower (dominated)
security classes. Monotonicity in terms of satisfaction of the
corresponding expression can be simply ensured by extend-
ing the expression associated with lower classes with the
disjunction of the expressions associated with classes that
dominate them. We are therefore interested in the highest
security class that a cloud service satisfies, which we refer
to as security class of the service, formalized as follows.

Definition 4.1 (Security class of a service). Given a cloud
service s ∈ S and a security lattice H=〈C,�〉 over P ,
the security class of s, denoted λ(s), is the security class
ci ∈ C such that s |= ci, and ∄cj ∈ C with cj�ci and
s |= cj .

Intuitively, the security class of a cloud service represents
the maximal security guarantee that it offers. For instance,
the security class of s1 is [HC,HA]. It is interesting to note
that the security class of a service is unique, as stated by the
following theorem.

Theorem 4.1. Given a cloud service s ∈ S and a security
lattice H=〈C,�〉 over P , ∃!c ∈ C : c = λ(s).

PROOF: Consider an arbitrary service s. To prove the
theorem, we show that: 1) the security class of s exists; and
2) the security class of s is unique.

1) Proof of the existence of the security class of s is
trivial, since the lattice includes class c⊥=[⊥, . . . ,⊥]
with value ⊥ (with ep(⊥)=true) for each property.
Since, by definition, s |= ⊥, then s |= c⊥.

2) We prove that the security class of s is unique by con-
tradiction. Suppose that ∃ci1 , ci2 such that λ(s)=ci1
and λ(s)=ci2 . By Definition 4.1, we have that ci1�ci2 ,
and ci2 � ci1 . Since λ(s)=ci1 , then s |= ci1 , meaning
that ∀pk ∈ P , s |= ci1 [k]. Similarly, we have that
∀pk ∈ P , s |= ci2 [k]. Consider now a security class cj
such that ∀pk ∈ P : cj [k]=max(ci1 [k], ci2 [k]). Since
the lattice is complete, cj belongs to the lattice. Also,
since labels are totally ordered, we have that cj�ci1
and cj�ci2 . Also, since s |= ci1 and s |= ci2 , we
have that s |= cj , contradicting the hypothesis that
λ(s)=ci1 and λ(s)=ci2 . 2

Given the non-monotonicity with respect to the satisfac-
tion of the conditions along the lattice, the determination
of the highest security class would in principle require to
walk down the lattice, evaluating conditions from the top
to the bottom (considering then the highest security class
for which the condition is satisfied). Since the expression
associated with a security class is simply the conjunction
of the expressions of the class components, there is no
need to walk down the lattice: the evaluation can be done
separately on each component, retrieving the highest label
satisfied for each property, as illustrated by the simple
algorithm in Figure 4. The class of the service will then be
the class represented by the tuple of the retrieved labels. The
security classes for the services of our running example are:
λ(s1) = [HC,HA], λ(s2) = [MC,HA], λ(s3) = [MC,MA],
λ(s4) = [⊥,MA], λ(s5) = [HC,⊥], λ(s6) = [⊥,HA], and
λ(s7) = [LC,MA].
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Algorithm 1 (Security class of cloud service s).

for each p ∈ P do
Lp ′ := Lp /* create a copy of the set Lp of labels */
l := Top(Lp ′) /* highest label in Lp ′*/
c[p] := null /* label associated with s for property p */
repeat

if s |=l /* verify if s satisfies security label l */
then c[p] := l /* l is the label associated with s for p */
else Lp ′ := Lp ′ \ {l} /* otherwise, move to the next label */

l := Top(Lp ′)
until c[p] 6= null

λ(s) := c /* security class of s */

Figure 4. Algorithm for computing the security class of a cloud service

5 RESOURCE PROTECTION REQUIREMENTS

We now illustrate the specification of resource protection
requirements. Accommodating for the possibility of owner-
side encryption of resources, our model also takes into
account that requirements on the same resource might be
different depending on whether the resource is outsourced
in plaintext or encrypted. For instance, a resource with
HC as confidentiality requirement might downgrade the
requirement to LC in its encrypted form. Intuitively, the se-
curity class associated with a (plaintext/encrypted) resource
dictates the policy restrictions that the service should satisfy
for storing the (plaintext/encrypted) resource.

Resource protection requirements are then specified as-
sociating with each resource r (or class thereof, as best
suited) two security classes, corresponding to the require-
ments for the plaintext and encrypted resource, respectively,
as formalized by the following definition.

Definition 5.1 (Resource protection requirements). Given a
set R of resources and a security lattice H = 〈C,�〉, the
resource protection requirements for R are a pair of func-
tions 〈λ◦, λ•〉, with λ◦ : R→C∪{−}, and λ• : R→C∪{−}.

According to this definition, the resource protection
requirements for a set R of resources are seen as two
functions λ◦ and λ•, each associating with each resource
a security class. To express cases in which the resource
cannot be outsourced (in its plaintext or encrypted form),
we extend λ◦ and λ• to include special value −, which
indicates that a resource cannot be outsourced in a given
form. More precisely: if λ◦(r)=−, the resource cannot be
outsourced in plaintext; it must be encrypted by the data
owner before being outsourced to the cloud. Analogously,
if λ•(r)=−, resource r must be outsourced in plaintext;
it cannot be outsourced in its encrypted form. The case
λ◦(r)=− can accommodate for resources particularly sensi-
tive for which the data owner (for company policy or due
to legislation restrictions) wishes to impose external storage
only in encrypted form. The case λ•(r)=− can accommodate
for resources whose availability in the clear is needed for
access (as encryption would impede functionality needed
over them).

