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Abstract. We show that any regular (right) Schreier extension of a monoid

M by a monoid A induces an abstract kernel Φ: M → End(A)
Inn(A)

. If an abstract

kernel factors through
SEnd(A)
Inn(A)

, where SEnd(A) is the monoid of surjective

endomorphisms of A, then we associate to it an obstruction, which is an el-
ement of the third cohomology group of M with coefficients in the abelian

group U(Z(A)) of invertible elements of the center Z(A) of A, on which M

acts via Φ. An abstract kernel Φ: M → SEnd(A)
Inn(A)

(resp. Φ: M → Aut(A)
Inn(A)

)

is induced by a regular weakly homogeneous (resp. homogeneous) Schreier
extension of M by A if and only if its obstruction is zero. We also show that

the set of isomorphism classes of regular weakly homogeneous (resp. homoge-

neous) Schreier extensions inducing a given abstract kernel Φ: M → SEnd(A)
Inn(A)

(resp. Φ: M → Aut(A)
Inn(A)

), when it is not empty, is in bijection with the second

cohomology group of M with coefficients in U(Z(A)).

1. Introduction

The classification of extensions is a classical problem in group theory. It is well
known that extensions with abelian kernel inducing the same action are classified by
the 2-dimensional cohomology group. The case of non-abelian kernels was studied
by Schreier [25, 26]: to any group extension

0 // A // // B // // G // 1

he associated a group homomorphism Φ: G→ Aut(A)
Inn(A) , called abstract kernel of the

extension, and he determined conditions on such a homomorphism Φ in order to
get the existence of extensions having it as abstract kernel. (The notation for group
extensions is borrowed from Mac Lane’s book [16], and it is justified by the fact
that we will use the multiplicative notation for the group G and the additive one
for the other groups.) Later, Eilenberg and Mac Lane [10] gave an interpretation of
such results in terms of cohomology: to an abstract kernel Φ can be associated an
element Obs(Φ), called obstruction of the abstract kernel, of the third cohomology
group H3(G,Z(A)), where Z(A) is the center of A and the left G-module structure
on Z(A) is induced by Φ. Then Φ is induced by an extension if and only if Obs(Φ)
is the zero element of H3(G,Z(A)). Moreover, if there is an extension inducing
Φ, then the set of isomorphism classes of the extensions inducing it is in bijection
with the second cohomology group H2(G,Z(A)). See, for example, [10, 16] for a
detailed account of this result.

Date: November 4, 2019.
2010 Mathematics Subject Classification. 20M32, 20M50, 20J99, 18G50.
Key words and phrases. monoid, Schreier extension, obstruction, Eilenberg-Mac Lane coho-

mology of monoids.

1



2 N. MARTINS-FERREIRA, A. MONTOLI, A. PATCHKORIA, AND M. SOBRAL

The same kind of result was then extended to other algebraic structures, such
as associative algebras [12] and Lie algebras [13] over a field, rings [15], categories
of interest [19], categorical groups [11, 7]. A categorical approach to this problem
was initiated by Bourn in [1] and then generalized in [6, 2, 9, 8] to the context of
semi-abelian [14] action accessible [3] categories.

The situation for monoid extensions is more complicated. Schreier extensions
of monoids, a direct generalization of group extensions, were introduced by Rédei
[24]. In [27] the Schreier extensions of a monoid M by an M -module A were clas-
sified by H2(M,A), the classical second cohomology group of M with coefficients
in the M -module A. Then, in [20, 22] the Schreier extensions of a monoid M by
an M -semimodule A (i.e. a commutative monoid on which M acts) have been
classified by means of the second cohomology monoid H2(M,A), of a cohomology
theory of monoids with coefficients in semimodules [21, 22] which generalizes the
classical Eilenberg-Mac Lane cohomology of monoids. The problem of classifying
Schreier extensions of monoids whose kernels are (not necessarily abelian) groups
was studied in [27]. There the abstract kernel is involved in the definition of the
extension, because the author of [27] was not able to induce an abstract kernel,

i.e. a monoid homomorphism Φ: M → End(A)
Inn(A) , from a given Schreier extension

0 // A // // B // // M // 1 .

In the present paper, we show how to induce an abstract kernel from a regular
(see Definition 3.7) Schreier extension of monoids, a particular case of which is a
Schreier extension of a monoid whose kernel is a group. More specifically, in Section
3 we associate to any regular Schreier extension of a monoid M by a monoid A a

monoid homomorphism Φ: M → End(A)
Inn(A) , and in Section 4 we show that there is

a canonical representative of such a monoid extension, called the crossed product
extension. In Section 5 we show that, if the abstract kernel Φ takes values in
SEnd(A)
Inn(A) , where SEnd(A) is the monoid of surjective endomorphisms of A, then

it is possible to associate to Φ an element Obs(Φ) of the third cohomology group
H3(M,U(Z(A))), where U(Z(A)) is the abelian group of invertible elements of the
center Z(A) of A, and the action of M on U(Z(A)) is induced by Φ. Moreover, we
show that an abstract kernel Φ is induced by an extension if and only if Obs(Φ) is
the zero element of the third cohomology group. Finally, in Section 6 we show that
the set Ext(M,A,Φ) of isomorphism classes of regular weakly homogeneous (resp.
homogeneous) Schreier extensions of M by A (see Definition 3.11) which induce

the same abstract kernel Φ: M → SEnd(A)
Inn(A) (resp. Φ: M → Aut(A)

Inn(A) ), when it is not

empty, is in bijection with the second cohomology group H2(M,U(Z(A))) of M
with coefficients in the M -module U(Z(A)). This is done, as for the classical case
of extensions of groups, by showing that there is a simply transitive action of the
abelian group H2(M,U(Z(A))) on the set Ext(M,A,Φ). Hence our approach is
very similar to the classical one for groups, yielding a new, additional interpretation
of the classical Eilenberg-Mac Lane cohomology in terms of monoid extensions.

2. Preliminaries

In this section we recall some notions we need in the rest of the paper and we
fix some notations.

Given a monoid M , we will denote by Z(M) the center of M , namely

Z(M) = { z ∈M | zm = mz for all m ∈M },
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and by U(M) the group of invertible elements of M .

Definition 2.1. Given a monoid M and a subgroup H (i.e. a subgroup H of the
group U(M)), we say that H is

- right normal if, for all m ∈M , mH ⊆ Hm, where

mH = { mh | h ∈ H }, Hm = { hm | h ∈ H };

- left normal if, for all m ∈M , Hm ⊆ mH;
- normal if it is both right and left normal, i.e., mH = Hm.

Note that H is right normal in M if and only if H is left normal in Mop.

If H is a subgroup of a monoid M , the relation on M defined by

m1 ∼ m2 ⇔ m1 = hm2 for some h ∈ H

is an equivalence relation on M , called the right coset relation. The equivalence
class of an element m is cl(m) = Hm. We will denote by M

H the quotient set.
Similarly we can define the left coset relation.

Proposition 2.2. If H is right normal in M , then the operation

Hm1 ·Hm2 = Hm1m2

is well defined, and (MH , ·, H) is a monoid.

Proof. If Hm1 = Hm′1 and Hm2 = Hm′2, then there exist h1, h2 ∈ H such that

m1 = h1m
′
1, m2 = h2m

′
2.

Hence m1m2 = h1m
′
1h2m

′
2. Since H is right normal, there exists h3 ∈ H such that

m′1h2 = h3m
′
1, and so

m1m2 = h1m
′
1h2m

′
2 = h1h3m

′
1m
′
2,

which proves that Hm1m2 = Hm′1m
′
2. �

The same happens for the left coset relation, when H is left normal.

