Corrigenda to "Reducible Veronese surfaces"

Alberto Alzati and Edoardo Ballico*
(Communicated by K. Strambach)

Abstract

We correct the definition and the list of all reducible Veronese surfaces in our previous paper "Reducible Veronese surfaces", Adv. Geom. 10 (2010), 719-735.

Key words. Reducible surfaces, projectability.
2000 Mathematics Subject Classification. Primary 14J25; Secondary 14N20

1 Introduction

In [1] we claimed to give the complete list of reducible Veronese surfaces according to the following definition.

Definition 1. For any positive integer $n \geq 1$, we will call reducible Veronese surface any algebraic surface $X \subset \mathbb{P}^{n+4}(\mathbb{C})$ such that:
i) X is a non-degenerate, reduced, reducible surface of pure dimension 2;
ii) $\operatorname{deg}(X)=n+3$ and $\operatorname{cod}(X)=n+2$, so that X is a minimal degree surface;
iii) $\operatorname{dim}[\operatorname{Sec}(X)] \leq 4$, so that it is possible to choose a generic linear space \mathcal{L} of dimension $n-1$ in \mathbb{P}^{n+4} such that $\pi_{\mathcal{L}}(X)$ is isomorphic to X, where $\pi_{\mathcal{L}}$ is the the rational projection $\pi_{\mathcal{L}}: \mathbb{P}^{n+4} \rightarrow \Lambda$ from \mathcal{L} to a generic target $\Lambda \simeq \mathbb{P}^{4}$;
iv) X is connected in codimension 1, i.e. if we drop any finite number (possibly 0) of points P_{1}, \ldots, P_{r} from X then $X \backslash\left\{P_{1}, \ldots, P_{r}\right\}$ is connected;
v) X is a locally Cohen-Macaulay surface.

Condition iii) deserves particular attention. When $\operatorname{dim}[\operatorname{Sec}(X)] \leq 4$, for a generic linear $(n-1)$-dimensional linear space \mathcal{L} we have that $\pi_{\mathcal{L} \mid X}$ is injective. However this condition, obviously necessary, is not sufficient to get that $\pi_{\mathcal{L} \mid X}$ is an isomorphism. The condition $\operatorname{dim}[\operatorname{Sec}(X)] \leq 4$ is in fact equivalent to have that $\pi_{\mathcal{L} \mid X}$ is only a J-embedding

[^0]according to the definition of Johnson (see [5], 1.2, and Proposition 1.5 of [6], chapter II, p. 37). To have that X is a reducible Veronese surface, i.e. to have that $\pi_{\mathcal{L} \mid X}$ is an isomorphism, instead of iii) we need to use a different condition:
iii) ${ }^{\prime} \operatorname{dim}[\operatorname{Sec}(X)] \leq 4$ and $\operatorname{dim}\left[\bigcup_{x \in X}\left\langle T_{x}(X)\right\rangle\right] \leq 4$,
where $T_{x}(X)$ is the Zariski tangent space to X at x and $\langle V\rangle$ is the linear span of a variety V in a projective space. See [2] for the proof of the equivalence. From now on a reducible Veronese surface will be a surface satisfying conditions i), ii), iii)', iv) and v).

Throughout [1], to get condition iii) for the members of our list, we used the condition on $\operatorname{dim}[\operatorname{Sec}(X)]$ and, independently, the fact that $\pi_{\mathcal{L} \mid X}$ has to be an isomorphism, see for instance the proof of Lemma 4. As the condition on $\operatorname{dim}[\operatorname{Sec}(X)]$ is necessary for iii)', it follows that to classify reducible Veronese surfaces, according to the above new definition, we have to check the list of [1] and we have to exclude surfaces for which $\operatorname{dim}\left[\bigcup_{x \in X}\left\langle T_{x}(X)\right\rangle\right] \leq 4$ does not hold.

In this note we perform this check and we also fix some mistakes in the proof of Proposition 2 of [1].

2 Refining and completing the list

The list in [1] contained three types of surfaces X :
a_{n}) for any integer $n \geq 1$, a suitable union of $n+3$ planes which sits as a linearly normal scheme in \mathbb{P}^{n+4} (see Definition 2 of [1] for a precise description); these surfaces were introduced in [4].
b) $X=Q \cup X_{1} \cup X_{2}$: the union of a smooth quadric surface Q in \mathbb{P}^{3} and two planes X_{1} and X_{2} sitting as a linearly normal scheme in $\mathbb{P}^{5} ; X_{1}$ and X_{2} cut Q, respectively, along two lines L_{1}, L_{2}, intersecting at a point $P:=X_{1} \cap X_{2}$, and $L_{1}=\langle Q\rangle \cap X_{1}$, $L_{2}=\left\langle Q \cup X_{1}\right\rangle \cap X_{2}$.
c) $X=Q \cup X_{1} \cup X_{2}$: the union of a smooth quadric surface Q in \mathbb{P}^{3} and two planes X_{1} and X_{2}, sitting as a linearly normal scheme in $\mathbb{P}^{5} ; X_{1}, X_{2}$ and Q intersect pairwise transversally along a unique line $L:=Q \cap X_{1} \cap X_{2}$ and $L=\langle Q\rangle \cap X_{1} \cap X_{2}$.