In our running example, we consider the following five
(classes of) resources, summarized in Figure 5 together with
their protection requirements.

• admin (administrative files) can be stored in either
plaintext or encrypted form and requires High Avail-

λ◦ λ•

admin [MC,HA] [LC,HA]
agreements [LC,MA] [⊥,MA]
suppliers [MC,MA] −
projects [HC,HA] −
archive − [⊥,LA]

Figure 5. Resource protection requirements for the resources of the
running example

ability for both, with Medium Confidentiality if in
plaintext and Low Confidentiality if encrypted;

• agreements (all files related to contracts with other
parties) can be stored either in plaintext or encrypted
form and requires Medium Availability for both,
with Low Confidentiality if in plaintext and no con-
fidentiality requirement if encrypted;

• suppliers (all files related to suppliers) can be
stored in plaintext only and requires Medium Confi-
dentiality and Medium Availability;

• projects (current projects): can be stored in plain-
text only and requires High Confidentiality and High
Availability;

• archive (old resources that must be kept for
archival) can be stored only in encrypted form, re-
quires Low Availability and does not have require-
ments on confidentiality.

The requirements specify, for each resource, the security
classes that apply to it, with respect to both the original
plaintext resource as well as its (owner-side) encrypted
version. Such security classes are to be intended as the
minimum guarantees to be provided for the resource for
the different properties. In other words, the resource cannot
be outsourced to a service that does not provide at least
such guarantees. In line with the semantics associated with
security classes and their lattice, services providing better
security guarantees are instead suitable. Formally stated,
this translates to demanding that a resource can be out-
sourced only to a service whose security class dominates the
class of the resource. We refer to an allocation obeying such
a restriction (i.e., satisfying the resource protection require-
ments) as safe, as formalized by the following definition.

Definition 5.2 (Safe allocation). Given a set S of cloud
services, a set R of resources, and the resource protection
requirements 〈λ◦, λ•〉 for R, an allocation α for R over S
is safe iff ∀r ∈ R : α(r) = 〈s,m〉 =⇒ λ(s)�λm(r).

Figure 6 graphically plots the classes of services and
resources on the lattice of our running example. Each (plain-
text or encrypted) resource appears on the left of the vertex
corresponding to the class of its protection requirements.
Plaintext resources appear in a vertex along one of the paths
from the vertex where the encrypted resource appears to the
top of the lattice. Each service appears on the right of the
vertex corresponding to its security class. Graphically, a safe
allocation allocates each resource (plaintext or encrypted,
respectively) to a service appearing in a vertex along the
path from the vertex where the (plaintext or encrypted, re-
spectively) resource appears to the top of the lattice. Hence,
different safe allocations can allocate a resource to different
services. For instance, agreements can be allocated to s7,
s3, s2 or s1 in plaintext and to s4, s6, s7, s3, s2, and s1 in
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⊥ ⊥

LC ⊥ ⊥ LA

MC LA LC MA

HCMA MCHA

MC ⊥ LC LA ⊥ MA

HC LA MCMA LC HA

HC ⊥ ⊥ HA

HC HAprojects s1

admin s2

s3

s4

archive

s6s5 s7

adminsuppl

agrmt

agrmt

Figure 6. Security lattice of the running example with resources and
cloud services

encrypted form. Figure 7 summarizes to which services each
resource can be safely allocated. Cell [r, s] has value: ◦, if r
can be allocated to s in plaintext only; •, if r can be allocated
to s in encrypted form only; ◦ •, if r can be allocated to s

in plaintext or encrypted form; empty, if r cannot be safely
allocated to s.

Allocation α1 in Figure 8 is an example of a safe allo-
cation for our running example. Allocation α3 is instead
not safe: suppliers is stored in encrypted form (violat-
ing λ•(suppliers)=−), archive is stored in plaintext
(violating λ◦(archive)=−), and projects is allocated
plaintext to s2 whose security class does not dominate
λ◦(projects).

As noted in the discussion above, given a set of services
and resources with their corresponding classes, there might
exist multiple safe allocations, differing in the service chosen
for storage and/or the storing mode (i.e., plaintext or en-
crypted) of (some of) the resources. In addition to protection
requirements on individual resources, we then allow data
owners to express other requirements considering the over-
all allocation, that is, involving the complete set of resources,
as we illustrate in the following section.

6 GLOBAL ALLOCATION REQUIREMENTS

Global allocation requirements impose conditions on the
allocation of resources that do not refer to individual (classes
of) resources but to sets of them or to the allocation overall.
We identify three kinds of global requirements. The first
two impose conditions on allocation of resources requesting
their joint assignment to the same service or impeding their
visibility to the same service. The third one imposes instead
limitations on the involvement of multiple services. We
define each of them in the following.

The first kind of requirement, called co-location, is for-
mally defined as follows.

Definition 6.1 (Co-location). Given a set R of resources,
a set CoL of co-location requirements over R is a set
{loc1, . . . , locm} such that loci ⊆ R, i = 1, . . . ,m.