Example 2.3. If A is a monoid, End(A) is the monoid of endomorphisms of
A (w.r.t. the usual composition of functions, (gf)(a) = g(f(a))), and Inn(A) is
the subgroup of inner automorphisms induced by the invertible elements of A, then
Inn(A) is right normal, but not left normal, in End(A). Indeed, if ϕ ∈ End(A),
µg ∈ Inn(A), then

(ϕµg)(a) = ϕ(µg(a)) = ϕ(gag−1) = ϕ(g)ϕ(a)ϕ(g)−1 = µϕ(g)(ϕ(a)) = (µϕ(g)ϕ)(a),

hence ϕµg = µϕ(g)ϕ, which shows that Inn(A) is right normal in End(A). But it
is not left normal, in general. A concrete counterexample is the following. If A is
the symmetric group S3, consider the endomorphism f of S3 defined by

f(id) = f((123)) = f((132)) = id, f((12)) = f((13)) = f((23)) = (12).

Then, for every element s ∈ S3, fµs = f , and so fInn(A) = {f}, but the endo-
morphism µ(13)f is different from f , indeed:

µ(13)f((12)) = µ(13)f((13)) = µ(13)f((23)) = (13)(12)(13)−1 = (23),

and so Inn(A)f is not contained in fInn(A).

Proposition 2.4. If G is a group, then Inn(G) is normal in the monoid Epi(G)
of epimorphisms of G.
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Proof. As we observed before, Inn(G) is right normal in End(G), and so it is right
normal in Epi(G), too. Let us prove that it is also left normal. If ϕ ∈ Epi(G) and
g ∈ G, let g′ ∈ G be such that ϕ(g′) = g (since G is a group, ϕ is surjective). Then,
for all x ∈ G, we have

(µgϕ)(x) = gϕ(x)g−1 = ϕ(g′)ϕ(x)ϕ(g′)−1 = ϕ(g′xg′−1) = (ϕµg′)(x),

hence ϕInn(G) = Inn(G)ϕ. �

3. Schreier extensions

Definition 3.1 ([24]). Let

(1) E : 0 // A //
κ // B

σ // // M // 1

be a sequence of monoids and monoid homomorphisms such that σ is a surjection,
κ is an injection and κ(A) = {b ∈ B|σ(b) = 1} (i.e. κ is the kernel of σ). E is a
(right) Schreier extension of M by A (some authors would say “A by M” ) if, for
every x ∈ M , there exists an element ux ∈ σ−1(x) such that for every b ∈ σ−1(x)
there exists a unique a ∈ A such that

b = κ(a) + ux.

The elements ux, for x ∈M , will be called the representatives of E. We will always
choose u1 = 0 (we use the multiplicative notation for M and the additive one for
the other monoids involved).

Note that, if (1) is a Schreier extension, then σ is the cokernel of κ. Indeed,
suppose that f : B → C is a monoid homomorphism such that fκ(a) = 0 for all
a ∈ A. Define a map g : M → C by putting g(x) = f(b), b ∈ σ−1(x). If σ(b1) =
x = σ(b2), then b1 = κ(a1)+ux and b2 = κ(a2)+ux, whence f(b1) = f(ux) = f(b2).
Hence g is well defined. Clearly, g is a monoid homomorphism and gσ = f . The
uniqueness of such a homomorphism g is also clear.

Example 3.2. Let N be the commutative monoid of natural numbers, with the
usual sum, and let Cm(t) denote the multiplicative cyclic group of order m with
generator t. The sequence

0 // N // m // N
p // // Cm(t) // 1,

where m(1) = m and p(1) = t, is a Schreier extension of Cm(t) by N, with repre-
sentatives given by 0, 1, ...,m− 1.

From now on, we will treat κ just as an inclusion.

Proposition 3.3. Let E be a Schreier extension as in (1), with representatives ux,
x ∈ M . An element b ∈ σ−1(x) is another representative of x for E if and only if
b = g + ux for some g ∈ U(A).

Proof. Since ux is a representative, there exists a unique a ∈ A such that b = a+ux.
Moreover, if b is a representative for E, then there is a unique a′ ∈ A such that
ux = a′ + b. Hence we get

b = a+ a′ + b.

By the uniqueness in the Schreier condition, we get a+ a′ = 0. Similarly, from the
equality

ux = a′ + a+ ux,

we get a′ + a = 0, and so a is invertible. Conversely, if b = g + ux with g ∈ U(A),
then for every b′ ∈ σ−1(x) there exists a unique a′ ∈ A such that

b′ = a′ + ux = a′ − g + b.
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Moreover, if a1 + b = a2 + b, then a1 + g + ux = a2 + g + ux, then the uniqueness
in the Schreier condition implies a1 + g = a2 + g, and hence a1 = a2, because g is
invertible. �

Lemma 3.4. Let E be a Schreier extension as in (1), with representatives ux,
x ∈ M . For a ∈ A, let a′ be the unique element in A such that ux + a = a′ + ux.
If a ∈ U(A), then a′ ∈ U(A), too.

Proof. There exists a unique a′′ ∈ A such that ux + (−a) = a′′ + ux. From the
equality ux + a = a′ + ux we obtain

ux = a′ + ux − a = a′ + a′′ + ux,

and the uniqueness in the Schreier condition implies a′ + a′′ = 0. Similarly, from
the equality ux + (−a) = a′′ + ux we get

ux = a′′ + ux + a = a′′ + a′ + ux,

from where we obtain a′′ + a′ = 0. �

Proposition 3.5. Let E be a Schreier extension as in (1), and let ux, uy, vx, vy be
representatives, for x, y ∈M . If ux + uy is a representative, then so is vx + vy.

Proof. Thanks to Proposition 3.3, we know that there exist g1, g2 ∈ U(A) such that

vx = g1 + ux, vy = g2 + uy.

Moreover, there exists a unique h ∈ A such that ux + g2 = h + ux, and such an h
is invertible thanks to the previous lemma. Then we have

vx + vy = g1 + ux + g2 + uy = g1 + h+ ux + uy,

with g1 + h ∈ U(A). Then the thesis follows from Proposition 3.3. �

Let E be a Schreier extension as in (1), with representatives ux, x ∈ M . We
already observed that, for all a ∈ A, there is a unique element a′ ∈ A such that
ux + a = a′ + ux. This defines a map ϕ(x) : A→ A sending a to a′.

Proposition 3.6. (a) For every x ∈M we have that ϕ(x) ∈ End(A);
(b) if vx is another representative, and ψ(x) : A → A is the induced endomor-

phism of A, then ψ(x) = µgϕ(x) with g ∈ U(A).

Proof. (a) From the obvious equality ux + 0 = 0 + ux, we get ϕ(x)(0) = 0.
Moreover, on one hand

ux + a1 + a2 = ϕ(x)(a1 + a2) + ux,

while, on the other hand

ux + a1 + a2 = ϕ(x)(a1) + ux + a2 = ϕ(x)(a1) + ϕ(x)(a2) + ux.

By the uniqueness we get that ϕ(x)(a1 + a2) = ϕ(x)(a1) + ϕ(x)(a2).
(b) From Proposition 3.3 we know that vx = g+ ux with g ∈ U(A). Moreover,

for all a ∈ A,

vx + a = ψ(x)(a) + vx.

Therefore

vx + a = g + ux + a = g + ϕ(x)(a) + ux = g + ϕ(x)(a)− g + vx.

This means that

ψ(x)(a) = g + ϕ(x)(a)− g = (µgϕ(x))(a)

for all a ∈ A.
�
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The previous proposition implies that, for a Schreier extension E as in (1), there
is an induced well-defined map

(2) Φ: M → End(A)

Inn(A)
,

given by Φ(x) = cl(ϕ(x)), such that Φ(1) = cl(idA) (see Proposition 2.2 and Exam-
ple 2.3). In order to have that Φ is a monoid homomorphism, we need an additional
assumption:

Definition 3.7. Let E be a Schreier extension as in (1). We say that E is a
regular Schreier extension if, whenever ux and uy are representatives for E, then
so is ux + uy (such extensions are called normal Schreier extensions in [22]).

