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Abstract

Given a Markovian Brownian martingale Z , we build a process X which is a martingale in its own
filtration and satisfies X1 = Z1. We call X a dynamic bridge, because its terminal value Z1 is not known
in advance. We compute its semimartingale decomposition explicitly under both its own filtration F X and
the filtration F X,Z jointly generated by X and Z . Our construction is heavily based on parabolic partial
differential equations and filtering techniques. As an application, we explicitly solve an equilibrium model
with insider trading that can be viewed as a non-Gaussian generalization of the model of Back and Pedersen
(1998) [3], where the insider’s additional information evolves over time.
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1. Introduction

Consider two independent Brownian motions B and β over the time interval [0, 1], and define
a signal process Z as the unique strong solution to

dZ t = σ(t)a(V (t), Z t )dβt ,
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where σ : [0, 1] → R+ is a deterministic function, V (t) := c +
 t

0 σ 2(s) ds for some constant
c > 0, and a : [0, 1] × R → R is regular enough for ensuring the existence of a unique
strong solution. Moreover, σ, V and a are required to satisfy further regularity conditions, precise
statements of which are given in Assumptions 2.1–2.3.

We are interested in the construction of a Markov process X which is a martingale in its own
filtration and is such that X1 = Z1. This construction will be performed adding a well-chosen
drift to a suitable Brownian martingale corresponding to B. Such a drift will be a nonlinear
function of Z t and X t . Our goal is to obtain the Doob–Meyer decomposition of X under both
filtrations F X and F X,Z , i.e. that generated by X itself and that generated jointly by X and the
signal Z . We called such a process a dynamic Markov bridge because it is Markov and especially
because its terminal value is not fixed in advance but it is dynamic itself, being the terminal value
of the process Z . This construction is obtained in Theorem 2.1, which is the main result of the
mathematical part of the paper.

This study has a two-fold motivation, probabilistic and financial. First, the purely probabilistic
one: in the paper by Föllmer et al. [11], a thorough investigation of this problem has been done
in the case a ≡ σ ≡ 1, where both Z and X are Gaussian processes. More precisely, they studied
solutions X of the stochastic differential equations (SDEs) dX t = dBt +αt dt , where αt depends
linearly on X and Z = β. They obtain a characterization of such linear drifts αt making X
a Brownian motion in its own filtration in terms of Volterra kernels solutions to some integral
equations, which can be reduced in some special case to a Sturm–Liouville equation. Föllmer
et al. were in turn motivated by the following natural modification of the classical Brownian
bridge dynamics:

dX t = dBt +
βt − X t

1 − t
dt,

where in the drift βt replaces β1 as in the classical “static” Brownian bridge. It has been shown
in [11] that X is still a bridge in the sense that X1 = β1, but it is not a Brownian motion in its
own filtration. They then focused more on general linear drifts preserving the Brownian property.
Considering only linear drifts allows them to use the nice and powerful relation between Gaussian
processes and Volterra kernels. A few questions naturally arise from that work: What happens if
the signal Z is not necessarily Gaussian? Is it still possible to construct a “dynamic” bridge X
with the required properties? It turns out that it is still possible, but using completely different
techniques. Indeed, Z being no longer Gaussian, one is led to consider nonlinear drifts to build
the bridge, which makes the use of Gaussian process theory impossible. However, the Markov
nature of the problem allows us to use techniques from parabolic partial differential equation
(PDEs) and those from filtering theory in order to carry out our analysis.

The second motivation, which we share with Föllmer et al. [11], is a financial one: The
dynamic bridge X is the solution of a Kyle–Back-type equilibrium model of a gradually informed
insider trading (see [2] for initial information and [3,22,9] for the dynamic information case). In
such a model, the insider observes a signal process (unknown to the market) Z as above with
a ≡ 1 driven by the Brownian motion β. The insider applies a well-chosen drift, modeling her
strategy, to the Brownian motion B in such a way that (i) the resulting process X ends up in Z1
and (ii) the distribution of the process remains unchanged, i.e. X is again a Brownian motion
in its own filtration. Condition (i) guarantees that the strategy maximizes the insider’s expected
gain. On the other hand, condition (ii) means that the strategy of the insider, i.e. the drift, is
“inconspicuous”, and this corresponds to the notion of equilibrium as defined in [2,3]. The reader
is referred once more to the papers [2,3,22,9] for more financial as well as mathematical details.
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Our probabilistic construction of the dynamic bridge X leads to an interesting generalization of
such a model, in which the signal modeling the insider’s dynamic information is not necessarily
Gaussian. Even in this more general framework, we are able to give an explicit solution for the
equilibrium total demand and the optimal insider’s strategy in our main result of the financial part
of the paper, Theorem 5.1. Interestingly, the existence of a solution for the insider’s maximization
problem imposes a very precise structure on the form of the signal volatility a(t, Z t ) (see
Section 5), resulting in the insider’s signal being a function of a Gaussian process. This seems to
indicate that a non-trivial generalization beyond a Gaussian setting is impossible. Nonetheless,
we would like to stress the fact that while the financial application forces the signal to be ‘almost
Gaussian’, as explained in Remark 5.5, the construction we perform in Section 2 is much more
general, since it includes signals which are not necessarily Gaussian.

The paper is structured as follows. Section 2 contains the motivation and formal definition
of such a bridge. A new proof of Gaussian bridge construction is given in Section 3, while in
Section 4 the general construction is proved. At the end of this section, we also give an application
of our result to build an Ornstein–Uhlenbeck bridge. Finally, in Section 5, we briefly introduce
the financial model and we apply the main result contained in Section 2 to find the equilibrium
total demand and optimal insider’s strategy.

2. Formulation of the problem and some auxiliary results

Let (Ω , G, (Gt ), Q) be a filtered probability space satisfying the usual conditions. Note that we
do not require G0 to be trivial. Assume that on this probability space there exist two independent
standard Brownian motions, B and β, and a random variable Z0 in G0, which implies that Z0 is
independent from B and β.

Let Z = (Ω , G, (Gt ), (Z t ), (P z)z∈R) be a diffusion process with values in R. Here we are
using the formulation of a Markov process as given, for example, in Blumenthal and Getoor [7]
or Sharpe [20]. Time varies in the finite interval [0, 1]. We will use the notation R+ for [0, ∞)

and F Y
t for σ(Ys; s ≤ t) for any (possibly, vector-valued) stochastic process Y .

We further assume that Z is the unique strong solution on (Ω , G, (Gt ), Q) of

dZ t = σ(t)a(V (t), Z t )dβt , t ∈ (0, 1], (2.1)

with Z0 ∈ G0 being a random variable with distribution µ, and where σ : [0, 1] → R+ is a
deterministic function, V (t) := c +

 t
0 σ 2(s) ds for some constant c > 0, and a : [0, 1]×R → R

is regular enough for ensuring the existence of a unique strong solution. Moreover, σ, V and
a are required to satisfy further regularity conditions, precise statements of which are given in
Assumptions 2.1–2.3 below.

The rest of this section will be devoted to the construction of a process X and a probability
measure µ on R satisfying the following three conditions.

C1 For every T < 1, X is the unique strong solution of the SDE

X t =

∫ t

0
a(s, Xs)dBs +

∫ t

0
α(s, Xs, Zs)ds, for t ∈ (0, T ]

for some Borel-measurable real-valued function α. Moreover, (X, Z) is a Markov process.
More precisely, (Ω , G, (Gt ), (X t , Z t ), (P x,z)(x,z)∈R2) is a Markov process with values in R2

endowed with its Borel σ -algebra, with an initial distribution given by δ0 ⊗ µ, where δ0 is
the Dirac measure at 0.
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C2 limt↑1 X t exists P0,z-a.s., and X1 := limt↑1 X t = Z1, P0,z-a.s.
C3 (X t )t∈[0,1] is a local martingale in its own filtration.

Remark 2.1. In view of Theorem 8.1 in [15], condition C3 implies that X , if exists, will be a
diffusion process with diffusion coefficient a and no drift in its own filtration. As C2 is also in
place, this diffusion process will be conditioned to hit Z1 at time 1. If we have allowed X to
be adapted to the filtration generated by Z1 and B, such a process can be obtained using the
available theory of ‘static’ Markov bridges (see, e.g., [10] and Proposition 37 in [5]) with a drift
α(t, X t , Z1), since Z1 and B are independent. However, condition C1 stipulates that X should
be adapted to the filtration generated by the independent processes Z and B. This forces us to
develop a theory of ‘dynamic’ Markov bridges, as we will describe in the subsequent sections.

Remark 2.2. The main difficulty with the construction of the process X is that all the conditions
C1–C3 have to be met simultaneously. To illustrate this point, consider the simple case a =

σ = 1.
If one allows the drift, α, in condition C1 to depend on Z1, then

X t = Bt +

∫ t

0

Z1 − Xs

1 − s
ds (2.2)

has a unique strong solution over [0, 1), and its solution can be continuously extended to the full
interval [0, 1] since, conditioned on Z1 = z, this is the SDE for a Brownian bridge from 0 to z
over the interval [0, 1]. This is a Markovian bridge conditioned to hit Z1 at t = 1 and, moreover,
it is a martingale in its own filtration (see expression (10) and the discussion after it in [11]).

If we replace Z1 with Z t in the above formulation, we obtain the SDE

X t = Bt +

∫ t

0

Zs − Xs

1 − s
ds,

which has a unique strong solution which satisfies C1 and C2 (see Lemma 2.1 in [11]). However,
X does not satisfy C3 (see Lemma 2.2 in [11]).

One is also tempted to think that a projection of the solution of (2.2) onto the filtration
generated by X and Z could give us the construction that we seek. Note that the solution of
(2.2) is adapted to the filtration (F B,Z

t ) enlarged with Z1. In this enlarged filtration Z has the
decomposition

Z t = β̄t +

∫ t

0

Z1 − Zs

1 − s
ds,

where β̄ is a standard Brownian motion adapted to this filtration (see Theorem 3 in Chapter
VI of [18]) and independent of B. Comparison of the SDEs for X and Z reveals an inherent
symmetry of these two processes. Thus, the semimartingale decomposition of these two
processes with respect to (F X,Z

t ) should have a symmetric structure; in particular, if one is a
martingale with respect to (F X,Z

t ), then so is the other. However, this is inconsistent with the
structural assumptions we have on X and Z which are manifested in C1 and (2.1).

These examples, in particular the last one, demonstrate that the solution to our problem
cannot be obtained via a combination of available enlargement of filtration and nonlinear filtering
techniques.

We would like to stress here that the functions σ and V that appeared in the dynamics of Z play
a crucial role in the existence of the solution of the problem above. Indeed, suppose that σ ≡ 1
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and V (t) = t for each t ≥ 0, and that a(t, z) is regular enough to ensure the existence of a square
integrable non-constant solution to (2.1). Suppose that there exists a solution to the problem
defined by conditions C1–C3. Consider the probability measure P defined on (Ω , F X

1 ∨ F Z
1 ) by

P(E) =

∫
R

P0,z(E)µ(dz), ∀E ∈ F X
1 ∨ F Z

1 .