The semantics of a co-location requirement loc is that the
resources in loc should be managed by the same service.

s1 s2 s3 s4 s5 s6 s7
admin ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦

agreements ◦ • ◦ • ◦ • • • ◦ •
suppliers ◦ ◦ ◦
projects ◦
archive • • • • • •

Figure 7. Possible safe plaintext (◦) and encrypted (•) allocations of
resources to services

α1 α2 α3 α4

admin s1, ◦ s1, • s2, • s2, ◦
agreements s3, • s3, • s3, ◦ s2, ◦
suppliers s3, ◦ s3, ◦ s3, • s2, ◦
projects s1, ◦ s1, ◦ s2, ◦ s1, ◦
archive s3, • s3, • s3, ◦ s7, •

Figure 8. An example of allocations for our running example (α1,α2: safe
and compliant; α3: not safe but compliant; α4: safe but not compliant)

The motivation for a co-location requirement might be that
resources need to be accessible together, or be frequently
accessed together, and therefore it is convenient to allocate
them to the same cloud service. For instance, considering
the set of resources in Figure 5, co-location requirement
{admin,projects} in Figure 9 requires resources admin

and projects to be allocated to the same cloud service.
Note that a co-location requirement only requires the re-
sources to be allocated to the same service, without im-
posing restrictions on the format (plaintext or encrypted)
in which they are stored. The case where resources should
be all allocated to the same service and be so in plaintext
(similar to visibility requirements in [3]) is simply captured
by setting, in addition to the co-location requirement, their
protection requirement λ• to value −.

Besides requesting some resources to be allocated to the
same service, a data owner may also request resources not
to be jointly visible at the same service. This is captured by
the separation requirement, defined as follows.

Definition 6.2 (Separation). Given a set R of resources,
a set Sep of separation requirements over R is a set
{sep1, . . . , sepn} such that sepi ⊆ R, i = 1, . . . , n.

The semantics of a separation requirement is to impede
joint visibility over a collection of resources to a single
service. Intuitively, this requirement captures confidential-
ity constraints (e.g., [4]) requesting no party to have joint
visibility of a complete set of resources. Here, visibility
means visibility on the plaintext content of the resources.
For instance, considering our running example, separation
requirement {agreements,suppliers} in Figure 9 states
that resources agreements and suppliers should not be
visible to the same cloud service. Similarly to what done for
confidentiality constraints in [4], we assume a separation
requirement to be satisfied if either at least one resource is
allocated to a different service, or if at least one of them
is encrypted. Again, as noted above, specific interpretation
and corresponding representation mode can be regulated
by properly setting the definition of the protection require-
ments 〈λ◦, λ•〉.

As noted in the previous section, several safe alloca-
tions may exist, all granting protection to resources and
different alternatives may remain, all satisfying co-location
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CoL ={{admin,projects}}
Sep ={{agreements,suppliers}}
Usage=[3, 30GB]

Figure 9. Global allocation requirements

and separation requirements. Such alternatives may differ
with respect to the number and the use of each of the
services. The last kind of requirement we consider aims at
imposing some regulation on the involvement of different
services. In fact, the use of multiple cloud services has also
the disadvantage of introducing an overhead due to the
spreading of resources. Also, the use of a cloud service for
managing resources can be considered convenient when a
considerable amount of resources is allocated to the cloud
service itself. In fact, the use of a cloud service implies the
signature of a contract between the involved parties with
a consequent overhead for the data owner. Our last kind
of requirement enables data owners to limit the overhead
given by employing too many services, guaranteeing that
the establishment of a contract is worth its management, and
avoids excessive fragmentation of resources in the cloud. We
define such requirement, called service usage, as follows.

Definition 6.3 (Service usage). A service usage requirement is
a pair of integers Usage=〈max services,min storage〉.

A service usage requirement 〈max services,min storage〉 im-
poses the allocation to use at most max services services,
employing each of them for at least min storage storage
occupation. For instance, with reference to our running
example, service usage requirement [3, 30GB] in Figure 9
states that an allocation should use at most three services
employing each of them for at least 30GB. Note that, for
simplicity, we suppose that the same threshold min storage
applies to all cloud services. However, our model can be
easily extended to adopt different thresholds for different
cloud services. To define a service usage requirement, it is
necessary to know the size of the resources in R. Indeed,
the size of a resource can increase due to encryption. While
noting that the size increase depends on the adopted en-
cryption scheme, we assume the scheme to be known when
computing an allocation, and hence the ability to estimate
the size of the encrypted version of resources.

A triple including the three requirements discussed
above (namely, co-location, separation, and service usage)
form the so-called global allocation requirements, formally
defined as follows.

Definition 6.4 (Global allocation requirements). Given a set
R of resources, the global allocation requirements for R are
a triple 〈CoL, Sep,Usage〉 defined over R.

Given a set R of resources and a set S of services,
a compliant allocation for R over S is an allocation that
satisfies the global allocation requirements for R, as stated
by the following definition. In the definition and in the
reminder of the paper, we denote with α(r)[s] and α(r)[m]
the service s and the plaintext/encrypted form m in which
r is allocated by α.

Definition 6.5 (Compliant allocation function). Given a
set R of resources, a set S of cloud services, and the
global allocation requirements 〈CoL, Sep,Usage〉 for R,
an allocation α for R over S is said to be compliant iff:

Size (GB) Access
◦ • frequency

admin 25 27.5 0.15
agreements 15 16.5 0.15
suppliers 20 22 0.15
projects 10 11 0.5
archive 100 110 0.05

Figure 10. Profile of the resources of the running example

1) ∀loc ∈ CoL, ∀ri, rj ∈ loc : α(ri)[s] = α(rj)[s];
2) ∀sep ∈ Sep, (∃ri, rj ∈ sep : α(ri)[s] 6= α(rj)[s]) ∨

(∃ri ∈ sep, α(ri)[m] = •);
3) |

⋃

r∈R α(r)[s] |≤ max service;
4) ∀si ∈

⋃

r∈R α(r)[s]: storage(si)≥ min storage, with

storage(si)=
∑

r∈R:α(r)[s]=si
sizeα(r)[m](r).