It is easy to see that $\operatorname{dim}\left[\bigcup_{x \in X}\left\langle T_{x}(X)\right\rangle\right] \leq 4$ in both cases a_{n}) and b). In contrast, if we consider points $x \in L$ in case c), the tangent space at x to X is $\left\langle T_{x}(Q) \cup X_{1} \cup X_{2}\right\rangle$ $\simeq \mathbb{P}^{4}$ and $\bigcup_{x \in L}\left\langle T_{x}(Q) \cup X_{1} \cup X_{2}\right\rangle=\mathbb{P}^{5}$, so that there is no point $\mathcal{L} \in \mathbb{P}^{5}$ such that $\pi_{\mathcal{L} \mid X}$ is an isomorphism.

Unfortunately, there exist two other surfaces to check, i.e. two surfaces satisfying conditions i), ii), iii), iv), v) but not considered in [1]. These surfaces sit as linearly normal schemes, respectively, in \mathbb{P}^{5} and \mathbb{P}^{6} :
d) $X=S \cup X_{1}$ where S is a smooth rational cubic scroll in \mathbb{P}^{4} having a line L as fundamental section and X_{1} is a plane such that $S \cap X_{1}=\langle S\rangle \cap X_{1}=L$.
e) $X=S \cup X_{1} \cup X_{2}$ where $S \cup X_{1}$ is a surface as in d) and X_{2} is a plane such that $S \cap X_{1} \cap X_{2}=\left\langle S \cup X_{1}\right\rangle \cap X_{2}=L$.

Obviously conditions i), ii) and iv) are satisfied. Condition v) is satisfied by arguing as in Lemma 1 of [1]. For a surface X as in d) we have $\operatorname{dim}[\operatorname{Sec}(X)] \leq 4$ by direct cal-
culation with a computer algebra system or by considering that every line joining generic points of S and X_{1} is contained in the 4 -dimensional quadric cone having X_{1} as vertex and the smooth conic Γ as base, where Γ is the smooth conic generating S with L. For a surface X as in e) we have $\operatorname{dim}[\operatorname{Sec}(X)] \leq 4$ by looking at every pair of irreducible components of X.

A surface X as in d) can also be isomorphically projected in \mathbb{P}^{4} because one has $\operatorname{dim}\left[\bigcup_{x \in X}\left\langle T_{x}(X)\right\rangle\right] \leq 4$. In contrast, if we consider points $x \in L$ in case e), the tangent space at x to X is $\left\langle T_{x}(S) \cup X_{1} \cup X_{2}\right\rangle \simeq \mathbb{P}^{4}$ and $\bigcup_{x \in L}\left\langle T_{x}(S) \cup X_{1} \cup X_{2}\right\rangle$ is a quadric cone in \mathbb{P}^{6}, so that its dimension is 5 , hence, for any line $\mathcal{L} \in \mathbb{P}^{6}, \pi_{\mathcal{L} \mid X}$ cannot be an isomorphism.

Now we prove that there are no other reducible Veronese surfaces up to those above. In Proposition 2 of [1] we claimed that every irreducible component of a reducible Veronese surface X can be only a plane, a smooth quadric in \mathbb{P}^{3} or a quadric in \mathbb{P}^{3} having rank 3 . With this assumption we get only the surfaces a_{n}), b), c) as it is proved in [1]. However there are other possibilities for the irreducible components of X : by Theorem 1 of [1], they are reduced surfaces of minimal degree in their spans, and the classification of such surfaces is quoted in Theorem 0.1 of [3] where "rational normal scroll" for 2-dimensional varieties means: a smooth rational normal scroll or a cone over a smooth rational normal curve. Not all these surfaces were well considered in Proposition 2 of [1], so we have to fill this gap.