Note that X1 = Z1, P0,z-a.s., for every z ∈ R, implies that X1 = Z1, P-a.s.; therefore, for any
bounded measurable function f ,

E[ f (Z1)] = E[ f (X1)], (2.3)

where E is the expectation operator with respect to P. On the one hand,

E[ f (Z1)] = E[E[ f (Z1)|Z0]] =

∫
R

E P z
[ f (Z1)]µ(dz) =

∫
R

∫
R

f (y)p(z, y)dyµ(dz),

where p(z, y)dy = P z(Z1 ∈ dy). On the other hand, conditions C1 and C3 imply that

X t =

∫ t

0
a(s, Xs)dB X

s

for some Brownian motion B X adapted to F X . Comparing this to (2.1), we see that the law of
X t is that of Z t conditioned on Z0 = 0 for any t ∈ [0, 1]. Therefore,

E[ f (X1)] =

∫
R

f (y)p(0, y)dy. (2.4)

Let f (y) = eir y . Then, in view of (2.3), we have∫
R

eir y p(0, y)dy =

∫
R

∫
R

eir y p(z, y)dyµ(dz)

=

∫
R

eir y
∫
R

p(z, y)µ(dz)


dy.

Note that the interchange of integrals is justified since |eir y p(z, y)| < p(z, y) and

R

R

p(z, y)dyµ(dz) = 1. This implies that the characteristic functions of the measures p(0, y)dy and
R p(z, y)µ(dz)


dy are the same. We can assume, without substantial loss of generality, that p

is continuous in both parameters.1 Therefore, we can invert the Fourier transform to identify µ

as the Dirac measure at 0 and conclude that X and Z have the same law.
However, under the assumption that µ = δ0, Remark 5.2(i) in [11] shows that such a

construction is not possible. Indeed, Remark 5.2(i) in [11] contains the following statement:
Given filtration Ft and a square integrable Ft -adapted processes X and M with the same second
moments such that (i) X is a local martingale in its own filtration, (ii) M is an Ft -martingale,
and (iii) M1 = X1, then Mt = X t for all t ∈ [0, 1]. Applying this result to our setting, we get
X t = Z t for all t ∈ [0, 1] and, thus,∫ t

0
a(s, Zs)dβs = Z t = X t =

∫ t

0
a(s, Zs)dBs +

∫ t

0
α(s, Zs, Zs)ds.

1 This can be achieved by standard regularity assumptions on a which will ensure that p is a continuous solution of a
Kolmogorov equation (see Theorem 3.2.1 in [21]).
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This implies that
 t

0 α(s, Zs, Zs)ds is a continuous martingale with finite variation, and therefore
it is identically 0. Thus,∫ t

0
a(s, Zs)dβs = Z t = X t =

∫ t

0
a(s, Xs)dBs .

Since B and β are independent, this yields that [Z , X ] ≡ 0. However, as Z = X , we have
[Z , Z ] ≡ 0, which implies that X = Z ≡ 0, which is a contradiction.

This example highlights that the relationship between V (t) and t is very important for the
existence of a solution to the problem we aim to solve. The following assumption formalizes this
relationship along with imposing some regularity conditions. In particular, Assumption 2.1.1
rules out the above pathology, Assumption 2.1.2 controls the speed of convergence of V (t) − t
to 0 as t → 1 (for an earlier use of this assumption see [9]), and Assumptions 2.1.3–2.1.5 ensure
sufficient regularity for the problem.

Assumption 2.1. Fix a real number c ∈ (0, 1]. σ : [0, 1] → R+ and a : [0, 1] × R → R+ are
two measurable functions such that
1. V (t) := c +

 t
0 σ 2(u)du > t for every t ∈ [0, 1), and V (1) = 1;

2. limt↑1 λ2(t)Λ(t) log(Λ(t)) = 0, where λ(t) = exp

−
 t

0
1

V (s)−s ds


and Λ(t) =
 t

0
1+σ 2(s)

λ2(s)
ds;

3. σ 2(t) is bounded on [0, 1];
4. a(t, z) is uniformly bounded away from zero, i.e. there exists a constant ϵ > 0 such that

a(t, z) ≥ ϵ for all t ∈ [0, 1] and z ∈ R;
5. a(·, ·) ∈ C1,2 and has enough regularity in order for (2.1) to have a unique strong solution.2

Remark 2.3. Notice that Assumption 2.1.2 is, in fact, an assumption on Λ(t), since we always
have that limt↑1 λ(t) = 0. Indeed, since V (t) is increasing and V (1) = 1, we have that V (t) ≤ 1
for t ∈ [0, 1], and therefore

λ(t) ≤ 1 − t, (2.5)

which leads to conclusion that limt↑1 λ(t) = 0. For another use of this assumption, and further
discussion, see [9].

Although Assumption 2.1.2 seems to be involved, it is satisfied in many cases. The following
remark states a sufficient condition for this assumption to be satisfied.

Remark 2.4. Note that, when limt↑1 Λ(t) < ∞, the condition is automatically satisfied due to
the preceding remark. Next, suppose that limt↑1 Λ(t) = ∞, σ is continuous in a vicinity of 1 and
σ(1) ≠ 1. Then, an application of L’Hôpital’s rule yields

0 ≤ lim
t↑1

Λ(t) log(Λ(t))

λ−2(t)
=

1 + σ 2(1)

2
lim
t↑1

log(Λ(t))

(V (t) − t)−1 .

Then note that, since limt↑1 λ2(t)Λ(t) = 0, Λ(t) ≤ λ−2(t) for t close to 1. Thus,

0 ≤ lim
t↑1

Λ(t) log(Λ(t))

λ−2
t

≤
1 + σ 2(1)

2
lim
t↑1

log(λ−2(t))

(V (t) − t)−1

= (1 + σ 2(1)) lim
t↑1

 t
0

1
V (s)−s ds

(V (t) − t)−1 = 0,

2 A sufficient condition ensuring a strong solution is given in Assumption 2.2.
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after another application of L’Hôpital’s rule, since σ 2(1) ≠ 1. This in particular shows that
Assumption 2.1.2 is satisfied when σ is a constant.

Before we present our main result, we shall collect some preliminary results on the transition
density of the diffusion

dξt = a(t, ξt )dβt .

We are in particular interested in the existence and smoothness of this transition density. The
natural way to obtain these results is to use the link between the transition density and the
fundamental solution of

wu(u, z) =
1
2


a2(u, z)w(u, z)


zz

, (2.6)

established in Corollary 3.2.2 in [21]. However, as we do not assume a to be bounded, this
theorem is not applicable. On the other hand, since a is bounded away from 0, the function

A(t, x) :=

∫ x

0

1
a(t, y)

dy (2.7)

is well defined, and the transformation defined by ζt := A(t, ξt ) will yield, via Itô’s formula,

dζt = dβt + b(t, ζt )dt, (2.8)

where

b(t, x) := At (t, A−1(t, x)) −
1
2

az(t, A−1(t, x)), (2.9)

and A−1, the inverse of A, is taken with respect to the space variable. This transformation along
with the next assumption is going to provide a uniformly elliptic operator which via Theorem 10
in Chapter I of [12] and Theorem 3.2.1 of [21] would imply the existence and smoothness of the
transition density of ξ .

Assumption 2.2. b and bx are uniformly bounded on [0, 1] × R and bx is Lipschitz continuous
uniformly in t .

Due to this assumption, Corollary 3.2.2 of [21] implies that the transition density of ζ is the
fundamental solution of

wu(u, z) =
1
2
wzz(u, z) − (b(u, z)w(u, z))z . (2.10)

For the reader’s convenience, we recall the definition (p. 3 of [12]) of the fundamental solution,
Γ (t, x; u, z), of (2.10) as the function satisfying the following.

1. For fixed (t, x), Γ (t, x; u, z) satisfies (2.10) for all u > t .

2. For every continuous and bounded f : R → R,

lim
u↓t

∫
R

Γ (t, x; u, z) f (x)dx = f (z). (2.11)
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The following proposition provides the existence of the transition density of ξ and formalizes the
smoothness requirement on the transition density together with some properties that we will use
later.

Proposition 2.1. Under Assumptions 2.1 and 2.2, there exists a fundamental solution, Γ ∈

C1,2,1,2, to (2.10) which also solves the adjoint equation

vt (t, x) + b(t, x)vx (t, x) +
1
2
vxx (t, x) = 0. (2.12)

Moreover, the function G(t, x; u, z), defined by

G(t, x; u, z) := Γ (t, A(t, x); u, A(u, z))
1

a(u, z)
, (2.13)

satisfies (2.6) for fixed (t, x), and it is the transition density of ξ , i.e.

G(t, x; u, z)dz = P(ξu ∈ dz|ξt = x) for u ≥ t.

Furthermore, Gx (t, x; u, z) exists, and satisfies∫
R

Gx (t, x; u, z)dz = 0 =

∫
R

Γx (t, x; u, z)dz. (2.14)

Proof. Since b and bx are bounded and Hölder continuous under the assumptions of the
proposition, it follows from Theorem 10 in Chapter I of [12] that the fundamental solution,
Γ (t, x; u, z), to (2.10) exists, and is also the fundamental solution of (2.12) by Theorem 15 in
Chapter I of [12]. In particular, Γ ∈ C1,2,1,2. Moreover, Assumption 2.2 also implies, due to
Corollary 3.2.2 in [21], that Γ is the transition density of ζ .

Define G(t, x; u, z) by (2.13), and observe that G(t, x; u, z) for fixed (t, x) solves (2.6).
Since, by definition, ζt = A(t, ξt ), and A is strictly increasing,

G(t, x; u, z)dz = Γ (t, A(t, x); u, A(u, z))
1

a(u, z)
dz

= Γ (t, A(t, x); u, A(u, z))dA(u, z)

= P(ζu ∈ dA(u, z)|ζt = A(t, x))

= P(A(u, ξu) ∈ dA(u, z)|A(t, ξt ) = A(t, x))

= P(ξu ∈ dz|ξt = x),

which establishes that G is the transition density of ξ .
Moreover, Equations (6.12) and (6.13) following Theorem 11 in Chapter I of [12] give the

following estimates:

Γ (t, x; u, z) ≤ C
1

√
u − t

exp


−c
(x − z)2

2(u − t)


, and (2.15)

|Γx (t, x; u, z)| ≤ C
1

u − t
exp


−c

(x − z)2

2(u − t)


, (2.16)

for some positive C , depending on c, and any c < 1. Note that

R G(t, x; u, z)dz = 1 =

R Γ (t, x; u, z)dz, since both G and Γ are transition densities. Thus, (2.14) will hold if one
can interchange the derivative and the integral. This is justified since, due to (2.16), |Γx | ≤
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K exp

−c1z2


when x is restricted to a bounded interval and where the constants K and c1 do

not depend on x and might depend on u and t . The result then follows from an application of the
Dominated Convergence Theorem. �

In order to motivate our main result, let us first consider the special case of σ ≡ 0 so that
Z1 = Z0. In terms of the insider trading models that we have in mind, this corresponds to the
case when the insider has the complete information at time 0 regarding the value of the traded
asset at time 1, as in [2]. If µ(dz) = G(0, 0; 1, z)dz, then there exists a unique strong solution to

dX t = a(t, X t )dBt + a2(t, X t )
Gx (t, X t , 1, Z0)

G(t, X t ; 1, Z0)
dt,

with the initial condition X0 = 0, which satisfies all the properties stated in C1–C3. (See
Proposition 37 in [5] for a proof of this and other related results. Observe that this result does
not require uniform ellipticity of a, and thus the extension to the time-inhomogeneous case is
immediate.)

The specific form of the drift term in the SDE above thus gives us a hint on how to formulate
the solution of the original problem stated at the beginning of this section. Before we state our
main result, we introduce one last assumption.

Assumption 2.3. b(t, x) is absolutely continuous with respect to t for each x , i.e. there exists a
measurable function bt : [0, 1] × R → R such that

b(t, x) = b(0, x) +

∫ t

0
bt (s, x)ds,

for each x ∈ R. Moreover, bt is uniformly bounded.