An allocation is then compliant iff: 1) for each co-location
requirement, all resources appearing in it are allocated to
the same service; 2) for each separation requirement, at least
one of the resources is allocated to a different service or is
encrypted; 3) no more than max service services are involved
in the allocation of resources; and 4) storage used at each
service employed in the allocation is at least min storage.
Allocations α1, α2, and α3 in Figure 8 are compliant with
respect to the global allocation requirements in Figure 9,
considering the size of resources in Figure 10. It is easy to
see that CoL is satisfied since admin and projects are
both allocated to the same service (s1 in α1 and α2, s2
in α3); Sep is satisfied since agreements (α1 and α2) or
suppliers (α3) is stored in encrypted form and hence is
not jointly visible in plaintext at s3; Usage is satisfied since
the allocations employs only 2 services, and each service
stores at least 30GB of resources. Allocation α4 in Figure 8
is instead not compliant: admin and projects are not
allocated to the same service (violating CoL); agreements
and suppliers are both allocated plaintext to s2 (violating
Sep); and s1 only stores 10GB (violating Usage).

7 CORRECT AND MINIMAL ALLOCATION

Protection requirements (Section 5) and global allocation re-
quirements (Section 6) form the basis on which an allocation
is to be computed, as we now illustrate (Section 7.1). We
then introduce the notion of cost of an allocation, to deter-
mine the allocations that are more economically convenient
(Section 7.2).

7.1 Correct allocation

Summarizing the different requirements introduced, we de-
fine an allocation policy, governing the allocation of resources
to services, as comprising of resource protection and global
allocation requirements, as captured by the following defi-
nition.

Definition 7.1 (Allocation policy). Given a set R of resources
and a security lattice H over a set P of properties, an al-
location policy for R is a pair 〈〈λ◦, λ•〉, 〈CoL, Sep,Usage〉〉,
with 〈λ◦, λ•〉 the protection requirements for R (Defi-
nition 5.1), and 〈CoL, Sep,Usage〉 the global allocation
requirements for R (Definition 6.4).
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s1 s2 s3 s4 s5 s6 s7
st cost(s) 50 50 40 50 10 80 50
tr cost(s) 50 40 30 40 10 100 40

Figure 11. Storage and data transfer costs (USD¢/GB) for the cloud
services of our running example

An allocation α is said to be correct with respect to an
allocation policy iff it satisfies both the resource protection
and the global allocation requirements identified in the
policy, as formalized by the following definition.

Definition 7.2 (Correct allocation function). Given a set R
of resources, a set S of cloud services, and a security
lattice H over a set P of properties, an allocation α: R→
S×{◦, •} is said to be correct with respect to an allocation
policy 〈〈λ◦, λ•〉, 〈CoL, Sep,Usage〉〉 for R iff:

1) α is safe (Definition 5.2) and
2) α is compliant (Definition 6.5).

The definition above demands that a correct allocation for
a set R of resources over a set S of services: 1) satisfies
the protection requirements 〈λ◦, λ•〉 for R; and 2) satisfies
the global allocation requirements 〈CoL, Sep,Usage〉 for R.
Allocations α1 and α2 in Figure 8 are correct allocations
for the resources in Figure 5 over the services in Figure 1.
Allocations α3 and α4 are instead not correct, being α3 not
safe (although compliant), and α4 not compliant (although
safe).

As clear from the example, there might exist different
correct allocations for a given set of resources and a given
set of services. In the reminder of this section, we introduce
the notion of cost of an allocation, to identify allocations
that are correct and minimize the economic cost (minimal
allocations).

7.2 Minimal allocation

Multiple factors contribute to the cost of an allocation (e.g.,
storage, data transfer, data computation). Since our refer-
ence scenario is one where the data owner is looking for a
cloud service with basic support of access functionality, we
consider storage and data transfer costs only. Our model can
however be easily extended to consider different/additional
cost factors. Figure 11 illustrates the costs, expressed in
USD¢/GB, for our running example.

Storage. Storage cost is computed by considering the size
of the resources to be outsourced. As noted in Section 6, we
assume an estimation of the storage space requested for each
(plaintext/encrypted) resource to be known by the owner.
The storage cost is therefore computed by multiplying the
size of the resources (in GB) by the storage price st cost(s)
(in GB) that is applied by cloud service s. The storage cost
of an allocation α is then computed as follows:

∑

r∈R

sizeα(r)[m](r) · st cost(α(r)[s]) (1)

where sizeα(r)[m](r) denotes the size of resource r in the
form m (plaintext/encrypted) in which r is allocated by α,
and st cost(α(r)[s]) denotes the storage cost of the service s

to which r is allocated by α. For instance, the storage cost of
α1 in Figure 8 is computed as:

size◦(admin)·st cost(s1 )+
+ size•(agreements)·st cost(s3 )+
+ size◦(suppliers)·st cost(s3 )+
+ size◦(projects)·st cost(s1 )+
+ size•(archive)·st cost(s3 ) = USD 7610¢.

