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Abstract. Let G be a finite group, and p a prime number; a character of G is called p-constant

if it takes a constant value on all the elements of G whose order is divisible by p. This is a
generalization of the very important concept of characters of p-defect zero. In this paper, we

characterize the finite p-solvable groups having a faithful irreducible character that is p-constant

and not of p-defect zero, and we will show that a non-p-solvable group with this property is an
almost-simple group.

1. Introduction

Given a finite group G and a prime number p, an irreducible character of G is said to be of
p-defect zero if its degree is a multiple of the full p-part of the order of G; as well known, these
characters play an important role in both ordinary and local Representation Theory of finite groups,
being a key ingredient for several fundamental problems in this research area.

According to Brauer-Nesbitt Theorem (see [5, Theorem 4.6]), irreducible characters of p-defect
zero take the value 0 on every p-singular element of the group (i.e., on every element whose order
is divisible by p), thus, in particular, they are constant on p-singular elements.

Taking this into account, M.A. Pellegrini and A. Zalesski recently introduced and studied in [10]
the more general class of p-constant characters, defined as the characters taking a constant value
on the p-singular elements of the group (the relevant constant value is actually an integer; see [10,
Lemma 2.1], or Lemma 3.1). This concept is naturally linked to modular Representation Theory,
as a character χ of a finite group G is p-constant if and only if there exist a complex number c and
integers aϕ such that

χ− c1G =
∑

ϕ∈IBrp(G)

aϕΦϕ,

where the Φϕ are the projective indecomposable characters, and 1G is the principal character of
G. In [10], the authors focus essentially on finite non-abelian simple groups, describing the pairs
(G, τ) where G is an alternating group, or a sporadic simple group, or a simple group of Lie type
in characteristic p, and τ is an irreducible p-constant character; their analysis shows, among other
things, that the constant value associated to an irreducible p-constant character of a non-abelian
simple group lies in the set {−2,−1, 0, 1}, unless the group is of Lie type in characteristic different
from p and it has a non-cyclic Sylow p-subgroup (note that, for instance, PSL2(7) has an irreducible
3-constant character with constant value 2). In the same spirit, M.A. Pellegrini studies other classes
of finite groups such as reflection groups or nilpotent groups (see [9]), and he conjectures that, for
every irreducible p-constant character of a finite perfect group, the relevant constant value lies in
{0,±1,±2} ([9, Conjecture 4.4]).
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We note that the non-abelian simple groups in the GAP library have an abundance of irreducible
p-constant characters which are not of p-defect zero, in particular for primes that are larger than 3.
Also, a faithful irreducible character can be p-constant and not of p-defect zero for different primes:
for instance, any of the irreducible characters of degree 56 of the first Janko group is both 11-
constant and 19-constant (note that the same characters are also of 2-defect zero and 7-defect zero).
However, as will follow from our main results, this cannot happen if the group is solvable.

The present paper is a contribution to this research field. Our main results can be summarized
by saying that a finite group having a faithful irreducible character which is p-constant and not of
p-defect zero is either p-solvable or almost-simple; moreover, in the p-solvable context, a complete
characterization is provided. (In the following statement, as customary, Op(G) denotes the largest
normal subgroup of G having p-power order.)

Theorem A. Let p be a prime number and let G be a finite group. Then the following properties
are equivalent.

(a) Op(G) is non-trivial, and G has an irreducible character χ that is faithful and p-constant.
(b) G has a unique minimal normal subgroup M , which is a Sylow p-subgroup of G, and a p-

complement H of G transitively permutes (acting by conjugation) the non-identity elements
of M .

In this case, χ = (1H)G − 1G is unique, and the constant value of χ on p-singular elements is −1.

The result above should be compared with Theorem B of [7], where the authors derive similar
conclusions for finite groups G having a faithful, irreducible, non-linear character whose values on
the p-singular elements of G are all roots of unity, under the assumption that Op(G) is non-trivial.

Theorem A can be viewed as a characterization of finite p-solvable groups having a faithful
irreducible character that is p-constant and not of p-defect zero, because, as explained in Remark 4.2,
these conditions are equivalent to those in (a) of the above statement. On the other hand, again in
Remark 4.2 we will see that the existence of a faithful irreducible character of p-defect zero doesn’t
constrain the structure of a p-solvable group significantly.

Finally, we note that the groups as in Theorem A, being 2-transitive permutation groups whose
socle is a Sylow p-subgroup, are well understood. In particular, the p-complement H of such a
group is either a group of semilinear maps (hence, it is metacyclic), or H belongs to a finite list of
exceptions; among the exceptional cases (that are all of even order), we find solvable groups with
derived length at most 4, or extensions of SL2(5). We refer the reader to Theorem 4.5 for a more
detailed statement.

