

August 25-28, 2020 Skopje - NORTH MACEDONIA

Book of Abstracts

web site : http://www.iecmsa.org/
E-mail : conference@iecmsa.org

9TH INTERNATIONAL EURASIAN CONFERENCE ON
 MATHEMATICAL SCIENCES
 AND
 APPLICATIONS

Foreword

By
Prof. Dr. Murat TOSUN, On behalf of the Organizing Committee

It is my great pleasure and honour to welcome you at the 9th International Eurasian Conference on Mathematical Sciences and Applications (IECMSA-2020) which has been organized in cooperation with Sakarya University and International Balkan University.

Unfortunately, in 2020 humanity has faced an unusual, dangerous challenge connected with the new COVID-19 and one impact of this virus has placed constraints on the ability of researchers to join a face-to-face meeting. As the health and safety of everyone is our priority, IECMSA will proceed with our annual gathering this year through a virtual conference, instead of an in-person event. The decision to hold IECMSA-2020 as a virtual conference on the original dates has appeared preferable to a postponed meeting face to face in Skopje, especially during this uncertain time. Thus, the virtual conference format will allow us to present our studies whilst still providing many of the benefits of a face to face meeting. Besides, virtual presentations will be more widely available, yielding a greater exposure to our studies.

Established since 2012, the series of IECMSA features the latest developments in the field of mathematics and applications. The previous conferences were held as follows: IECMSA-2012, Prishtine, Kosovo, IECMSA-2013, Sarajevo, Bosnia and Herzegovina, IECMSA-2014, Vienna, Austria, IECMSA-2015, Athens, Greece, IECMSA-2016, Belgrade, Serbia, IECMSA-2017, Budapest, Hungary, IECMSA-2018, Kyiv, Ukraine, and IECMSA-2019, Baku, Azerbaijan. These conferences gathered a large number of international world-renowned participants.

Now in IECMSA-2020, the scientific committee members and the external reviewers invested significant time in analyzing and assessing multiple papers, consequently, they hold and maintain a high
standard of quality for this conference. The scientific committee accepted 116 virtual presentations. Despite the effects of coronavirus, 136 participants are attending the conference from 23 different countries. The scientific program of the conference features keynote talks, followed by contributed presentations in two parallel sessions.

The conference program represents the efforts of many people. I would like to express my gratitude to all members of the scientific committee, external reviewers, sponsors and, honorary committee for their continued support to the IECMSA. I also thank the invited speakers for presenting their talks on current researches. Also, the success of IECMSA depends on the effort and talent of researchers in mathematics and its applications that have written and submitted papers on a variety of topics. So, I would like to sincerely thank all participants of IECMSA-2020 for contributing to this great meeting in many different ways. I believe and hope that each of you will get the maximum benefit from the conference.

Wish you all health and safety during this difficult time
Prof. Dr. Murat TOSUN
Chairman
On behalf of the Organizing Committee

Honorary Committee

Prof. Dr. Fatih Savaşan
(Rector of Sakarya University)
Prof. Dr. Mehmet Dursun Erdem

IECMSA - 2020

Scientific Committee

Abdon Atangana	(University of the Free State)
Ai-Hui Zhou	(Chinese Academy of Sciences)
Ana Maria Acu	(Lucian Blaga University of Sibiu)
Arif Salimov	(Baku State University)
Ayman Rateb Badawi	(University of Tuscia)
Carlo Cattani	(Van Yuzuncu Yil University)
Cesim Temel	(Balikesir University)
Claudio Cuevas	(Ohio State University)
Cihan Ozgur	(Uşak University)
Dan Burghelea	(Erzincan Binali Yildirim University)
Ekrem Savas	(Baku State University)
Engin Ozkan	(King's College London)
Etibar S. Panahov	(Ankara University)
Eugene Shargorodsky	(Tianjin Polytechnic University)
F. Nejat Ekmekci	(University of Bari)
Feng Qi	(University of Memphis)
Francesco Altomare	(Cent. of Assessment, Selection and Placement)
George Anastassiou	(University of Victoria)
Halis Aygün	(Vienna Technical University)
Hari Mohan Srivastava	(Wuhan University)
Hellmuth Stachel	
Hua Chen	(Uners

Ioan Rasa	(Universitatea Tehnica Cluj-Napoca)
Jose A. Tenreiro Machado	(Polytechnic Institute of Porto)
Kadri Arslan	(Uludağ University)
Kazım İlarslan	(Sultan Qaboos University)
Messaoud Boulbrachene University)	
Mikail Et	(Fırat University)
Mohammad W. Alomari	(Irbid National University)
Nuri Kuruoglu	(University of Valencia)
Oscar Blasco	(University of Oslo)
Paul Arne Østvær	(Federation University Australia)
Sidney A. Morris	(Plovdiv University)
Snezhana Hristova	(Kwangwoon University)
Taekyun Kim	(Prince Sultan University)
Thabet Abdeljawad	(Netaji Subhas University of Technology)
Vijay Gupta	(Batumi Shota Rustaveli State University)
Vladimer Baladze	(Technische Universität Bergakademie Freiberg)
Wolfgang Sproessig	

Organizing Committee

Prof. Dr. Murat Tosun	Sakarya University
Sener Bilalli	International Balkan University
Antonio Fernandez Carrion	Universidad de Sevilla
Prof. Dr. Cristina Flaut	Ovidius University
Edgar Martinez Moro	Universidad de Valladolid
Emrah Evren Kara	Baku State University
Prof. Dr. Fikret Aliyev	Duzce University
Fuat Usta	Sakarya University
Hidayet Hüda Kösal	Kyrgyz-Turkish Manas University
İsmet Altıntas	Sultan Qaboos University
Jasbir Singh Manhas	Università degli Studi di Padova
Laura Ventura	Kırsehir Ahi Evran University
Levent Kula	Nis University
Ljubisa Kocinac	Saratov State University
Lyudmila N. Romanika	Sakarya University
Mahmut Akyiğit	Tekirdağ Namık Kemal University
Mahmut Ergüt	Sakarya University
Mahpeyker Öztürk	Sakarya University
Mehmet Ali Güngör	Sakarya University
Mehmet Güner	National University of Uzbekistan
Mirsaid Aripov	Sultan Qaboos University
Mohammad Saeed Khan	

Mustafa Calışkan	Gazi University
Soley Ersoy	Sakarya University
Victor Martinez-Luaces	Universidad De Montevideo
Yusif Gasimov	Azerbaijan University