Theorem 2.1. Suppose that µ(dz) = G(0, 0; c, z)dz, where c ∈ (0, 1) is the real number fixed
in Assumption 2.1 and G is given by (2.13). Let, for t < 1,

dX t = a(t, X t )dBt + a2(t, X t )
ρx (t, X t , Z t )

ρ(t, X t , Z t )
dt, (2.17)

where

ρ(t, x, z) := G(t, x; V (t), z). (2.18)

Under Assumptions 2.1–2.3, on every interval [0, T ] with T < 1, there exists a unique strong
solution to the above SDE with the initial condition X0 = 0. Moreover, the conditions C1–C3 are
satisfied.

We will give a proof of this result in the special case a ≡ 1 in Section 3, and a proof of the
general result will be given in Section 4. However, we shall now state and prove two lemmata
to show how the choice of the drift term in (2.17) would imply condition C3, i.e. X as defined
in (2.17) is a local martingale in its own filtration. Before we can formulate them, we need to
introduce the following notation.

Let F := σ(X t , Z t ; t < 1), and define the probability measure P on (Ω , F ) by

P(E) =

∫
R

P0,z(E)µ(dz), (2.19)

for any E ∈ F . Of course, in order for this construction to make sense, we need the existence of
a solution to (2.17). This will be proved in Section 4 in Corollary 4.1; thus, the above probability
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space exists, and is well defined. Under P, (X t , Z t )t<1 would still be a strong Markov process
(see Corollary 4.1). Let N be the null sets of P. Proposition 2.7.7 in [13] shows that the filtration
(N ∨ F X,Z

t )t<1 is right continuous. With an abuse of notation, we shall still denote the σ -algebra
generated by F and N with F , and denote N ∨ F Y

t with F Y
t for any (F X,Z

t )t≤1-adapted process
Y . Next, let F X

t := ∩1>u>t F X
u . We shall see in Remark 4.1 later that F X is right continuous,

i.e. F X
t = F X

t . We say that gt : Ω × R → R is the conditional density of Z t given F X
t , if gt is

measurable with respect to the product σ -algebra, F X
t × B, where B is the Borel σ -algebra of R,

and for any bounded measurable function f

E[ f (Z t )|F X
t ] =

∫
R

f (z)gt (ω, z)dz,

where E is the expectation operator under P. Note that, due to the Markov property of (X, Z),
EQ[ f (Z1)|F X

t ] = E[ f (Z1)|F X
t ], but we will keep the above notation for clarity of the

exposition. We will often write P[Z t ∈ dz|F X
t ] = gt (ω, z) dz in order to refer to the conditional

density property described above. Now, we are ready to state and prove the following lemma.

Lemma 2.1. Suppose that there exists a unique strong solution of (2.17). If ρ(t, X t , ·) given
by (2.18) is the conditional density of Z t given F X

t for every t ∈ [0, 1), then (X t )t∈[0,1) is a local
martingale in its own filtration.

Proof. It follows from standard filtering theory (e.g. Theorem 8.1 in [15]) that

dX t = a(t, X t )dB X
t + a2(t, X t )E

[
ρx (t, X t , Z t )

ρ(t, X t , Z t )

F X
t

]
dt,

where B X is an F X -Brownian motion. However, if ρ(t, X t , ·) is the conditional density of Z t ,

E
[

ρx (t, X t , Z t )

ρ(t, X t , Z t )

F X
t

]
=

∫
R

Gx (t, X t ; V (t), z)dz = 0

due to Proposition 2.1, so

dX t = a(t, X t )dB X
t ,

and, thus, X is a local martingale, since a is continuous. �

In view of this lemma, we show in Section 4 that ρ(t, X t , ·) is indeed the conditional density
of Z t given F X

t for every t ∈ [0, 1). The following lemma will be key in proving this result.

Lemma 2.2. Suppose that there exists a unique strong solution of (2.17). Let Ut := A(V (t), Z t )

and Rt := A(t, X t ), where A is defined by (2.7). Define

p(t, x, z) := ρ(t, A−1(t, x), A−1(V (t), z))a(V (t), A−1(V (t), z)), (2.20)

where ρ is given by (2.18). Then,

1. p(t, Rt , ·) is the conditional density of Ut given F R
t iff ρ(t, X t , ·) is the conditional density

of Z t given F X
t ;

2. (p(t, Rt , ·))t∈[0,1) is a weak solution to the following stochastic PDE:

gt (z) = Γ (0, 0; c, z) +

∫ t

0
σ 2(s)


−(b(V (s), z)gs(z))z +

1
2
(gs(z))zz


ds

+

∫ t

0
gs(z)


px (s, Rs, z)

p(s, Rs, z)
−

∫
R

gs(z)
px (s, Rs, z)

p(s, Rs, z)
dz


dI g

s , (2.21)
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where

dI g
s = dRs −

∫
R

[
px

p
(s, Rs, z) + b(s, Rs)

]
gs(z)dz


ds.

Proof. Notice that, since A(t, ·) is strictly increasing, F R
t = F X

t for every t ∈ [0, 1), and there is
a one-to-one correspondence between the conditional density of Z and that of U . More precisely,

P[Z t ∈ dz|F X
t ] = P[Ut ∈ dA(V (t), z)|F R

t ].

Thus, if P[Z t ∈ dz|F X
t ] = ρ(t, X t , z) dz, then

P[Ut ∈ dz|F R
t ] = P[Z t ∈ dA−1(V (t), z)|F X

t ]

= ρ(t, X t , A−1(V (t), z))dA−1(V (t), z)

= ρ(t, X t , A−1(V (t), z))a(V (t), A−1(V (t), z))dz

= ρ(t, A−1(t, Rt ), A−1(V (t), z))a(V (t), A−1(V (t), z))dz

= p(t, Rt , z)dz,

by (2.20). The reverse implication can be proved similarly.
In order to prove the second assertion, observe that, due to (2.13) and (2.20), we have

p(t, x, z) = Γ (t, x; V (t), z). (2.22)

We have seen in Proposition 2.1 that Γ (t, x; u, z) solves (2.10) for fixed (t, x), and it also solves
(2.12) for fixed (u, z). Combining these two facts yields that p satisfies

pt (t, x, z) + b(t, x)px (t, x, z) +
1
2

pxx (t, x, z)

= −σ 2(t)(b(V (t), z)p(t, x, z))z +
1
2
σ 2(t)pzz(t, x, z). (2.23)

Using Itô’s formula and (2.23), we get

p(t, Rt , z) = Γ (0, 0; c, z)

+

∫ t

0
σ 2(s)


−(b(V (s), z)p(s, Rs, z))z +

1
2
(p(s, Rs, z))zz


ds

+

∫ t

0
px (s, Rs, z)[dRs − b(s, Rs)ds].

Due to (2.14), dI g
s = dRs − b(s, Rs)ds when gt (z) = p(t, Rt , z). By repeating this argument,

we arrive at the desired conclusion. �

Before we give a proof of Theorem 2.1, we will first investigate the Gaussian case, i.e. a ≡ 1.

3. Gaussian case

Under the assumption that a ≡ 1, Z becomes a Gaussian martingale, and its transition density

is given by G(t, x; u, z) =
1

√
2π(u−t)

exp(−
(x−z)2

2(u−t) ) since it is a time-changed Brownian motion
where the time change is deterministic. In this case, Eq. (2.17) reduces to

dX t = dBt +
Z t − X t

V (t) − t
dt. (3.24)
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This equation, together with various properties of its solution, is discussed in Danilova [9],
Föllmer, et al. [11] and Wu [22].

Theorem 3.1. Suppose that a ≡ 1 and that ρ is given by (2.18). Then, Theorem 2.1 holds.

The proof of the above theorem will be done in several steps, the first of which being the
following proposition.

Proposition 3.1. There exists a unique strong solution to (3.24) over [0, 1). Moreover,
((X t , Z t ))t∈[0,1) is strong Markov.

Proof. Since z−x
V (t)−t is Lipschitz over any [0, T ] for T < 1, there exists a unique strong solution

to the above equation with X0 = 0 by Theorem 38 of Chapter V in [18]. Moreover, Theorem
5.4.20 in [13] yields that (X, Z) has a strong Markov property. �

The above proposition shows that condition C1 of the bridge construction is satisfied. We next
show that the solution to (3.24) satisfies condition C2, and then conclude this section with a proof
of Theorem 3.1.

Lemma 3.1. Let Assumption 2.1 hold. Let λ(t) = exp

−
 t

0
1

V (s)−s ds


and Λ(t) =
 t

0
1+σ 2(s)

λ2(s)
ds

be as in Assumption 2.1, and let ℓ > 0 be the associated constant in Assumption 2.1. Define

ϕ(t, x, z) =
1

√
2(Λ(t) + ℓ)

e
(x−z)2

2λ2(t)(Λ(t)+ℓ) . (3.25)

Then, (ϕ(t, X t , Z t ))t∈[0,1) is a positive supermartingale, and

lim
t↑1

ϕ(t, x, z) = +∞, x ≠ z. (3.26)

Proof. Direct calculations give

ϕt (t, x, z) +
z − x

V (t) − t
ϕx (t, x, z) +

1
2
ϕxx (t, x, z) +

σ 2(t)

2
ϕzz(t, x, z) = 0. (3.27)

Thus, it follows from Itô’s formula that ϕ(t, X t , Z t ) is a local martingale. Since it is obviously
positive, it is a supermartingale.

In order to prove convergence when x ≠ z, consider two cases.

• Case 1: limt↑1 Λ(t) < +∞. Then, since due to Remark 2.3 we have that limt↑1 λ(t) = 0, we
obtain that

lim
t↑1

ϕ(t, x, z) = lim
t↑1

1
√

2(Λ(t) + ℓ)
e

(x−z)2

2λ2(t)(Λ(t)+ℓ) = +∞. (3.28)

• Case 2: limt↑1 Λ(t) = +∞. In this case, we will have

lim
t↑1

log ϕ(t, x, z) = lim
t↑1

log(2(Λ(t) + ℓ))

[
(x − z)2

2λ2(t)(Λ(t) + ℓ) log(2(Λ(t) + ℓ))
−

1
2

]
= +∞,

where the last equality is due to Assumption 2.1.2. Indeed, the condition yields that

lim
t↑1

λ2(t)2(Λ(t) + ℓ) log(2(Λ(t) + ℓ)) = 0,
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since, when limt↑1 Λ(t) = ∞, limt↑1
log(2(Λ(t)+ℓ))

log(Λ(t)) = 1 and limt↑1 λ2(t)Λ(t) = 0. Therefore,
we have limt↑1 ϕ(t, x, z) = +∞.

The proof is now complete. �

Proposition 3.2. P0,z(limt↑1 X t = Z1) = 1, where X is the unique strong solution to (3.24).

Proof. Let Mt := ϕ(t, X t , Z t ). Then, M = (Mt )t∈[0,1) is a positive supermartingale by the
previous lemma. Using the supermartingale convergence theorem, there exists an M1 ≥ 0 such
that limt↑1 Mt = M1, P0,z-a.s. Using Fatou’s lemma and the fact that M is a supermartingale,
we have

M0 ≥ lim inf
t↑1

E0,z
[Mt ] ≥ E0,z

[M1] = E0,z
[

lim
t↑1

ϕ(t, X t , Z t )

]
,

where E0,z is the expectation operator with respect to P0,z . Since M0 is finite, one has
that limt↑1 ϕ(t, X t , Z t ) is finite P0,z-a.s. Therefore, P0,z(limt↑1 X t ≠ Z1) = 0 in view of
(3.26). �

Proposition 3.3. Let a ≡ 1 and µ(dz) = G(0, 0; c, z)dz, where c ∈ (0, 1) is the real number
fixed in Assumption 2.1 and G is given by (2.13). Then,

P[Z t ∈ dz|F X
t ] = G(t, X t ; V (t), z)dz.