Assume next that, for a given prime p, the finite non-p-solvable group G has a faithful irreducible
character that is p-constant and not of p-defect zero. By Theorem A, in this situation we have
necessarily Op(G) = 1 and, as we see with the following result, the investigation in this research
area reduces to the class of almost-simple groups.

Theorem B. Let p be a prime number, and let G be a finite group having an irreducible character
that is faithful, p-constant and not of p-defect zero. Assume also that Op(G) = 1. Then G is an
almost-simple group.

The requirement of faithfulness in the statements of Theorem A and Theorem B is necessary
in order to prevent the kernel of the relevant p-constant character from containing all p-singular
elements, so avoiding trivial situations. At any rate, since a p-constant character χ of G is also a
p-constant character of G/ker(χ), Theorem A and Theorem B can be applied to G/ker(χ).

Finally, a general observation concerning the degree of irreducible p-constant characters with
non-zero constant value.
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Theorem C. Let p be a prime number and let G be a finite group. If χ ∈ Irr(G) is p-constant and
not of p-defect zero, then χ(1) is not divisible by p.

This of course shows a very different behaviour of these characters with respect to irreducible
characters of p-defect zero. As remarked in Section 3, Theorem C holds in fact under the weaker
assumption that χ takes a non-zero constant value on the non-trivial p-elements of G.

Throughout the following discussion, every group is assumed to be a finite group.

2. Preliminary results and notation

We start by defining the central concept of this paper, that was already presented in the Intro-
duction.

Definition 2.1. Let G be a group, and let p be a prime number. We say that a character χ of G
is p-constant if χ takes a constant value, that we will denote by cχ, on all the elements of G whose
order is a multiple of p.

As we have seen, irreducible characters of p-defect zero are particular p-constant characters;
nonetheless, they turn out to behave differently from p-constant characters with non-zero constant
value, and we will see a first instance of this fact in Lemma 2.2.

Given a group G, let G0 denote the set of p-regular elements (i.e., elements whose order is not
divisible by p) of G; in the proof of Lemma 2.2, we will use the following characterization of p-blocks
for ordinary characters. Consider the graph whose vertex set is Irr(G), and where two vertices φ, ψ

are adjacent if and only if
∑
x∈G0 φ(x)ψ(x) 6= 0: it can be shown that the irreducible characters φ

and ψ lie in the same p-block of G if and only if they lie in the same connected component of this
graph (see Theorem (3.9) of [6]).

Lemma 2.2. Let G be a group, and let p be a prime number. If χ ∈ Irr(G) is a p-constant character
which is not of p-defect zero, then χ lies in the principal p-block of G.

Proof. By our assumptions, we have χ(x) = cχ 6= 0 for every element x in G−G0; note that G 6= G0,
as χ is not of p-defect zero. We will obtain the desired conclusion by showing that χ is adjacent to
the principal character 1G in the graph defined above. In fact, as we can clearly assume χ 6= 1G,
we have

0 = [χ, 1G] =
1

|G|
∑
x∈G

χ(x)1G(x) =
1

|G|
(|G−G0|cχ +

∑
x∈G0

χ(x)1G(x)) .

Hence
∑
x∈G0 χ(x)1G(x) = −|G−G0|cχ 6= 0, as claimed. �

Remark 2.3. Let G be a group and p a prime number: we observe that if G has a non-trivial
normal p-subgroup M , then G does not have any irreducible character of p-defect zero. In fact, let
χ be in Irr(G) and let θ be an irreducible constituent of χM ; Clifford Theory yields that χ(1)/θ(1)
is a divisor of |G/M |, and it is therefore easy to see that the p-part of χ(1) is strictly smaller than
that of |G|.

Now, assume (as above) that Op(G) > 1, and that G has an irreducible character χ that is
faithful and p-constant. Then Lemma 2.2, and the observation in the paragraph above, yield that
χ lies in the principal p-block of G, whence its kernel contains Op′(G); but, χ being faithful, this
means that Op′(G) = 1 (and Op(G) = F(G)).

We also remark that if, for a character χ, one considers the weaker condition that χ takes a
constant value on the non-trivial p-elements rather than on the whole set of p-singular elements,
then the conclusions of Lemma 2.2 and of the above paragraph are no longer true in general; we
refer the reader to Section 3 for some more comments.
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In the following proposition we recall some well-known facts concerning the theory of permutation
group (conclusions (a), (b) and (c)), also adding an observation which is relevant in the present
context (conclusion (d)). We recall that, given a group G acting on a finite set Ω and setting,
for g ∈ G, π(g) to be the number of fixed points of g in Ω, the class function χ = π − 1G is a
character of G, called the deleted permutation character, and that χ is irreducible if and only if G
acts 2-transitively on Ω ([3, Corollary (5.17)]).