Contents

Foreword ii
Honorary Committee iv
Scientific Committee v
Organizing Committee vii
INVITED SPEAKERS 1
Geometric design of patterns in traditional Turkish architecture
(B. Şahin) 1
Stabilization of control systems
(J. M. Coron) 2
The new type of the statistical convergence of the functions defined on the time scale product (M. Başarır) 3
Effective logical methods in nonlinear analysis
(U. Kohlenbach) 4
ALGEBRA 5
New aspects in polygroup theory
(A. Sonea) 5
Generalization of quasi-discrete modules
(B. Nişancı Türkmen, F. Eryılmaz,) 7
Finitely e-supplemented modules
(C. Nebiyev, H. H. Ökten) 8
Amply cofinitely g-radical supplemented modules
(C. Nebiyev) 10
$\oplus-e$-Supplemented modules
(C. Nebiyev, H. H. Ökten) 12
$\oplus-g-$ Rad-supplemented modules
(C. Nebiyev, H. Başak Özdemir) 14
On essential g-supplemented modules
(C. Nebiyev, H. H. Ökten) 16
On relations among quadratic modules
(E. Soylu Yılmaz, K. Yılmaz) 18
Binomial transforms of the horadam quaternion sequences and its properties (F. Kaplan, A. Özkoç Öztürk) 19
On the extensibility of some parametric families of $d(-1)$-pairs to quadruples in the ring
$F[\sqrt{-t}], t>0$
(M. Jukić Bokun) 21
k-order gaussian fibonacci matrices and some applications
(S. Aydınyüz, M. Aşcı) 22
On integral transforms of some special functions
(S. Çürük, S. Halıcı) 24
Locally-artinian supplemented modules
(Y. Şahin, B. Nişancı Türkmen) 26
ANALYSIS 27
Commutable matrices and functional commutativity of compact normal operators
(A. Maouche) 27
On the solution of the functional equation arising in mathematical psychology and theory of learning(A. Turab, W. Sintunavarat)29
Fredholm criteria in a C^{*}-algebra acting on the Hardy space of the bi-disc with applications to composition operators
(B. Başak Eskişehirli) 30
On factorization of multilinear maps defined on sequence spaces by zero product preservation
(E. Erdoğan) 31
Fixed points of generalized orthogonal l-simulative contraction in non-archimedean quasi modular metric space and applications
(E. Girgin, M. Öztürk) 33
On some coupled fixed point results in elliptic valued \mathbf{b}-metric spaces
(I. Arda Kösal, M. Öztürk) 34
Star partial order in spaces with an indefinite inner product
(I. Stanišev) 35
Optimal l^{∞}-error estimate for the impulse control quasi-variational inequality (M. Boulbrachene) 36
On generalized deferred statistical convergence of difference sequences (M. Et) 37
On asymptotically lacunary statistical equivalent of difference double sequences
(M. Et, H. Şengül, M. Çinar) 38
Fixed points of multivalued ρ-nonexpansive mappings
(O. Alagöz) 39
On certain digital operators in the theory of boundary value problems
(O. Tarasova, A. Vasilyev, V. Vasilyev) 40
Local convergence of a family of sakurai-torii-sugiura type simultaneous methods with accelerated convergence
(P. D. Proinov,)S. I. Ivanov 42
Local and semilocal convergence of a two-point Ehrlich-type root-finding method (P. D. Proinov, M. D. Petkova) 44
Local convergence of a modified Weierstrass method for the simultaneous determination of polynomial zeros
(P. I. Marcheva, S. I. Ivanov) 46
The refinements of local fractional Hilbert-type inequalities (P. Vuković) 48
Nonstationary wavelet frame packets in Weighted Sobolev space (Raj Kumar, Manish Chauhan, Reena, Satyapriya) 49
Rates of Asymptotically Statistical Equivalents of Measurable Functions (R.Savaş) 51
The spectra of superposition operators generated by an exponential function
(S. Halilović) 52
P-moment exponentially stability of second order differential rquations with exponential distributed moments of impulses
(S. Hristova) 53
On the determination of the jump by conjugate Fourier-Jacobi series
(S. Sadiković) 55
Construction of a riesz wavelet basis on locally compact abelian groups
(Satyapriya, R. Kumar) 56
APPLIED MATHEMATICS 57
Mathematical modeling of the energy saving problem in the pipeline
(A. A. Adamov, A. N. Satybaldina) 57
A modification of the fast algorithm for computing the mock-Chebyshev nodes (B. A. İbrahimoğlu) 59
A comparison of roughness models for mean flow solutions of the ekman boundary layer flow (B. Alveroğlu) 60
On the stability of related rotating flows of the bek system over a rough rotating disk (B. Alveroğlu) 61
Inverse problems of heat and mass transfer for finding diffusion coefficient of soil
(B.Rysbaiuly, Zh.O.Karashbayeva). 62
The method for finding the system of thermophysical parameters for two-layered structure (B.Rysbaiuly, N.Mukhametkaliyeva) 63
A Note on Ring Source Over Semi-Infinite Lined and Perforated Duct
(B. Tiryakioglu) 64
Generalized spherical fuzzy einstein aggregation operators: application to multi-criteria group decision-making problems
(E. Güner, H. Aygün) 65
Blow up and growth of solutions to a viscoelastic parabolic type Kirchhoff equatio
(E. Pişkin, F. Ekinci) 66
Nonexistence of global solutions for the Timoshenko equation with degenerate damping (E. Pişkin, F. Ekinci) 67
Global existence and general decay of solutions for coupled quasilinear system with degenerate damping terms
(E. Pişkin, F. Ekinci) 68
Blow up and asymptotic behaviour of solutions for a kirchhoff-type equation with delay and variable-exponents
(E. Pişkin, H. Yüksekkaya) 69
Decay and nonexistence of solutions for a $p(x)$-laplacian equation with variable-exponents and delay term
(E. pişkin, H. Yüksekkaya) 70
Nonexistence of solutions to a logarithmic nonlinear wave equation with delay term
(E. Pişkin, H. Yüksekkaya) 71
Mathematical behaviour for a higher-order kirchhoff-type systems with logarithmic nonlinearity
(E. Pişkin, n. Irkıl) 72
COVID-19 and the Fibonacci Numbers(F. S. Dündar).74
Second-order general differential equation for multi-level asymptotics (F. Say) 75
Some recent developments on optimal successive complementary expansion with numerical computations
(F. Say) 76Numerical experiments with spline collocation method for 2D reaction-diffusion problem onthe different type meshes
(G. Radojev) 77
A generalized (3+1)-dimensional Kadomtsev-Petviashvili equation via the Multiple Exp- function Scheme
(İ.B. Giresunlu) 78
On popovski-like methods for the simultaneous determination of polynomial zeros (I. Petković, D. Herceg) 79
Some generalizations of AK model with data analysis
(J. Stanojević, K. Kukić, N. Vuksanović). 81
On an initial and nonlocal boundary condition for a mixed type equation (Kh. R. Mamedov, V. Kllinç) 83
Relaxed mangsarian-fromovitz constraint qualification in parametric programming (L. Minchenko, S. Sirotko, A. Pashuk) 85
Prediction of short time-series based on the smart interpolation with chebyshev polynomials
(L. Saunoriene, M. Ragulskis) 87
Streamline-diffusion finite element method on graded mesh for a singularly perturbed problem
(M. Brdar, L. Teofanov, G. Radojev) 89
Pythagorean fuzyy multiset in robotics: a theoretical framework
(M. Kirişci, M. Akyiğit) 90
Risk assessment of cognitive development of early childhood children in quarantine days: a new AHP approach
(M. Kirisci, N. Topaç, M. Bardak) 92
Numerical solution of the poroelastic wave equation using finite element method
(M. Nurtas, F. Tokmukhamedova) 94
Existence and blow up for a nonlinear petrovsky type equation with logarithmic nonlinearity
(E. Piskin, N. Irkul) 96
On excellent safe primary numbers and encryption
(N. Koca, S. Halucı) 98
Investigation of gompertz law through tempered fractional case (R. Özarslan) 99
Determining alcohol concentration in human body with generalized fractional derivative (R. Özarslan) 100
On a different method for determining the primary numbers
(S. Halcc, H. Cacur, N. Koca) 102
Investigation of joint distribution of the first moment of semi-Markov random walk process crossing level a $(a>0)$ and jump through it
(U. Y. Kerimova) 103
Exact solutions of a conformable fractional equation via Improved Bernoulli Sub-EquationFunction Method(V. Ala, U. Demirbilek, Kh. R. Mamedov)106
Linear ODE systems and the relationship between mixing problems and chemical kinetics (V. Martinez-Luaces) 107
Investigation of random zika virus transmission with modified random differential transformation method
(Z. Bekiryazıcı, T. Kesemen, M. Merdan, T. Khaniyev) 108
An analytical approach to an elastic circular rod equation
(Z. Pinar) 110
DISCRETE MATHEMATICS 111
Disjunctive total domination subdivision number of some graphs (C. Çiftçi) 111
Disjunctive total bondage number of graphs
(C. Çiftçi, A. Aytaç) 113
GEOMETRY 114
Some characterizations for the b-lift curve
(A. Altınkaya, M. Çalışkan) 114
Commutative octonion matrices
(A. Cihan, M. A. Güngör) 115
Singular maximal translation hypersurfaces in lorentz-minkowski space
(A. Erdur, M. E. Aydın, M. Ergüt) 116
On Canal Surfaces obtained by the curves in the space forms
(A. Uçum) 118
Classification of framed rectifying curves in euclidean space
(B. Doğan Yazıcı, S. Özkaldı Karakus, M. Tosun) 119
Surfaces with constant mean curvature along a curve in 3-dimensional euclidean space (E. Bayram, H. Çoşanoğlu) 121
On the lightcone frame in minkowski 3 -space
(E. Bayram) 122
The new type of the statistical convergence of the functions defined on the time scale product (E. Karaca, M. Çalışkan) 123
Homothetic motions via generalized tricomplex numbers (G. Özaydın, S. Özkaldı Karakus) 124
Algebraic techniques for least squares problems in elliptic complex matrix theory and applications
(H. H. Kösal, M. Pekyaman) 126
Tubular surfaces associated with framed base curves
(K. Eren, Önder Gökmen Yıldız) 128
On curve pairs of tzitzeica type
(K. Eren, S. Ersoy) 130
A note on d-homothetic deformation on almost paracontact metric manifolds
(M. Solgun) 132
Frenet curve couples in three dimensional lie groups
(O. Z. Okuyucu) 133
On the matrix representation of bezier curves and derivatives in e^{3}
(Ş. Kılı̧̧oğlu, S. Şenyurt) 134
Mannheim Curves in \mathbb{E}^{3} and Spinors
(T. Erissir) 136
About lorentz transformations with elliptic biquaternions
(Z. Derin, M. A. Güngör) 137
A study of elliptic biquaternionic angular momentum and dirac equation
(Z. Derin, M. A. Güngör) 139
MATHEMATICS EDUCATION 141
Tasks enrichment, modeling problems and inverse reformulations: an experience with prospective teachers in Spain
(V. Martinez-Luaces, J. A. Fernandez-Plaza) 141
STATISTICS 142Comparing approaches for approximating continuous random distributions with application inreliability engineering
(A. Barbiero, A. Hitaj) 142
Inference for $p(x>y)$ under non-identical component strengths based on the rayleigh distribution
(C. Çetinkaya) 144
Orthogonal mixed models and prime basis factorials
(D. Ferreira, S. S. Ferreira, C. Nunes, J. Mexia) 146
On modeling time series of counts using INAR models
(M. M. Ristić, A. S. Nastić, P. M. Popović, P. N. Laketa) 148
Cumulants and their estimators in additive models
(P. Antunes, S. Ferreira, D. Ferreira, J. T. Mexia) 150
Confidence regions and tests for normal models with orthogonal block structure
(S. S. Ferreira, D. Ferreira, C. Nunes, J. T. Mexia) 152
Examination of parallel and series connected components under repairable principle (Y. Güral, M. Gürcan) 154
TOPOLOGY 155
Suzuki type e-contraction via simulation functions in modular b - metric spaces (A. Büyükkaya, M. Öztürk) 155
Redefining disoriented knots and links
(İ. Altıntaş, H. Parlatıcı) 157
A soft set approach to relation
(İ. Altıntaş, K. Taşköprü) 159
The new type of the statistical convergence of the functions defined on the time scale product
(İ. Altıntaş, K. Taşköprü, P. Esengul Kyzy) 160
List of Participants of IECMSA-2020 161

Geometric design of patterns in traditional Turkish architecture

Bayram Şahin ${ }^{1}$

Abstract

In this talk, geometric structures of patterns in traditional Turkish architecture are presented. For this purpose, types of such patterns are examined and the construction process is given. In addition, the transformations used in the construction of such patterns and their relations with symmetry groups are discussed. An example of each type of patterns in traditional Turkish architecture is given and the building process is built with the support of the computer.

Keyword: Islamic ornament, traditional turkish architecture, symmetry group, geometric algorithm.
AMS 2010: 68U07

References

[1] J. S. Abas, S. S. Amer, Symmetries of islamic geometric patterns, World Scientific, 1995.
[2] J. Bonnor, Islamic geometric patterns: their historical development and traditional methods of construction, Springer, 2017.
[3] S. Moradzadeh, A. N. Ebrahimi, Islamic geometric patterns in higher dimensions, Nexus Network Journal, 22, 2020.
[4] B. Winchmann, D. Wade, Islamic design; a mathematical approach, Birkhauser, 2017.

[^0]

IECMSA - 2020

Stabilization of control systems

Jean-Michel Coron ${ }^{1}$

Abstract. A control system is a dynamical system that can be acted upon using controls. For these systems, a fundamental problem is the question of stabilization: is it possible to stabilize a given unstable equilibrium by using appropriate feedback laws? (Think of the classical experiment of a broomstick held on the tip of a finger.) On this problem, we present some old devices and pioneering works (Ctesibius, Watt, Maxwell, Lyapunov...), more recent results and an application to the regulation of the rivers La Sambre and La Meuse. We also give some results for the stabilization in finite time both in finite and infinite dimension.

[^1]IECMSA - 2020

The new type of the statistical convergence of the functions defined on the time

SCALE PRODUCT

Metin Başarır ${ }^{1}$

Abstract

In this talk, we have introduced the concepts $(\lambda, v)_{h}^{\alpha}$-density of a subset of the product time scale \mathbb{T}^{2} and $(\lambda, v)_{h}^{\alpha}$-statistical convergence of order $\alpha(0<\alpha \leq 1)$ of Δ - measurable function f defined on the product time scale with the help of modulus function h and $\lambda=\left(\lambda_{n}\right), v=\left(v_{n}\right)$ sequences. Later, we have discussed the connection between classical convergence, λ-statistical convergence and $(\lambda, v)_{h}^{\alpha}$-statistical convergence. In addition, we have seen that f is strongly $(\lambda, v)_{h}^{\alpha}$-summable on T then f is $(\lambda, v)_{h}^{\alpha}$-statistical convergent of order α.

Keyword:Time scale, statistical convergence, modulus function, lamda sequence, order alfa. AMS 2010: 40A05, 47H10, 46A45.

References

[1] M. S. Seyyidoğlu, N. O. Tan, A note on statistical convergence on time scales, J. Inequal. Appl., 219-227, 2012.
[2] N. Turan, M. Başarır, On the Δ_{g}-statistical convergence of the function defined time scale, AIP Conference Proceedings, 2183, 040017, 2019; https://doi.org/10.1063/1.5136137.
[3] N. Tok, M. Başarır, On the λ_{h}^{α}-statistical convergence of the functions defined on the time scale, Proceedings of International Mathematical Sciences,1(1), 1-10, 2019.
[4] M. Et, H. Şengül. On $\left(\Delta^{m}, I\right)$-lacunary statistical convergence of order α. J. Math. Anal. 7(5), 78-84, 2016.
[5] M. Çınar, E. Yılmaz, Y. Altın, M. Et, $(\lambda ; \nu)$-statistical convergence on a product time scale, Punjab University Journal of Mathematics ,Vol. 51(11), 41-52, 2019.

[^2]

IECMSA - 2020

Effective logical methods in nonlinear analysis

Ulrich Kohlenbach ${ }^{1}$

Abstract

During the last two decades a program of 'proof mining' emerged which uses tools from mathematical logic (so-called proof interpretations) to systematically extract explicit quantitative information (e.g. rates of convergence) from prima facie nonconstructive proofs (e.g. of convergence results). This has been applied particularly successful in the context of nonlinear analysis (see [3] for a recent survey). In this talk we will outline the general background of this logic-based approach and indicate some recent applications in the context of convex optimization, fixed point theory, nonlinear semigroup theory and pursuit-evasion games. In particular, we will report on the recent extraction of a polynomial rate of convergence in Bauschke's [1] solution of the zero-displacement conjecture [2], rates of convergence of asymptotic regularity for nonexpansive semigroups [4] and rates of convergence for the Lion-Man game [6] in geodesic spaces [5].

References

[1] H. H. Bauschke, The composition of projections onto closed convex sets in Hilbert space is asymptotically regular, Proc. Amer. Math. Soc. 131, pp. 141-146, 2003.
[2] U. A. Kohlenbach, A polynomial rate of asymptotic regularity for compositions of projections in Hilbert space, Foundations of Computational Mathematics vol. 19, pp. 83-99, 2019.
[3] U. Kohlenbach, Proof-theoretic Methods in Nonlinear Analysis, Proc. Int. Cong. of Math. 2018, Rio de Janeiro, B. Sirakov, P. Ney de Souza, M. Viana (eds.), Vol. 2, pp. 61-82. World Scientific 2019.
[4] U. Kohlenbach, Koutsoukou-Argyraki, A., Effective asymptotic regularity for one-parameter nonexpansive semigroups, J. Math. Anal. Appl. 433, pp. 1883-1903, 2016.
[5] U. Kohlenbach, G. López-Acedo, A. Nicolae, A uniform betweenness property in metric spaces and its role in the quantitative analysis of the 'Lion-Man' game, To appear in: Pacific J. Math.
[6] J. E. Littlewood, Littlewood's Miscellany (ed: B. Bollobás), Cambridge University Press, Cambridge, 1986.