Proposition 3.8. If E is a regular Schreier extension, then the map (2) is a
monoid homomorphism.

Proof. Let x, y ∈ M , and let ux, uy and uxy be representatives. We have the
corresponding ϕ(x), ϕ(y), ϕ(xy) ∈ End(A) with

ux + a = ϕ(x)(a) + ux, uy + a = ϕ(y)(a) + uy, uxy + a = ϕ(xy)(a) + uxy

for all a ∈ A. Since E is regular, ux+uy is a representative, hence ux+uy = g+uxy
for some g ∈ U(A). On one hand we have

ux + uy + a = g + uxy + a = g + ϕ(xy)(a) + uxy,

while on the other hand

ux+uy+a = ux+ϕ(y)(a)+uy = ϕ(x)(ϕ(y)(a))+ux+uy = ϕ(x)(ϕ(y)(a))+g+uxy.

Therefore

g + ϕ(xy)(a) = ϕ(x)(ϕ(y)(a)) + g,

whence

ϕ(x)(ϕ(y)(a)) = g + ϕ(xy)(a)− g.
This means that ϕ(x)ϕ(y) = µgϕ(xy), i.e. Φ(x)Φ(y) = Φ(xy). �

Definition 3.9. Given a regular Schreier extension E as in (1), the induced monoid
homomorphism

Φ: M → End(A)

Inn(A)

is called the abstract kernel induced by the extension E. More generally, we will
call abstract kernel any such homomorphism, even when it is not induced by an
extension.

The following proposition gives examples of regular Schreier extensions:

Proposition 3.10. Let E be a Schreier extension as in (1) such that A is a group
(such extensions are called special Schreier extensions in [4, 5, 17, 18]). Then every
element of B is a representative and therefore E is regular.

Proof. Let x ∈M , and let ux be a representative. For every b ∈ σ−1(x) there exists
(a unique) a ∈ A such that b = a + ux. Being A a group, a is invertible. Then it
follows from Proposition 3.3 that b is a representative. Thus, every element of B is
a representative, and hence E is regular. �

Note that the extension of Example 3.2 serves as an example of Schreier extension
which is not regular.

Definition 3.11. A Schreier extension E as in (1), with representatives ux, x ∈ M ,
is:
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(a) weakly homogeneous if for all b ∈ σ−1(x) there exists a ∈ A such that
b = ux + a;

(b) homogeneous if for all b ∈ σ−1(x) there is a unique such a.

Note that, thanks to Proposition 3.3, this definition does not depend on the
choice of representatives. (Indeed, for any representative vx, we have ux = g +
vx, g ∈ U(A). If (a) holds, then b = −g + g + b = −g + ux + a′ = vx + a′. If
(b) holds, then we have vx + a1 = vx + a2 ⇒ g + vx + a1 = g + vx + a2 ⇒
ux + a1 = ux + a2 ⇒ a1 = a2.)

The following proposition is a generalization of Proposition 3.8 in [5], where only
split extensions were considered:

Proposition 3.12. Let E be a Schreier extension as in (1), with representatives
ux, x ∈ M . Let ϕ(x) : A → A be the induced endomorphism of A relative to the
element x ∈M . Then:

(a) E is weakly homogeneous if and only if ϕ(x) is surjective for all x ∈M ;
(b) E is homogeneous if and only if ϕ(x) ∈ Aut(A) for all x ∈M .

Proof. (a) Suppose that E is weakly homogeneous, and consider x ∈M . Given
a ∈ A, there exists a′ ∈ A such that

a+ ux = ux + a′,

from which we obtain that ϕ(x)(a′) = a, and so ϕ(x) is surjective. Con-
versely, suppose that ϕ(x) is surjective. Given b ∈ σ−1(x), there exists a
unique a ∈ A such that b = a+ux (because E is Schreier). The surjectivity
of ϕ(x) implies the existence of a′ ∈ A such that ϕ(x)(a′) = a. Hence

ux + a′ = ϕ(x)(a′) + ux = a+ ux = b.

(b) Suppose that E is homogeneous. We already know that, for all x ∈ M ,
ϕ(x) is surjective. Suppose that ϕ(x)(a1) = ϕ(x)(a2). Then

ux + a1 = ϕ(x)(a1) + ux = ϕ(x)(a2) + ux = ux + a2,

and the uniqueness in the definition of a homogeneous Schreier extension
implies that a1 = a2, and so ϕ(x) is injective. Conversely, suppose that
ϕ(x) ∈ Aut(A). We already know that E is weakly homogeneous. If
ux + a1 = ux + a2, then

ϕ(x)(a1) + ux = ϕ(x)(a2) + ux.

Being E Schreier, this implies that ϕ(x)(a1) = ϕ(x)(a2), and the injectivity
of ϕ(x) gives us that a1 = a2.

�

From now on, SEnd(A) denotes the monoid of surjective endomorphisms of a
monoid A.

The previous proposition shows that a regular weakly homogeneous Schreier ex-

tension E as in (1) induces a monoid homomorphism Φ: M → SEnd(A)
Inn(A) , while a reg-

ular homogeneous Schreier extension induces a monoid homomorphism

Φ: M → Aut(A)
Inn(A) .

The following result is a generalization of Proposition 3.4 in [5]:

Proposition 3.13. If E : 0 // A //
κ // B

σ // // M // 1 is a regular
Schreier extension and M is a group, then E is homogeneous.
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Proof. Given representatives ux, x ∈ M , with u1 = 0, consider the induced en-
domorphisms ϕ(x) : A → A. If ϕ(x)(a1) = ϕ(x)(a2), then ux + a1 = ux + a2,
whence

ux−1 + ux + a1 = ux−1 + ux + a2.

Since E is regular, ux−1 +ux is a representative of 1, hence it is an invertible element
of A (by Proposition 3.3). This implies that a1 = a2, and thus ϕ(x) is injective.
Moreover, since E is regular, we have

ϕ(x)ϕ(x−1) = µgϕ(xx−1) = µgϕ(1) = µg

for some g ∈ U(A) (see Proposition 3.8). Being µg an automorphism, we deduce
that ϕ(x) is surjective. Then the thesis follows from Proposition 3.12. �

Example 3.14. Consider the sequence

A //
κ // A×g C2(t)

σ // // C2(t),

where A is any monoid, C2(t) is the cyclic group of order 2 with generator t, g is a
fixed element of U(Z(A)), C2(t) acts on the monoid A in a way that t · g = g, and
A×g C2(t) is the cartesian product A×C2(t) with the monoid operation defined by

(a1, 1) + (a2, 1) = (a1 + a2, 1), (a1, 1) + (a2, t) = (a1 + a2, t),

(a1, t) + (a2, 1) = (a1 + t · a2, t), (a1, t) + (a2, t) = (a1 + t · a2 + g, 1).

It is straightforward to check that this operation is associative and that (0, 1) is the
neutral element. The morphism σ is just the canonical projection, while κ(a) =
(a, 1). This sequence is a regular homogeneous Schreier extension. In order to
show that it is Schreier, it suffices to choose the representatives u1 = (0, 1) and
ut = (0, t). Thanks to Proposition 3.5, regularity is proved just by observing that
the element

ut + ut = (0, t) + (0, t) = (g, 1) = (g, 1) + (0, 1) = (g, 1) + u1

is a representative, since (g, 1) is invertible (see Proposition 3.3). The previous
proposition implies that the extension is homogeneous.

Several other examples of Schreier and homogeneous Schreier extensions may be
found in [4, 5].