Proposition 2.4. Let H be a group acting faithfully (by automorphisms) on a non-trivial group M ,
and let G = MH be the corresponding semidirect product. Also, let Ω denote the set {Hm | m ∈M}
of the right cosets of H in G. If H acts transitively on the set of non-identity elements of M , then
the following conclusions hold.

(a) The order of M is a p-power for a suitable prime p, and M is the unique minimal normal
subgroup of G.

(b) H transitively permutes (acting by right multiplication) the set Ω−{H} of non-trivial cosets.
(c) G is a 2-transitive permutation group on Ω (via right multiplication), having M as a regular

normal subgroup.
(d) If |H| is coprime to p, then the deleted permutation character χ ∈ Irr(G) associated to the

action described in (c) is p-constant, with constant value cχ = −1.

Proof. Since, for every pair of non-trivial elements in M , there exists an automorphism of M
(induced by an element of H) mapping one element to the other, we have that the non-trivial
elements of M have all the same order, which is then necessarily a prime number p. Also, by the
same reason, it is clear that M does not have any H-invariant proper non-trivial subgroup, which
makes M a minimal normal subgroup of G. To conclude the proof of (a), observe now that every
normal subgroup of G whose order is divisible by p contains M , whereas every normal p′-subgroup
of G should lie in CH(M), which is trivial by our assumptions.

Part (b) immediately follows from the fact that, as easily checked, the action of H by right
multiplication on the set Ω−{H} is equivalent to the action of H on the non-trivial elements of M .

As regards (c), observe that the core of H in G (i.e., CH(M)) is trivial, thus G is actually a
permutation group on the set Ω. As the stabilizer H of a point (the trivial coset) transitively
permutes the remaining elements of Ω, the relevant action of G on Ω is 2-transitive. The last claim,
concerning the fact that M acts regularly on Ω, can be easily verified.

Finally, if χ is the deleted permutation character associated to the action of (c), then we have
(1H)G = 1G+χ. Under our coprimality assumption, H is a p-complement of G, and therefore every
p-singular element x of G does not lie in any conjugate of H; now, as (1H)G takes the value 0 on
every element of this kind, we immediately get χ(x) = −1, which finishes the proof of (d). �

To close this preliminary section, we discuss the structure of the p-solvable 2-transitive groups
having a non-trivial normal p-subgroup. In the following, we denote by Γ(pn), where p is a prime and
n a positive integer, the group of the semilinear transformations of GF(pn) over GF(p), i.e. the maps
of GF(pn) onto itself of the form x 7→ axσ, where a ∈ GF(pn), a 6= 0 and σ ∈ Gal(GF(pn)|GF(p)).
Moreover, we denote by Γ0(pn) the cyclic subgroup of Γ(pn) consisting of the maps x 7→ ax, with
a ∈ GF(pn), a 6= 0.

Theorem 2.5 ([8, Theorem I]). Let G be a 2-transitive permutation group of degree d, let H be
a point stabilizer of G and p a prime. If G is p-solvable and Op(G) 6= 1, then d = pn, for some
positive integer n, and we have one of the following.

(i) H is (permutation) isomorphic to a subgroup of the semilinear group Γ(pn);
(ii) H is solvable and pn ∈ {32, 52, 72, 112, 232, 34};
(iii) H is non-solvable and pn ∈ {112, 192, 292, 592}.
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3. On the degree of p-constant characters

Recall that, given a prime number p, an irreducible character of p-defect zero of the group G has
(by definition) a degree that is divisible by the full p-part of the order of G. Our aim in this section
is to observe that, on the other hand, irreducible p-constant characters with non-zero constant value
have a degree that is coprime to p. This is clearly another feature that separate characters of p-defect
zero from the other p-constant characters (unless of course the order of G is coprime to p).

Another interesting difference is that, as shown by Theorem 3.2, if an irreducible character of a
group G takes the value 0 on the non-trivial p-elements of G, then it takes this value on the whole
set of p-singular elements. On the other hand, easy examples show that this fails for a non-zero
constant value. However, the results of this section (as well as part of those in the following one)
hold under the weaker assumption that the relevant irreducible character takes a constant value on
the non-trivial p-elements. Thus we will state them in full generality.

The following result is essentially Lemma 2.1 of [10].

Lemma 3.1. Let p be a prime number, let G be a group whose order is divisible by p, and let P be
a Sylow p-subgroup of G. If χ ∈ Irr(G) takes a constant value cχ on the elements of P − {1}, then
cχ is an integer congruent to χ(1) modulo |P |.

Proof. Let α be a linear character in Irr(P )− {1P }. Then

[χP , α] =
1

|P |
∑
x∈P

χ(x)α(x) =
1

|P |

(
χ(1)α(1) +

∑
x∈P−{1}

cχ α(x)
)

=

1

|P |
(χ(1)α(1)− cχ α(1)) + cχ [1P , α] =

1

|P |
(χ(1)− cχ).