[^3]\qquad
1

IECMSA

New aspects in polygroup theory

Andromeda Sonea ${ }^{1}$

Abstract

The aim of this paper is to compute the commutativity degree in polygroup's theory, more exactly for the polygroup P_{G} and for extension of polygroups by polygroups, obtaining boundaries for them. Also, we have analyzed the nilpotencitiy of $\mathcal{A}[\mathcal{B}]$, meaning the extension of polygroups \mathcal{A} and \mathcal{B}.

Keyword: Polygroup, commutativity degree, nilpotent polygroup
AMS 2010: 20N20

References

[1] A. Castelaz, Commutativity degree of finite groups, A Thesis Submitted to the Graduade Faculty of Wake Forest University, in Partial Fulfillment of the Requirements for the degree of Masters of Arts in the Departament of Mathematics, North Carolina, May 2010.
[2] P. Corsini, Introducere în teoria hipergrupurilor, Ed. Universităţii Alexandru Ioan Cuza, Iaşi, 1998.
[3] P. Corsini, V. Leoreanu, Applications of hyperstructures theory, Kluwer Academic Publishers Boston/Dordrechtt/ London.
[4] B. Davvaz, Polygroup Theory and Related Systems, World Scientific Publishing.
[5] P. Erdős, P. Turán, On Some Problems of a Statistical Group Theory, Acta Mathematica Academiae Scientiarum Hungaricae Tomus $19(3-4), 413-435,1968$.
[6] W.H. Gustafson, What is the probability that two group elements commute?, Am. Math. Mon, 80(9):1031 - 1034, 1974.
[7] A. Hokmabadi, F. Mohammadzadeh, E. Mohammadzade The commutativity degree of a polygroup, The $6{ }^{\text {th }}$ International Group Theory Conference, Golestan University, Gorgan, Iran, 88-91, 12-13 March 2014
[8] L. Hongxing, D. Qinzi, W. Peizhuang, Hypergroup (I), Busefal, Vol.23, 1985.
[9] D. MacHale, How commutative can a non-commutative group be?, The Mathematical Gazette, Vol. 58, No. 405,199202, 1974.
[10] G. Miller, Relative number of non-invariant operators in a group,Prco. Nat. Acad. Sci, USA, 30(2):25-28, 1944.

[^4][11] M. Tărnăuceanu, Subgroup commutativity degrees of finite groups, Journal of Algebra, 337, 363 - 368, 2011.

IECMSA - 2020

GENERALIZATION OF QUASI-DISCRETE MODULES

Burcu Nişancı Türkmen ${ }^{1}$, Figen Eryılmaz ${ }^{2}$

Abstract

In this study, we define semi-ss-discrete modules and quasi-ss-discrete modules and some of the basic features of these modules are obtained. Let M be an ss-lifting module with finite internal exchange property, then we call M is a semi-ss-discrete module. If M is both π-projective and ss-supplemented module, then we call M is a quasi-ss-discrete module.

Keyword: (Quasi-)discrete modules, ss-supplement submodule.
AMS 2010: 16D10,16D40,16D60

References

[1] J. Clark,C. Lomp, N. Vanaja, R. Wisbauer, Lifting modules supplements and projectivity in module theory, Birkhauser Verlag, Basel. Boston. Berlin, 2000.
[2] F. Eryılmaz, SS-lifting modules, preprint, 2020.
[3] E. Kaynar,H. Çalı̧̧ıcı, E.Türkmen, SS-supplemented modules, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1), 473-485, 2020.
[4] D. Keskin Tütüncü, Characterizations of discrete and quasi-discrete modules, Soochow Journal of Mathematics, 31(2), 179-185, 2005.
[5] A. Ç. Özcan, A. Harmancı, P. F. Smith, Duo modules, Glasgow Math. J.48, 533-545, 2006.
[6] D. Keskin, Discrete and Quasi-Discrete Modules, Communications in Algebra, 30(11), 5273-5282, 2002.
[7] S. H. Mohamed, B. J. Müller, Continuous and quasi-continuous modules, London Mathematical Society, Cambridge Univ Press: Cambridge, 1990.
[8] R. Wishbauer, Foundations of modules and rings, Gordon and Breach, Springer-Verlag, 1991.
[9] D. X. Zhou, X. R. Zhang, Small-essential submodules and morita duality, Southeast Asian Bulletin of Mathematics, $35,1051-1062,2011$.

[^5]
FINITELY e-SUPPLEMENTED MODULES

Celil Nebiyev ${ }^{1}$, Hasan Hüseyin Ökten ${ }^{2}$

Abstract

Let M be an R-module. If every finitely generated essential submodule of M has a supplement in M or M have no finitely generated essential submodules, then M is called a finitely e-supplemented (or briefly fe-supplemented) module. In this work, some properties of these modules are investigated.

Keywords: Small submodules, radical, essential submodules, supplemented modules. AMS 2010: 16D10, 16D80.

Results

Proposition 1. Every f-supplemented module is fe-supplemented.

Corollary 1. Let M be an R-module and $L \ll M$. If M is f-supplemented, then M / L is fesupplemented.

Corollary 2. Let M be an R-module and L be a finitely generated submodule of M. If M is f supplemented, then M / L is fe-supplemented.

Proposition 2. Let M be a fe-supplemented R-module. If every nonzero finitely generated submodule of M is essential in M, then M is f-supplemented.

Lemma 1. Let M be a fe-supplemented R-module and N be a finitely generated submodule of M.
Then M / N is fe-supplemented.

Corollary 3. Let M be a fe-supplemented $R-\operatorname{module}$ and N be a cyclic submodule of M. Then M / N is fe-supplemented.

[^6]Corollary 4. Let $f: M \longrightarrow N$ be an R-module epimomorphism and Kef be finitely generated. If M is fe-supplemented, then N is also fe-supplemented.

Corollary 5. Let $f: M \longrightarrow N$ be an R-module epimomorphism with cyclic kernel. If M is fesupplemented, then N is also fe-supplemented.

References

[1] G. F. Birkenmeier, F. T. Mutlu, C. Nebiyev, N. Sokmez and A. Tercan, Goldie*-supplemented modules, Glasgow Mathematical Journal, 52A, 41-52 (2010).
[2] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting modules supplements and projectivity in module theory, Frontiers in Mathematics, Birkhauser, Basel, 2006.
[3] C. Nebiyev, H. H. Ökten and A. Pekin, Essential supplemented modules, International Journal of Pure and Applied Mathematics, 120 No.2, 253-257 (2018).
[4] C. Nebiyev, H. H. Ökten and A. Pekin, Amply essential supplemented modules, Journal of Scientific Research and Reports, 21 No.4, 1-4 (2018).
[5] R. Wisbauer, Foundations of module and ring theory, gordon and breach, Philadelphia, 1991.
[6] H. Zöschinger, Komplementierte moduln über dedekindringen, Journal of Algebra, 29, 42-56 (1974).

AMPLY COFINITELY g-RADICAL SUPPLEMENTED MODULES

Celil Nebiyev ${ }^{1}$

Abstract. In this work, all rings have unity and all modules are unital left modules. Let M be an R-module. If every cofinite submodule of M has ample g-radical supplements in M, then M is called an amply cofinitely g-radical supplemented module. In this work some properties of amply cofinitely g-radical supplemented modules are investigated.

Keywords: G-small submodules, g-supplemented modules, cofinitely g-supplemented modules, g-radical supplemented modules.
AMS 2010: 16D10, 16D80.

Results

Proposition 3. Every amply cofinitely g-radical supplemented module is cofinitely g-radical supplemented.

Proposition 4. Every amply cofinitely g-supplemented module is amply cofinitely g-radical supplemented.

Proposition 5. Every amply g-radical supplemented module is amply cofinirely g-radical supplemented.

Proposition 6. Every amply cofinitely Rad-supplemented module is amply cofinitely g-radical supplemented.

Proposition 7. Let M be an amply cofinitely g-radical supplemented R-module. If every nonzero submodule of M is essential in M, then M is amply cofinitely Rad-supplemented.

Proposition 8. Let M be an amply cofinitely g-radical supplemented R-module. If every nonzero submodule of M is essential in M, then M is cofinitely Rad-supplemented.

[^7]Proposition 9. Every amply cofinitely supplemented module is amply cofinitely g-radical supplemented.

Proposition 10. Let M be an amply cofinitely g-radical supplemented R-module. Then every factor module of M is amply cofinitely g-radical supplemented.

Proposition 11. Let M be an amply cofinitely g-radical supplemented R-module. Then every homomorphic image of M is amply cofinitely g-radical supplemented.

References

[1] R. Alizade, G. Bilhan and P. F. Smith, Modules whose maximal submodules have supplements, Communications in Algebra, 29(6), 2389-2405, 2001.
[2] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting modules supplements and projectivity in module theory, Frontiers in Mathematics, Birkhauser, Basel, 2006.
[3] B. Koşar, Cofinitely g-supplemented modules, British Journal of Mathematics and Computer Science, 17 No.4, 1-6, 2016.
[4] B. Koşar, C. Nebiyev and A. Pekin, A generalization of g-supplemented modules, Miskolc Mathematical Notes(Accepted).
[5] B. Koşar, C. Nebiyev and N. Sökmez, g-Supplemented modules, Ukrainian Mathematical Journal, 67 No.6, 975-980, 2015.
[6] C. Nebiyev and H. H. Ökten, Weakly g-Supplemented Modules, European Journal of Pure and Applied Mathematics, 10 No.3, 521-528 2017.
[7] Celil Nebiyev, Amply g-radical supplemented modules, Presented in X International Conference of the Georgian Mathematical Union, Batumi-Georgia, 2019.
[8] Celil Nebiyev, Cofinitely g-radical supplemented modules, Mathematical Methods in the Applied Sciences (Accepted).
[9] E. Türkmen and A. Pancar, On cofinitely rad-supplemented modules, International Journal of Pure and Applied Mathematics, 53 No.2, 153-162, 2009.
[10] Y. Wang and N. Ding, Generalized supplemented modules, Taiwanese Journal of Mathematics, 10 No.6, 1589-1601, 2006.
[11] R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, Philadelphia, 1991.

$\oplus-e-$ SUPPLEMENTED MODULES

Celil Nebiyev ${ }^{1}$, Hasan Hüseyin Ökten ${ }^{2}$

Abstract. Let M be an R-module. If every essential submodule of M has a supplement that is a direct summand of M, then M is called a $\oplus-e$-supplemented module. In this work, some properties of these modules are investigated.

Keywords: Essential submodules, small submodules, supplemented modules, essential supplemented modules.

AMS 2010: 16D10, 16D80.

Results

Lemma 2. Every \oplus-supplemented module is $\oplus-e-$ supplemented.

Corollary 6. The finite direct sum of $\oplus-$ supplemented modules is $\oplus-e-$ supplemented.

Proposition 12. Let M be $a \oplus-e$-supplemented module. If every nonzero submodule of M is essential in M, then M is \oplus-supplemented.

Lemma 3. Every $\oplus-e-$ supplemented module is essential supplemented.

Corollary 7. Let $M=M_{1}+M_{2}+\ldots+M_{n}$. If M_{i} is $\oplus-e-$ supplemented module for every $i=1,2, \ldots, n$, then M is essential supplemented.

Corollary 8. Let M be $a \oplus-e-$ supplemented module. Then every finitely M-generated R-module is essential supplemented.

Corollary 9. Let R be a ring. If ${ }_{R} R$ is $\oplus-e$-supplemented, then every finitely generated R-module is essential supplemented.

[^8]Corollary 10. Every factor module of $a \oplus-e$-supplemented module is essential supplemented.

Corollary 11. Every homomorphic image of $a \oplus-e-$ supplemented module is essential supplemented.

Corollary 12. Let M be $a \oplus-e-$ supplemented module. Then $M / R a d M$ have no proper essential submodules.

Lemma 4. Let M be a distributive and $\oplus-e$-supplemented R-module. Then every factor module of M is $\oplus-e$-supplemented.

Corollary 13. Let M be a distributive and $\oplus-e-$ supplemented R-module. Then every homomorphic image of M is $\oplus-e-$ supplemented.