4. The crossed product extension

Let E : 0 // A //
κ // B

σ // // M // 1 be a regular Schreier extension,
with representatives ux, x ∈M . Being E regular, we know that for all x, y ∈M the
element ux + uy is a representative. Thanks to Proposition 3.3 we get that there
exists a unique element f(x, y) ∈ U(A) such that ux + uy = f(x, y) + uxy. This
defines a map

f : M ×M → U(A)

such that
f(x, 1) = f(1, y) = 0

for all x, y ∈ M (because we are assuming that u1 = 0). Then we have, on one
hand

ux + uy + uz = f(x, y) + uxy + uz = f(x, y) + f(xy, z) + uxyz,

and, on the other hand

ux+uy+uz = ux+f(y, z)+uyz = ϕ(x)(f(y, z))+ux+uyz = ϕ(x)(f(y, z))+f(x, yz)+uxyz,

where ϕ : M → End(A) is the map defined by the following equality (as we ex-
plained in the previous section):

ux + a = ϕ(x)(a) + ux.



CLASSIFICATION OF SCHREIER EXTENSIONS WITH NON-ABELIAN KERNEL 9

Whence

(3) ϕ(x)(f(y, z)) + f(x, yz) = f(x, y) + f(xy, z) for all x, y, z ∈M.

Furthermore, for every x, y ∈M and every a ∈ A we have, on one hand

ux+uy+a = ux+ϕ(y)(a)+uy = ϕ(x)ϕ(y)(a)+ux+uy = ϕ(x)ϕ(y)(a)+f(x, y)+uxy,

and, on the other hand

ux + uy + a = f(x, y) + uxy + a = f(x, y) + ϕ(xy)(a) + uxy,

whence

ϕ(x)ϕ(y)(a) + f(x, y) = f(x, y) + ϕ(xy)(a).

Being f(x, y) invertible, the last equality implies that

ϕ(x)ϕ(y)(a) = f(x, y) + ϕ(xy)(a)− f(x, y).

Thus

ϕ(x)ϕ(y) = µf(x,y)ϕ(xy) for all x, y ∈M.

Proposition 4.1. Let monoids M,A and maps ϕ : M → End(A), f : M×M → U(A)
such that, for all x, y, z ∈M ,

ϕ(1) = idA, f(x, 1) = f(1, y) = 0, ϕ(x)ϕ(y) = µf(x,y)ϕ(xy),

ϕ(x)(f(y, z)) + f(x, yz) = f(x, y) + f(xy, z),

be given. Then the set [A,ϕ, f,M ] of all pairs (a, x) ∈ A ×M with the operation
defined by

(a1, x) + (a2, y) = (a1 + ϕ(x)(a2) + f(x, y), xy)

is a monoid, and the sequence

A //
i // [A,ϕ, f,M ]

p // // M, i(a) = (a, 1), p(a, x) = x,

is a regular Schreier extension of M by A, called the crossed product extension,

such that the induced monoid homomorphism Φ: M → End(A)
Inn(A) sends x ∈M to the

equivalence class of ϕ(x). Furthermore, a pair (a, x) is a representative if and only
if a ∈ U(A).

Proof. It is straightforward to show that the operation is associative and that (0, 1)
is its neutral element. The maps i and p are clearly monoid homomorphisms,
p is surjective and i is injective, and the image of i is the kernel of p. Let us
show that we get a regular Schreier extension. For any x ∈ M , we consider the
element ux = (0, x). These elements are representatives: indeed, every element
(a, x) ∈ A×M can be written as

(a, x) = (a, 1) + (0, x),

and such writing is unique, because the equality

(a1, 1) + (0, x) = (a2, 1) + (0, x)

implies (a1, x) = (a2, x), and hence a1 = a2. So, the extension is Schreier. Propo-
sition 3.3, together with the equality (a, x) = (a, 1) + (0, x), implies that (a, x) is
a representative if and only if a ∈ U(A). It remains to show that the extension is
regular. For all x, y ∈M , we have

ux + uy = (0, x) + (0, y) = (0 + ϕ(x)(0) + f(x, y), xy) = (f(x, y), xy) =

= (f(x, y), 1) + (0, xy) = (f(x, y), 1) + uxy,
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and then, since f(x, y) ∈ U(A), ux + uy is a representative by Proposition 3.3.
Hence, thanks to Proposition 3.5, the extension is regular. Furthermore, for all
a ∈ A, we have

ux + i(a) = (0, x) + (a, 1) = (ϕ(x)(a), x) = (ϕ(x)(a), 1) + (0, x) = i(ϕ(x)(a)) + ux,

which means that Φ sends x ∈M to the equivalence class of ϕ(x). �

Remark 4.2. If, in the previous proposition, we have that ϕ : M → SEnd(A),
then the crossed product extension is weakly homogeneous. Indeed, every element
(a, x) ∈ A×M can be written as

(a, x) = (0, x) + (a′, 1),

where a′ ∈ A is such that ϕ(x)(a′) = a (such an element exists since ϕ(x) is sur-
jective).

If we have that ϕ : M → Aut(A), then the crossed product extension is homoge-
neous. Indeed, if

(0, x) + (a1, 1) = (0, x) + (a2, 1),

then

(ϕ(x)(a1), x) = (ϕ(x)(a2), x) =⇒ ϕ(x)(a1) = ϕ(x)(a2) =⇒ a1 = a2.

(See Definition 3.11 and the note after it.)

We recall from [23] the following version of the Short Five Lemma for monoid
extensions:

Proposition 4.3 ([23], Proposition 4.5). Consider the following commutative dia-
gram of monoid homomorphisms:

A

α

��

// κ // B

β

��

σ // // M

γ

��
A′ //

κ′
// B′

σ′
// // M ′,

where the two rows are Schreier extensions and the homomorphism β sends repre-
sentatives to representatives. Then:

- if α and γ are injective, then β also is;
- if α and γ are surjective, then β also is;
- if α and γ are isomorphisms, then β is an isomorphism, too.

This fact allows us to prove the following:

Proposition 4.4. Given an abstract kernel Φ: M → End(A)
Inn(A) , where A and M

are monoids, fix an endomorphism ϕ(x) ∈ Φ(x) for every element x ∈ M (with
ϕ(1) = idA). Then every regular Schreier extension E as in (1) which induces the
abstract kernel Φ is isomorphic to the crossed product extension

A //
i // [A,ϕ, f,M ]

p // // M.

Proof. We take representatives vx, x ∈ M , of E, with v1 = 0. Then, for all a ∈ A
and all x ∈M , we get that

vx + a = ψ(x)(a) + vx

for some ψ(x) ∈ Φ(x). Then, for each x ∈M ,

ϕ(x) = µg(x)ψ(x)
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for some g(x) ∈ U(A), i.e. for all a ∈ A,

ϕ(x)(a) = g(x) + ψ(x)(a)− g(x).

We define new representatives by putting ux = g(x) + vx, for x ∈ M . Choosing
g(1) = 0, we get u1 = 0. Since E is regular, for all x, y ∈ M , ux + uy is a
representative, hence

ux + uy = f(x, y) + uxy

with f(x, y) ∈ U(A). Furthermore, for all a ∈ A and all x ∈M ,

ux + a = g(x) + vx + a = g(x) + ψ(x)(a) + vx = g(x) + ψ(x)(a)− g(x) + ux,

that is,

ux + a = ϕ(x)(a) + ux.

Then the maps ϕ : M → End(A) and f : M ×M → U(A) satisfy the conditions
of Proposition 4.1 (see the considerations before this proposition) and therefore we
have the crossed product extension [A,ϕ, f,M ]. Consider now the diagram

A //
κ // B

β

��

σ // // M

A //
i
// [A,ϕ, f,M ]

p
// // M,

where the map β is defined by β(b) = (a, x), where σ(b) = x and a is the unique
element of A such that b = a + ux. Then β is a monoid homomorphism: clearly
β(0) = β(0 + u1) = (0, 1), and moreover

β(a1+ux+a2+uy) = β(a1+ϕ(x)(a2)+ux+uy) = β(a1+ϕ(x)(a2)+f(x, y)+uxy) =

(a1 + ϕ(x)(a2) + f(x, y), xy) = (a1, x) + (a2, y) = β(a1 + ux) + β(a2 + uy).