Proof. As (X, Z) is jointly Gaussian, the conditional distribution of Z t given F X
t is also

Gaussian (see Theorem 11.1 in [15]). Thus, it suffices to find the conditional mean Z t and the
variance γt in order to characterize the distribution completely. Theorem 10.3 in [15] yields

dZ t =
γt

V (t) − t


dX t −

Z t − X t

V (t) − t
dt


, (3.29)

and

dγt

dt
= σ 2(t) −

γt

V (t) − t
, (3.30)

with the initial conditions that Z0 = E[Z0] = 0 and γ0 = c due to the choice of µ. In particular,
γt is deterministic. One can verify directly that γt = V (t) − t satisfies (3.30) and the initial
condition since V (0) = c by Assumption 2.1. Thus, (3.29) becomes

dZ t = dX t −

Z t − X t

V (t) − t
dt,

i.e. Z is a solution to the following SDE:

dYt = dX t −
Yt − X t

V (t) − t
dt. (3.31)

Clearly, choosing Yt = X t will solve this SDE. Moreover, as the function y−x
V (t)−t is Lipschitz on

[0, T ] for any T < 1, it follows from Theorem 7 in Chapter V of [18] that (3.31) has a unique
solution. Thus, Z t = X t , which in turn yields that the conditional distribution of Z t is Gaussian
with mean X t and variance V (t) − t . Note that the density associated to this distribution is given
by G(t, X t ; V (t), ·) when a ≡ 1. �
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Proof of Theorem 3.1. Propositions 3.1 and 3.2 establish that conditions C1 and C2 are
satisfied. Finally, C3 is satisfied as well due to Proposition 3.3 in view of Lemma 2.1. �

4. The general case

We now go back to proving Theorem 2.1. The proof is structured in several steps in the
following way. We first show that there exists a strong solution, which is also Markov, to the
system of SDEs given by (2.1) and (2.17) on the time interval [0, 1). Then we show that limt↑1 X t
exists and equals Z1, P0,z-a.s., implying that there is no explosion until time 1 so that the solution
can be continuously extended to the whole interval [0, 1] and satisfies the bridge condition. Then
we characterize the conditional distribution of Z t given F X

t and identify it with ρ(t, X t , ·), which
will in turn imply that X is a local martingale in its own filtration via Lemma 2.1. Finally, we
provide an application of our method to the construction of Ornstein–Uhlenbeck bridges.

4.1. Existence of a strong solution on the time interval [0, 1) and the bridge property

Recall from Lemma 2.2 that Ut = A(V (t), Z t ), Rt = A(t, X t ), where A is defined in (2.7)
and ρ is related to p via (2.20). Since A is strictly increasing, the existence of a strong solution
with a Markov property to the system of SDEs given by (2.1) and (2.17) and the convergence
of X t to Z1 is equivalent to the existence of a strong solution with a Markov property of the
following system, which can be obtained by an application of Itô’s formula,

dUt = σ(t)dβt + σ 2(t)b(t, Ut )dt

dRt = dBt +


px (t, Rt , Ut )

p(t, Rt , Ut )
+ b(t, Rt )


dt, (4.32)

and convergence of Rt to U1.
First observe that, due to (2.22), we have px (t,x,z)

p(t,x,z) + b(t, x) =
Γx (t,x;V (t),z)
Γ (t,x;V (t),z) + b(t, x). Thus,

due to Lemma A.1 and Assumption 2.2, px (t,x,z)
p(t,x,z) + b(t, x) is locally Lipschitz for t ∈ [0, T ]

for any T < 1,3 and therefore R is the unique strong solution to the corresponding stochastic
differential equation on [0, 1) up to an explosion time (see Theorem 38 of Chapter V in [18]).
Moreover, the solution will have a strong Markov property for any stopping time strictly less
than the explosion time by Theorem 5.4.20 in [13]. We shall now see that there will not be any
explosion until time 1 and, indeed, that Rt converges to U1.

Proposition 4.1. Suppose that Assumptions 2.1–2.3 are satisfied. Then

P0,z(lim
t↑1

Rt = U1) = 1.

Proof. As observed before, there exists a strong solution to (4.32) up to an explosion time. Let
us denote this explosion time with τ . We will first argue that P0,z(τ < 1) = 0. Recall that
p(t, x, z) = Γ (t, x; V (t), z) (see (2.22)), and define

h(t, x; u, z) :=
Γ (t, x; u, z)

q(u − t, x, z)
, (4.33)

3 Lemma A.1 gives a lower bound for p. This implies that px
p (t, x, z) has locally bounded derivatives with respect to

x and z since Γ has continuous second derivatives. Moreover, b is Lipschitz by assumption; thus the claim holds. Note
that we require T < 1 so that V (t) − t is bounded away from 0 for t ∈ [0, T ].
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where q is the transition density of a standard Brownian motion. This yields that

px (t, x, z)

p(t, x, z)
=

z − x

V (t) − t
+

hx (t, x; V (t), z)

h(t, x; V (t), z)
.

Proposition A.1 in the Appendix states that hx (t,x;V (t),z)
h(t,x;V (t),z) is uniformly bounded on [0, 1] × R ×

[0, 1] × R; thus we can define an equivalent probability measure P
0,z

on G1 (recall that all the
stochastic processes have been defined on (Ω , G, (Gt )), which is introduced at the beginning of
Section 2) by the following:

dP
0,z

dP0,z
:= E

∫
·

0
σ(s)b(s, Us)dβs


1

E
∫

·

0


b(s, Rτ

s ) +
hx (s, Rτ

s ; V (s), Zs)

h(s, Rτ
s ; V (s), Zs)


dBs


1
,

where Rτ is the process R stopped at τ and E (·)t denotes the Doléans–Dade stochastic
exponential taken at time t . Recall that σ and b are bounded by Assumptions 2.1 and 2.2. Under

this new measure, P
0,z

, (4.32) becomes

dUt = σ(t)dβ t

dRτ
t = dBt +

px (t, Rτ
t , Ut )

p(t, Rτ
t , Ut )

dt = dBt +
Ut − Rτ

t

V (t) − t
dt, (4.34)

where β and B are two (Gt )-Brownian motions under P
0,z

. First, observe that, if P0,z(τ <

1) > 0, then so is P
0,z

(τ < 1). However, we have shown in Proposition 3.1 that (4.34) has a
non-exploding solution over [0, 1). This contradiction implies that P0,z(τ < 1) = 0. Moreover,

Proposition 3.2 shows that P
0,z

(limt↑1 Rt = U1) = 1. This yields P0,z(limt↑1 Rt = U1) = 1
due to the equivalence of the measures. �

The next proposition and its corollary sum up what we have achieved so far in this
section.

Proposition 4.2. Under Assumptions 2.1–2.3, there exists a unique strong solution to the SDE

dRt = dBt +


px (t, Rt , Ut )

p(t, Rt , Ut )
+ b(t, Rt )


dt,

with R0 = 0 such that (R, U ) has a strong Markov property over the interval [0, 1). Moreover,
P0,z(limt↑1 Rt = U1) = 1.

Proof. Propositions 4.1 and A.1 imply that P0,z(limt↑1 Rt = U1) = 1, which in turn yields that
there is no explosion until time 1. Thus, Theorem 38 of Chapter V in [18] gives that R is indeed
the strong solution of the SDE over the time interval [0, 1). Moreover, due to Theorem 5.4.20
in [13], (R, U ) has a strong Markov property. �

The following corollary is immediate due to the one-to-one relationship, via the strictly
monotone transformation A, between (R, U ) and (X, Z).

Corollary 4.1. Under Assumptions 2.1–2.3, there exists a unique strong solution to (2.17) on
[0, 1] such that (X, Z) has a strong Markov property. Moreover, limt↑1 X t exists P0,z-a.s., and
X1 := limt↑1 X t = Z1, P0,z-a.s.
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4.2. Conditional distribution of Z

We now turn to proving that ρ(t, X t , ·) is the conditional density of Z t given F X
t , which will

in turn imply that the solution of (2.17) is a local martingale in its own filtration via Lemma 2.1.
In order to find the conditional density of Z , we will first find the conditional density of U given
(F R

t ) and then use Lemma 2.2. The reader is asked to review the notation introduced after the
statement of Theorem 2.1 at this point. Recall that Ut = A(V (t), Z t ) and Rt = A(t, X t ), where
A is the function defined by (2.7). Under this transformation, U0 has a probability density given
by P(U0 ∈ dz) = Γ (0, 0; c, z) dz, where the measure P is defined by (2.19).

Next, fix a T < 1 and let PT := P|F X,Z
T

be the restriction of P to F X,Z
T . The reason for

this restriction is due to the fact that the drift term in (4.32) is not defined at t = 1, and this
will lead to inapplicability of the results of [14] that we cite later in this subsection. Note that
P[Ut ∈ dz|F R

t ] = PT [Ut ∈ dz|F R
t ] for t ∈ [0, T ] and, since T is arbitrary, this identity will

allow us to obtain all the conditional distributions of Z t for t < 1.
The remainder of this subsection is devoted to the proof that

PT [Ut ∈ dz|F R
t ] = p(t, Rt , z)dz,

where p is defined by (2.20). In order to achieve this goal, we will use the characterization of the
conditional distributions obtained by Kurtz and Ocone [14]. We refer the reader to [14] for all
unexplained details and terminology.

Remark 4.1. Let PT be the absolutely continuous measure on the same space defined by the
Radon–Nikodým derivative

exp


−

1
2

∫ T

0


px (s, Rs, Us)

p(s, Rs, Us)
+ b(s, Rs)

2

ds

−

∫ T

0


px (s, Rs, Us)

p(s, Rs, Us)
+ b(s, Rs)


dBs


.

Note that, under PT , R is a Brownian motion independent of U . Moreover, as we have just seen,
there is no explosion before time 1 for the system of SDEs for (U, R). Thus, it follows from the
no-explosion criterion (see Exercise 2.10 in Chapter IX of [19]) that PT is a probability measure
equivalent to PT . As the natural filtration of a Brownian motion is right continuous, this in turn
implies that (F X

t )t∈[0,T ] is right continuous, too.

Let P be the set of probability measures on the Borel sets of R topologized by weak
convergence. Given m ∈ P and m-integrable f , we write m f :=


R f (z)m(dz). The next result

is Lemma 1.1 in [14].

Lemma 4.1. There is a P -valued F X -optional process πt (ω, dx) such that

πt f = E[ f (Ut )|F R
t ]

for all bounded measurable f . Moreover, πt has a right-continuous version.

Let us recall the innovation process

It = Rt −

∫ t

0
πsκsds,
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where κs(z) :=
px (s,Rs ,z)
p(s,Rs ,z)

+ b(s, Rs). The next lemma will show that R is an integrable process

and, thus, πsκs exists for all s < 1 since Z is integrable and px (s,x,z)
p(s,x,z) =

z−x
V (s)−s + is a bounded

function, due to Proposition A.1.

Lemma 4.2. Let R be the unique strong solution of (4.32) under Assumptions 2.1–2.3. Then, for
every T < 1,

E


R2
t


≤ C(1 + ν−2

T )eCν−2
T t ,

for every t ≤ T , where C is a constant and νT := inft≤T (V (t) − t).