Acknowledgement 1. This research was in part supported by grants from Ondokuz Mayıs University. (Project No : PYO.EGF.1901.19.002).

References

[1] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting modules supplements and projectivity in module theory, Frontiers in Mathematics, Birkhauser, Basel, 2006.
[2] A. Harmancı, D. Keskin and P. F. Smith, On \oplus-supplemented modules, Acta Mathematica Hungarica, 83 No. 1-2, 161-169, 1999.
[3] A. Idelhadj, R. Tribak, On some properties of \oplus-supplemented modules, Int. J. Math. Sci., 69, 4373-4387, 2003.
[4] C. Nebiyev, H. H. Ökten and A. Pekin, Essential supplemented modules, International Journal of Pure and Applied Mathematics, 120 No.2, 253-257, 2018.
[5] C. Nebiyev, H. H. Ökten and A. Pekin, Amply essential supplemented modules, Journal of Scientific Research and Reports, 21 No. 4, 1-4, 2018.
[6] C. Nebiyev and A. Pancar, On supplement submodules, Ukrainian Mathematical Journal, 65 No. 7, 1071-1078, 2013.
[7] R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, Philadelphia, 1991.

IECMSA - 2020

$\oplus-g$-RAD-SUPPLEMENTED MODULES
Celil Nebiyev ${ }^{1}$, Hilal Başak Özdemir ${ }^{2}$

Abstract

Let M be an R-module. If every submodule of M has a g-radical supplement that is a direct summand of M, then M is called a $\oplus-g-R a d$-supplemented module. In this work, some properties of these modules are investigated.

Keywords: Essential submodules, small submodules, supplemented modules, essential supplemented modules.

AMS 2010: 16D10, 16D80.

Results

Lemma 5. Every $\oplus-g-$ Rad-supplemented module is $g-$ radical supplemented.
Corollary 14. Let M be $a \oplus-g-$ Rad-supplemented module. Then every factor module of M is g-radical supplemented.

Corollary 15. Let M be $a \oplus-g-$ Rad-supplemented module. Then every homomorphic image of M is g-radical supplemented.

Lemma 6. Let M be an R-module and $M=M_{1}+M_{2}$. If M_{1} and M_{2} are $\oplus-g-$ Rad-supplemented, then M is g-radical supplemented.

Corollary 16. The finite sum of $\oplus-g-$ Rad-supplemented modules is g-radical supplemented.

Corollary 17. Let M be $a \oplus-g-$ Rad-supplemented module. Then every finitely M-generated module is g-radical supplemented.

[^9]Corollary 18. Let R be a ring. If ${ }_{R} R$ is $\oplus-g-R a d-$ supplemented, then every finitely generated R-module is g-radical supplemented.

Proposition 13. Every Rad $-\oplus$-supplemented module is $\oplus-g-$ Rad-supplemented.

Corollary 19. The finite direct sum of $R a d-\oplus-$ supplemented modules $i s \oplus-g-R a d-$ supplemented.

Corollary 20. Every \oplus-supplemented module is $\oplus-g-$ Rad-supplemented.

Corollary 21. The finite direct sum of $\oplus-$ supplemented modules is $\oplus-g-R a d-$ supplemented.

References

[1] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting modules supplements and projectivity in module theory, Frontiers in Mathematics, Birkhauser, Basel, 2006.
[2] H. Çalışıcı and E. Türkmen, Generalized \oplus-supplemented modules, Algebra and Discrete Mathematics, 10 No.2, 10-18, 2010.
[3] Ş. Ecevit, M. T. Koşan and R. Tribak, Rad- \oplus-supplemented modules and cofinitely rad- \oplus-supplemented modules, Algebra Colloquium, 19 No.4, 637-648, 2012.
[4] A. Harmancı, D. Keskin and P. F. Smith, On \oplus-supplemented modules, Acta Mathematica Hungarica, 83 No. 1-2, 161-169, 1999.
[5] B. Koşar, C. Nebiyev and N. Sökmez, g-Supplemented modules, Ukrainian Mathematical Journal, 67 No.6, 861-864, 2015.
[6] B. Koşar, C. Nebiyev and A. Pekin, A generalization of g-supplemented modules, Miskolc Mathematical Notes, 20 No.1, 345-352, 2019.
[7] A. Idelhadj and R. Tribak, On some properties of \oplus-supplemented modules, Int. J. Math. Sci., 69, 4373-4387, 2003.
[8] Y. Talebi, A. R. M. Hamzekolaei, D. K. Tütüncü, On rad- \oplus-supplemented modules, Hadronic Journal, 32, 505-512, 2009.
[9] R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, Philadelphia, 1991.

IECMSA - 2020

ON ESSENTIAL g-SUPPLEMENTED MODULES

Celil Nebiyev ${ }^{1}$, Hasan Hüseyin Ökten ${ }^{2}$

Abstract

Let M be an R-module. If every essential submodule of M has a g-supplement in M, then M is called an essential g-supplemented (or briefly eg-supplemented) module. In this work, some properties of these modules are investigated.

Keywords: G-small submodules, generalized radical, essential submodules, g-supplemented modules. AMS 2010: 16D10, 16D80.

Results

Lemma 7. Every g-supplemented module is eg-supplemented.
Corollary 22. Every factor module of a g-supplemented module is eg-supplemented.
Corollary 23. The homomorphic image of a g-supplemented module is eg-supplemented.
Corollary 24. Let $M=M_{1}+M_{2}+\ldots+M_{n}$. If M_{i} is g-supplemented for every $i=1,2, \ldots, n$, then M is eg-supplemented.

Corollary 25. Let M be a g-supplemented module. Then every finitely M-generated module is egsupplemented.

Corollary 26. Let R be a ring. If ${ }_{R} R$ is g-supplemented, then every finitely generated R-module is eg-supplemented.

Proposition 14. Let M be an eg-supplemented module. If every nonzero submodule of M is essential in M, then M is g-supplemented.

[^10]Definition 1. Let M be an R-module and $X \leq M$. If X is a g-supplement of an essential submodule of M, then X is called an eg-supplement submodule in M.

Lemma 8. Let M be an R-module, V be an eg-supplement in M and $K<_{g} M$. Then $K \cap V<_{g} V$.

Corollary 27. Let M be an R-module, V be an eg-supplement in M and $K \leq V$. Then $K \ll_{g} M$ if and only if $K \ll_{g} V$.

References

[1] G. F. Birkenmeier, F. T. Mutlu, C. Nebiyev, N. Sokmez, A. Tercan, Goldie*-supplemented modules, glasgow mathematical journal, 52A, 41-52, 2010.
[2] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting modules supplements and projectivity in module theory, Frontiers in Mathematics, Birkhauser, Basel, 2006.
[3] B. Koşar, C. Nebiyev and N. Sökmez, G-supplemented modules, Ukrainian Mathematical Journal, 67 No.6, 861-864, 2015.
[4] B. Koşar, C. Nebiyev and A. Pekin, A generalization of g-supplemented modules, Miskolc Mathematical Notes, 20 No.1, 345-352, 2019.
[5] Celil Nebiyev, On a generalization of supplement submodules, International Journal of Pure and Applied Mathematics, 113 No.2, 283-289, 2017.
[6] C. Nebiyev and H. H. Ökten, Essential g-supplemented modules, Turkish Studies Information Technologies and Applied Sciences, 14 No.1, 83-89, 2019.
[7] C. Nebiyev, H. H. Ökten, A. Pekin, Essential supplemented modules, International Journal of Pure and Applied Mathematics, 120 No.2, 253-257, 2018.
[8] C. Nebiyev, H. H. Ökten and A. Pekin, Amply essential supplemented modules, Journal of Scientific Research and Reports, 21 No.4, 1-4, 2018.
[9] C. Nebiyev and N. Sökmez, Beta g-star relation on modules, European Journal of Pure and Applied Mathematics, 11 No.1, 238-243, 2018.
[10] R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, Philadelphia, 1991.
[11] D. X. Zhou and X. R. Zhang, Small-essential submodules and morita duality, Southeast Asian Bulletin of Mathematics, 35, 1051-1062, 2011.
[12] H. Zöschinger, Komplementierte moduln über dedekindringen, Journal of Algebra, 29, 42-56, 1974.

IECMSA - 2020

On Relations Among Quadratic Modules

Elis Soylu Yılmaz ${ }^{1}$, Koray Yılmaz ${ }^{2}$

Abstract

Algebraic models of connected homotopy 3-types such as quadratic modules, 2-crossed modules, crossed squares and their relations are studied in various ways. In this work we obtain an another natural equivalence for quadratic modules. That is we define functors between quadratic modules and our candidate category.

Keyword: Crossed module, functor, quadratic module.
AMS 2010: 18B40, 20L05, 18D05

References

[1] D. Conduché, Modules croisés généralisés de longueur 2, J. Pure and Applied Algebra, 34, 155-178, 1984.
[2] E.Ulualan, Braiding from 2-groups to 2-groupoids, Iranian Journal of Science and Technology, Transaction A, 30(3), 325-253, 2006
[3] G.J. Ellis, Crossed squares and combinatorial homotopy , Math.Z., 214, 93-110, 1993.
[4] H.J. Baues, Combinatorial homotopy and 4-dimenional complexes, Walter de Gruyter, 15, 380 pages, 1991.
[5] J.H.C. Whitehead, Combinatorial homotopy II, Bull. Amer. Math. Soc., 55, pp 453-496, 1949.
[6] S. Mac lane, Categories for the working mathematician, Springer-Verlag, New York, 1978.
[7] Z. Arvasi, E. Ulualan, On algebraic models for homotopy 3-types, Journal of Homotopy and Related Structures Vol.1, No 1, pp.1-27, 2006.

[^11]IECMSA - 2020

BINOMIAL TRANSFORMS OF THE HORADAM QUATERNION SEQUENCES AND ITS PROPERTIES

Faruk Kaplan ${ }^{1}$, Arzu Özkoç Öztürk ${ }^{2}$

Abstract

Through this comprehensive study, we set out to apply the binomial transforms to Horadam quaternion. We present recurrence relation, generating function, Binet formula and some basic identities for the binomial sequence of Horadam quaternions. We gave new formulas for some identities of binomial transforms of Horadam quaternions by using Binet formula.

Keyword: Binomial transforms, binet formula, horadam quaternions.
AMS 2010: 11B37, 11B39, 11R52, 11B65.

References

[1] H. Prodinger, Some information about the binomial transform, The Fibonacci Quarterly 32 (5), 412-415, 1994.
[2] S. Falcon, A. Plaza, Binomial transforms of the k-fibonacci sequences, Int. J. Nonlinear Sci. Numer. Simul. 10, 1305-1316, 2009.
[3] KW. Chen, Identities from the binomial transform, J. Number Theory, 124, 142-150, 2007.
[4] E. Polatll, On certain properties of quadrapell sequences, Karaelmas Science and Engineering Journal, Karaelmas Science and Engineering Journal, 8(1), 305-308, 2018.
[5] C. Kızılateş, N. Tuğlu, B. Çekim, Binomial transform of quadrapell sequences and quadrapell matrix sequences, J. Sci. Arts, 1(38), 69-80, 2017.
[6] S. Halıcı, A. Karataş, On a generalization for fibonacci quaternions, Chaos, Solitons and Fractals, 98 178-182, 2017.
[7] P. Bhadouria, D. Jhala, B. Singh, Binomial transforms of the k-lucas sequences and its properties, Journal of mathematics and computer science 8, 81-92, 2014.
[8] W. R. Hamilton, Elements of quaternions, london, England, Green Company, 1866.
[9] H.W. Gould, Series transformations for findings recurrences for sequences, The Fibonacci Quart., 28(2), 166-171, 1990.

[^12][10] A.F. Horadam, Basic properties of a certain generalized sequence of numbers, The Fibonacci Quart., 3(3), 161-176, 1965.
[11] A.F. Horadam, Generating functions for powers of a certain generalized sequence of numbers, Duke Math J., 32(3), 437-446, 1965.