Furthermore

βκ(a) = β(a+ u1) = (a, 1) = i(a),

and

pβ(a+ ux) = p(a, x) = x = σ(a+ ux),

hence the diagram is commutative. Finally, β(ux) = (0, x), and if wx is another
representative of E then wx = g + ux, g ∈ U(A), whence β(wx) = i(g) + (0, x),
and so the representatives are preserved by β (see Proposition 3.3). Thanks to
Proposition 4.3, β is an isomorphism. �

5. The obstruction of an abstract kernel

The aim of this section is to show that, to any abstract kernel Φ: M → SEnd(A)
Inn(A)

(resp. Φ: M → Aut(A)
Inn(A) ), it is possible to associate an element of the third Eilenberg-

Mac Lane cohomology group of M with coefficients in the M -module U(Z(A)),
called the obstruction of Φ. Moreover, we will show that the abstract kernel

Φ: M → SEnd(A)
Inn(A) (resp. Φ: M → Aut(A)

Inn(A) ) is induced by a regular weakly ho-

mogeneous (resp. homogeneous) Schreier extension if and only if its obstruction is
the zero element of the cohomology group. In order to do this, we first describe
how to get from Φ a structure of M -module on U(Z(A)).

Proposition 5.1. Given an abstract kernel Φ: M → SEnd(A)
Inn(A) , where A and M are

monoids, the center Z(A) of A is an M -semimodule w.r.t. the action defined by

x · c = ϕ(x)(c) for x ∈M, c ∈ Z(A), ϕ(x) ∈ Φ(x).
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Proof. We first show that x · c ∈ Z(A) for all x ∈ M , c ∈ Z(A) and ϕ(x) ∈ Φ(x).
Consider an element a ∈ A. Being ϕ(x) surjective, there exists a′ ∈ A such that
ϕ(x)(a′) = a. Then

a+ ϕ(x)(c) = ϕ(x)(a′) + ϕ(x)(c) = ϕ(x)(a′ + c) =

= ϕ(x)(c+ a′) = ϕ(x)(c) + ϕ(x)(a′) = ϕ(x)(c) + a.

Now, it remains to show that the definition above does not depend on the choice of

the representative ϕ(x) of the class Φ(x) in the quotient SEnd(A)
Inn(A) . To do that, con-

sider another representative ψ(x) ∈ SEnd(A). Then there is an element g ∈ U(A)
such that ψ(x) = µgϕ(x). So, we get

ψ(x)(c) = µgϕ(x)(c) = g + ϕ(x)(c)− g = ϕ(x)(c) + g − g = ϕ(x)(c),

where we are using that ϕ(x)(c) ∈ Z(A). This concludes the proof. �

Corollary 5.2. Given an abstract kernel Φ: M → SEnd(A)
Inn(A) , where A and M are

monoids, the group U(Z(A)) of A is an M -module w.r.t. the action defined by

x · g = ϕ(x)(g) for x ∈M, g ∈ U(Z(A)), ϕ(x) ∈ Φ(x).

Proof. It is immediate to observe that, if g ∈ U(Z(A)), then x · g is also invertible,
with inverse x · (−g), so the action of M on Z(A) restricts to U(Z(A)). �

Now we describe how to associate an obstruction to an abstract kernel. Given a
monoid homomorphism Φ: M → SEnd(A)

Inn(A) , we choose a representative ϕ(x) ∈ Φ(x)

for any x ∈M , with ϕ(1) = idA. We have that

ϕ(x)ϕ(y) = µf(x,y)ϕ(xy)

for some f(x, y) ∈ U(A), with f(x, 1) = f(1, y) = 0. Now, given x, y, z ∈ M , we
have, on one hand

ϕ(x)ϕ(y)ϕ(z) = ϕ(x)µf(y,z)ϕ(yz) = µϕ(x)(f(y,z))ϕ(x)ϕ(yz) =

= µϕ(x)(f(y,z))µf(x,yz)ϕ(xyz) = µϕ(x)(f(y,z))+f(x,yz)ϕ(xyz),

and, on the other hand

ϕ(x)ϕ(y)ϕ(z) = µf(x,y)ϕ(xy)ϕ(z) = µf(x,y)µf(xy,z)ϕ(xyz) = µf(x,y)+f(xy,z)ϕ(xyz).

Comparing the two expressions, and using the fact that ϕ(xyz) is surjective, we get
the equality

µϕ(x)(f(y,z))+f(x,yz) = µf(x,y)+f(xy,z),

namely

µϕ(x)(f(y,z))+f(x,yz)−(f(x,y)+f(xy,z)) = idA,

which tells us that

ϕ(x)(f(y, z)) + f(x, yz)− (f(x, y) + f(xy, z)) ∈ U(Z(A)).

This means that there exists a unique element k(x, y, z) ∈ U(Z(A)) such that

ϕ(x)(f(y, z)) + f(x, yz) = k(x, y, z) + f(x, y) + f(xy, z).

Clearly, k(x, y, 1) = k(x, 1, z) = k(1, y, z) = 0.

Definition 5.3. The function k : M ×M ×M → U(Z(A)) we get this way is the
obstruction of the abstract kernel Φ.

Proposition 5.4. An obstruction k of an abstract kernel Φ as above is a 3-cocycle
of the cohomology of M with coefficients in the M -module U(Z(A)).
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Proof. Given elements x, y, z, t ∈M , we compute the expression

ϕ(x)(ϕ(y)(f(z, t)) + f(y, zt)) + f(x, yzt)

in two different ways. On one hand, we have

ϕ(x)(ϕ(y)(f(z, t))+f(y, zt))+f(x, yzt) = ϕ(x)(k(y, z, t)+f(y, z)+f(yz, t))+f(x, yzt) =

= x · k(y, z, t) + ϕ(x)(f(y, z)) + ϕ(x)(f(yz, t)) + f(x, yzt) =

= x · k(y, z, t) + k(x, y, z) + f(x, y) + f(xy, z)− f(x, yz)+

+k(x, yz, t) + f(x, yz) + f(xyz, t)− f(x, yzt) + f(x, yzt) =

= x · k(y, z, t) + k(x, y, z) + k(x, yz, t) + f(x, y) + f(xy, z) + f(xyz, t),

where the last equality holds since k takes values in the center of A. On the other
hand, we have

ϕ(x)(ϕ(y)(f(z, t))+f(y, zt))+f(x, yzt) = ϕ(x)ϕ(y)(f(z, t))+ϕ(x)(f(y, zt))+f(x, yzt).

Since ϕ(x)ϕ(y) = µf(x,y)ϕ(xy), this is equal to

f(x, y) + ϕ(xy)(f(z, t))− f(x, y) + ϕ(x)(f(y, zt)) + f(x, yzt) =

= f(x, y) + k(xy, z, t) + f(xy, z) + f(xyz, t)− f(xy, zt)− f(x, y) + k(x, y, zt)+

+f(x, y) + f(xy, zt)− f(x, yzt) + f(x, yzt) =

= k(xy, z, t) + k(x, y, zt) + f(x, y) + f(xy, z) + f(xyz, t),

where, once again, the last equality holds since k takes values in the center of A.
Comparing the two expressions, and using the fact that f takes values in U(A), we
obtain the equality

x · k(y, z, t) + k(x, yz, t) + k(x, y, z) = k(xy, z, t) + k(x, y, zt).

