Corrigenda to "Reducible Veronese surfaces"

Alberto Alzati and Edoardo Ballico*

(Communicated by K. Strambach)

Abstract. We correct the definition and the list of all reducible Veronese surfaces in our previous paper "Reducible Veronese surfaces", *Adv. Geom.* **10** (2010), 719–735.

Key words. Reducible surfaces, projectability.

2000 Mathematics Subject Classification. Primary 14J25; Secondary 14N20

1 Introduction

In [1] we claimed to give the complete list of reducible Veronese surfaces according to the following definition.

Definition 1. For any positive integer $n \ge 1$, we will call *reducible Veronese surface* any algebraic surface $X \subset \mathbb{P}^{n+4}(\mathbb{C})$ such that:

- i) \boldsymbol{X} is a non-degenerate, reduced, reducible surface of pure dimension 2;
- ii) deg(X) = n + 3 and cod(X) = n + 2, so that X is a minimal degree surface;
- iii) $\dim[\operatorname{Sec}(X)] \leq 4$, so that it is possible to choose a generic linear space $\mathcal L$ of dimension n-1 in $\mathbb P^{n+4}$ such that $\pi_{\mathcal L}(X)$ is isomorphic to X, where $\pi_{\mathcal L}$ is the the rational projection $\pi_{\mathcal L}: \mathbb P^{n+4} \dashrightarrow \Lambda$ from $\mathcal L$ to a generic target $\Lambda \simeq \mathbb P^4$;
- iv) X is connected in codimension 1, i.e. if we drop any finite number (possibly 0) of points P_1, \ldots, P_r from X then $X \setminus \{P_1, \ldots, P_r\}$ is connected;
- v) X is a locally Cohen–Macaulay surface.

Condition iii) deserves particular attention. When $\dim[\operatorname{Sec}(X)] \leq 4$, for a generic linear (n-1)-dimensional linear space $\mathcal L$ we have that $\pi_{\mathcal L|X}$ is injective. However this condition, obviously necessary, is not sufficient to get that $\pi_{\mathcal L|X}$ is an isomorphism. The condition $\dim[\operatorname{Sec}(X)] \leq 4$ is in fact equivalent to have that $\pi_{\mathcal L|X}$ is only a J-embedding

^{*}This work is within the framework of the national research projects: "Geometry on Algebraic Varieties" Cofin 2008 of MIUR and "Geometric Properties of Real and Complex Varieties" Cofin 2007 of MIUR.

according to the definition of Johnson (see [5], 1.2, and Proposition 1.5 of [6], chapter II, p. 37). To have that X is a reducible Veronese surface, i.e. to have that $\pi_{\mathcal{L}|X}$ is an isomorphism, instead of iii) we need to use a different condition:

iii)'
$$\dim[\operatorname{Sec}(X)] \leq 4$$
 and $\dim[\bigcup_{x \in X} \langle T_x(X) \rangle] \leq 4$,

where $T_x(X)$ is the Zariski tangent space to X at x and $\langle V \rangle$ is the linear span of a variety V in a projective space. See [2] for the proof of the equivalence. From now on a reducible Veronese surface will be a surface satisfying conditions i), ii), iii)', iv) and v).

Throughout [1], to get condition iii) for the members of our list, we used the condition on $\dim[\operatorname{Sec}(X)]$ and, independently, the fact that $\pi_{\mathcal{L}|X}$ has to be an isomorphism, see for instance the proof of Lemma 4. As the condition on $\dim[\operatorname{Sec}(X)]$ is necessary for iii)', it follows that to classify reducible Veronese surfaces, according to the above new definition, we have to check the list of [1] and we have to exclude surfaces for which $\dim[\bigcup_{x\in X}\langle T_x(X)\rangle]\leq 4$ does not hold.

In this note we perform this check and we also fix some mistakes in the proof of Proposition 2 of [1].