Data transfer. Data transfer cost is composed of in-bound
and out-bound costs. In-bound traffic is usually free of
charge while out-bound traffic has a cost that is typically
proportional to the amount of data transferred, that is, to
the size of accessed resources. The data transfer cost of
an allocation is then obtained by multiplying the amount
of out-bound traffic (in GB) from a cloud service (given
by resources’ size), by the corresponding data transfer cost
tr cost(s), weighted by the frequency with which resources
are accessed (indeed, if a resource is never accessed, the
cost of its transfer should not impact the total cost of an
allocation). The data transfer cost of an allocation α is then
computed as follows:

∑

r∈R

sizeα(r)[m](r) · tr cost(α(r)[s]) · f (r) (2)

where f (r) is the expected frequency of accesses to resource
r. For instance, the data transfer cost of α1 in Figure 8 is
computed as:
size◦(admin) · tr cost(s1 ) · f (admin)+
+ size•(agreements) · tr cost(s3 ) · f (agreements)+
+ size◦(suppliers) · tr cost(s3 ) · f (suppliers)+
+ size◦(projects) · tr cost(s1 ) · f (projects)+
+size•(archive)·tr cost(s3 )·f (archive) = USD 766.75¢.

The cost of a correct allocation α, denoted cost(α), is
obtained summing its storage and data transfer costs (Equa-
tions 1 and 2). As an example, consider the size and access
frequencies of the resources in Figure 10 and the storage and
transfer costs in Figure 11. The total cost of allocation α1 in
Figure 8 is cost(α1) = 7610 (storage cost) + 766.75 (data
transfer cost) = USD 8376.75¢.

Formally, the problem of computing a correct allocation
(Definition 7.2) with minimum economic cost is defined as
follows.

Problem 7.1 (Minimal allocation). Let R be a set
of resources, S be a set of cloud services, and
〈〈λ◦, λ•〉, 〈CoL, Sep,Usage〉〉 be an allocation policy. De-
termine a correct (Definition 7.2) allocation function α

such that ∄α′ 6= α that is correct and cost(α′)<cost(α).

Allocation α1 in Figure 8, with a cost of USD 8376.75¢, is an
example of a minimal allocation for the resources in Figure 5
over the services in Figure 1. Allocation α2, although correct,
is not minimal since cost(α2)=8520.50 >cost(α1)=8376.75.
Note that, while the minimum cost is unique, several min-
imal allocations (with the same minimum cost) may exist.
All of them are equivalent with respect to requirements
satisfaction and economic cost, and are a solution to the
problem.

8 COMPUTING A MINIMAL ALLOCATION

To compute a minimal allocation, we translate Problem 7.1
into a binary programming problem that can be formulated
as follows: given a set of variables that can take values in
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pij eij
s1 s2 s3 s4 s5 s6 s7 s1 s2 s3 s4 s5 s6 s7

admin 1
agreements 1
suppliers 1
projects 1
archive 1

(a) Allocation α1

pij eij
s1 s2 s3 s4 s5 s6 s7 s1 s2 s3 s4 s5 s6 s7

admin 1
agreements 1
suppliers 1
projects 1
archive 1

(b) Allocation α2

Figure 12. Values assigned to pij and eij modeling allocations α1 (a)
and α2 (b) in Figure 8

p̂ij êij
s1 s2 s3 s4 s5 s6 s7 s1 s2 s3 s4 s5 s6 s7

admin 1 1 1 1
agreements 1 1 1 1 1 1 1 1 1 1
suppliers 1 1 1
projects 1
archive 1 1 1 1 1

Figure 13. Values assigned to p̂ij and êij modeling safe allocations

{0,1}, a set of constraints over them, and an objective function,
find an assignment of values to variables that satisfies all
the constraints and that minimizes the value of the objective
function. We now describe how the translation works by
showing the set of variables, the constraints, and the ob-
jective function of the corresponding binary programming
problem.

The allocation function α : R → S × {◦, •} can be inter-
preted as a function that assigns 0 or 1 to a set of variables.
These variables model the allocation of each resource r∈R
to a cloud service s∈S, and the choice between plaintext
and encrypted format of r. For each resource ri and each
cloud service sj , we define two binary variables pij and eij
modeling the allocation of ri at sj in plaintext or encrypted
form, respectively:

pij =

{

1 if ri is allocated plaintext at sj

0 otherwise

eij =

{

1 if ri is allocated encrypted at sj

0 otherwise

A solution to the binary programming problem is an as-
signment of values to variables pij and eij that satisfies the
constraints illustrated in the following, to guarantee that
the assignment represents a correct allocation. Figures 12(a)
and 12(b) illustrate the assignment of values to variables pij
(left-hand side of the figure) and eij (right-hand side of the
figure, with gray background to recall our use of gray color
to indicate allocations of encrypted resources) for allocations
α1 and α2, respectively, in Figure 8 (for readability, we only
reported value 1, empty cells have value 0).

Allocation. An allocation assigns each resource, in either
plaintext or encrypted form, to exactly one cloud service
(i.e., the number of services to which each resource is

allocated is exactly one). This translates to the following
constraint:

|S|
∑

j=1

pij + eij = 1, ∀i = 1, . . . , |R|

Intuitively, for each resource ri, the constraints sums pij and
eij over all the services. If the sum is equal to 1, then there
exists only one service sj such that pij (or eij) is equal to 1,
meaning that ri is allocated to sj in plaintext (or encrypted).