ON THE EXTENSIBILITY OF SOME PARAMETRIC FAMILIES OF $D(-1)$-PAIRS TO QUADRUPLES IN THE RING $\mathbb{Z}[\sqrt{-t}], t>0$

Mirela Jukić Bokun ${ }^{1}$

Abstract. Let R be a commutative ring. A set of m distinct elements in R such that the product of any two distinct elements increased by -1 is a perfect square is called a $D(-1)-m$-tuple in R. The existence of positive integer solutions of the equation

$$
\begin{equation*}
x^{2}-\left(p^{2 k+2}+1\right) y^{2}=-p^{2 l+1}, \quad l \in\{0,1, \ldots, k\}, k \geq 0 \tag{1}
\end{equation*}
$$

where p is a prime, is closely related to the existence of some $D(-1)$-quadruples in a certain ring. We discuss solubility of equation (1). By combining that result with other known results on the existence of Diophantine quadruples, we are able to prove results on the extensibility of some parametric families of $D(-1)$-pairs to quadruples in the ring $\mathbb{Z}[\sqrt{-t}], t>0$.

Keyword: Pellian equation, quadratic field, Diophantine quadruple.
AMS 2010: 11D09, 11R11, 11J86.

References

[1] A. Dujella, M. Jukić Bokun, I. Soldo, A Pellian equation with primes and applications to $D(-1)$-quadruples, Bull. Malays. Math. Sci. Soc., 42(5), 2915-2926, 2019.
[2] A. Filipin, Y. Fujita, M. Mignotte, The non-extendibility of some parametric families of $D(-1)$-triples, Quart. J. Math. 63(3), 605-621, 2012.
[3] M. Jukić Bokun, I. Soldo, On the extensibility of $\mathrm{D}(-1)$-pairs containing Fermat primes, Acta Mathematica Hungarica, 159, 89-108, 2019.
[4] K. Matthews, The Diophantine equation $x^{2}-D y^{2}=N, D>0$, Expo. Math., 18(4), 323-332, 2000.
[5] I. Soldo, $D(-1)$-triples of the form $\{1, b, c\}$ in the ring $\mathbb{Z}[\sqrt{-t}], t>0$, Bull. Malays. Math. Sci. Soc., 39(3), 1201-1224, 2016.

[^13]
k-order Gaussian Fibonacci Matrices and Some Applications

Süleyman Aydınyüz ${ }^{1}$, Mustafa Aşcı ${ }^{2}$

Abstract

In this paper we introduce and study k-order Gaussian Fibonacci Coding theory. We give illustrative examples about coding theory. This coding theory is a method bound to the Q_{k}, R_{k} and $E_{n}^{(k)}$ matrices. This coding/decoding method is different from classical algebraic coding. k-order Gaussian Fibonacci Coding method depends on matrix multiplication and can be performed quickly and easily by today's computers. This method will not only ensures information security in data transfer but also has high correct ability. Consequently, this method aims to increase the reliability of information transfer by moving the coding theory to the complex space.

Keyword: Fibonacci numbers, gaussian fibonacci numbers, k -order gaussian fibonacci numbers, k -order gaussian fibonacci matrices, k-order gaussian fibonacci coding/decoding.
AMS 2010: 11Bxx, 11Txx
Acknowledgement: This work is supported by the Scientific Research Project (BAP) 2020FEBE003, Pamukkale University, Denizli, TURKEY.

References

[1] T. Koshy, Fibonacci and lucas numbers with applications, A Wiley-Interscience Publication, 2001.
[2] S. Vajda, Fibonacci and lucas numbers and the golden section theory and applications, Ellis Harwood Limitted, 1989.
[3] H. W. Gould, A history of the fibonacci q-matrix and a higher-dimensional problem, Fibonacci Quart. 19, no. 3, 250-257, 1981.
[4] V. E. Hoggat, Fibonacci and lucas numbers, Houghton-Mifflin, Palo Alto, 1969.
[5] A. P. Stakhov, A generalization of the fibonacci q-matrix, Rep. Natl. Acad. Sci. Ukraine 9, 46-49, 199.
[6] A. P. Stakhov, Massinggue V., Sluchenkov A., Introduction into fibonacci coding and cryptography, Osnova, Kharkov, 1999.
[7] A. F. Horadam, A generalized fibonacci sequence, American Math. Monthly 68, 455-459, 1961.
[8] A. F. Horadam, Complex fibonacci numbers and fibonacci quaternions, American Math Monthly 70, 289-291, 1963.

[^14][9] J. H. Jordan, Gaussian fibonacci and lucas numbers, Fibonacci Quart. 3, 315-318, 1965.
[10] A. P. Stakhov, Fibonacci matrices, a generalization of the cassini formula and a new coding theory, Chaos, Solitions and Fractals 30, no. 1, 56-66, 2006.
[11] M. Basu, B. Prasad, The generalized relations among the code elements for fibonacci coding theory, Chaos, Solitons and Fractals 41(5), 2517,2525, 2009.
[12] M. Basu, M. Das, Tribonacci matrices and a new coding theory, Discrete Math. Algorithms Appl., 6(1), article ID: 1450008, 2014.
[13] M. Basu, M. Das, Coding theory on fibonacci n-step numbers, Discrete Math. Algorithms Appl., 6(2), article ID: 145008, 2014.
[14] M. Asci, E. Gurel, Some properties of k-order gaussian fibonacci and lucas numbers, Ars Combin., 135, , 345-356, 2017.
[15] M. Asci, G. Y. Lee, On the generalized gaussian fibonacci numbers, Ars Combin., 132, , 147-157, 2017.
[16] M. Ascı E. Gurel, Gaussian fibonacci and gaussian lucas p-numbers, Ars Combin., 132, 389-402, 2017.

IECMSA

On Integral Transforms of Some Special Functions

Şule Çürük ${ }^{1}$, Serpil Halıcı ${ }^{2}$

Abstract

In this study, known integral transforms such as Fourier and Hartley are studied and these integral transforms are studied in detail for bicomplex numbers. In addition, the properties of the bicomplex Hartley transformation were investigated. Also, the relation between Hartley and Fourier transform for bicomplex numbers is given.

Keyword: Bicomplex functions, fourier type integral transformations, integral transformations of special functions, integral transformations.
AMS 2010: 30G35, 44A15, 44A20.

References

[1] A. Banerjee, S. K. Datta, M. A. Hoque, Fourier transform for functions of bicomplex variables. arXiv preprint arXiv:1404.4236, 2014.
[2] A. Banerjee, S. K. Datta, M. A. Hoque, Inverse Fourier transform for bi-complex variables. arXiv preprint arXiv:1511.01213, 2015.
[3] M. Futagawa, On the theory of functions of a quaternary variable. Tohoku Mathematical Journal, First Series, 29, 175-222, 1928.
[4] M. Futagawa, On the theory of functions of a quaternary variable (Part II). Tohoku Mathematical Journal, First Series, 35, 69-120, 1932.
[5] K. Koklu, Integral Dönüşümleri ve Uygulamaları, Istanbul: Papatya Yayınları, 2018.
[6] M. E. Luna-Elizarraras, M. Shapiro, D. C. Struppa, A. Vajiac, Bicomplex numbers and their elementary functions. Cubo (Temuco), 14(2), 61-80, 2012.
[7] G. B. Price, An introduction to multicomplex spaces and functions. New York: M. Dekker, 1991.
[8] J. D. Riley, Contributions to the theory of functions of a bicomplex variable, Tohoku Mathematical Journal, Second Series, 5(2), 132-165, 1953.

[^15][9] D. Rochon, M. Shapiro, On algebraic properties of bicomplex and hyperbolic numbers, Anal. Univ. Oradea, fasc. math, VOL. 11, NUM. 71, 110, 2004.
[10] S. Rönn, Bicomplex algebra and function theory. arXiv preprint math/0101200, 2001.
[11] C. Segre, Le rappresentazioni reali delle forme complesse e gli enti peralgebrici. Mathematische Annalen, 40(3), 413-467, 1892.
[12] P. Usta Puhl, Hartley dönüşümleri ve uygulamaları, YLS Tezi, Fen bil.enst., 2016.

LOCALLY-ARTINIAN SUPPLEMENTED MODULES

Yavuz Şahin ${ }^{1}$, Burcu Nişancı Türkmen ${ }^{2}$

Abstract. In this paper, we introduce a notion of locally-artinian supplemented modules which is different from a notion of ss-supplemented modules and we study some properties of this module. We give a characterizations of this module over a left artinian ring.

Keyword: locally-artinian modules, supplement submodule, locally-artinian supplemented modules.
AMS 2010: 16D10, 16P20, 16D99

References

[1] R. Alizade, G. Bilhan, P. F. Smith, Modules whose maximal submodules have supplements, Communications in Algebra, 29(6), 2389-2405, 2001.
[2] A. Facchini, Module Theory, Progress in Mathematics, 167, Birkhauser, 281s, Verlag, Basel, 1998.
[3] E. Kaynar, H. Çalışıcı, E. Türkmen, ss-supplemented modules, Communications Faculty of Science University of Ankara Series AL Mathematics and statistics, 69, 1, 2020.
[4] D. W. Sharpe, P. Vamos, Injective Modules, Cambridge University Press, Cambridge, 1972.
[5] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, 1991.
[6] D. X. Zhou, X. R. Zhang, Small-Essential Submodules and Morita Duality, Southeast Asian Bulletin of Mathematics 351051-1062, 2011.
[7] H. Zöschinger, Komplementierte moduln über Dedekindringen, Journal of Algebra 29, 42-56, 1974.

[^16]\qquad

ANALYSIS

IECMSA - 2020

Commutable matrices and functional commutativity of compact normal operators

Abdelaziz Maouche ${ }^{1}$

Abstract. A simple expression is established for an analytic family of commutable matrix-valued functions. Then a characterization of two by two functional commutative matrices is proven. In [2], Stuart Goff studied analytic hermitian function matrices which commute with their derivative on some real interval I, i.e, $A(t) A^{\prime}(t)=A^{\prime}(t) A(t)$ for all $t \in I$. He obtained as a main result that these matrices are functionally commutative on I, i.e.,

$$
A(s) A(t)=A(t) A(s)
$$

for all $s, t \in I$ [2], Theorem 3.6. Our aim is to further extend the result of Goff from matrices to the infinite-dimensional situation of compact normal operators on a separable Hilbert space. We study first analytic families of compact self-adjoint operators on a complex Hilbert space, which commute with their derivative on some real interval I. Our main result establishes that these operators must be functionally commutative on I, that is,

$$
A(s) A(t)=A(t) A(s)
$$

for all $s, t \in I$, extending the main result of [2] from the case of matrices to the infinite dimensional situation of operators on a Hilbert space.

Finally, it is shown that a family of analytic normal compact operators on a Hilbert space \mathcal{H}, which commute with their derivatives, must be functionally commutative.

Keyword: Commutable matrix valued-function, compact operator, functional commutativity, normal operator, self-adjont operator, riesz projection, spectral decomposition, analytic operator-valued func-
tion.
AMS 2010: Primary 47B15, Secondary 47A55

[^17]
References

[1] Jean-Claude Evard, On matrix functions which commute with their derivative, Lin. Alg. and Its Applications, 145178, 1985.
[2] Stuart Goff, Hermitian function matrices which commute with their derivative, Lin. Alg. and Its Applications, 33-40, 1981.
[3] Carlos S. Kubrusly, Spectral theory of bounded linear operators, Birkhauser 2020.
[4] A. Maouche, Functional commutativity of analytic families of self adjoint compact operators on a Hilbert space, Commun. in Adv. Math. Sciences, 3(1), 9-12, 2020.

IECMSA - 2020

THEORY OF LEARNING

Ali Turab ${ }^{1}$, Wutiphol Sintunavarat ${ }^{2}$

Abstract

In mathematical psychology and learning theory, the choice behavior model is the model that describes the spiritual process of thinking, which is concerned with the process of judging the merits of the numerous options and making the decision to determine one of them for action. This work intends to investigate such type of behavior and establish a general functional equation for it. The existence and uniqueness results of the solution to the proposed mathematical model are examined by using the fixed point tools.

Keyword: Functional equation, probability, fixed points, Banach contraction mapping principle.
AMS 2010: 30D05, 39B52, 47H10.

[^18]

Beyaz Başak Eskişehirli ${ }^{1}$

Abstract. In this work we give a Fredholm criteria for the operators in the C^{*}-algebra generated by certain Toeplitz operators and Fourier multipliers acting on the Hardy space of the bidisc. With help of the obtained results we also completely characterize the essential spectra of quasi-parabolic composition operators on the Hardy spaces of the bi-disc. This joint work with Uğur GÜL.