Proof. Note that

E


R2
t


≤ C


t +

∫ t

0
E


px (s, Rs, Us)

p(s, Rs, Us)
+ b(s, Rs)

2

ds



≤ C


1 + ν−2

T + ν−2
T

∫ t

0
E


R2
s


ds


≤ C(1 + ν−2

T ) + Cν−2
T

∫ t

0
E


R2
s


ds,

where C is a generic constant. The result then follows from Gronwall’s inequality. �

In order to be able to use the results of [14], we first need to establish the Kushner–
Stratonovich equation satisfied by (πt )t∈[0,T ]. To this end, let B(R2) denote the set of bounded
Borel-measurable real-valued functions on R2, and consider the operator A0 : B(R+ × R) →

B(R2) defined by

A0φ(t, x) =
∂φ

∂t
(t, x) +

1
2
σ 2(t)

∂2φ

∂x2 (t, x) + σ 2(t)b(t, x)
∂φ

∂x
(t, x),

with the domain D(A0) = C∞
c (R+ × R), where C∞

c is the class of infinitely differentiable
functions with compact support. Due to Assumptions 2.1–2.3 imposed on σ and b, it is well
known (see e.g. Remark 5.4.17 in [13]) that the martingale problem for A0 is well posed, and
its unique solution is given by (t, Ut ). Moreover, the Kushner–Stratonovich equation for the
conditional distribution of U is given by the following:

πt f = π0 f +

∫ t

0
πs(A0 f )ds +

∫ t

0
[πs(κs f ) − πsκsπs f ] dIs, (4.35)

for all f ∈ C∞
c (R) (see Theorem 4.3.1 in [6]). Note that f can be easily made an element of

D(A0) by redefining it as f n, where n ∈ C∞
c (R+) is such that n(t) = 1 for all t ∈ [0, 1]. Thus,

the above expression is rigorous. The following theorem is a corollary to Theorem 4.1 in [14].

Theorem 4.1. Suppose that the conditions in Assumptions 2.1–2.3 hold. Let (mt ) be an
F X -adapted càdlàg P -valued process such that

mt f = π0 f +

∫ t

0
ms(A0 f )ds +

∫ t

0
[ms(κs f ) − msκsms f ] dI m

s , (4.36)

for all f ∈ C∞
c (R), where I m

t = Rt −
 t

0 msκsds. Then, mt = πt for all t < T , a.s.

Proof. The proof follows along the same lines as the proof of Theorem 4.1 in [14], even
though, in contrast to [14], we allow the drift of R to depend on t and Rt , too. This is due to
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the fact that [14] used the assumption that the drift depends only on the signal process, U ,
in order to ensure that the joint martingale problem (R, U ) is well posed, i.e. the conditions
of Proposition 2.2 in [14] are satisfied. Note that the relevant martingale problem is well
posed in our case, since the system of SDEs in (4.32) has a unique strong solution and the
drift and dispersion coefficients are bounded on compact domains over the interval [0, T ] (see
Proposition 5.3.20 and Remark 5.4.17 in [13] in this regard). �

Now, we can state and prove the following corollary.

Corollary 4.2. Suppose that the conditions in Assumptions 2.1–2.3 hold. Then,

πt f =

∫
R

f (z)p(t, Rt , z)dz,

for any bounded measurable f . Therefore,

E[ f (Z t )|F X
t ] =

∫
R

f (z)ρ(t, X t , z)dz.

Proof. We have seen in Lemma 2.2 that p(t, Rt , ·) satisfies (2.21), i.e. mt (dz) := p(t, Rt , z)dz
solves (4.36). Then, it follows from Theorem 4.1 that p(t, Rt , ·) is the conditional density of
Ut , which gives the first assertion. The second assertion follows from the explicit relationship
between p and ρ, as described in Lemma 2.2. �

4.3. Proof of the main result and application to Ornstein–Uhlenbeck bridges

Now we have all the results necessary to prove Theorem 2.1.

Proof of Theorem 2.1. The strong solution, the Markov property and the fact that
P0,z(limt↑1 X t = Z1) = 1 follow from Corollary 4.1. Moreover, it follows from Corollary 4.2
that ρ(t, X t , z) is the conditional density of Z t given F X

t . Thus, X is a local martingale in its
own filtration by Lemma 2.1. �

Note that, using the methods employed in this section, one can prove the following theorem
as well.

Theorem 4.2. Let Z be the unique strong solution on (Ω , G, (Gt ), Q) to

Z t = Z0 +

∫ t

0
σ(s)dβs +

∫ t

0
σ 2(s)b(s, Zs)ds,

where b ∈ C1,2
b with bounded derivatives and σ is as before. Suppose that P(Z0 ∈ dz) =

Γ (0, 0; c, z)dz for some c ∈ (0, 1). Let ρ(t, x, z) := Γ (t, x; V (t), z), where V is as defined
earlier and Γ (t, x; u, z) is the fundamental solution of (2.10). Define X by

dX t = dBt +


b(s, Xs) +

ρx (t, X t , Z t )

ρ(t, X t , Z t )


dt,

for t ∈ (0, 1) with X0 = 0. Then,
1. in the filtration generated by X,

X t −

∫ t

0
b(s, Xs)ds

defines a standard Brownian motion;
2. X1 = Z1, P0,z-a.s., where P0,z is the law of (X, Z) with Z0 = z and X0 = 0.
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The following example show that boundedness of b in the above theorem is not a necessary
condition for the result to hold as long as b depends linearly on x .

Example 4.1. Suppose that Z is an Ornstein–Uhlenbeck type process, i.e.

dZ t = σ(t)dβt − kσ 2(t)Z t dt,

where k > 0 is a constant. Note that in this case the fundamental solution of (2.10) is given by

Γ (s, x; t, z) = q((1 − e−2k(t−s))/2k, xe−k(t−s), z).

Let X be defined by X0 = 0 and

dX t = dBt +


2k

Z t − X t e−k(V (t)−t)

ek(V (t)−t) − e−k(V (t)−t)
− k X t


dt,

for t ∈ (0, 1). Then, we claim that, if Z0 has a probability density given by Γ (0, 0; c, ·), then X is
an Ornstein–Uhlenbeck process in its own filtration and X1 = Z1, P0,z-a.s., under an appropriate
modification of Assumption 2.1.2, which we will state later. Using the method employed in the
proof of Proposition 3.3, we have that Γ (t, x; V (t), z) is the conditional density of Z t given F X

t
for t < 1. Thus, it remains to show that X1 = Z1, P0,z-a.s.

Note that the above convergence will be obtained if one can find a continuous function b(t)
with b(1) = 1 such that X t − b(t)Z t converges to 0 as t ↑ 1. We will choose this new function
so that Yt := X t − b(t)Z t defines a Markov process. It can be checked directly that, if b satisfies
the following ordinary differential equation,

b′(t) + γ (t)b(t) = θ(t), (4.37)

where

γ (t) =
e−c(V (t)−t)

+ ec(V (t)−t)

ec(V (t)−t) − e−c(V (t)−t)
+ cσ 2(t), and

θ(t) =
2c

ec(V (t)−t) − e−c(V (t)−t)
,

then Y satisfies the following SDE:

dYt = dBt − b(t)σ (t)dβt − c
e−c(V (t)−t)

+ ec(V (t)−t)

ec(V (t)−t) − e−c(V (t)−t)
Yt dt. (4.38)

The solution to (4.37) with the boundary condition b(1) = 1 is given by

b(t) =

 t
0 e

 s
0 γ (r)drθ(s)ds

e
 t

0 γ (r)dr
.

In order to show that Yt converges to 0 as t ↑ 1, consider the function ϕ defined by

ϕ(t, y) :=
1

√
2(Λ(t) + ℓ)

e
y2

2λ2(t)(Λ(t)+ℓ) ,

where

λ(t) := exp


−c

∫ t

0

e−c(V (s)−s)
+ ec(V (s)−s)

ec(V (s)−s) − e−c(V (s)−s)
ds


, and
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Λ(t) :=

∫ t

0

1 + b2(s)σ 2(s)

λ2(s)
ds.

A direct application of Itô’s formula gives that ϕ(t, Yt ) is a positive local martingale, and hence
a supermartingale. If Assumption 2.1 holds with λ and Λ defined above, then we can imitate the
proof of Proposition 3.2 using ϕ(t, y) defined above to conclude that Yt converges to 0 as t ↑ 1.

5. Application to finance: A generalization of the Back–Pedersen equilibrium model

We will use the previous bridge construction to solve an equilibrium model with information
asymmetry that can be viewed as a non-Gaussian generalization of Back and Pedersen’s
model [3]. We keep the notation of the previous sections; in particular, all the stochastic processes
will be defined on (Ω , G, (Gt ), Q).

Consider a stock issued by a company with fundamental value given by the diffusion process
Z = (Ω , G, (Gt ), (Z t ), (P z)z∈R) with values in R, and satisfying

Z t = Z0 +

∫ t

0
σ(s)a(V (s), Zs)dβs, (5.39)

where β is a standard Brownian motion adapted to (Gt ), a and σ are deterministic functions,
V (t) = c +

 t
0 σ 2(s)ds, for some constant c, and the probability density of Z0 is G(0, 0; c, ·)

with G given by (2.13). We will require a and σ to satisfy some further assumptions which are
made precise in Assumption 5.2 below.

Then, if the firm value is observable, the fair stock price should be a function of Z t and
t . However, the assumption of the company value being discernible by the whole market in
continuous time is counterfactual, and it will be more realistic to assume that this information
is revealed to the market only at given time intervals (such as dividend payment times or when
balance sheets are publicized).

In this model, we therefore assume, without loss of generality, that the time of the next
information release is t = 1, and that the market terminates after that. Hence, in this setting,
the stock can be viewed as a European option on the firm value with maturity T = 1 and payoff
f (Z1). In addition to this risky asset, there is a riskless asset that yields an interest rate normalized
to zero for simplicity of exposition.

The microstructure of the market, and the interaction of market participants, are modeled as a
generalization of [3]. There are three types of agent: noisy/liquidity traders, an informed trader
(insider), and a market maker, all of whom are risk neutral. The agents differ in their information
sets, and objectives, as follows.

• Noisy/liquidity traders trade for liquidity reasons, and their total demand at time t is given by
a standard (Gt )-Brownian motion B, independent of β and Z0.

• A market maker observes only the total market order process Yt = θt +Bt , where θt is the total
order of the insider at time t , which is an absolutely continuous process, and therefore Y is
a continuous semimartingale on (Ω , G, (Gt ), Q). This in particular implies that the market
maker’s filtration is F Y

t . Similar to [8], we assume that the market maker sets the price
as a function of weighted total order process at time t , i.e. we consider pricing functionals
S

Y[0,t], t


of the following form:

S

Y[0,t], t


= H (t, X t ) , ∀t ∈ [0, 1), (5.40)
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where X is the unique strong solution of

dX t = w(t, X t )dYt , ∀t ∈ [0, 1), X0 = 0 (5.41)

on (Ω , G, (Gt ), Q) for some deterministic function w(s, x) chosen by the market maker.
Moreover, a pricing rule (H, w) has to be admissible in the sense of Definition 5.1. In
particular, H ∈ C1,2 and, therefore, S is a semimartingale on (Ω , G, (Gt ), Q) on [0, 1).

• The informed investor observes the price process St = H (t, X t ), where X is given by (5.41),
and the true firm value Z t , i.e. her filtration is given by (F Z ,S

t ). Since she is risk neutral, her
objective is to maximize the expected final wealth, i.e.

sup
θ∈A(H,w)

E0,z W θ
1


= sup

θ∈A(H,w)

E0,z


( f (Z1) − S1−)θ1 +

∫ 1−

0
θsdSs


, (5.42)

where E0,z is the expectation with respect to the probability measure P0,z , which is the law of
(X, Z) with X0 = 0 and Z0 = z, and A(H, w) is the set of admissible trading strategies for
the given pricing rule (H, w), which will be defined in Definition 5.2. That is, the insider
maximizes the expected value of her final wealth W θ

1 , where the first term on the right-
hand side of Eq. (5.42) is the contribution to the final wealth due to a potential differential
between price and fundamental at the time of information release, and the second term is the
contribution to final wealth coming from the trading activity.