2 Refining and completing the list

The list in [1] contained three types of surfaces X:

- a_n) for any integer $n \ge 1$, a suitable union of n+3 planes which sits as a linearly normal scheme in \mathbb{P}^{n+4} (see Definition 2 of [1] for a precise description); these surfaces were introduced in [4].
- b) $X = Q \cup X_1 \cup X_2$: the union of a smooth quadric surface Q in \mathbb{P}^3 and two planes X_1 and X_2 sitting as a linearly normal scheme in \mathbb{P}^5 ; X_1 and X_2 cut Q, respectively, along two lines L_1 , L_2 , intersecting at a point $P := X_1 \cap X_2$, and $L_1 = \langle Q \rangle \cap X_1$, $L_2 = \langle Q \cup X_1 \rangle \cap X_2$.
- c) $X=Q\cup X_1\cup X_2$: the union of a smooth quadric surface Q in \mathbb{P}^3 and two planes X_1 and X_2 , sitting as a linearly normal scheme in \mathbb{P}^5 ; X_1 , X_2 and Q intersect pairwise transversally along a unique line $L:=Q\cap X_1\cap X_2$ and $L=\langle Q\rangle\cap X_1\cap X_2$.

It is easy to see that $\dim \left[\bigcup_{x\in X} \langle T_x(X)\rangle\right] \leq 4$ in both cases a_n) and b). In contrast, if we consider points $x\in L$ in case c), the tangent space at x to X is $\langle T_x(Q)\cup X_1\cup X_2\rangle\simeq \mathbb{P}^4$ and $\bigcup_{x\in L} \langle T_x(Q)\cup X_1\cup X_2\rangle=\mathbb{P}^5$, so that there is no point $\mathcal{L}\in \mathbb{P}^5$ such that $\pi_{\mathcal{L}|X}$ is an isomorphism.

Unfortunately, there exist two other surfaces to check, i.e. two surfaces satisfying conditions i), ii), iii), iv), v) but not considered in [1]. These surfaces sit as linearly normal schemes, respectively, in \mathbb{P}^5 and \mathbb{P}^6 :

- d) $X = S \cup X_1$ where S is a smooth rational cubic scroll in \mathbb{P}^4 having a line L as fundamental section and X_1 is a plane such that $S \cap X_1 = \langle S \rangle \cap X_1 = L$.
- e) $X = S \cup X_1 \cup X_2$ where $S \cup X_1$ is a surface as in d) and X_2 is a plane such that $S \cap X_1 \cap X_2 = \langle S \cup X_1 \rangle \cap X_2 = L$.

Obviously conditions i), ii) and iv) are satisfied. Condition v) is satisfied by arguing as in Lemma 1 of [1]. For a surface X as in d) we have $\dim[Sec(X)] \le 4$ by direct cal-

culation with a computer algebra system or by considering that every line joining generic points of S and X_1 is contained in the 4-dimensional quadric cone having X_1 as vertex and the smooth conic Γ as base, where Γ is the smooth conic generating S with L. For a surface X as in e) we have $\dim[\operatorname{Sec}(X)] \leq 4$ by looking at every pair of irreducible components of X.

A surface X as in d) can also be isomorphically projected in \mathbb{P}^4 because one has $\dim \left[\bigcup_{x\in X}\langle T_x(X)\rangle\right] \leq 4$. In contrast, if we consider points $x\in L$ in case e), the tangent space at x to X is $\langle T_x(S)\cup X_1\cup X_2\rangle\simeq \mathbb{P}^4$ and $\bigcup_{x\in L}\langle T_x(S)\cup X_1\cup X_2\rangle$ is a quadric cone in \mathbb{P}^6 , so that its dimension is 5, hence, for any line $\mathcal{L}\in\mathbb{P}^6$, $\pi_{\mathcal{L}|X}$ cannot be an isomorphism.

Now we prove that there are no other reducible Veronese surfaces up to those above. In Proposition 2 of [1] we claimed that every irreducible component of a reducible Veronese surface X can be only a plane, a smooth quadric in \mathbb{P}^3 or a quadric in \mathbb{P}^3 having rank 3. With this assumption we get only the surfaces a_n), b), c) as it is proved in [1]. However there are other possibilities for the irreducible components of X: by Theorem 1 of [1], they are reduced surfaces of minimal degree in their spans, and the classification of such surfaces is quoted in Theorem 0.1 of [3] where "rational normal scroll" for 2-dimensional varieties means: a smooth rational normal scroll or a cone over a smooth rational normal curve. Not all these surfaces were well considered in Proposition 2 of [1], so we have to fill this gap.