Keyword: Fredholm operator, hardy spaces, c^{*}-algebra, composition operators, essential spectra.
AMS 2010: 32A45, 47B33

[^19]IECMSA - 2020

On Factorization of Multilinear Maps defined on Sequence Spaces by Zero Product Preservation

Ezgi Erdoğan ${ }^{1}$

Abstract

In this presentation, we give a factorization theorem for multilinear operators acting in topological products of spaces of (scalar) p-summable sequences through a canonical map called product. This class of multilinear operators, that we call product factorable maps, coincides with the class of the zero product preserving operators. Due to the factorization, a product factorable multilinear map and the linear map appearing in the factorization share some good properties like compactness and summability. After presentation of these properties, we finish the presentation by giving some isomorphisms between spaces of linear and multilinear operators, and representations of some classes of multilinear maps as n-homogeneous orthogonally additive polynomials.

Keyword: Multilinear operators, factorization, zero product preserving map.
AMS 2010: Firstly 47H60, 47A68; Secondly 46B45, 46B42.

References

[1] J. Alaminos, M. Brešar, J. Extremera, A. R. Villena, Maps preserving zero products, Studia Math., 193(2), 131-159, 2009.
[2] Y. Benyamini, S. Lassalle J. G. Llavona, Homogeneous orthogonally additive polynomials on Banach lattices, Bull Lond Math Soc., 383, 459-469, 2006.
[3] Q. Bu, G. Buskes, A. G. Kusraev, Bilinear maps on products of vector lattices: a survey, In: Boulabiar K., Buskes G., Triki A. (eds) Positivity. Trends in Mathematics, 97-126, 2007.
[4] E. Erdoğan, J. M. Calabuig, E. A. Sánchez Pérez, Convolution-continuous bilinear operators acting in hilbert spaces of integrable functions, Ann. Funct. Anal., 9(2), 166-179, 2018.
[5] E. Erdoğan, Factorization of multilinear operators defined on products of function spaces, Linear and Multilinear Algebra, https://dx.doi.org/10.1080/03081087.2020.1715334, 2020.
[6] E. Erdoğan, Product factorable multilinear operators defined on sequence spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 69(2), 152-166, 2020.

[^20][7] E. Erdoğan, E. A. Sánchez Pérez, Ö. Gök, Product factorability of integral bilinear operators on Banach function spaces, Positivity, 23(3), 671-696, 2019.
[8] A. Ibort, P. Linares, J. G. Llavona, A representation theorem for orthogonally additive polynomials on Riesz spaces, Rev Mat Complut., 251, 21-30, 2012.

IECMSA

FIXED POINTS OF GENERALIZED ORTHOGONAL L-SIMULATIVE CONTRACTION IN NON-ARCHIMEDEAN QUASI MODULAR METRIC SPACE AND APPLICATIONS

Ekber Girgin ${ }^{1}$, Mahpeyker Öztürk ${ }^{2}$

Abstract

In this study, by using the concept of cyclic (α, β)-admissible mapping, orthogonal set and L - simulation functions, we establish the existence and uniqueness of fixed point of a generalized orthogonal $L-$ simulative contraction on non-Archimedean quasi modular metric spaces. Our results generalize and extend various comparable results in the existing literature. As an application, we acquire fixed point results in non-Archimedean quasi modular metric spaces with a graph.

Keyword: Orthogonal set, L-Simulation function, quasi modular metric, graph.
AMS 2010: 47H10, 54 H 25.

References

[1] M. Öztürk, M. Abbas, E. Girgin, Common fixed point results of a pair generalized (ψ, φ)-contraction mappings in modular spaces, Fixed Point Theory Appl., 2016:19, DOI:10.1186/s13663-016-0503-x, 2016.
[2] F. Khojasteh, S. Shukla, S. Radenovic, A new approach to the study of fixed point theorems via simulation functions, Filomat, 29:6, 1189-1194, 2015.
[3] E. Girgin, M. Öztürk, Modified Suzuki-simulation type contractive mapping in non-Archimedean quasi modular metric spaces and application to graph theory, Mathematics, 2019, 7, 769.
[4] E. Girgin, M. Öztürk, $(\alpha, \beta)-\psi$-type contraction in non-Archimedean quasi modular metric spaces and applications, Journal of Mathematical Analysis, 10:1, 19-30, 2019.
[5] M. Öztürk, M. Abbas, E. Girgin, Fixed points of ψ-contractive mappings in modular spaces, Filomat, 30:14, 38173827, 2016.

[^21]IECMSA - 2020

On Some Coupled Fixed Point Results in Elliptic Valued b-Metric Spaces

Işl Arda Kösal ${ }^{1}$, Mahpeyker Öztürk ${ }^{2}$

Abstract

The present work demonstrates the existence and uniqueness of coupled common fixed point for the mappings with the suitable properties and conditions in an elliptic valued \mathbf{b}-metric space. The obtained results include several generalizations, extension, and improvement of the recent fixed point theorems given in the literature.

Keyword: Elliptic valued b-metric space, coupled fixed point, rational expressions.
AMS 2010: 54H25, 47H10.

References

[1] B. S. Choudhury, P. Maity, Coupled fixed point results in generalized metric spaces, Mathematical and Computer Modelling, 54, 73-79, 2011.
[2] M. A. Kutbi, A. Azam, J. Ahmad and C. D. Bari, Some common coupled fixed point results for generalized contractions in complex-valued metric spaces, Journal of Applied Mathematics, 10 pages, Article ID 352927, 2013.
[3] M. Öztürk, I. A. Kösal, H. H. Kösal, Coincidence and common fixed point theorems via \mathcal{C}-class functions in elliptic valued metric spaces, accepted.
[4] M. Öztürk, N. Kaplan, Some common coupled xed points of mappings satisfying contractive conditions with rational expressinons in complex valued G_{b}-metric space, Bangmod Int. J. Math. and Comp. Sci., 1(1), 190-204, 2015.
[5] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostra., 1, 5-11, 1993.
[6] T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis: Theory Methods is Applications, 65(7), 1379-1393, 2006.

[^22]Ivana Stanišev ${ }^{1}$

Abstract

The star partial order has been intensively investigated in the set of complex matrices. This partial order was defined by Drazin in [4]. Some of interesting properties can be found in [1, 7]. We present the extension of these results for matrices in indefinite inner product spaces. The characterization of that order in terms of matrices and their Moore-Penrose inverses are also given.

Keyword: Star partial order, indefinite inner product, Moore-Penrose inverse.
AMS 2010: 15A09, 15A63, 46C20.

References

[1] J. K. Baksalary, F. Pukelsheim, G. P. H. Styan, Some properties of matrix partial orderings, Linear Algebra Appl. 119, 57-85, 1989.
[2] A. Ben-Israel, T. N. E. Greville, Generalized Inverses: Theory and Applications, 2nd ed., Springer, New York, 2003.
[3] J. Bognar, Indefinite inner product spaces, Springer Verlag, 1974.
[4] M. P. Drazin, Natural structures on semigroups with involution, Bull. Amer. Math. Soc., 84:139-141, 1978.
[5] I. Gohberg, P. Lancaster and L. Rodman, Indefinite Linear Algebra and Applications, Birkhäuser, Basel, 2005.
[6] R. E. Hartwig, How to partially order regular elements, Math. Japon. 25, 1-13, 1980.
[7] R. E. Hartwig, G. P. H. Styan, On some characterizations of the star partial orderings and rank subtractivity, Linear Algebra Appl. 82, 145-161, 1986.
[8] K. Kamaraj, K. C. Sivakumar, Moore-penrose inverse in an indefinite inner product space, J. Appl. Math. \& Computing, 19 (1-2) 297-310, 2005.
[9] R. Penrose, A generalized inverse for matrices, 406-413,1954.

[^23]OPTIMAL L^{∞}-ERROR ESTIMATE FOR THE IMPULSE CONTROL QUASI-VARIATIONAL INEQUALITY

Messaoud Boulbrachene ${ }^{1}$

Abstract

In this paper, we improve the result of [1] by deriving the optimal convergence order of the standard finite element approximation of the elliptic impulse control quasi-variational inequality (QVI). For that, we introduce a new method which combines, in both the continuous and discrete cases, the geometrical convergence of the Bensoussan-Lions iterative scheme with the concept of subsolutions for elliptic variational inequalities.

Keyword: Quasi-variational Inequality, finite elements, iterative scheme,subsolutions .

AMS 2010: 65N30, 65N15.

References

[1] P. Cortey-Dumont, Approximation numerique d' une inequation quasi variationnelle liee a des problemes de gestion de stock, RAIRO, Analyse Numerique, 14(4), 335-346, 1980.

[^24]IECMSA - 2020

On Generalized Deferred Statistical Convergence of Difference Sequences

Mikail Et ${ }^{1}$

Abstract. In this paper, using the generalized difference operator Δ_{m}^{n}, we introduce the concepts of Δ_{m}^{n}-deferred statistical convergence and strong Δ_{m}^{n}-deferred Cesàro summability of real sequences. Additionally, some inclusion relations about Δ_{m}^{n}-deferred statistical convergence of and strong Δ_{m}^{n}-deferred Cesàro summability are given.

Keyword: Difference sequence, deferred cesàro mean, deferred statistical convergence.
AMS 2010: 40A05, 40C05, 46A45.

References

[1] R. P. Agnew, On deferred Cesàro means, Ann. of Math., 33(3), 413-421, 1932.
[2] J. S. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis, 8, 47-63, 1988.
[3] M. Et, R. Çolak, On some generalized difference sequence spaces, Soochow J. Math.,21(49), 377-386, 1995.
[4] M. Et, F. Nuray, Δ^{m}-Statistical Convergence, Indian J. pure appl. Math.,32(6), 961-969, 2001.
[5] H. Fast, Sur la convergence statistique, Colloq. Math., 2, 241-244, 1951.
[6] J. A. Fridy, On statistical convergence, Analysis, 5, 301-313, 1985.
[7] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull., 24(2), 169-176, 1981.
[8] M. Küçükaslan, M. Yılmaztürk, On deferred statistical convergence of sequences, Kyungpook Math. J., 56, 357-366, 2016.
[9] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca, 30, 139-150, 1980.
[10] B. C. Tripathy, A. Esi, Tripathy BK. On a new type of generalized difference Cesaro Sequence spaces. Soochow J. Math., 31(3), 333-340, 2005.

[^25]
On Asymptotically Lacunary Statistical Equivalent of Difference Double Sequences

Mikail Et ${ }^{1}$, Hacer Şengül ${ }^{2}$, Muhammed Çınar ${ }^{3}$

Abstract. In this study we introduce and examine the concepts of Δ_{θ}^{m}-asymptotically statistical equivalent and strong Δ_{θ}^{m}-asymptotically equivalent of double sequences. Also, we give some relations connected to these concepts.

Keyword: Asymptotically statistical equivalent, difference double sequence, lacunary sequence.
AMS 2010: 40A05, 40C05, 46A45

References

[1] R. Çolak, Y. Altın, Statistical convergence of double sequences of order $\tilde{\alpha}$, J. Funct. Spaces Appl. Art. ID 682823, 5 pp, 2013.
[2] M. Et, R. Çolak, On generalized difference sequence spaces, Soochow J. Math. 21(4), 377-386, 1995.
[3] H. Fast, Sur la convergence statistique, Colloq. Math., 2, 241-244, 1951.
[4] A. R. Freedman, J. J. Sember, M. Raphael, Some Cesàro-type summability spaces, Proc. London Math. Soc. 37, 508-520, 1978.
[5] J. A. Fridy, C. Orhan, Lacunary statistical convergence, Pacific J. Math. 160, 43-51, 1993.
[6] M. Marouf, Asymptotic equivalence and summability, Internat. J. Math. Math. Sci. 16(4), 755-762,1993.
[7] R. F. Patterson, On asymptotically statistical equivalent sequences, Demonstratio Math. 36(1), 149-153, 2003.
[8] A. Pringsheim, Zur Theorie der zweifach unendlichen Zahlenfolgen (German), Math. Ann. 53, 289-321, 1900.