Remark 5.1. Note that, by setting σ ≡ 0 and c = 1, we obtain the “static information market”
considered by [2]. Moreover, setting a ≡ 1 results in the model studied by [3].

In both cases, V (t) − t was a measure of the uncertainty of the market about the value of Z t ,
which is equivalent to the informational advantage of the insider in comparison with the market
maker (see the discussion at the beginning of p. 393 of [3]). As we will see later in Remark 5.8,
this observation remains valid in our generalized case.

Remark 5.2. We stress the fact that the total demand Y = Y θ depends on the insider’s strategy
θ , so that the market maker’s filtration F Y

= F Y θ
depends also on θ (through Y ). To avoid heavy

notation, we will drop the superscript θ from the total demand. So will simply write Y and F Y

instead of Y θ and F Y θ
, respectively.

Note also that the above market structure implies that the insider’s optimal trading strategy
takes into account the feedback effect, i.e. that prices react to the insider’s trading strategy
according to (5.40) and (5.41). Our goal is to find the rational expectations equilibrium of this
market, i.e. a pair consisting of an admissible pricing rule and an admissible trading strategy such
that (a) given the pricing rule the trading strategy is optimal, and (b) given the trading strategy,
there exists a unique strong solution, X t , of (5.41) over the time interval [0, 1), and the pricing
rule is rational in the following sense:

H(t, X t ) = St = EQ


f (Z1)|F Y
t


(5.43)

with S1 = f (Z1). To formalize this definition of equilibrium, we first need to define the sets of
admissible pricing rules and trading strategies.

The definition of admissible pricing rules is a generalization of the one in [2,3]. This
generalization allows the market maker to re-weight his past information with a weighting
function w, as stated in (5.41).
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Definition 5.1. For a given semimartingale Y on (Ω , G, (Gt ), Q), an admissible pricing rule is
any pair (H, w) fulfilling the following conditions.

1. w : [0, 1] × R → R+ is a function in C1,2([0, 1] × R) bounded away from 0.
2. There exists a unique strong solution of

dX t = w(t, X t )dYt , X0 = 0 (5.44)

over the time interval [0, 1) on (Ω , G, (F Y
t ), Q).

3. H ∈ C1,2([0, 1] × R).
4. x → H(t, x) is strictly increasing for every t ∈ [0, 1].

Moreover, given θ ∈ A(H, w), a pricing rule (H, w) is said to be rational if it satisfies (5.43).

Remark 5.3. The strict monotonicity of H in the space variable implies that H is invertible; thus,
the filtration of the insider is generated by X and Z . Moreover, since w is bounded away from 0,
the filtrations generated by X and Y are the same. This in turn implies that (F S,Z

t ) = (F B,Z
t ),

i.e. the insider has full information about the market.

It is standard (see, e.g., [3,8] or [22]) in the insider trading literature to limit the set of
admissible strategies to absolutely continuous ones motivated by the result in Back [2], and
we do so. The formal definition of the set of admissible trading strategies is summarized in the
following definition.

Definition 5.2. An F B,Z -adapted θ is said to be an admissible trading strategy for a given pair
(H, w) if

1. it is absolutely continuous with respect to the Lebesgue measure, i.e. θt =
 t

0 αsds;
2. there exists a unique strong solution, X , to the SDE4 (5.44) on (Ω , G, (F B,Z

t ), Q) over the
interval [0, 1);

3. (X, Z) is a Markov process adapted to (Gt ) with law P0,z ; and
4. no doubling strategies are allowed, i.e.

E0,z

∫ 1

0
H2 (t, X t ) dt


< ∞. (5.45)

The set of admissible trading strategies for the given pair (H, w) is denoted with A(H, w).

Given these definitions of admissible pricing rules and trading strategies, it is now possible to
formally define the market equilibrium as follows.

Definition 5.3. A triplet (H∗, w∗, θ∗) is said to form an equilibrium if (H∗, w∗) is an admissible
pricing rule for the semimartingale Y ∗

= B +θ∗, θ∗
∈ A(H∗, w∗), and the following conditions

are satisfied.

1. Market efficiency condition: given θ∗, (H∗, w∗) is a rational pricing rule.
2. Insider optimality condition: given (H∗, w∗), θ∗ solves the insider optimization problem:

E0,z
[W θ∗

1 ] = sup
θ∈A(H∗,w∗)

E0,z
[W θ

1 ].

4 Note that this SDE is well defined on (Ω , G, (Gt ),Q) since, due to absolute continuity of θ , Y = B + θ is a
semimartingale on it.
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Additionally, to define a well-behaved problem, we impose the following technical conditions on
the model parameters.

Assumption 5.1. f : R → R is a strictly increasing function belonging to C1 such that

| f (z)| ≤ k1 exp (k2 A(1, z)) , ∀z ∈ R

for some constants k1 and k2, where A is given by (2.7).

Remark 5.4. The assumption that f is strictly increasing implies that the larger the signal Z the
larger the value of the risky asset for the insider. This assumption will also play a role in order to
prove that the proposed equilibrium pricing rule satisfies condition 4 in Definition 5.1.

Assumption 5.2. We assume that the parameters of the model satisfy the following assumptions.

1. Both a(t, z) and σ(t) satisfy Assumption 2.1.
2. a(t, z) also satisfies a nonlinear PDE:

at (t, z) +
a2(t, z)

2
azz(t, z) = 0. (5.46)

Remark 5.5. Due to the definition of b given in (2.9), we have

b(t, x) = At (t, A−1(t, x)) −
1
2

az(t, A−1(t, x))

= −

∫ A−1(t,x)

0

at (t, y)

a2(t, y)
dy −

1
2

az(t, A−1(t, x))

=
1
2

∫ A−1(t,x)

0
azz(t, y)dy −

1
2

az(t, A−1(t, x))

= −
1
2

az(t, 0),

where the second equality is due to the definition of A (see (2.7)) and the third equality
follows from Assumption 5.2.2. Therefore, b is continuous and depends only on t . Moreover,
Assumptions 2.2 and 2.3 are automatically satisfied, since a ∈ C1,2 and t ∈ [0, 1]. In this case,
Ut = A(V (t), Z t ), where A is defined in (2.7), is a Gaussian process. Moreover, in the next
subsection, we will give some heuristics indicating that a(t, z) being a solution to (5.46) is a
necessary condition for the existence of an equilibrium. This suggests the conclusion that the
only possible form for the signal Z , for which an equilibrium in the sense of Definition 5.3
exists, is Z t = Φ(t, Ut ), where U is a Gaussian process and Φ is a deterministic function.

5.1. Equilibrium

First, we shall provide some heuristics in order to motivate the PDE (5.46) we imposed on
a(t, z).

Let (H, w) be any rational pricing rule. First, notice that a standard application of integration-
by-parts formula applied to W θ

1 for any θ ∈ A(H, w) gives

W θ
1 =

∫ 1

0
( f (Z1) − Ss)αsds. (5.47)
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Furthermore,

E0,z

∫ 1

0
( f (Z1) − Ss)αsds


= E0,z

∫ 1

0
(E0,z

[ f (Z1)|F B,Z
s ] − Ss)αsds


. (5.48)

Define the value, P , of the stock for the insider by

Pt := E0,z
[ f (Z1)|F B,Z

t ] = E0,z
[ f (Z1)|F Z

t ] = F(t, Z t ), (5.49)

for some measurable function F : [0, 1]×R → R (due to independence between Z and B and the
Markov property of Z ). Note that this expectation is well defined since, due to Assumption 5.1,
| f (Z1)| ≤ k1 exp(k2U1), where U1 is a Gaussian random variable. Moreover, P1 = f (Z1), P0,z-
a.s., for every z ∈ R, and the function F is given by

F(t, z) =

∫
R

f (y)G(V (t), z; 1, y)dy, (5.50)

where G is the function defined in Proposition 2.1. Due to Assumption 5.1 on f , it follows from
Theorem 12 in Chapter I of [12] that F ∈ C1,2([0, 1] × R) and it satisfies

Ft (t, z) +
1
2
σ 2(t)a2(V (t), z)Fzz(t, z) = 0. (5.51)

In view of (5.47) and (5.48), the insider’s optimization problem becomes

sup
θ∈A(H,w)

E0,z
[W θ

1 ] = sup
θ∈A(H,w)

E0,z

∫ 1

0
(F(s, Zs) − H(s, Xs))αsds


. (5.52)

Recall that the signal Z t follows

dZ t = σ(t)a(V (t), Z t )dβt .

Suppose that θt =
 t

0 α(s, Xs, Zs)ds is a solution of problem (5.52). Then the market price is
given by H(t, X t ), with

dX t = w(t, X t )α(t, X t , Z t )dt + w(t, X t )dBt .

Let

J (t, x, z) := ess supθ∈A(H,w)E0,z

∫ 1

t
(F(s, Zs) − H(s, Xs))dθs |X t = x, Z t = z


,

t ∈ [0, 1]

be the associated value function of the insider’s problem. Applying the dynamic programming
principle formally, we get the following HJB equation:

0 = sup
α

([w(t, x)Jx + F(t, z) − H(t, x)] α) + Jt +
1
2
w2(t, x)Jxx

+
1
2
σ 2(t)a2(V (t), z)Jzz . (5.53)

Thus, for the existence of an optimal α, we need

w(t, x)Jx + F(t, z) − H(t, x) = 0 (5.54)
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Jt +
1
2
w2(t, x)Jxx +

1
2
σ 2(t)a2(V (t), z)Jzz = 0. (5.55)

Differentiating (5.54) with respect to x , and since from (5.54) it follows that Jx =
H(t,x)−F(t,z)

w(t,x)
,

we get

w2(t, x)Jxx = Hx (t, x)w(t, x) + (F(t, z) − H(t, x))wx (t, x). (5.56)

Plugging (5.56) into (5.55) yields

Jt +
1
2

(Hx (t, x)w(t, x) + (F(t, z) − H(t, x))wx (t, x))

+
1
2
σ 2(t)a2(V (t), z)Jzz = 0. (5.57)

Differentiating (5.54) with respect to z gives Jxz = −
Fz(t,z)
w(t,x)

, and therefore Jzzx = −
Fzz(t,z)
w(t,x)

.
Thus, after differentiating (5.57) with respect to x , we obtain

Jt x +
1
2

(Hxx (t, x)w(t, x) + (F(t, z) − H(t, x))wxx (t, x))

− σ 2(t)
a2(V (t), z)

2w(t, x)
Fzz(t, z) = 0. (5.58)

Since differentiating (5.54) with respect to t gives

Jxt =
wt (t, x)

w2(t, x)
(F(t, z) − H(t, x)) −

1
w(t, x)

(Ft (t, z) − Ht (t, x)),

(5.58), in view of (5.51), implies that

(H(t, x) − F(t, z))


wt (t, x) +

w2(t, x)

2
wxx (t, x)


= w(t, x)


Ht (t, x) +

1
2
w2(t, x)Hxx (t, x)


. (5.59)

Since the right-hand side of (5.59) is not a function of z, we must have

wt (t, x) +
w2(t, x)

2
wxx (t, x) = 0, (5.60)

Ht (t, x) +
1
2
w2(t, x)Hxx (t, x) = 0. (5.61)

Remark 5.6. In Proposition 5.1, we show that if the system of PDEs given by (5.60) and (5.61) is
satisfied, then there exists an optimal strategy for the insider. Under further assumptions, one can
show that the requirement on (H, w) posed by the PDEs (5.60) and (5.61) is in fact a necessary
condition for the existence of an optimal solution for the insider. Indeed, if f is bounded, and
therefore, F and H are bounded, and there exists an optimal strategy for the insider such that
the value function is in C1,2,2, then Theorem 4.3.1 in [16] gives that J has to satisfy (5.54) and
(5.55) simultaneously. Thus, w satisfying the nonlinear PDE above is a necessary condition in
order to have a smooth value function J .
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An examination of (5.61) suggests that X associated with the optimal strategy is a martingale
in its own filtration. In view of these observations, recalling the bridge construction in the
previous section with certain properties, it is easily seen that a(t, x) is a natural candidate for the
equilibrium weight function w∗(t, x). That is the reason why we need to assume that a satisfies
PDE (5.46).