Hence cχ = χ(1)− |P | · [χP , α], and the claim follows. �

Next, we recall the aforementioned fundamental result about irreducible characters of p-defect
zero.

Theorem 3.2 ([5, Corollary 4.7]). Let p be a prime number, and let χ be an irreducible character
of a group G. Then the following conditions are equivalent.

(a) χ is of p-defect zero.
(b) χ(g) = 0 for every p-singular element g ∈ G.
(c) χ(g) = 0 for every non-trivial p-element g ∈ G.

Actually, condition (c) in the above statement can be replaced by χ taking the value 0 on the
elements of G having order p. This follows by a theorem due to R. Knörr, that we state in a slightly
modified form.

Theorem 3.3. Let p be a prime number and let G be a group. If χ ∈ Irr(G) is such that∑
o(x)=p χ(x) is congruent to 0 modulo p, then χ is of p-defect zero.

Proof. The original hypothesis of this theorem, which can be found as Theorem 4.8 in [5], is that∑
o(x)=p χ(x) is actually 0. Nevertheless, the proof as given in [5] (due to J. Murray) goes through

identically with the weaker assumption considered here. �

We are now in a position to obtain the desired information (i.e., Theorem C) about the degree
of a p-constant character that is not of p-defect zero.

Theorem 3.4. Let p be a prime number and let G be a group. If χ ∈ Irr(G) takes a constant value
cχ 6= 0 on the non-trivial p-elements of G, then χ(1) is not divisible by p.
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Proof. We can clearly assume that the order of G is divisible by p. If our conclusion is false, then
Lemma 3.1 yields that cχ is congruent to 0 modulo p, and so is clearly

∑
o(x)=p χ(x). Theorem 3.3

implies now that χ is of p-defect zero, contradicting (via Brauer-Nesbitt’s Theorem) the fact that
cχ is not 0. �

4. When Op(G) is non-trivial

In this section we prove Theorem A, which provides a characterization of groups having a non-
trivial normal p-subgroup and a faithful irreducible character that is p-constant. We state it again
here for the convenience of the reader.

Theorem 4.1. Let p be a prime number and let G be a group. Then the following properties are
equivalent.

(a) Op(G) is non-trivial, and G has an irreducible character that is faithful and p-constant.
(b) G has a unique minimal normal subgroup M , which is a Sylow p-subgroup of G, and a p-

complement H of G transitively permutes (acting by conjugation) the non-identity elements
of M .

In this case, χ = (1H)G − 1G is unique, and the constant value of χ on p-singular elements is −1.

This result is an immediate consequence of Proposition 2.4, together with Propositions 4.3 and
Proposition 4.4 that will be proved after the following remark.

Remark 4.2. Note that if the group G is p-solvable, and it has a faithful irreducible character χ
that is p-constant but not of p-defect zero (i.e., cχ 6= 0), then G is as in (a) of the above statement.
In fact, χ lies in the principal p-block of G by Lemma 2.2, so its kernel contains Op′(G), which is
then trivial because χ is faithful. As clearly condition (b) implies the p-solvability of G, we conclude
that Theorem 4.1 yields a characterization of the p-solvable groups having a faithful irreducible
character which is p-constant but not of p-defect zero; see also Theorem 4.5.

On the other hand, the assumption of having a faithful irreducible character of p-defect zero
does not seem to constrain the structure of a p-solvable group. To justify the above claim, consider
a prime p and any p-solvable group H: for any choice of a prime q not dividing the order of H,
it is easily seen that there exists an elementary abelian q-group Q, on which H acts faithfully by
automorphism, inducing a regular orbit (i.e., there exists x ∈ Q such that CH(x) = 1). Denoting
by G the corresponding (p-solvable) semidirect product QH, by coprimality there exists λ ∈ Irr(Q)
such that IG(λ) = Q, hence χ = λG is an irreducible character of G having p-defect zero, whose
kernel lies in Q. So, for instance, the p-length of G/ker(χ) can be arbitrarily large.

We move now to the proof of the two propositions that yield Theorem 4.1.

Proposition 4.3. Let p be a prime number, and let G be a group having a faithful irreducible
character χ that takes a constant value on the non-trivial p-elements of G; assume also that M =
Op(G) is non-trivial. Then M is a Sylow p-subgroup of G. Furthermore, denoting by H a p-
complement of G, we have CH(M) = 1, and H transitively permutes (acting by conjugation) the
non-identity elements of M .