Safe allocation. The satisfaction of the protection require-
ments in an allocation policy implies that each resource r

in R is allocated to a cloud service whose security class
dominates the one specified for the resource, according to
the allocation mode (plaintext or encrypted). We then repre-
sent the cloud services to which resources can be allocated
without violating the protection requirements (i.e., such that
the allocation would be safe) through two binary variables
p̂ij and êij for each resource ri and each service sj . These
variables represents whether a safe allocation would allocate
(value 1) or not (value 0) ri to cloud service sj in plaintext
(p̂ij ) or in encrypted form (êij). Figure 13 represents, for
each resource ri (on the rows) and each service sj (on
the columns) of our running example, the combinations for
which p̂ij (left-hand side) and êij (right-hand side) assume
value 1. As visible from the figure, p̂ij and êij represent all
the possible safe (plaintext and encrypted) allocations for
our running example illustrated in Figure 7 (p̂ij=1 for ◦,
êij=1 for •). We note that, since multiple safe allocations
can exist for each resource, each row of the figure can
have more than one cell with value 1. The allocation of
resources to services must therefore be in accordance with
the values of these variables, meaning that a resource ri
can be allocated (in plaintext or encrypted, respectively) to
sj only if p̂ij=1 or êij=1, respectively. This requirement is
translated as follows:

|S|
∑

j=1

(pij · p̂ij) + (eij · êij) = 1, ∀i = 1, . . . , |R|

The product pij · p̂ij (eij · êij , respectively ) has value 1
only if both pij and p̂ij (eij and êij , respectively ) are equal
to 1, that is, only if ri is allocated in plaintext (encrypted,
respectively ) to a legitimate cloud service sj . If the sum
of these products, j=1, . . . , |S|, is equal to 1, then each
resource is allocated to a service satisfying the protection
requirements, meaning that the allocation is safe.

Compliant allocation. We now show how the global allo-
cation requirements can be translated to a set of constraints
that a solution of the binary programming problem must
satisfy.

• Co-location requirement. A co-location requirement is
satisfied when all the resources involved in the re-
quirement are allocated to the same cloud service.
This requirement can then be translated as follows:

|S|
∑

j=1





∏

ri∈loc

(pij + eij)



 = 1, ∀loc ∈ CoL

Given a resource ri and a service sj , pij + eij is equal
to 1 only if ri is allocated, plaintext or encrypted, to
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p̂ij êij
f size◦ s1 s2 s3 s4 s5 s6 s7 s1 s2 s3 s4 s5 s6 s7 size• f

admin 0.15 25 1 1 1 1 127.5 0.15 admin

agreements 0.15 15 1 1 1 1 1 1 1 1 1 1 116.5 0.15 agreements

suppliers 0.15 20 1 1 1 130.5 0.15 suppliers

projects 0.50 10 1 111.5 0.50 projects

archive 0.05 100 1 1 1 1 1 110.5 0.05 archive

st cost 50 50 40 50 10 80 50 50 50 40 50 10 80 50 st cost
tr cost 50 40 30 40 10 100 40 50 40 30 40 10 100 40 tr cost

Figure 14. Input of the binary programming problem

sj . Hence, the internal product is equal to 1 for the
cloud service that stores all the resources in the co-
location requirement loc. If the sum over all services
for these products is equal to 1, then the requirement
is satisfied by (exactly) one service.

• Separation requirement. A separation requirement is
satisfied when the involved resources are not all allo-
cated to the same service in plaintext. In other words,
there must exist at least one resource in the constraint
encrypted or allocated to a different service. This
requirement can be translated as follows:

|S|
∑

j=1

(

∏

ri∈sep

pij

)

= 0, ∀sep ∈ Sep

The internal product is equal to 1 when all resources
involved in a separation requirement are managed
by the same cloud service sj and they are all in
plaintext, meaning that the separation requirement is
violated. Otherwise, if at least a resource is missing
or is encrypted, the internal product is equal to 0.
Hence, if the sum over all services for these products
is equal to 0, no service violates the constraint.

• Service usage. A service usage requirement is satisfied
when: 1) the number of cloud services involved in
the allocation is less than max services; and 2) the
total size of the resources allocated to a cloud service
is at least min storage. Since the number of resources
allocated to a cloud service sj can be computed as
∑|R|

i=1(pij + eij), the first condition can be translated
as follows:

|S|
∑

j=1

⌈

∑|R|
i=1(pij + eij)

1 +
∑|R|

i=1(pij + eij)

⌉

≤ max services

Intuitively, to identify the number of services to
which at least a resource has been allocated (either
in plaintext or encrypted), the above formula divides
the number of resources allocated to a service sj by
itself. Note that we add 1 to the denominator (and
then round up the fraction) to ensure that the fraction
is always computable, also for cloud services that do
not manage any resource (i.e., for which the sum of
pij + eij over all the resources is equal to 0).
The second condition is instead translated as follows:
|R|
∑

i=1

(size◦(ri) · pij) + (size•(ri) · eij) ≥ min storage,

∀j = 1, . . . , |S| :

|R|
∑

i=1

(pij + eij) ≥ 1

The product size◦(ri)·pij (size•(ri)·eij , respectively)
is equal to size◦(ri) (size•(ri), respectively) only if
ri is allocated to sj . Hence, the sum computes the
overall storage at each service. Clearly, the constraint
should be satisfied only by services storing at least a
resource (i.e., for which the sum of pij + eij over all
the resources is at least 1).

Objective function. The objective function of our binary
programming problem, which needs to be minimized, mod-
els the cost of the allocation represented by variables pij and
eij . The storage and transfer costs illustrated in Section 7.2
are therefore computed considering the values of variables
pij and eij , to guarantee that the binary programming
problem is equivalent to Problem 7.1.