Remark 5.7. PDE (5.46) admits many explicit solutions satisfying the properties listed in
Assumption 2.1. Here are a few examples taken from [17], sections from 1.1.9.10 to 1.1.9.13
and from 1.1.9.18 to 1.1.9.20.

(i) a(t, z) = a0 for some constant a0 > 0, which is the case already studied by Back and
Pedersen [3].

(ii) a(t, z) =


k1(z + k2)2 + k3e−k1t , where k1, k2, k3 are positive constants. Indeed, since t

varies on [0, 1], infz a(t, z) ≥
√

k3e−2k1 , so that a(t, z) is uniformly bounded away from
zero.

(iii) a(t, z) =
g(z)

√
k1t+k2

, where g is solution to k1
g = g′′ and is bounded away from zero.

(iv) (Self-similar solution) a(t, z) = y(z/
√

t), where y(x) satisfies y2 yxx − yx x = 0 and is
bounded away from 0.

(v) (Generalized self-similar solution) a(t, z) = e−2k1t y(ze2k1t ), where y(x) satisfies

−
1
2

y2 yxx = 2k1xyx − 2k1 y

and is bounded away from 0.

The next proposition describes the optimal insider’s strategy in terms of the behavior of the
resulting optimal demand at maturity.

Proposition 5.1. Assume that (H, w) satisfies

Ht (t, x) +
w(t, x)2

2
Hxx (t, x) = 0 (5.62)

and

wt (t, x) +
w(t, x)2

2
wxx (t, x) = 0. (5.63)

If θ∗
∈ A(H, w) satisfies S1 := H(1, X∗

1) = F(1, Z1), P0,z-a.s., for every z ∈ R, where X∗ is
the solution to X t =

 t
0 w(s, Xs)dY ∗

s with Y ∗
= B + θ∗, and (H, w) is admissible for Y ∗, then

θ∗ is an optimal strategy, i.e.

E0,z
[W θ∗

1 ] ≥ E0,z
[W θ

1 ]

a.s., for all θ ∈ A(H, w).

Proof. We will adapt Wu’s proof of his Lemma 4.2 in [22]. Consider the function

Ψa(t, x) :=

∫ x

ξ(t,a)

H(t, u) − a

w(t, u)
du +

1
2

∫ 1

t
Hx (s, ξ(s, a))w(s, ξ(s, a))ds, (5.64)

where ξ(t, a) is the unique solution of H(t, ξ(t, a)) = a. Direct differentiation with respect to x
gives that

Ψa
x (t, x)w(t, x) = H(t, x) − a. (5.65)
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Differentiating above with respect to x gives

Ψa
xx (t, x)w2(t, x) = w(t, x)Hx (t, x) − (H(t, x) − a) wx (t, x). (5.66)

Direct differentiation of Ψa(t, x) with respect to t gives

Ψa
t (t, x) =

∫ x

ξ(t,a)

Ht (t, u)

w(t, u)
du −

∫ x

ξ(t,a)

(H(t, u) − a)wt (t, u)

w2(t, u)
du

−
1
2

Hx (t, ξ(t, a))w(t, ξ(t, a))

=

∫ x

ξ(t,a)

Ht (t, u)

w(t, u)
du +

1
2

∫ x

ξ(t,a)

(H(t, u) − a)dwx (t, u)

−
1
2

Hx (t, ξ(t, a))w(t, ξ(t, a))

=
1
2

((H(t, x) − a)wx (t, x) − Hx (t, x)w(t, x)) , (5.67)

where in order to obtain the last equality we used (5.62) and integration by parts twice on the
second integral. Combining (5.66) and (5.67) gives

Ψa
t +

1
2
w(t, x)2Ψa

xx = 0. (5.68)

Therefore, from (5.65) and Itô’s formula, it follows that

Ψa(1, X1) − Ψa(0, X0) =

∫ 1

0

H(t, X t ) − a

w(t, X t )
dX t , (5.69)

and, in particular, when a = F(1, Z1),

Ψ F(1,Z1)(1, X1) − Ψ F(1,Z1)(0, X0) =

∫ 1

0

H(t, X t ) − F(1, Z1)

w(t, X t )
dX t . (5.70)

Using (5.47) and (5.70) and admissibility properties of θ , in particular that dθt = αt dt , the insider
optimization problem becomes

sup
θ∈A(H,w)

E0,z
[W θ

1 ] = sup
θ∈A(H,w)

E0,z

∫ 1

0
(F(1, Z1) − H(t, X t )) dθt


(5.71)

= E0,z

Ψ F(1,Z1)(0, X0)


− inf

θ∈A(H,w)
E0,z


Ψ F(1,Z1)(1, X1)


, (5.72)

where the last equality is due to (5.45) in Definition 5.2, and

E0,z

∫ 1

0
F(1, Z1)dBt

2
 = E0,z


F(1, Z1)

2


E0
[B2

1 ] < ∞,

since Z and B are independent.
The conclusion follows from the fact that Ψ F(1,Z1)(1, X1) =

 X1
ξ(1,F(1,Z1))

H(1,u)−F(1,Z1)
w(t,u)

du,
which, due to the fact that H(t, x) is increasing and w(t, u) is positive, is positive unless
X1 = ξ(1, F(1, Z1)), that is, H(1, X1) = F(1, Z1). Therefore, an insider trading strategy which
gives H(1, X1) = F(1, Z1) is optimal. �
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We have the following sufficient condition for a triplet (H∗, w∗, θ∗) to be an equilibrium.

Lemma 5.1. A triplet (H∗, w∗, θ∗), where (H∗, w∗) is an admissible pricing rule for the
semimartingale Y ∗

= B + θ∗, and θ∗
∈ A(H∗, w∗), is an equilibrium if it fulfills the following

four conditions.

1. H∗(t, x) satisfies the PDE H∗
t (t, x) +

1
2w∗(t, x)2 H∗

xx (t, x) = 0 for any (t, x) ∈ [0, 1) × R.

2. Weighting function satisfies w∗
t (t, x) +

w∗(t,x)2

2 w∗
xx (t, x) = 0.

3. Y ∗
t = Bt + θ∗

t is a standard BM in its own filtration.
4. H∗(1, X∗

1) = f (Z1), P0,z-a.s., for every z ∈ R, where X∗ is the solution to
X t =

 t
0 w(s, Xs)dY ∗

s with Y ∗
= B + θ∗.

5. (H∗(t, X∗
t ))t∈[0,1] is an (F Y ∗

t )-martingale with respect to Q.

Proof. Let (H∗, w∗, θ∗) be a triplet satisfying conditions 1 to 4 above. By Proposition 5.1,
conditions 1, 2 and 4 imply that θ∗ is optimal. On the other hand, conditions 1, 3, 4 and 5
imply that the pricing rule (H∗, w∗) is rational. �

Combining Proposition 5.1 and the bridge construction given in the previous section, we can
finally state and prove the main result of this section. We recall from Proposition 2.1 that the
function G = G(t, x; u, y) is the transition density of

dξt = a(t, ξt )dβt , (5.73)

and from Theorem 2.1 that there exists a unique strong solution under F B,Z of the following
SDE:

dX t = a(t, X t )dBt + a2(t, X t )
ρx (t, X t , Z t )

ρ(t, X t , Z t )
dt, X0 = 0.

Theorem 5.1. Under Assumptions 5.1 and 5.2, there exists an equilibrium (H∗, w∗, θ∗), where

(i) H∗(t, x) = F(V −1(t), x) where F is given by (5.50) and w∗(t, x) = a(t, x) for all
(t, x) ∈ [0, 1] × R;

(ii) θ∗
t =

 t
0 α∗

s ds, where α∗
s = a(s, Xs)

ρx (s,Xs ,Zs )
ρ(s,Xs ,Zs )

with ρ(t, x, z) = G(t, x; V (t), z) and the

process X∗ is the unique strong solution under F B,Z of the following SDE:

dX t = a(t, X t )dBt + a2(t, X t )
ρx (t, X t , Z t )

ρ(t, X t , Z t )
dt, X0 = 0.

Proof. We will first show that (H∗, w∗) is admissible in the sense of Definition 5.1. Note that,
since F ∈ C1,2, so is H∗

∈ C1,2([0, 1] × R), and w∗ is bounded away from 0 since a(t, z)
is assumed to be bounded away from 0 in Assumption 5.2. We also have that X∗ is the unique
strong solution to

X t =

∫ t

0
w∗(s, Xs)dY ∗

s ,

on (Ω , G, (F Y ∗

t ), Q), by condition (ii) of the theorem, and that dX t = a(t, X t )dY ∗
t =

w∗(t, X t )dY ∗
t . In order to complete the proof of admissibility, we next show that x → H∗(t, x)
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is strictly increasing for every t ∈ [0, 1]. Observe that this is equivalent to the analogous property
for F . First, using (5.50) and (2.13), we obtain

F(t, z) =

∫
R

f (y)Γ (V (t), A(V (t), z); 1, A(1, y))dA(1, y).

=

∫ A(1,∞)

A(1,−∞)

f (A−1(1, y))Γ (V (t), A(V (t), z); 1, y)dy

=

∫ A(1,∞)

A(1,−∞)

f (A−1(1, y))q (1 − V (t), A(V (t), z) + c(t), y) dy,

where the last line follows from Lemma A.3 and q is the transition density of standard Brownian
motion given by

q(t, x, y) =
1

√
2π t

exp


−
(x − y)2

2t


,

and c(t) =
 1

V (t) b(s)ds. Due to the bounds on f , we can differentiate inside the integral to get
that

Fz(t, z) =

∫ A(1,∞)

A(1,−∞)

f (A−1(1, y))qx (1 − V (t), A(V (t), z) + c(t), y)
1

a(V (t), z)
dy

= −

∫ A(1,∞)

A(1,−∞)

f (A−1(1, y))qy (1 − V (t), A(V (t), z) + c(t), y)
1

a(V (t), z)
dy

=

∫ A(1,∞)

A(1,−∞)

f ′(A−1(1, y))
a(1, A−1(1, y))

a(V (t), z)
q

× (1 − V (t), A(V (t), z) + c(t), y) dy > 0,

where the third equality follows from integration by parts, which is valid due to Assumption 5.1.
The final strict inequality is due to the fact that f is strictly increasing and a is strictly positive.
Therefore, (H∗, w∗) is admissible for the semimartingale Y ∗

= B + θ∗.
Next, we turn to verifying that θ∗

∈ A(H∗, w∗). By construction, θ∗ is absolutely continuous.
Moreover, conditions 2 and 3 of Definition 5.2 follow from Theorem 2.1. Finally, condition 4
follows from Lemma A.3.