[^26]
FIXED POINTS OF MULTIVALUED ρ-NONEXPANSIVE MAPPINGS

Osman Alagöz ${ }^{1}$

Abstract

In this work we study convergence of S iteration [3] that converges common fixed points of two multivalued ρ-nonexpansive mappings an modular function spaces. The given iteration is faster than Mann [3] and Ishikawa [2] iterations and is reduced to Mann iteration in a special case. So the findings generalize the results of Khan and Abbas [4]

Keyword: fixed point, modular function space, multivalued mapping.
AMS 2010: 47H09, 47H10.

References

[1] R. P. Agarwal, D. O'Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexansive mappings. J. nonlinear Convex Anal. 8(1), 61-79, 2007.
[2] S. Ishikawa: Fixed points by a new iteration method. Proc. Am. Math. Soc. 44, 147-150, 1974.
[3] W. R. Mann: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506-510, 1953.
[4] Khan and Abbas, Approximating fixed points of multivalued ρ-nonexpansive mappings in modular function spaces. Fixed Point Theory and Applications 2014, 34, 2014.

[^27]IECMSA

ON CERTAIN DIGITAL OPERATORS IN THE THEORY OF BOUNDARY VALUE PROBLEMS

Oksana Tarasova ${ }^{1}$, Alexander Vasilyev ${ }^{2}$, Vladimir Vasilyev ${ }^{3}$

Abstract. Let $\mathbb{T}^{m}=[-\pi, \pi]^{m}, h>0, \tilde{A}(\xi), \xi \in \mathbb{R}^{m}$ be a periodic function with basic cube of periods $h^{-1} \mathbb{T}^{m}, \tilde{A}(\xi) \in L_{1}\left(h^{-1} \mathbb{T}^{m}\right), D \subset \mathbb{R}^{m}$ be a domain. We introduce a digital pseudo-differential operator

$$
\left(A_{d} u_{d}\right)(\tilde{x})=\sum_{\tilde{y} \in h \mathbb{Z}^{m}} \int_{h^{-1} \mathbb{T}^{m}} \tilde{A}(\xi) e^{i(\tilde{y}-\tilde{x}) \cdot \xi} u_{d}(\tilde{y}) d \xi h^{m}, \tilde{x} \in D_{d} \equiv D \cap h \mathbb{Z}^{m}
$$

which is defined for functions of a discrete variable $\tilde{x} \in h \mathbb{Z}^{m}$.
We study operator equations

$$
\begin{equation*}
A_{d} u_{d}=v_{d} \tag{1}
\end{equation*}
$$

with appropriate boundary conditions.
To study the discrete equation (1) in a half-space we use a special factorization for the symbol $\tilde{A}(\xi)$

$$
\tilde{A}(\xi)=\tilde{A}_{+}(\xi) \cdot \tilde{A}_{-}(\xi)
$$

where the factors $\tilde{A}_{ \pm}(\xi)$ admit a holomorphic continuation into half-strips

$$
\Pi_{ \pm}=\left\{z \in \mathbb{C}: z=\xi_{m}+i \tau, \xi_{m} \in\left[-h^{-1} \pi, h^{-1} \pi\right], \pm \tau>0\right\}
$$

with respect to the last variable ξ_{m} under fixed $\left(\xi_{1}, \cdots, \xi_{m-1}\right) \in h^{-1} \mathbb{T}^{m-1}$ and satisfy some estimates [1,2,3].
Such a representation can be constructed effectively and it fully determines a solvability picture for the equation (1).
If D is a half-space then we prove unique solvability for the equation (1) and related boundary value problems in corresponding discrete Sobolev-Slobodetskii spaces and construct finite dimensional approximations $u_{d, N}(\tilde{x})$ for the solution $u_{d}(\tilde{x})$. A rate of convergence under $N \rightarrow \infty$ is presented. Some comparison estimates are presented in [4].

Keyword: Digital pseudo-differential operator, periodic factorization, approximation rate.
AMS 2010: 35S15, 65T50

[^28]
References

[1] A. V. Vasilyev, V.B. Vasilyev, Pseudo-differential operators and equations in a discrete half-space, Math. Model. Anal., 23(3), 492-506, 2018.
[2] A.V. Vasilyev, V.B. Vasilyev, On some discrete boundary value problems in canonical domains, In: Differential and Difference Equations and Applications, Springer Proc. Math. \& Stat., V. 230. Cham: Springer, 2018. pp. 569-579.
[3] A.V. Vasilyev, V.B. Vasilyev, On some discrete potential like operators, Tatra Mt. Math. Publ., 71, 195-212, 2018.
[4] O.A. Tarasova, V.B. Vasilyev, To the theory of discrete boundary value problems, Open, 2, 1-7, 2019.

Local convergence of a family of Sakurai-Torii-Sugiura type simultaneous methods WITH ACCELERATED CONVERGENCE

Petko D. Proinov ${ }^{1}$, Stoil I. Ivanov ${ }^{2}$

Abstract. This talk deals with the local convergence of a new family of iterative methods for finding all the zeros of a polynomial simultaneously. Such iterative methods are called simultaneous methods. One of the well-known simultaneous methods is due to Sakurai, Torii and Sugiura [1] (STS method). A comprehensive local and semilocal convergence analysis of the STS method can be found in [2]. There are different ways to increase the order of convergence of a simultaneous method. The most common way is to compose a simultaneous method with another iterative method (mostly with Newton, Halley and Weierstrass methods). This kind of methods are known as simultaneous methods with correction. The purpose of this work is to study the local convergence of the STS method with an arbitrary correction.
Let $f \in K[z]$ be a polynomial of degree $n \geq 2$ over a normed field K and $\Phi: D \subset K^{n} \rightarrow K^{n}$. We define the following family of Sakurai-Torii-Sugiura type iterative methods:

$$
\begin{equation*}
x^{(k+1)}=x^{(k)}-\Delta\left(\Phi ; x^{(k)}\right), \quad k=0,1,2, \ldots \tag{1}
\end{equation*}
$$

where the correction function $\Delta: D \subset \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ is defined by

$$
\Delta(\Phi ; x)=\left(\Delta_{1}(\Phi ; x), \ldots, \Delta_{n}(\Phi ; x)\right) \text { with } \Delta_{i}(\Phi ; x)=\left\{\begin{array}{cl}
\frac{2 L_{i}(\Phi ; x)}{L_{i}(\Phi ; x)^{2}-F_{i}(\Phi ; x)} & \text { if } f\left(x_{i}\right) \neq 0 \\
0 & \text { if } f\left(x_{i}\right)=0
\end{array}\right.
$$

where $L_{i}(\Phi ; x)$ and $F_{i}(\Phi ; x)$ are defined as follows

$$
L_{i}(\Phi ; x)=\frac{f^{\prime}\left(x_{i}\right)}{f\left(x_{i}\right)}-\sum_{j \neq i} \frac{1}{x_{i}-\Phi_{j}(x)} \quad \text { and } \quad F_{i}(\Phi ; x)=\frac{f^{\prime \prime}\left(x_{i}\right)}{f\left(x_{i}\right)}-\left(\frac{f^{\prime}\left(x_{i}\right)}{f\left(x_{i}\right)}\right)^{2}+\sum_{j \neq i} \frac{1}{\left(x_{i}-\Phi_{j}(x)\right)^{2}} .
$$

[^29]Abstract. (Continuation)In this study, considering two large classes of iteration functions Φ, we obtain two local convergence theorems (with error estimates) about the methods (1).

Acknowledgments. This talk is supported by the National Science Fund of the Bulgarian Ministry of Education and Science under Grand DN 12/12.

Keyword: Iterative methods, polynomial zeros, local convergence
AMS 2010: 65H04,12Y05

References

[1] T. Sakurai, T. Torii, H. Sugiura, A high-order iterative formula for simultaneous determination of zeros of a polynomial, J. Comput. Appl. Math., 38, 387-397, 1991.
[2] P.D. Proinov, S.I. Ivanov, Convergence analysis of Sakurai-Torii-Sugiura iterative method for simultaneous approximation of polynomial zeros, J. Comp. Appl. Math., 357, 56-70, 2019.

Petko D. Proinov ${ }^{1}$, Milena D. Petkova ${ }^{2}$

Abstract. In 1967, Ehrlich [1] constructed his famous iterative method for finding all the zeros of a polynomial simultaneously. In 1999, Trićković and Petković [2] introduced a two-point variant of Ehrlich's method with order of convergence $r=1+\sqrt{2}$. Let

$$
f(z)=a_{0} z^{n}+a_{1} z^{n-1}+\cdots+a_{n}
$$

be a polynomial of degree $n \geq 2$ with coefficients in an algebraically closed normed field \mathbb{K}, and let $x^{(0)}, x^{(-1)} \in \mathbb{K}^{n}$ be two approximations of the zeros of f. Then the two-point Ehrlich-type method introduced in [2] can be defined by the following iteration

$$
\begin{equation*}
x^{(k+1)}=T\left(x^{(k)}, x^{(k-1)}\right), \quad k=0,1,2, \ldots, \tag{1}
\end{equation*}
$$

where the iteration function $T: D \subset \mathbb{K}^{n} \times \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ is defined by

$$
T(x, y)=\left(T_{1}(x, y), \cdots, T_{n}(x, y)\right) \quad \text { with } \quad T_{i}(x, y)=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)-f\left(x_{i}\right) \sum_{j \neq i} \frac{1}{x_{i}-y_{j}}} .
$$

In this talk, we provide a local as well as a semilocal convergence analysis for this method. In particular, we prove that the method (1) is convergent under the following computationally verifiable initial condition:

$$
\max \left\{\left\|\frac{W\left(x^{(0)}\right)}{d\left(x^{(0)}\right)}\right\|_{\infty},\left\|\frac{W\left(x^{(-1)}\right)}{d\left(x^{(-1)}\right)}\right\|_{\infty}\right\}<\frac{8}{(3+\sqrt{8 n-7})^{2}},
$$

where the function $W: \mathcal{D} \subset \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ (known as the Weierstrass correction) is defined by

$$
W(x)=\left(W_{1}(x), \ldots, W_{n}(x)\right) \quad \text { with } \quad W_{i}(x)=\frac{f\left(x_{i}\right)}{a_{0} \prod_{j \neq i}\left(x_{i}-x_{j}\right)},
$$

the function $d: \mathbb{K}^{n} \rightarrow \mathbb{R}^{n}$ is defined by $d(x)=\left(d_{1}(x), \ldots, d_{n}(x)\right)$ with $d_{i}(x)=\min _{j \neq i}\left|x_{i}-x_{j}\right|$, and $\|\cdot\|_{\infty}$ is the maximum norm in \mathbb{K}^{n}. Our approach is based on ideas developed in [3, 4].
Acknowledgments. This talk is supported by the National Science Fund of the Bulgarian Ministry of Education and Science under Grand DN 12/12.

Keyword: Two-point iterative methods, polynomial zeros, local and semilocal convergence AMS 2010: 65H04,12Y05

[^30]
References

[1] L.W. Ehrlich, A modified Newton method for polynomials, Comm. Assoc. Comput. Mach. 10, 107-108, 1967.
[2] S.B. Trićković, M.S. Petković, Multipoint methods for the determination of a polynomial, Novi Sad J. Math., 29, 221-233, 1999.
[3] P.D. Proinov, Relationships between different types of initial conditions for simultaneous root finding methods, Appl. Math. Lett., 52, 102-111, 2016.
[4] P.D. Proinov, M.D. Petkova, Local and semilocal convergence of a family of multi-point Weierstrass-type root-finding methods, Mediterr. J. Math., 17, Article ID 107, 2020.