Proof. Let cχ be the constant value of χ on the non-trivial p-elements of G (recall that, by Theo-
rem 3.2 and Remark 2.3, we have cχ 6= 0). Observe that χM − cχ1M is a class function of M which
vanishes on all the non-trivial elements of M but not on the identity, as otherwise the kernel of
χM would contain M , against the fact that χ is faithful; therefore, as well known, χM − cχ1M is a
multiple of the regular character of M by the scalar bM = (χ(1)− cχ)/|M |. Now we get

χM = (bM + cχ)1M + bM
∑

θ∈Irr(M)−{1M}

θ.
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Since, by Clifford Theory, the irreducible constituents of χM are pairwise conjugate (and since 1M
does not appear among these constituent), we deduce that bM = −cχ, and that all the non-principal
irreducible characters of M lie in the same orbit under the action of G.

Next, let P be a Sylow p-subgroup of G. As above, the class function χP −cχ1P being identically
zero on the non-trivial elements of P , we have that χP − cχ1P is a multiple of the regular character
of P by the scalar bP = (|M |/|P |)bM = −(|M |/|P |)cχ, and so we get

χP = (bP + cχ)1P + ∆,

where ∆ is a linear combination of (all the) non-principal irreducible characters of P . But again,
since χM = (χP )M does not have the principal character 1M among its irreducible constituents, the
coefficient bP + cχ = −cχ(|M |/|P | − 1) is forced to be 0. As a consequence we get |M |/|P | = 1,
whence |M | = |P | (i.e., M is a Sylow p-subgroup of G).

Finally, taking H to be a p-complement of G, we have CH(M) = 1 because, by Remark 2.3,
Op′(G) is trivial. Moreover, H transitively permutes the non-principal irreducible characters of M ,
because so does G = MH and clearly M stabilizes all the elements in Irr(M); since, by coprimality,
the action of H on Irr(M)−{1M} is equivalent to the conjugation action of H on the set M −{1},
we conclude that also the latter action is transitive. �

The substantial part of the following proposition is the “uniqueness part”; here the full strength
of Definition 2.1 (i.e., the requirement for a p-constant character to be constant on all the p-singular
elements of the group) will be crucial.

Proposition 4.4. Let H be a group acting faithfully and coprimely (by automorphisms) on a non-
trivial group M , and let G = MH be the corresponding semidirect product. If H acts transitively
on the set of non-identity elements of M , then M is an elementary abelian p-group for a suitable
prime p, and G has a unique irreducible character χ which is faithful and p-constant. Moreover, we
have χ(1) = |M | − 1 and cχ = −1.

Proof. Observe that we are under the hypotheses of Proposition 2.4 and, in view of that, we already
know that M is an elementary abelian p-group for a suitable prime p, say of order pn; also, G is a
2-transitive permutation group on Ω = {Hm | m ∈ M} via right multiplication (recall that the
latter action is equivalent to the action of G on M where M acts regularly by right multiplication,
and H acts by conjugation), and G does have a faithful p-constant irreducible character, namely,
the deleted permutation character. Therefore we will work to establish the uniqueness part of the
conclusion.

Since G is p-solvable and M = Op(G) 6= 1, by Theorem 2.5 we have one of the following three
cases:

(a): H is a subgroup of the semilinear group Γ(pn); or
(b): n = 2 and p ∈ {3, 5, 7, 11, 19, 23, 29, 59}; or
(c): pn = 34.

Let us consider a non-identity element x of M and let A = CH(x) be its centralizer (i.e. stabilizer,
if we use the language of permutation actions) in H. We claim that A is a cyclic group. In fact:
in case (a) A intersects trivially the group Γ0(pn) of multiplication maps, so A is isomorphic to a
subgroup of the cyclic group Γ(pn)/Γ0(pn); in case (b), H can be seen as a subgroup of GL2(p)
and A ∩ SL2(p) = 1 (as all elements of SL2(p) = 1 having eigenvalue 1 are p-elements); in case (c),
we refer to the structure of H as given in [2], Example XII.7.4: H = NCA where N = F(H) is a
central product of D8 and Q8, C is cyclic of order 5 (acting irreducibly on N/N ′) and A is any of
the nontrivial subgroups of a cyclic group B of order 8. (for completeness, we mention that B ∩N
is a non-central subgroup of order 2 of N).
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Let χ be a faithful character in Irr(G) (which exists, as G has a unique minimal normal subgroup),
and let φ be an irreducible constituent of χM . Clearly, φ is not the principal character 1M . By
Clifford Theory, all the H-conjugates of φ are constituents of χM and, since H transitively permutes
the elements of Irr(M) − {1M}, we see that every non-principal irreducible character of M is a
constituent of χM . Also, by Brauer Permutation Lemma, φ can be chosen so that IG(φ) = MA,
where IG(φ) is the inertia subgroup of φ in G.

The linear character φ extends to its inertia subgroup MA because A is cyclic (or also because
MA splits over M), and Clifford Correspondence yields that χ = θG where θ ∈ Irr(MA) is an
extension of φ; in particular, we get χ(1) = |G : MA| = |H : A| = pn − 1.