Let us consider cones Y over smooth rational normal curves and let E be the vertex of a cone Y. The tangent space at E to Y, which is $\langle Y \rangle$, cannot have dimension bigger than 4 otherwise condition iii)' would be not satisfied, so that $\deg(Y) \leq 3$. If $\deg(Y) = 2$ the other irreducible components of X must be planes (see the final part of the proof of Proposition 2 in [1]) and the union of a rank 3 quadric cone in \mathbb{P}^3 and planes can be excluded by arguing as in Case 1) of the proof of Theorem 3 in [1]. It follows that here we have to consider only the case $\deg(Y) = 3$. By contradiction, let us assume that an irreducible component of a reducible Veronese surface X is a degree 3 cone Y as above, having vertex E. Let X_i be another component of X. To satisfy condition iii)' we must have $E \notin X_i$ so that $Y \cap X_i = \langle Y \rangle \cap \langle X_i \rangle$ is a single point $P \in Y$, $P \neq E$, by Corollary 2 of [1]. If X_i is not a plane, the join of Y and X_i has dimension 5, hence $\dim[\operatorname{Sec}(X)] \geq 5$, which is a contradiction. If X_i is a plane, any projection $\pi_{\mathcal{L}}$ of $Y \cup X_i$ in \mathbb{P}^4 cannot be an isomorphism because $\pi_{\mathcal{L}}(Y) \cap \pi_{\mathcal{L}}(X_i)$ cannot be a single point.

Now let us consider smooth rational normal scrolls of dimension 2. As no smooth surface can be isomorphically projected in \mathbb{P}^4 with the exception of the Veronese surface, we have to consider only smooth rational cubic scrolls S in \mathbb{P}^4 (other than smooth quadrics in \mathbb{P}^3 examined in [1]). In spite of what we said in the proof of Proposition 2 of [1], p. 126, lines 13–18, also a smooth rational cubic scroll S in \mathbb{P}^4 can be an irreducible component of a reducible Veronese surface X. The correct part of the proof of Proposition 2 in [1] shows that this is possible only when all other components of X are planes cutting $\langle S \rangle$ and S only along a line L which is its fundamental section. This line escaped the analysis made in [1], where only the fibres of the scroll were considered. All other possibilities, involving planes and quadrics, are considered and correctly excluded in Proposition 2 of [1].

As we have seen, the union of a smooth cubic scroll S in \mathbb{P}^4 and one or two planes, cutting $\langle S \rangle$ and S along its fundamental section L, gives rise to two surfaces to be checked. No other plane can be admitted by Lemma 3 of [1] and condition iii)'.

In conclusion: the surfaces a_n), b) and d) can be isomorphically projected in \mathbb{P}^4 , but not c) and e). This is the complete list of reducible Veronese surfaces with the correct condition iii)' instead of iii).

Remark 1. This note is also a correction of the list of reducible Veronese surfaces quoted in Theorem 1 of [2] and never used in that paper.

References

- A. Alzati, E. Ballico, Reducible Veronese surfaces. Adv. Geom. 10 (2010), 719–735.
 MR2733963 Zbl 1200.14067
- [2] A. Alzati, E. Ballico, Projectable Veronese varieties. Rev. Mat. Complut. 24 (2011), 219–249. 2763374 Zbl pre05875650
- [3] D. Eisenbud, M. Green, K. Hulek, S. Popescu, Small schemes and varieties of minimal degree. Amer. J. Math. 128 (2006), 1363–1389. MR2275024 (2007);14078) Zbl 1108.14042
- [4] G. Fløystad, Monads on projective spaces. Comm. Algebra 28 (2000), 5503–5516.
 MR1808585 (2002e:14070) Zbl 0977.14007
- [5] K. W. Johnson, Immersion and embedding of projective varieties. *Acta Math.* 140 (1978), 49–74. MR0463161 (57 #3120) Zbl 0373.14005
- [6] F. L. Zak, Tangents and secants of algebraic varieties, volume 127 of Translations of Mathematical Monographs. Amer. Math. Soc. 1993. MR1234494 (94i:14053) Zbl 0795.14018

Received 26 January, 2011; revised 15 March, 2011

- A. Alzati, Dipartimento di Matematica Univ. di Milano, via C. Saldini 50, 20133-Milano, Italy Email: alberto.alzati@unimi.it
- E. Ballico, Dipartimento di Matematica Univ. di Trento, via Sommarive 14, 38050-Povo (TN), Italy Email: ballico@science.unitn.it