To finish the proof, let us verify that the triplet (H∗, w∗, θ∗) given in the statement satisfies
the five conditions of Lemma 5.1. First, H∗ as defined satisfies condition 1 in Lemma 5.1 due to
(5.51). The second condition is trivially satisfied due to Assumption 5.2. For the third condition,
observe that X∗ is a local martingale in its own filtration due to Theorem 2.1. However, since
a(t, z) is uniformly bounded away from 0, it follows that the natural filtrations of X∗ and Y ∗

coincide. The conclusion that Y ∗ is a Brownian motion in its own filtration follows as soon as
one observes that dY ∗

t =
1

a(t,X∗
t )

dX∗
t , i.e. Y ∗ is a local martingale with [Y ∗, Y ∗

]t = t .

In order to verify the fourth condition, observe that H∗(1, x) = F(1, x) = f (x). Since, by
Theorem 2.1, we have X∗

1 = Z1, P0,z-a.s., the condition holds.
Finally, to demonstrate the martingale property of H∗(t, X∗

t ), observe that the transition
density of X∗ is given by G(t, x; u, z), since in its own filtration

dX∗
t = a(t, X∗

t )dY ∗
t ,
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and Y ∗ is a Brownian motion, so that X∗ satisfies the same SDE (5.73) as the process ξ .
Therefore,

EQ[ f (Z1)|F X∗

t ] = EQ[ f (X∗

1)|F X∗

t ]

=

∫
R

f (y)G(t, X∗
t ; 1, y)dy

= F(V −1(t), X∗
t )

= H(t, X∗
t ),

where one to the last equality is due to (5.50). �

Remark 5.8. Note that it follows from Corollary 4.2 that the conditional density of Z t given
F X∗

t is G(t, X∗
t ; V (t), z). Note that G(t, x; u, z) converges to the delta function as t converges

to u. Therefore, the closer V (t) is to t , the smaller is the uncertainty of the market maker about
the value of Z t . Hence, in our case, as in [3], V (t)− t is a good measurement of the informational
advantage of the insider.

Appendix

Proposition A.1. Suppose that Assumptions 2.1–2.3 are satisfied. Then, hx
h : [0, 1]×R×[0, 1]×

R → R as defined in (4.33) is (uniformly) bounded.

In order to prove the proposition above, we need a few preliminary results. The first one is the
following classical result due to [1].

Lemma A.1. There exist positive constants, α1, α2, M1 and M2 such that

M1q(α1(u − t), x, z) ≤ Γ (t, x; u, z) ≤ M2q(α2(u − t), x, z),

for all (x, z) ∈ R2 and u > t .

Next, we need to obtain estimates on the function hx/h. This will be done by following the
approach employed in [4]. For this purpose, define the martingale L by

dLu = −Lub(u, ζu)dβu, u ≥ t

with L t = 1, and let

I (u, z) :=

∫ z

0
b(u, y)dy Nu :=

∫ u

t


It (s, ζs) +

1
2

bx (s, ζs) +
1
2

b2(s, ζs)


ds.

Recall that ζs = A(s, ξs) and dζs = dβs + b(s, ζs)ds, where the function b has been defined
in (2.9).

Remark A.1. Notice that Assumptions 2.2 and 2.3 ensure that the above formulation makes
sense.

Then,

L−1
u = exp {I (u, ζu) − I (t, ζt ) − Nu} ,
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and a straightforward application of Girsanov’s theorem yields

Γ (t, x; u, z) = exp (I (u, z) − I (t, x)) E x,q
t [exp(−Nu)|ζu = z]q(u − t, x, z),

where E x,q
t is the expectation operator with respect to the law of standard Brownian motion

starting at x at time t . Therefore, (4.33) becomes

h(t, x; u, z) = exp (I (u, z) − I (t, x)) E x,q
t [exp(−Nu)|ζu = z].

Observe that ∂ I (t,x)
∂x = b(t, x), which is bounded. Therefore, in order to establish the uniform

boundedness of hx/h, we need estimates on

∂
∂x E x,q

t [exp(−Nu)|ζu = z]

E x,q
t [exp(−Nu)|ζu = z]

.

The next lemma is going to give us an alternative representation of the numerator in the above
expression which allows us to obtain a uniform bound on hx/h.

Lemma A.2. Suppose that Assumptions 2.2 and 2.3 are satisfied and that ζt = x. Then, we have

∂ Nu

∂x
=

∫ u

t


bt (s, ζs) +

1
2

byy(s, ζs) + b(s, ζs)by(s, ζs)


ds.

Moreover,

∂

∂x
E x,q

t [exp(−Nu)|ζu = z] = −E x,q
t

[
exp(−Nu)

∂ Nu

∂x

 ζu = z

]
.

Proof. In order to prove the first statement, note that ζu = x + Wu for some Brownian
motion with Wt = 0. Since the integrands are differentiable functions with bounded derivatives,
this allows us to differentiate under the integral sign. Although derivative exists only almost
everywhere, this is no problem, since the law of Brownian motion is absolutely continuous
with respect to the Lebesgue measure. For the second assertion, take an infinitely differentiable
f : R → R with a compact support. Therefore, if differentiation inside the expectation is
justified,

∂

∂x
E x,q

t [exp(−Nu) f (ζu)] = E x,q
t

[
∂

∂x
{exp(−Nu) f (ζu)}

]
= −E x,q

t

[
∂ Nu

∂x
exp(−Nu) f (ζu)

]
+ E x,q

t

exp(−Nu) f ′(ζu)


.

As ∂ Nu
∂x , f and f ′ are bounded, we only need to show that exp(−Nu) is bounded by an integrable

function in order to justify the differentiation. Indeed, using Assumptions 2.2 and 2.3 on the
boundedness of function b and its first derivatives, together with the definition of Nu , one can
easily prove that Nu ≥ K (mu + x − k) ≥ K (m1 + x − k) for some positive constants k, K ,
where mu = mint≤s≤u Ws . Thus, exp(−Nu) is bounded above by the random variable Ce−m1

for a positive constant C , which may depend on x in a continuous fashion. It follows from the
reflection principle for Brownian motion that −m1 has the same law as |W1|. Moreover, the
random variable exp(|W1|) being integrable, we have that exp(−Nu) is bounded, uniformly in u,
by an integrable function which does not depend on x when x is restricted to a compact domain.
This justifies the differentiation inside the expectation.
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On the other hand,

E x,q
t

[
∂

∂x
E x,q

t [exp(−Nu)|ζu] f (ζu)

]
= E x,q

t

[
∂

∂x


E x,q

t [exp(−Nu)|ζu] f (ζu)
]

− E x,q
t

E x,q

t [exp(−Nu)|ζu] f ′(ζu)

;

thus, we will be done as soon as we have that

∂

∂x
E x,q

t [exp(−Nu) f (ζu)] = E x,q
t

[
∂

∂x


E x,q

t [exp(−Nu)|ζu] f (ζu)
]

.

Since E x,q
t [exp(−Nu)|ζu] is bounded and away from zero whenever (x, ζu) belongs to a bounded

domain,5 and f has a compact support, this will follow if ∂
∂x E x,q

t [exp(−Nu)|ζu] is bounded for
fixed u > t whenever (x, ζu) belongs to a bounded domain in R2. To see this, note that

(u − t)
∂

∂x
log Γ (t, x, u, z) = (u − t)

∂

∂x
log h(t, x, u, z) + z − x

= −(u − t)b(t, x) + (u − t)
∂
∂x E x,q

t [exp(−Nu)|ζu = z]

E x,q
t [exp(−Nu)|ζu = z]

+ z − x .

The claim follows from the boundedness of b, (2.16) and Lemma A.1. Thus,

∂

∂x
E x,q

t [exp(−Nu)|ζu = z] = −E x,q
t

[
exp(−Nu)

∂ Nu

∂x

 ζu = z

]
. �

Proof of Proposition A.1. First, note that, in view of Lemma A.2,

hx (t, x; u, z)

h(t, x; u, z)
= −


b(t, x) +

E x,q
t [exp(−Nu) ∂

∂x Nu |ζu = z]

E x,q
t [exp(−Nu)|ζu = z]


.

As ∂
∂x Nu is uniformly bounded, in u and x , we havehx (t, x; u, z)

h(t, x; u, z)

 ≤ |b(t, x)| + sup
x


ess sup

 ∂

∂x
Nu

 ,

by Jensen’s inequality. However, supx

ess sup

 ∂
∂x Nu

 is finite under our assumptions. Finally,
since b is also bounded under our assumptions, the result follows. �

Lemma A.3. Suppose that a(t, z) and σ(t) satisfy Assumption 5.2. Let Z satisfy (2.1), and let
X be the process defined in Theorem 5.1. Then,

1. b(t, z) = b(t), where b is defined by (2.9);
2. the fundamental solution of

wu(u, z) =
1
2
wzz(u, z) − (b(u, z)w(u, z))z

is Γ (t, x; u, z) = q(u − t, x +
 u

t b(s)ds, z), where q is the transition density of standard
Brownian motion;

5 These can be proven by similar arguments that are used in showing exp(−Nu) is bounded by an integrable function.
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3. for every z ∈ R,

E0,z

∫ 1

0
H2 (t, X t ) dt


< ∞,

where H(t, x) = F(V −1(t), x) with F given by (5.50).

Proof. 1. This follows from Remark 5.5.

2. Recall that Γ is the transition density of

dζt = dβt + b(t)dt.

Thus, ζu − ζt has a Gaussian distribution with mean
 u

t b(s)ds and variance u − t .

3. Under the assumptions of the lemma, the processes U and R as defined in Lemma 2.2
satisfy

dUt = σ(t)dβt + σ 2(t)b(t)dt

dRt = dBt +


px (t, Rt , Ut )

p(t, Rt , Ut )
+ b(t)


dt,

where p(t, x, z) = Γ (t, x; V (t), z). Therefore,

dRt = dBt +


Ut − Rt −

 V (t)
t b(s)ds

V (t) − t
+ b(t)


dt.

The solution of the above SDE is given by

Rt = U0 +

∫ t

0
b(s)σ 2(s)ds − (U0 − R0) exp


−

∫ t

0

1
V (s) − s

ds


−

∫ t

0
exp


−

∫ t

s

1
V (u) − u

du


b(s)σ 2(s) − b(s) +

 V (s)
s b(u)du

V (s) − s


ds

+

∫ t

0
σ(s)


1 − exp


−

∫ t

s

1
V (u) − u

du


dβs

+

∫ t

0
exp


−

∫ t

s

1
V (u) − u

du


dBs . (A.74)

Therefore, Rt is a normal variable with bounded (uniformly in t) mean and variance. Indeed,

due to Remark 2.3, sups,t exp

−
 t

s
1

V (u)−u du


< ∞. Moreover, b and σ are bounded by

assumption. Therefore, the moment-generating function of Rt is a bounded function of time
in [0, 1]. Next, observe that

F(t, z) = E[ f (Z1)|Z t = z] = E[ f (A−1(1, U1))|Ut = A(V (t), z)]

≤ k1 E[exp(k2U1)|Ut = A(V (t), z)]

= k1 exp


k2

∫ 1

t
b(s)ds + k2 A(V (t), z) +

1
2

k2
2(1 − V (t))


≤ K exp(k2 A(V (t), z))
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due to Assumption 5.1 on f ; the third line is due to the form of the moment-generating
function of the Gaussian random variable U1 − Ut . This in particular implies that

E0,z
[H2(t, X t )] = E0,z

[F2(V −1(t), X t )]

≤ K 2 E0,z exp (2k2 A(t, X t ))


= K 2 E0,z exp (2k2 Rt )

.

Note that supt∈[0,1]E0,z

exp (2k2 Rt )


< ∞, since the moment-generating function of R is

bounded. Hence, the claim follows. �
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