• Storage cost. The storage cost is translated as follows:

ST cost =

|S|
∑

j=1

|R|
∑

i=1

((size◦(ri) · pij) + (size•(ri) · eij))·

·st cost(sj )

where the storage cost st cost(sj) of cloud service
sj is multiplied by the size of the (plaintext or
encrypted) resources actually allocated to sj (i.e.,
size◦(ri) · pij + size•(ri) · eij ).

• Data transfer cost. The data transfer cost is translated
as follows:

TR cost =

|S|
∑

j=1

|R|
∑

i=1

((size◦(ri) · pij) + (size•(ri) · eij))·

·f (ri) · tr cost(sj )

where the data transfer cost of cloud service sj is
multiplied by the global amount of out-bound traffic
from sj , which is the product of the size of the re-
sources allocated to sj and the frequency of accesses.

Figure 14 graphically illustrates, in tabular form, the
parameters for the computation of a minimal allocation
for our running example. Vectors f, size◦ and size• report
the frequencies of access and the size of (plaintext and
encrypted) resources, which are reported on the rows of
the figure. Vectors st cost and tr cost on the bottom of the
figure represent the storage and transfer costs of the services
(on the columns of the figure). Cells with 1 in the central
matrices represent safe allocations for our running example
(modeled by value 1 assigned to values p̂ij and êij like in
Figure 13, also reported here for readability). This graphical
representation helps visualizing the process for computing
the cost of an allocation, which graphically consists in sums
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min
∑|S|

j=1

∑|R|
i=1((size

◦(ri) · pij) + (size•(ri) · eij)) · st cost(sj )+ // storage cost
∑|S|

j=1

∑|R|
i=1((size

◦(ri) · pij) + (size•(ri) · eij)) · f (ri) · tr cost(sj ) // transfer cost

s.t.
∑|S|

j=1 pij + eij = 1, ∀i = 1, . . . , |R| // allocation function
∑|S|

j=1(pij · p̂ij) + (eij · êij) = 1, ∀i = 1, . . . , |R| // protection requirements
∑|S|

j=1

(

∏

ri∈loc
(pij + eij)

)

= 1, ∀loc ∈ CoL // co-location requirements
∑|S|

j=1

(

∏

ri∈sep
pij

)

= 0,∀sep ∈ Sep // separation requirements

∑|S|
j=1

⌈

∑|R|
i=1

(pij+eij )
1+

∑|R|
i=1

(pij+eij)

⌉

≤ max services // service usage requirement

∑|R|
i=1(size

◦(ri) · pij) + (size•(ri) · eij) ≥ min storage,∀j = 1, . . . , |S| :
∑|R|

i=1(pij + eij) ≥ 1 // service usage requirement

Figure 15. Binary programming formulation of Problem 7.1

and multiplications among vectors (representing resource
sizes, access frequencies, and service costs) and matrices
(representing safe allocations). For instance, the transfer cost
of allocating admin to s1 in plaintext requires to multiply
the frequency of admin (0.15) by its size (25GB) by the
transfer cost of s1 (USD 50¢/GB), as reported in the figure.
Note that the cost of unsafe allocations (i.e., those for which
the cells of the central matrices do not contain value 1)
is automatically discarded by our approach, thanks to the
constraint imposed on the satisfaction of the protection
requirements that considers only those allocation for which
p̂ij or êij are equal to 1.

Having defined how the costs of an allocation can be
computed, the objective function of our binary program-
ming problem is formulated as follows:

min(ST cost + TR cost)

Figure 15 summarizes the formulation of a binary pro-
gramming problem equivalent to Problem 7.1. The allo-
cation in Figure 12(a) illustrates the output (in terms of
value assignment to variables pij and eij) of the problem
in Figure 15 for the running example, corresponding to the
minimal allocation α1 in Figure 8.

9 DISCUSSION

We conclude the presentation of our solution with some
observations related to the use of encryption at the data
owner side. In principle, the encryption of resources by the
data owner can have two main advantages: i) flexibility in
the allocation, especially with respect to the enforcement of
the separation requirements, and ii) savings in the economic
cost of the allocation. The first advantage arises from the
fact that the satisfaction of a separation requirement can
be guaranteed by encrypting at least one of the resources
involved. The encryption may then allow the management
of all resources in a separation requirement by (possibly)
the most convenient cloud service. For instance, consider
the separation requirement {agreements,suppliers} of
our running example. To correctly enforce it, the data
owner can encrypt resource agreements and allocate both
suppliers and (encrypted) agreements to s3, with a
cost of USD 8376.75¢ (i.e., as in the minimal allocation for
our running example). Alternatively, if we suppose that the
resources cannot be encrypted, the only way for correctly
enforcing the separation requirement consists in allocating
the resources to two different cloud services. In this case,

a minimal allocation would allocate suppliers to s2 and
agreements to s3, with a (higher) cost of USD 8540¢.

The second advantage (economical savings) arises from
the fact that in general, provided an expected correlation
between the cost of a service and the guarantees it of-
fers (meaning that, as often happens in real life scenarios,
more expensive services provide higher security guaran-
tees), owner-side encryption can enable the involvement
of less trusted and more affordable services for storing a
portion of the resources. To validate this observation, we
have considered a case study with 10 resources of 10GB each
with equal access frequency, and two cloud services sa and
sb with cost USD 10¢/GB and USD 14¢/GB respectively
(where the cost sums the storage and transfer since accesses
to all resources have the same frequency). For the case
study, we assume that sa can store only encrypted resources,
while sb is trusted to store plaintext resources. Figure 16(a)
illustrates the cost of an allocation varying the amount of
resources that the data owner is willing to encrypt, from
0GB (i.e., no encryption) to 100GB (i.e., all resources can
be encrypted), assuming a 10% increase in the size of
resources caused by encryption. The figure clearly shows
that, increasing the amount of encrypted resources, the cost
of the allocation decreases. This is due to the possibility of
storing more resources to the more affordable sa.