Since k(x, y, 1) = k(x, 1, z) = k(1, y, z) = 0, we have that k is a 3-cocycle. �

In the construction of the obstruction of an abstract kernel Φ, we used the fact
that, given x, y ∈M , there exists an element f(x, y) ∈ U(A) such that ϕ(x)ϕ(y) =
µf(x,y)ϕ(xy). Such an element is not unique. However, if we replace it with an
f ′(x, y) with the same properties, the cohomology class of the corresponding 3-
cocycle k′ is the same:

Proposition 5.5. Consider an abstract kernel Φ: M → SEnd(A)
Inn(A) , with chosen

representatives ϕ(x) ∈ Φ(x) for any x ∈M , with ϕ(1) = idA. If, for any x, y ∈M ,
we have

ϕ(x)ϕ(y) = µf(x,y)ϕ(xy) = µf ′(x,y)ϕ(xy)

with
f(x, 1) = 0 = f(1, y) and f ′(x, 1) = 0 = f ′(1, y),

then the 3-cocycles k and k′ constructed using f and f ′ are cohomologous.

Proof. From the equality

µf(x,y)ϕ(xy) = µf ′(x,y)ϕ(xy)

we get µf(x,y) = µf ′(x,y), because ϕ(xy) is surjective. This means that

µf(x,y)−f ′(x,y) = idA.

Hence
h(x, y) = f(x, y)− f ′(x, y) ∈ U(Z(A)),

so we get a map
h : M ×M → U(Z(A))

such that h(x, 1) = 0 = h(1, y). From the equality

f(x, y) = h(x, y) + f ′(x, y),



14 N. MARTINS-FERREIRA, A. MONTOLI, A. PATCHKORIA, AND M. SOBRAL

valid for all x, y ∈M , and from the definition of the cocycles k and k′, we get:

k(x, y, z) = ϕ(x)(f(y, z)) + f(x, yz)− f(xy, z)− f(x, y) =

= ϕ(x)(h(y, z)+f ′(y, z))+h(x, yz)+f ′(x, yz)−[h(xy, z)+f ′(xy, z)]−[h(x, y)+f ′(x, y)] =

= ϕ(x)(f ′(y, z))+f ′(x, yz)−f ′(xy, z)−f ′(x, y)+x·h(y, z)−h(xy, z)+h(x, yz)−h(x, y) =

= k′(x, y, z)− δ2h(x, y, z).

Thus k′ − k = δ2h. �

Conversely, starting with cohomologous cocycles:

Proposition 5.6. Consider an abstract kernel Φ: M → SEnd(A)
Inn(A) , with chosen rep-

resentatives ϕ(x) ∈ Φ(x) for any x ∈M , with ϕ(1) = idA. Let f : M ×M → U(A)
be a map with ϕ(x)ϕ(y) = µf(x,y)ϕ(xy) and f(x, 1) = 0 = f(1, y) for any x, y ∈M ,
and let k : M ×M ×M → U(Z(A)) be the 3-cocycle induced by f . If k′′ is a 3-
cocycle which is cohomologous to k, then there exists a map f ′′ : M ×M → U(A),
with f ′′(x, 1) = 0 = f ′′(1, y), such that

ϕ(x)ϕ(y) = µf ′′(x,y)ϕ(xy)

and the 3-cocycle induced by f ′′ is precisely k′′.

Proof. By assumption, there exists a map h : M ×M → U(Z(A)), with h(x, 1) =
0 = h(1, y), such that k − k′′ = δ2h. We define f ′′ : M ×M → U(A) by putting

f ′′(x, y) = h(x, y) + f(x, y).

Clearly f ′′(x, 1) = 0 = f ′′(1, y). Moreover,

µf ′′(x,y) = µh(x,y)µf(x,y) = µf(x,y),

since h(x, y) ∈ U(Z(A)). Therefore

ϕ(x)ϕ(y) = µf ′′(x,y)ϕ(xy).

Furthermore, for any x, y, z ∈M we have

ϕ(x)(f ′′(y, z)) + f ′′(x, yz)− f ′′(xy, z)− f ′′(x, y) =

= ϕ(x)(h(y, z)+f(y, z))+h(x, yz)+f(x, yz)−[h(xy, z)+f(xy, z)]−[h(x, y)+f(x, y)] =

= ϕ(x)(f(y, z))+f(x, yz)−f(xy, z)−f(x, y)+x·h(y, z)−h(xy, z)+h(x, yz)−h(x, y) =

= k(x, y, z)− δ2h(x, y, z) = k′′(x, y, z).

�

It remains to check what happens if, given an abstract kernel Φ: M → SEnd(A)
Inn(A) ,

we consider two different representatives ϕ(x) and ϕ′(x) of Φ(x):

Proposition 5.7. Consider an abstract kernel Φ: M → SEnd(A)
Inn(A) , with chosen rep-

resentatives ϕ(x) ∈ Φ(x) for any x ∈ M , with ϕ(1) = idA. Let
f : M ×M → U(A) be a map with ϕ(x)ϕ(y) = µf(x,y)ϕ(xy) and f(x, 1) = 0 =
f(1, y) for any x, y ∈M , and let k : M×M×M → U(Z(A)) be the 3-cocycle induced
by f . If one chooses other representatives ϕ′(x) ∈ Φ(x), again with ϕ′(1) = idA,
then there exists a map f ′ : M ×M → U(A), with f ′(x, 1) = 0 = f ′(1, y), such that

ϕ′(x)ϕ′(y) = µf ′(x,y)ϕ
′(xy)

and its induced 3-cocycle is precisely k.
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Proof. Since ϕ(x), ϕ′(x) ∈ Φ(x) for all x ∈M , they differ by an inner automorphism
of A. In other terms, there is a map g : M → U(A), with g(1) = 0, such that

ϕ′(x) = µg(x)ϕ(x).

Then, for x, y ∈M , we get

ϕ′(x)ϕ′(y) = µg(x)ϕ(x)µg(y)ϕ(y) = µg(x)µϕ(x)(g(y))ϕ(x)ϕ(y) =

= µg(x)µϕ(x)(g(y))µf(x,y)ϕ(xy) = µg(x)µϕ(x)(g(y))µf(x,y)µ
−1
g(xy)ϕ

′(xy) =

= µg(x)µϕ(x)(g(y))µf(x,y)µ−g(xy)ϕ
′(xy) = µg(x)+ϕ(x)(g(y))+f(x,y)−g(xy)ϕ

′(xy).

Thus, defining

f ′(x, y) = g(x) + ϕ(x)(g(y)) + f(x, y)− g(xy),

we obtain that ϕ′(x)ϕ′(y) = µf ′(x,y)ϕ
′(xy), and obviously f ′(x, 1) = 0 = f ′(1, y).

It remains to check that the induced 3-cocycle is k. We have

ϕ′(x)(f ′(y, z)) + f ′(x, yz)− f ′(xy, z)− f ′(x, y) =

= ϕ′(x)[g(y)+ϕ(y)(g(z))+f(y, z)−g(yz)]+g(x)+ϕ(x)(g(yz))+f(x, yz)−g(xyz)+

−[g(xy) +ϕ(xy)(g(z)) +f(xy, z)− g(xyz)]− [g(x) +ϕ(x)(g(y)) +f(x, y)− g(xy)] =

= µg(x)[ϕ(x)(g(y))+ϕ(x)ϕ(y)(g(z))+ϕ(x)(f(y, z))−ϕ(x)(g(yz))]+g(x)+ϕ(x)(g(yz))+

+f(x, yz)−g(xyz)+g(xyz)−f(xy, z)−ϕ(xy)(g(z))−g(xy)+g(xy)−f(x, y)−ϕ(x)(g(y))−g(x) =