Let us consider cones Y over smooth rational normal curves and let E be the vertex of a cone Y. The tangent space at E to Y, which is $\langle Y\rangle$, cannot have dimension bigger than 4 otherwise condition iii)' would be not satisfied, so that $\operatorname{deg}(Y) \leq 3$. If $\operatorname{deg}(Y)=2$ the other irreducible components of X must be planes (see the final part of the proof of Proposition 2 in [1]) and the union of a rank 3 quadric cone in \mathbb{P}^{3} and planes can be excluded by arguing as in Case 1) of the proof of Theorem 3 in [1]. It follows that here we have to consider only the case $\operatorname{deg}(Y)=3$. By contradiction, let us assume that an irreducible component of a reducible Veronese surface X is a degree 3 cone Y as above, having vertex E. Let X_{i} be another component of X. To satisfy condition iii) ${ }^{\prime}$ we must have $E \notin X_{i}$ so that $Y \cap X_{i}=\langle Y\rangle \cap\left\langle X_{i}\right\rangle$ is a single point $P \in Y, P \neq E$, by Corollary 2 of [1]. If X_{i} is not a plane, the join of Y and X_{i} has dimension 5, hence $\operatorname{dim}[\operatorname{Sec}(X)] \geq 5$, which is a contradiction. If X_{i} is a plane, any projection $\pi_{\mathcal{L}}$ of $Y \cup X_{i}$ in \mathbb{P}^{4} cannot be an isomorphism because $\pi_{\mathcal{L}}(Y) \cap \pi_{\mathcal{L}}\left(X_{i}\right)$ cannot be a single point.

Now let us consider smooth rational normal scrolls of dimension 2. As no smooth surface can be isomorphically projected in \mathbb{P}^{4} with the exception of the Veronese surface, we have to consider only smooth rational cubic scrolls S in \mathbb{P}^{4} (other than smooth quadrics in \mathbb{P}^{3} examined in [1]). In spite of what we said in the proof of Proposition 2 of [1], p. 126, lines 13-18, also a smooth rational cubic scroll S in \mathbb{P}^{4} can be an irreducible component of a reducible Veronese surface X. The correct part of the proof of Proposition 2 in [1] shows that this is possible only when all other components of X are planes cutting $\langle S\rangle$ and S only along a line L which is its fundamental section. This line escaped the analysis made in [1], where only the fibres of the scroll were considered. All other possibilities, involving planes and quadrics, are considered and correctly excluded in Proposition 2 of [1].

As we have seen, the union of a smooth cubic scroll S in \mathbb{P}^{4} and one or two planes, cutting $\langle S\rangle$ and S along its fundamental section L, gives rise to two surfaces to be checked. No other plane can be admitted by Lemma 3 of [1] and condition iii) ${ }^{\prime}$.

In conclusion: the surfaces a_{n}), b) and d) can be isomorphically projected in \mathbb{P}^{4}, but not c) and e). This is the complete list of reducible Veronese surfaces with the correct condition iii)' instead of iii).

Remark 1. This note is also a correction of the list of reducible Veronese surfaces quoted in Theorem 1 of [2] and never used in that paper.

References

[1] A. Alzati, E. Ballico, Reducible Veronese surfaces. Adv. Geom. 10 (2010), 719-735. MR2733963 Zbl 1200.14067
[2] A. Alzati, E. Ballico, Projectable Veronese varieties. Rev. Mat. Complut. 24 (2011), 219-249. 2763374 Zbl pre05875650
[3] D. Eisenbud, M. Green, K. Hulek, S. Popescu, Small schemes and varieties of minimal degree. Amer. J. Math. 128 (2006), 1363-1389. MR2275024 (2007j:14078) Zbl 1108.14042
[4] G. Fløystad, Monads on projective spaces. Comm. Algebra 28 (2000), 5503-5516. MR1808585 (2002e:14070) Zbl 0977.14007
[5] K. W. Johnson, Immersion and embedding of projective varieties. Acta Math. 140 (1978), 4974. MR0463161 (57 \#3120) Zbl 0373.14005
[6] F. L. Zak, Tangents and secants of algebraic varieties, volume 127 of Translations of Mathematical Monographs. Amer. Math. Soc. 1993. MR1234494 (94i:14053) Zbl 0795.14018

Received 26 January, 2011; revised 15 March, 2011
A. Alzati, Dipartimento di Matematica Univ. di Milano, via C. Saldini 50, 20133-Milano, Italy Email: alberto.alzati@unimi.it
E. Ballico, Dipartimento di Matematica Univ. di Trento, via Sommarive 14, 38050-Povo (TN), Italy Email: ballico@science.unitn.it

[^0]: *This work is within the framework of the national research projects: "Geometry on Algebraic Varieties" Cofin 2008 of MIUR and "Geometric Properties of Real and Complex Varieties" Cofin 2007 of MIUR.