Our aim will be to evaluate χ on the p-singular elements of G, so let g = gpgp′ be such an
element, decomposed as a product of its p-part gp and its p′-part gp′ (gp and gp′ are the uniquely
defined powers of g such that gp is a p-element and gp′ has order coprime to p; clearly, gp 6= 1 as g
is p-singular). Up to conjugation in H, again in view of the transitivity of H on M − {1}, we can
assume that gp is the element x considered above; but, up to conjugation by a suitable element of
M , we can also assume that y = gp′ lies in H, hence in A = CH(x). In other words, if we want
to control the values that χ takes on p-singular elements of G, it will be enough to compute χ(xy)
where y runs in A.

Let Y = 〈y〉 and MY = CM (Y ). We claim that NH(Y ) acts transitively on the set MY − {1}.
In fact, observe that x ∈ MY and that, for any x1 ∈ MY there exists an element h ∈ H such that

x1 = xh. So Y ≤ CH(x1) = (CH(x))h = Ah and hence both Y and Y h
−1

are subgroups (of the

same order) of the cyclic group A; as a consequence we get Y = Y h
−1

, thus h ∈ NH(Y ).
Let T be a right transversal of A in H; so T is also a transversal of MA in G. Let TY = T∩NH(Y ).

The map f : TY → MY − {1} such that, for t ∈ TY , f(t) = xt
−1

, is a bijection. In fact, f is

surjective by the previous paragraph and it is injective as xt
−1

= xt
′−1

, for t, t′ ∈ T , implies t = t′

(as t−1t′ ∈ CH(x) = A).
Let θ◦ be the class function of G such that θ◦(g) = θ(g) if g ∈MA and θ◦(g) = 0 if g 6∈MA. For

t ∈ T , we claim that txyt−1 lies in MA if and only if t lies in NH(Y ), i.e. if and only if t ∈ TY . In

fact, txyt−1 = (txt−1)(tyt−1) lies in MA if and only if tyt−1 ∈ A, which is equivalent to Y t
−1 ≤ A;

but A is cyclic, so this happens if and only if Y t
−1

= Y , i.e. if and only if t ∈ NH(Y ).
Finally, let us consider the linear character α = θA ∈ Irr(A). In the cases (a) and (b) above, A

intersects trivially a normal subgroup with abelian (cyclic) factor group, so A ∩ H ′ = 1 and this
implies that NH(Y ) = CH(Y ); hence, tyt−1 = y for every t ∈ TY . For the case (c), one can easily
check (using the matrix presentation in [2]) that if H = NCA where A is a subgroup of a cyclic of
order 8, then for Y ≤ A we have NH(Y ) = CH(Y ) if |Y | ∈ {1, 2, 8} and [NH(Y ) : CH(Y )] = 2 if

|Y | = 4. This implies that α(tyt−1) = α(y) if o(y) 6= 4 and that α(tyt−1) ∈ {α(y), α(y)} if o(y) = 4.
So, assuming o(y) 6= 4 in case (c), we have

χ(xy) =
∑
t∈T

θ◦(txyt−1) =
∑
t∈TY

α(tyt−1)θ(txt−1) =

= α(y)
∑
t∈TY

φ(txt−1) .

We work next to show that
∑
t∈TY φ(txt−1) = −1. We recall that the map f : TY → MY − {1}

such that, for t ∈ TY , f(t) = xt
−1

, is a bijection. We also observe that MY is not contained in
the kernel of the linear character φ: in fact, as Y stabilizes φ, it follows that [M,Y ] ≤ ker(φ),
M = [M,Y ]×MY and φ 6= 1M . Thus, [φMY

, 1MY
] = 0 and so we have
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∑
t∈TY

φ(txt−1) =
∑

z∈MY −{1}

φ(z) = |MY |[φMY
, 1MY

]− φ(1) = −φ(1) = −1.

Our conclusion so far is that χ(xy) = −α(y) for every y ∈ A (in particular, also when y = 1),
with the only exception of case (c) and o(y) = 4.

In view of this fact, if χ is p-constant, then −α(y) = χ(xy) = cχ for all y ∈ A (so α(y) = α(1) = 1)

in all cases except in case (c) when o(y) = 4; but in this case y2 ∈ ker(α), so α(y) = α(y) and with
the same argument we still get α(y) = 1. Conversely, if α(y) = 1 for every y ∈ A, then χ is
p-constant.