= g(x) +ϕ(x)(g(y)) +ϕ(x)ϕ(y)(g(z)) +ϕ(x)(f(y, z))−ϕ(x)(g(yz))− g(x) + g(x)+

+ϕ(x)(g(yz)) + f(x, yz)− f(xy, z)− ϕ(xy)(g(z))− f(x, y)− ϕ(x)(g(y))− g(x) =

= g(x) + ϕ(x)(g(y)) + ϕ(x)ϕ(y)(g(z)) + ϕ(x)(f(y, z)) + f(x, yz)− f(xy, z)+

−ϕ(xy)(g(z))− f(x, y)− ϕ(x)(g(y))− g(x) =

= g(x)+ϕ(x)(g(y))+µf(x,y)ϕ(xy)(g(z))+k(x, y, z)+f(x, y)−ϕ(xy)(g(z))−f(x, y)+

−ϕ(x)(g(y))− g(x) =

= k(x, y, z) + g(x) + ϕ(x)(g(y)) + f(x, y) + ϕ(xy)(g(z))− f(x, y) + f(x, y)+

−ϕ(xy)(g(z))− f(x, y)− ϕ(x)(g(y))− g(x) =

= k(x, y, z),

and this concludes the proof. �

The previous propositions give the following:

Theorem 5.8. Any abstract kernel Φ: M → SEnd(A)
Inn(A) determines in an invari-

ant way an element Obs(Φ) of the third cohomology group H3(M,U(Z(A))) of
the monoid M with coefficients in the M -module U(Z(A)). An abstract kernel

Φ: M → SEnd(A)
Inn(A) is induced by a regular weakly homogeneous Schreier extension if

and only if Obs(Φ) is the zero element of H3(M,U(Z(A))).

Proof. The fact that the element Obs(Φ) ∈ H3(M,U(Z(A))) is uniquely deter-
mined is a consequence of the previous propositions. If the abstract kernel Φ is
induced by a regular weakly homogeneous Schreier extension, we observed at the
beginning of Section 4 that there exists a map f : M × M → U(A) such that
f(x, 1) = 0 = f(1, y) and

ϕ(x)(f(y, z)) + f(x, yz) = f(x, y) + f(xy, z) for all x, y, z ∈M.

Hence, the element Obs(Φ) associated to the abstract kernel Φ induced by the exten-
sion is zero. Conversely, if the obstruction of an abstract kernel

Φ: M → SEnd(A)
Inn(A) is zero, then the crossed product extension built in Proposition

4.1 (which is weakly homogeneous by Remark 4.2) induces Φ. �
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In particular, for abstract kernels which factor through Aut(A)
Inn(A) , i.e. for abstract

kernels of the form Φ: M → Aut(A)
Inn(A) , we get:

Theorem 5.9. Any abstract kernel Φ: M → Aut(A)
Inn(A) determines in an invari-

ant way an element Obs(Φ) of the third cohomology group H3(M,U(Z(A))) of
the monoid M with coefficients in the M -module U(Z(A)). An abstract kernel

Φ: M → Aut(A)
Inn(A) is induced by a regular homogeneous Schreier extension if and only

if Obs(Φ) is the zero element of H3(M,U(Z(A))).

If the monoid A is a group, then SEnd(A) = Epi(A) and every Schreier extension
ofM byA is regular (see Proposition 3.10). Recalling that such extensions are called
special Schreier in [4, 5, 17, 18], it is worth mentioning the following particular case
of the previous theorems:

Corollary 5.10. Let M be a monoid and A a group. Any abstract kernel

Φ: M → Epi(A)
Inn(A) (resp. Φ: M → Aut(A)

Inn(A)) determines in an invariant way an ele-

ment Obs(Φ) of the third cohomology group H3(M,Z(A)) of the monoid M with

coefficients in the M -module Z(A). An abstract kernel Φ: M → Epi(A)
Inn(A) (resp.

Φ: M → Aut(A)
Inn(A)) is induced by a weakly homogeneous (resp. homogeneous) special

Schreier extension if and only if Obs(Φ) is the zero element of H3(M,Z(A)).

We observe that the particular case described in the previous corollary could
also be obtained from the results of [27].

6. The classification of regular weakly homogeneous and regular
homogeneous schreier extensions

In this section we show that the set Ext(M,A,Φ) of isomorphism classes of regu-
lar weakly homogeneous (resp. homogeneous) Schreier extensions (1) which induce

the same abstract kernel Φ: M → SEnd(A)
Inn(A) (resp. Φ: M → Aut(A)

Inn(A) ), when it is

not empty, is in bijection with the second cohomology group H2(M,U(Z(A))) of
M with coefficients in the M -module U(Z(A)). In order to do this, we show that
there is a simply transitive action of the abelian group H2(M,U(Z(A))) on the set
Ext(M,A,Φ).

We start by recalling that an action of a group G on a set S is simply transitive
if, for all s, s′ ∈ S, there exists a unique g ∈ G such that g · s = s′. Given a
simply transitive action of G on S, every element s ∈ S determines then a bijection
α : G→ S, defined by α(g) = g · s.

Suppose now that an abstract kernel Φ: M → SEnd(A)
Inn(A) is induced by a regular

weakly homogeneous Schreier extension (1), i.e. that the set Ext(M,A,Φ) is not
empty. For every x ∈M , we choose a representative ϕ(x) ∈ Φ(x), with ϕ(1) = idA.
We define an action ofH2(M,U(Z(A))) on Ext(M,A,Φ) as follows. Given elements
cl(h) ∈ H2(M,U(Z(A))) and cl(E) ∈ Ext(M,A,Φ), Proposition 4.4 tells us that E
is isomorphic to a crossed product extension [A,ϕ, f,M ], where f : M×M → U(A)
is a map with f(x, 1) = 0 = f(1, y) and

ϕ(x)ϕ(y) = µf(x,y)ϕ(xy),

and such that the equality (3) holds. Consider the function h+f : M ×M → U(A)
defined by (h+ f)(x, y) = h(x, y) + f(x, y). Clearly

(h+ f)(x, 1) = 0 = (h+ f)(1, y),
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and, since h(x, y) ∈ U(Z(A)), we also have

ϕ(x)ϕ(y) = µ(h+f)(x,y)ϕ(xy).

Furthermore,
ϕ(x)(h(y, z) + f(y, z)) + h(x, yz) + f(x, yz) =

= ϕ(x)(h(y, z)) + ϕ(x)(f(y, z)) + h(x, yz) + f(x, yz) =

= ϕ(x)(h(y, z)) + h(x, yz) + ϕ(x)(f(y, z)) + f(x, yz) =

= h(x, y) + h(xy, z) + f(x, y) + f(xy, z) =

= h(x, y) + f(x, y) + h(xy, z) + f(xy, z),

where we are using that h(x, yz), h(xy, z) ∈ U(Z(A)), that h is a 2-cocycle and the
equality (3). Thus

ϕ(x)(h+ f)(y, z) + (h+ f)(x, yz) = (h+ f)(x, y) + (h+ f)(xy, z).

Thanks to this equality, we can build the crossed product extension [A,ϕ, h+f,M ],
which is weakly homogeneous by Remark 4.2. The action of H2(M,U(Z(A))) on
Ext(M,A,Φ) we are looking for is then defined by:

(4) cl(h) · cl(E) = cl([A,ϕ, h+ f,M ]).

Theorem 6.1. The action (4) is well defined and simply transitive.

Proof. We first prove that the action is well defined, i.e. that it does not depend
on the choice of the representatives. If cl(h) = cl(h′) and cl(E) = cl(E′), with E′

isomorphic to the crossed product extension [A,ϕ, f ′,M ], then

cl(h′) · cl(E′) = cl([A,ϕ, h′ + f ′,M ]).

Since cl(E) = cl(E′), there exists a commutative diagram

A //
i // [A,ϕ, f,M ]

ζ

��

p // // M

A //
i′
// [A,ϕ, f ′,M ]

p′
// // M,

where ζ is an isomorphism. For every x ∈ M we have ζ(0, x) = (r(x), x) with
r(x) ∈ U(A). Indeed, ζ sends representatives to representatives, and (a, x) is, by
Proposition 4.1, a representative if and only if a ∈ U(A). Moreover

(r(1), 1) = ζ(0, 1) = (0, 1),

whence r(1) = 0. So, we get a map r : M → U(A) with r(1) = 0. Furthermore, for
all a ∈ A and x ∈M we have

ζ(a, x) = ζ((a, 1) + (0, x)) = ζ(a, 1) + ζ(0, x) = (a, 1) + (r(x), x) =

= (a+ ϕ(1)r(x) + f ′(1, x), x) = (a+ r(x), x).