However, different encryption schemes might impact the
cost of an allocation in different ways. In extreme cases,
it might happen that the use of a cheaper cloud service
for storing encrypted resources results in non-minimal al-
locations, where the increase in the cost is due to a sub-
stantial increase in the size of the encrypted resources. We
have evaluated the impact of the size increase caused by
encryption on the case study above, evaluating the cost of
different allocations storing encrypted resources on sa (less
trusted and less expensive) and plaintext resources on sb
(more trusted and more expensive), varying the amount of
resources that can be encrypted (from 0GB to 100GB) and the
size increase (from 10% to 100%). The results are reported in
Figure 16(b). In this case study, encryption can help reduce
the cost of allocations when encryption causes an increase in
the size of resources up to 30%, meaning that it is actually
more convenient to store as many encrypted resources as
possible to sa. For an increase of 40%, the cost remains
stable regardless of the amount of encrypted resources,
while for larger increases storing encrypted resources at
sa would be more costly than keeping the resources at sb.
Note that our approach automatically takes into account all
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Figure 16. Effects of encryption on allocation cost varying the amount of
encrypted resources (a), and varying the amount of encrypted resources
and their size increase due to encryption (b)

these considerations, encrypting resources only if necessary
to satisfy requirements and if the resulting allocation has
minimum cost.

10 RELATED WORK

Substantial effort has been recently devoted to the defi-
nition of multi-cloud storage systems, possibly taking se-
curity and cost into account. The majority of the propos-
als however aim at leveraging the availability of multiple
providers/services to store fragments or replicas of a data
collection, while we aim at supporting (fine-grained) protec-
tion and global requirements to find an optimal allocation
of resources to services, without fragmenting or replicating
data. For example, the proposal in [5] splits data among
cloud providers based on a pre-defined budget with the
goal of involving no less than a certain number of providers
for the successful retrieval of a given data item. The stor-
age system in [6] considers data confidentiality, integrity,
and availability, which are also modeled by our security
properties, but aims at ensuring them replicating data on
different providers, and does not account for different re-
quirements over different data items (while we support
fine-grained protection requirements at the level of single
resource or classes thereof). The proposal in [7] splits data
among providers through erasure codes, and (re-)allocates
data chunks to providers depending on how the chunks are
accessed over the time and on the physical location and
economic cost of the allocation itself. Similarly, the works
in [4], [8], [9], [10] propose multi-cloud storage systems
where data are replicated/fragmented across providers
(differently from our approach that neither replicates nor
fragments data). In [11], the authors propose a framework
for monitoring multi-cloud storage platforms and adapting
their infrastructure to environmental changes (e.g., failures),
while we specifically aim at supporting multi-cloud data
allocation according to users’ requirements.

Another related line of work addresses the problem
of selecting an optimal (set of) provider(s) according to a
given policy. In [12], the authors propose an automated
approach for selecting storage providers based on user
requirements, focusing on cost and performances factors.
Our work, while related, provides a security model allowing
a data owner to formulate requirements guiding the allo-
cation process, and defines an approach for computing an
optimal allocation satisfying all the identified constraints.
The works in [13], [14], [15] adopt fuzzy logic and reasoning
for cloud providers selection. In particular, fuzzy logic is
adopted in [15] for supporting users in specifying high-level
requirements with natural language. The approach in [1]
proposes a language for expressing user requirements and
preferences, a formal model for reasoning on them, and
different strategies for ranking acceptable services. While
sharing with our problem the idea of a user-centered se-
lection approach, our work pursues a different goal related
to finding an optimal allocation of resources to providers
by considering both protection and global requirements.
In this regard, our approach can build on the proposals
in [1] and [15] for requirements specification. The proposal
in [16], while sharing with ours the goal of supporting the
selection of multiple providers/services, assumes require-
ments as importance levels given to pre-defined Service
Level Objectives (SLOs). Other related proposals address
the problem of determining an optimal resource allocation
considering providers load [17], fault tolerance aspects [18],
providers’ restrictions and users’ placement constraints [19],
the adoption of multi-cloud solutions for developing and
managing applications [20], and the integration of multi-
cloud storage with existing NAS-based programs [21].

Our support for user requirements show similarities
with the approach in [22], proposing a CSP-based auto-
mated framework for composing SLAs based on application
requirements and dependencies among the characteristics of
a provider. The approaches in [2], [23] propose a consensus-
based approach for accommodating contrasting require-
ments from multiple applications. While related, these pro-
posals address a problem differing from ours.

11 CONCLUSIONS

We proposed an approach for allocating resources to cloud
services. Our solution relies on the definition of a security
model based on abstract security properties, over which
cloud services can be classified and resource protection
requirements can be specified. The allocation of resources
to services, which even accounts for owner-side encryption,
guarantees the satisfaction of such protection requirements,
as well as of global allocation requirements that the data
owner can specify to limit the overhead at her side and
an excessive fragmentation of resources across multiple
services. We propose a formulation of the problem in terms
of a binary programming problem, to compute a correct
allocation that minimizes economic costs.
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