We are now in a position to finish the proof. Rephrasing the paragraph above, we have that the
faithful irreducible character χ of G, whose degree we already know to be pn − 1, is p-constant if
and only if it is induced by an extension θ of φ to MA such that ker(θ) contains A, and in this
case the constant value cχ is −1. Now, there exists a unique extension with this property: it is the
canonical extension of φ to MA (see Lemma 13.3 of [3]). This concludes the proof. �

The solvable 2-transitive groups were first determined by B. Huppert in [1] (see also [4, Theo-
rem 6.8]). We use this knowledge and Passman’s Theorem 2.5 in order to give a detailed description
of the p-solvable groups that have a faithful irreducible p-constant character, not of p-defect zero,
for a prime number p.

Theorem 4.5. Let G be a p-solvable group, P a Sylow p-subgroup of G and H a p-complement of
G. Assume that G has a faithful irreducible character χ which is p-constant and not of p-defect zero.
Then P is the unique minimal normal subgroup of G and, setting pn = |P |, we have the following
properties;

(a): if H is non-solvable, then n = 2, p ∈ {11, 19, 29, 59} and H = KZ is a central product of
K ∼= SL2(5) and Z cyclic of order dividing p− 1;

(b): either H ≤ Γ(pn), so H is metacyclic, or
(b1): n = 2, p ∈ {5, 7, 11, 23}, F(H) is a central product of a quaternion group of order

8 and a cyclic group of order dividing p − 1 and H/F(H) is isomorphic to either the
cyclic group C3 or the symmetric group Sym(3);

(b2): pn = 34 and H is an extension of an extraspecial group of order 25 by a subgroup, of
order multiple of 5, of the Frobenius group of order 20.

Proof. By Proposition 2.4, Remark 4.2 and Proposition 4.3, G is a 2-transitive permutation group, P
is its unique minimal normal subgroup and H is a point stabilizer. We can hence apply Theorem 2.5.
If H is non-solvable, then |P | = p2, p ∈ {11, 19, 29, 59}; so, in particular, we can identify H with a
subgroup of GL2(p). Recalling the subgroup structure of SL2(p) (see for instance Theorem 6.17 in
Chapter 3 of [11]), we see that K = H ∩ SL2(p) is isomorphic to SL2(5). One can check that the
normalizer in GL2(p) of K is the product KZ, with Z = Z(GL2(p)) and hence, by Dedekind’s Law,
we have (a).

If, on the other hand, H is solvable and not a subgroup of the semilinear group Γ(pn), then by
Theorem 2.5 either pn = 34 or n = 2 and p ∈ {3, 5, 7, 11, 23}. By Theorem 6.8 of [4], we have that H
has the structure described in (b1) and (b2); note that p 6= 3, as otherwise H would be isomorphic
to either SL2(3) or GL2(3), against (p, |H|) = 1. �

5. When Op(G) is trivial: a proof of Theorem B

In this section, we consider a situation that is complementary to the previous one: we assume that
a group G for which Op(G) is trivial has an irreducible character that is faithful, p-constant and
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not of p-defect zero. As already observed, the faithfulness of the relevant character forces Op′(G)
to be trivial as well, thus our group has in fact a trivial Fitting subgroup.

We will first show in Lemma 5.1 that, under our assumptions, G has a unique minimal normal
subgroup. Then in Theorem 5.2, which is Theorem B, this minimal normal subgroup is proved to
be simple.

Lemma 5.1. Let p be a prime number, and let G be a group having an irreducible character that
is faithful, p-constant and not of p-defect zero. Assume also that Op(G) = 1. Then G has a unique
minimal normal subgroup.

Proof. For a proof by contradiction, assume that G has two distinct minimal normal subgroups
M1, M2; denoting by χ the character as in our hypotheses, set M = M1 ×M2, and let θ1 × θ2
be an irreducible constituent of χM (where θ1 and θ2 are suitable irreducible characters of M1

and M2, respectively). If T is a right transversal for the inertia subgroup of θ1 × θ2 in G, setting
e = [θ1 × θ2, χM ], by Clifford Theory we get

cχ = χ(xy) = e
∑
t∈T

(θ1 × θ2)t(xy) = e
∑
t∈T

θt1(x)θt2(y),

whenever x in M1 or y in M2 is p-singular. Note that, as Op′(G) = 1, the order of M1 is certainly
divisible by p; therefore we can choose x0 to be an element of M1 whose order is divisible by p, and
the hypothesis of χ being p-constant yields that the function∑

t∈T
θt1(x0)θt2 −

(∑
t∈T

θt1(x0)θ2(1)

)
1M2

takes the value 0 on every y in M2.
Observe that the above function is expressed as a linear combination of the irreducible charaters

of M2, in which the principal character 1M2
appears with the coefficient

∑
t∈T θ

t
1(x0)θ2(1) (this

follows taking into account that, as χ is faithful, θ2 and all its G-conjugates are non-principal). But
now, the linear independence of the elements in Irr(M2) forces

∑
t∈T θ

t
1(x0)θ2(1) = 0, i.e., χ(x0) = 0.