Using this equality, one gets

ζ((a1, x)+(a2, y)) = ζ(a1+ϕ(x)(a2)+f(x, y), xy) = (a1+ϕ(x)(a2)+f(x, y)+r(xy), xy),

and

ζ((a1, x) + (a2, y)) = ζ(a1, x) + ζ(a2, y) = (a1 + r(x), x) + (a2 + r(y), y) =

= (a1 + r(x) + ϕ(x)(a2) + ϕ(x)(r(y)) + f ′(x, y), xy).

Comparing the two expressions, we obtain

(5) a1 +ϕ(x)(a2) + f(x, y) + r(xy) = a1 + r(x) +ϕ(x)(a2) +ϕ(x)(r(y)) + f ′(x, y).

Moreover, since cl(h) = cl(h′), there is a 1-cochain γ : M → U(Z(A)) such that

(6) h(x, y) + γ(xy) = h′(x, y) + x · γ(y) + γ(x).
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Consider now the diagram

A //
i // [A,ϕ, h+ f,M ]

ξ

��

p // // M

A //
i′
// [A,ϕ, h′ + f ′,M ]

p′
// // M,

where the map ξ is defined by ξ(a, x) = (γ(x) + a + r(x), x). Clearly the diagram
is commutative. Using the equalities (5) and (6), and the fact that h, h′ and γ take
values in U(Z(A)), it is straightforward to check that ξ is a monoid homomorphism.
Moreover, it sends representatives to representatives, since ξ(a, x) = (γ(x) + a +
r(x), x), and γ(x) + a + r(x) ∈ U(A) whenever a ∈ U(A) (see Proposition 4.1).
Then, Proposition 4.3 implies that ξ is an isomorphism. This shows that the action
is well defined. It is obviously an action, since

(cl(h) + cl(h′)) · cl(E) = cl(h) · (cl(h′) · cl(E)) and cl(0) · cl(E) = cl(E).

The next step of the proof consists in showing that the action is simple, namely:

cl(h1) · cl(E) = cl(h2) · cl(E) ⇒ cl(h1) = cl(h2).

If cl(h1) · cl(E) = cl(h2) · cl(E), we have a commutative diagram

A //
i1 // [A,ϕ, h1 + f,M ]

η

��

p1 // // M

A //
i2
// [A,ϕ, h2 + f,M ]

p2
// // M,

where η is an isomorphism. As we did for ζ in the first part of the proof, one can
check that

η(a, x) = (a+ b(x), x), with b : M → U(A), b(1) = 0.

Let us prove that b is in fact a 1-cochain with h1 − h2 = δ1b. If a ∈ A and x ∈M ,
then there exists a′ ∈ A such that ϕ(x)(a′) = a, because ϕ(x) ∈ SEnd(A). Then
we get

(a+ b(x), x) = η(a, x) = η(ϕ(x)(a′), x) = η((0, x) + (a′, 1)) = η(0, x) + η(a′, 1) =

= (b(x), x) + (a′, 1) = (b(x) + ϕ(x)(a′), x) = (b(x) + a, x),

hence a + b(x) = b(x) + a, which means that b(x) ∈ U(Z(A)) for all x ∈ M .
Moreover

η((0, x) + (0, y)) = η(h1(x, y) + f(x, y), xy) = (h1(x, y) + f(x, y) + b(xy), xy),

and

η((0, x) + (0, y)) = η(0, x) + η(0, y) = (b(x), x) + (b(y), y) =

= (b(x) + ϕ(x)(b(y)) + h2(x, y) + f(x, y), xy).

Therefore

h1(x, y) + f(x, y) + b(xy) = b(x) + ϕ(x)(b(y)) + h2(x, y) + f(x, y),

whence

h1(x, y)− h2(x, y) = ϕ(x)(b(y))− b(xy) + b(x) = δ1b(x, y),

and this tells us that cl(h1) = cl(h2) and the action is simple.
It remains to prove that it is transitive, i.e. that for all cl(E), cl(E′) ∈ Ext(M,A,Φ)

there exists cl(h) ∈ H2(M,U(Z(A))) such that cl(h) · cl(E) = cl(E′). Given
cl(E), cl(E′) ∈ Ext(M,A,Φ), we know from Proposition 4.4 that E and E′ are
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isomorphic to crossed product extensions [A,ϕ, f,M ] and [A,ϕ, f ′,M ] respectively,
where for all x, y ∈M the following equalities hold:

ϕ(x)ϕ(y) = µf(x,y)ϕ(xy) = µf ′(x,y)ϕ(xy).

Being ϕ(xy) surjective, this implies that µf ′(x,y)−f(x,y) = idA, and so f ′(x, y) −
f(x, y) ∈ U(Z(A)). Let us then define the function h : M × M → U(Z(A)) by
putting

h(x, y) = f ′(x, y)− f(x, y).

A straightforward calculation (using the equality (3) and the fact that h takes
values in U(Z(A))) shows that h is a 2-cocycle. Then we get

cl(h) · cl(E) = cl([A,ϕ, h+ f,M ]) = cl([A,ϕ, f ′,M ]) = cl(E′),

and the action is transitive. �

The previous theorem gives then the desired bijection between Ext(M,A,Φ) and
H2(M,U(Z(A))):

Corollary 6.2. For any fixed cl(E) ∈ Ext(M,A,Φ), the map from H2(M,U(Z(A)))
to Ext(M,A,Φ) which sends cl(h) to cl(h) · cl(E) is bijective.

If U(Z(A)) = 0 (in particular, if U(A) = 0 or Z(A) = 0), then both
H2(M,U(Z(A))) and H3(M,U(Z(A))) are the trivial groups. This means that,

for every abstract kernel Φ: M → SEnd(A)
Inn(A) , Obs(Φ) = 0. Hence we get the follow-

ing

Corollary 6.3. If U(Z(A)) = 0, for every abstract kernel Φ: M → SEnd(A)
Inn(A) , there

exists, up to isomorphism, a unique weakly homogeneous Schreier extension of M
by A which induces Φ. If U(A) = 0, then also Inn(A) = 0, and so the abstract
kernel is a monoid homomorphism Φ: M → SEnd(A), i.e. an action of M on A.
In this case the unique weakly homogeneous extension is the semidirect product of
M and A via the action Φ.

It is immediate to see that the results of this section are valid, in particular,

for abstract kernels of the form Φ: M → Aut(A)
Inn(A) and regular homogeneous Schreier

extensions. Let us state them explicitly.

Theorem 6.4. Given an abstract kernel Φ: M → Aut(A)
Inn(A) , if the set Ext(M,A,Φ)

of isomorphism classes of regular homogeneous Schreier extensions of M by A
which induce Φ is not empty, then (4) is a simply transitive action of the abelian
group H2(M,U(Z(A))) on Ext(M,A,Φ). This action induces a bijection between
Ext(M,A,Φ) and H2(M,U(Z(A))).

Corollary 6.5. If the monoid A is such that U(Z(A)) = 0, for every abstract kernel

Φ: M → Aut(A)
Inn(A) there exists, up to isomorphism, a unique homogeneous Schreier

extension of M by A which induces Φ. If U(A) = 0, then also Inn(A) = 0, and so
the abstract kernel is a monoid homomorphism Φ: M → Aut(A), i.e. an action of
M on A. In this case the unique homogeneous extension is the semidirect product
of M and A via the action Φ.

Finally note that, if A and M are both groups, then Theorem 6.4 turns into the
classical cohomological classification of group extensions with non-abelian kernel
(see, e.g., [16]).
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