Therefore, as χ is p-constant, we get cχ = 0 against the fact that χ is not a character of p-defect
zero. This contradiction completes the proof. �

Theorem 5.2. Let p be a prime number, and let G be a group having an irreducible character
that is faithful, p-constant and not of p-defect zero. Assume also that Op(G) = 1. Then G is an
almost-simple group.

Proof. By the previous lemma, we know that G has a unique minimal normal subgroup M , and
our aim is to show that M is a simple group. Let S be a simple subnormal subgroup of G with
S ≤ M , and let {x1, x2, . . . , xt} be a right transversal of NG(S) in G, with x1 = 1. Then M =
Sx1 × Sx2 × · · · × Sxt . We assume, working by contradiction, that t ≥ 2, i.e. NG(S) 6= G.

For x ∈ G we have

Sxix
−1

= Sxσx(i)

for a permutation σx, depending on x, of the set Ω = {1, 2, . . . , t}. We observe that this defines a
transitive action of G on Ω and that x ∈ NG(S) if and only if σx(1) = 1.

Let θi ∈ Irr(S), for i ∈ Ω, and let x ∈ G. Then it can be checked that

(θx1
1 × · · · × θ

xt
t )

x
=
(
θσx(1)

)xσx(1)x × · · · ×
(
θσx(t)

)xσx(t)x .

Now, let χ ∈ Irr(G) be as in our hypotheses, and let ψ = θx1
1 × · · · × θxtt be an irreducible

constituent of χM , where θi ∈ Irr(S). Replacing ψ by a suitable G-conjugate, we may assume that
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θ1 6= 1S , since ψ 6= 1M and the action of G on Ω is transitive. By Clifford’s Theorem we have

χM = v
∑
x∈T

ψx,

for some v > 0 and a subset T of G (this T is a right transversal of the inertia subgroup IG(ψ) of ψ
in G). Let U = Sx2 ×· · ·×Sxt . We fix a p-singular element x0 ∈ S (recall that |M | is divisible by p
because Op′(G) = 1) and we define χ0(u) = χ(x0u) for u ∈ U . Then χ0 = k1U , for some constant
k 6= 0 (by Theorem 3.2). However, for u ∈ U we have

k = χ0(u) = χ(x0u) =
∑
x∈T

v(θσx(1))
xσx(1)x(x0)[(θσx(2))

xσx(2)x × · · · × (θσx(t))
xσx(t)x](u) .

Thus

(1) k1U =
∑
x∈T

cxϕx ,

where cx = v(θσx(1))
xσx(1)x(x0) and

(2) ϕx = (θσx(2))
xσx(2)x × · · · × (θσx(t))

xσx(t)x ∈ Irr(U)

for x ∈ T . Then
k1U =

∑
x∈T

cxϕx =
∑
x∈T
ϕx 6=1U

cxϕx +
∑
x∈T
ϕx=1U

cx1U .

Hence ∑
x∈T
ϕx 6=1U

cxϕx = 0 ,

by the linear independence of characters.
Let x ∈ T such that ϕx = 1U (observe that such an element exists by (1), as k 6= 0). Then

(θσx(i))
xσx(i)x = 1Sxi

for i ≥ 2. Therefore θσx(i) = 1S for all i ≥ 2. So

ψ = θx1
1 × 1Sx2 × · · · × 1Sxt .

Since θ1 6= 1S , we have that IG(ψ) ≤ NG(S). Moreover, if x ∈ T and ϕx = 1U , then σx(i) ≥ 2 for
all i ≥ 2, so σx(1) = 1 and x ∈ NG(S). Let T0 = T ∩NG(S) and observe that T0 6= T because
G 6= NG(S). Observing that if x ∈ T0, then ϕx = 1U by (2), we conclude that for x ∈ T we have
ϕx = 1U if and only if x ∈ T0. Finally, if x ∈ T − T0, then σx(1) > 1, θσx(1) = 1S and cx = v. We
conclude that

0 =
∑

x∈T−T0

cxϕx = v

( ∑
x∈T−T0

ϕx

)
.

Evaluating in 1, we get a contradiction. �

As the final remark, assume that G is an almost-simple group with socle M and that, for a
given prime number p, the character χ ∈ Irr(G) is p-constant and not of p-defect zero. It might be
worth observing that the irreducible constituents of the restriction χM can be all non-p-constant.
This happens for instance considering G = Sym(5) and its irreducible character of degree 6, which
is 5-constant but, when restricted to Alt(5), has two irreducible constituents that are both non-5-
constant.
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Email address: lucia.sanus@uv.es


	1. Introduction
	2. Preliminary results and notation
	3. On the degree of p-constant characters
	4. When Op(G) is non-trivial
	5. When Op(G) is trivial: a proof of Theorem B
	References