Local convergence of a modified Weierstrass method for the simultaneous DETERMINATION OF POLYNOMIAL ZEROS

Plamena I. Marcheva ${ }^{1}$, Stoil I. Ivanov ${ }^{2}$

AbStract. Let f be a polynomial of degree $n \geq 2$ with coefficients in an arbitrary normed field $(\mathbb{K},|\cdot|)$. In 1891, Weierstrass [2] introduced his famous iterative method for finding all zeros of f simultaneously. Recall that the Weierstrass method is defined in \mathbb{K}^{n} by the following iteration:

$$
\begin{equation*}
x^{(k+1)}=x^{(k)}-W_{f}\left(x^{(k)}\right), \quad k=0,1,2, \ldots, \tag{1}
\end{equation*}
$$

where the Weierstrass correction $W_{f}: \mathcal{D} \subset \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ is defined as follows

$$
W_{f}(x)=\left(W_{1}(x), \ldots, W_{n}(x)\right) \quad \text { with } \quad W_{i}(x)=\frac{f\left(x_{i}\right)}{a_{0} \prod_{j \neq i}\left(x_{i}-x_{j}\right)} \quad(i=1, \ldots, n) .
$$

In 2016, Nedzhibov [1] constructed and studied the convergence of the following modification of the Weierstrass method:

$$
\begin{equation*}
x^{(k+1)}=T\left(x^{(k)}\right), \quad k=0,1,2, \ldots, \tag{2}
\end{equation*}
$$

where the iteration function $T: D \subset \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ is defined by

$$
T(x)=\left(T_{1}(x), \ldots, T_{n}(x)\right) \quad \text { with } \quad T_{i}(x)=\frac{x_{i}^{2}}{x_{i}+W_{i}(x)} \quad(i=1, \ldots, n) .
$$

The aim of this talk is to introduce a local convergence theorem that improves and complements all existing results about the modified Weierstrass method (2).

Acknowledgments. This talk is supported by the National Science Fund of the Bulgarian Ministry of Education and Science under Grand DN 12/12.

Keyword: Iterative methods, polynomial zeros, local convergence
AMS 2010: 65H04,12Y05

[^31]
References

[1] G.H. Nedzhibov, Convergence of the modified inverse Weierstrass method for simultaneous approximation of polynomial zeros, Commun. Numer. Anal., 2016 (1), 74-80, 2016.
[2] K. Weierstrass, Neuer Beweis des Satzes, dass jede ganze rationale Function einer Veränderlichen dargestellt werden kann als ein Product aus linearen Functionen derselben Veränderlichen, Sitzungsber. Königl. Preuss. Akad. Wiss. Berlinn II, 1085-1101, 1891

IECMSA - 2020

The refinements of local fractional Hilbert-type inequalities

Predrag Vuković ${ }^{1}$

Abstract

In this paper we refine some known local fractional Hilbert-type inequalities in the sense that they interpolate Lebesgue norms of the local fractional Laplace transforms of the involved functions in the inequalities. As an application, main results are compared with some our previously known from the literature.

Keyword: Hilbert inequality, conjugate parameters, local fractional integral.
AMS 2010: 26D15.

References

[1] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, second edition, Cambridge University Press, Cambridge, 1967.
[2] X. J. Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic Publisher Limited, Hong Kong, 2011.
[3] M. Krnić, J. Pečarić, I. Perić, P. Vuković, Recent advances in Hilbert-type inequalities, Element, Zagreb, 2012.
[4] G-S. Chen, Generalizations of Hölder's and some related integral inequalities on fractal space, Journal of Function Spaces and Applications, 9 pp., 2013.
[5] V. Adiyasuren, Ts. Batbold, M. Krnić, Multiple Hilbert-type inequalities involving some differential operators, Banach J. Math. Anal. 10(2), 320-337, 2016.
[6] Ts. Batbold, M. Krnić, J. Pečarić, P. Vuković, Further development of Hilbert-type inequalities, Element, Zagreb, 2017.

[^32]IECMSA

Nonstationary wavelet frame packets in Weighted Sobolev space

Raj Kumar ${ }^{1}$, Manish Chauhan ${ }^{2}$, Reena ${ }^{3}$, Satyapriya ${ }^{4}$

Abstract

Important theorems and inequalities are established to help in construction of nonstationary wavelet frame packets in weighted Sobolev space $W_{2}^{1}(\mathbb{R})$. Finally, nonstationary wavelet frame packets are constructed in weighted Sobolev space $W_{2}^{1}(\mathbb{R})$ using splitting trick.

Keyword: Nonstationary wavelets, nonstationary wavelet packets, nonstationary wavelet frame packets, multiresolution analysis, Sobolev space.
AMS 2010: 42C40, 40A30, 46E35.

References

[1] R. Coifman, Y. Meyer, Orthogonal wave packet bases, preprint, Dept. of Mathematics, Yale University, New Haven, 1990.
[2] R. Coifman, Y. Meyer, S. Quake, M. V. Wickerhauser, Signal Processing and compression with wave packets. In: proceedings of the conference on wavelets. Marseilles: Spring; 1989.
[3] M. V. Wickerhauser, Acoustic signal compression with wavelet packets, in Wavelets: A Tutorial in Theory and Applications, C K Chui, ed., Academic Press, Boston, MA., 679-700, 1992.
[4] E. Hernández, G. A. Weiss, A First Course on Wavelets. Boca Raton (FL): CRC Press, 1996.
[5] D. R. Chen, On the splitting trick and wavelet frame packets. SIAM J. Math. Anal., 31;729-739, 2000.
[6] B. Han, Z. Sheni, Daul wavelet frames and rise bases in Sobolev spaces. Constr. Approx., 29, 369-406, 2009.
[7] M. Ehler, The multiresolution structure of pairs of the dual wavelet frames for the pair of Sobolev spaces. Jaen. J. Approx.
[8] F. Bastin, Boigelot C. Biorthogonal wavelets in $H^{m}(\mathbb{R})$. J. Fourier Anal. Appl., 4, 749-768, 1998.
[9] F. Bastin, B. Laubin, Regular compactly supported wavelets in Sobolev spaces. Duke Math. J., 87, 481-508, 1997.

[^33][10] F. Bastin, B. Laubin, Compactly supported wavelets in Sobolev spaces of integer order. Appl. Comput. Harmon. Anal., 4, 51-57, 1997.
[11] LU. Dayong, L. Dengfeng, A characterization of orthonormal wavelet families in Sobolev spaces. Acta Math. Sci. Ser. B Engl. Ed., 31, 1475-1488, 2011.
[12] G. G. Walter, Discrete wavelets. SIAM J. Math. Anal., 23, 1004-1014, 1992.
[13] G. G. Walter, Wavelets and other orthogonal systems with applications. Boca Raton (FL): CRC Press; 1994.
[14] R. S. Pathak, Wavelets in a generalized Sobolev space. Comput. Math. Appl., 49, 823-839, 2005.
[15] Z. Shen, Nontensor product wavelet packets in $L^{2}\left(\mathbb{R}^{s}\right)$. SIAM J. Math. Anal., 26, 1061-1074, 1995.
[16] A. Cohen, I. Daubechies, On the instability of arbitrary biorthogonal wavelet packets. SIAM J. Math. Anal., 24, 1340-1354, 1993.
[17] C. R. Chui, C. Li, Non-orthogonal wavelet packets. SIAM J. Math. Anal., 24, 712-738, 1993.
[18] R. Long, W. Chen, Wavelet basis packets and wavelet frame packets. J. Fourier Anal. Appl., 3, 239-256, 1997.
[19] R. S. Pathak, M. Kumar M. Wavelet packet in Sobolev space. Applicable Anal., 94, 1068-1084, 2015.
[20] D. K. Ruch, P. J. Van Fleet, Wavelet theory: an elementary approach with applications. New Jersey (NJ): Wiley, 2009.
[21] C. Boor, R. DeVore, A. Ron, The structure of finitely generated shift-invariant subspaces, J. Funct. Anal., 119, 37-78, 1994.
[22] S. Buzykanov, Enhancement of poor resolution text images in the weighted Sobolev space, in Proceedings of the 19th International Conference on Systems, Signals and Image Processing (IWSSIP 12), Vienna, Austria, April, pp. 536-539, 2012.
[23] R. Kumar, M. Chauhan, Wavelet packets in weighted Sobolev space, TWMS J.App. Eng. Math., 10, 138-149, 2020.

IECMSA - 2020

Rabia Savaş ${ }^{1}$

Abstract. In this paper, we present new definitions for asymptotically equivalent functions. Two nonnegative measurable a real valued function $f(s)$ and $g(s)$ defined on $(1, \infty)$ are said to be asymptotically statistical equivalents of multiple L provided that for each $\varepsilon>0$,

$$
\lim _{s} \frac{1}{s}\left|\left\{t \leq s:\left|\frac{f(t)}{g(t)}-L\right| \geq \varepsilon\right\}\right|=0
$$

In this case, we denote this by $f \stackrel{F^{L}}{\sim} g$. Moreover, definitions are used to examine the bivariate function transformation of asymptotically statistical equivalent measurable functions.

Keyword: Bivariate function transformation, measurable functions, rate of convergence, asymptotically equivalent.

AMS 2010: 40F02, 40G06.

References

[1] J. A. Fridy, Minimal rates of summability, Canad. J. Math., 30 (4), 808-816, 1978.
[2] J. A. Fridy, On statistical convergence, Analysis 5, 301-313, 1985.
[3] M. Marouf, Asymptotic equivalence and summability, Internat. J. Math. \& Math. Sci., 16 (4), 755-762, 1993.
[4] R. F. Patterson, On asymptotically statistical equivalent sequences, Demostratio Mathematica, XXXVI (1) 2003.
[5] I. P. Pobyvanets, Asymptotic equivalence of some linear transformations defined by a nonnegative matrix and reduced to generalized equivalence on the sense of Cesaro and Abel, Mat. Fiz. 28 (123), 83-87, 1980.

[^34]IECMSA - 2020

The spectra of superposition operators generated by an exponential function

Sanela Halilović ${ }^{1}$

Abstract. We consider nonlinear superposition operator $F: l_{p} \rightarrow l_{p}$ generated by the function $f(s, u)=a(s)+b^{k u}-1, b>0, k \in \mathbb{R} \backslash\{0\}$. Here $l_{p}(1 \leq p \leq \infty)$ are the spaces of sequences with the standard norm. There are various way for defining spectrum of nonlinear operators (see [1]). For the class $\mathfrak{C}(X)$ of all continuous operators F on Banach space X over \mathbb{K} the Rhodius resolvent set is given by:

$$
\rho_{R}(F)=\left\{\lambda \in \mathbb{K}: \lambda I-F \text { is bijective and }(\lambda I-F)^{-1} \in \mathfrak{C}(X)\right\}
$$

and the Rhodius spectrum is the set $\sigma_{R}(F)=\mathbb{K} \backslash \rho_{R}(F)$. For continuously Fréchet differentiable operators, the Neuberger resolvent set is defined by

$$
\rho_{N}(F)=\left\{\lambda \in \mathbb{K}: \lambda I-F \text { is bijective and }(\lambda I-F)^{-1} \in \mathfrak{C}^{1}(X)\right\}
$$

and the set $\sigma_{N}(F)=\mathbb{K} \backslash \rho_{N}(F)$ is called Neuberger spectrum of F.
We find the Rhodius and Neuberger spectra of this operator and conclude how these sets depend on constants b and k. Also we give some relations between the properties of an generating function $f(s, u)$ and the spectrum of its corresponding operator F.
This research is supported by the Federal Ministry of Education and Science of Bosnia and Herzegovina.

Keyword: Rhodius spectrum, Neuberger spectrum, superposition operator, nonlinear operator.
AMS 2010: 47J10, 47H30.

References

[1] J. Appell, E. De Pascale, A. Vignoli, Nonlinear spectral theory, Walter de Gruyter, Berlin-New York, 2004.
[2] S. Halilović, R. Vugdalić, The spectra of certain nonlinear superposition operators in the spaces of sequences, Gulf Journal of Mathematics, 5(2), 20-30, 2017.
[3] S. Halilović, S. Sadiković, The point and rhodius spectra of certain nonlinear superposition operators, Adv.Math., Sci.J., 7(1), 1-8, 2018.

[^35]
P-MOMENT EXPONENTIALLY STABILITY OF SECOND ORDER DIFFERENTIAL RQUATIONS WITH EXPONENTIAL DISTRIBUTED MOMENTS OF IMPULSES

Snezhana Hristova ${ }^{1}$

Abstract

Differential equations of second order with impulses at random moments are set up and investigated in this paper. The main characteristic of the studied equations is that the impulses occur at random moments which are exponentially distributed random variables. The presence of random variables in the ordinary differential equation leads to a total change of the behavior of the solution. It is not a function as in the case of deterministic equations, it is a stochastic process. It requires combining of the results in Theory of Differential Equations and Probability Theory. The initial value problem is set up in appropriate way. Sample path solutions are defined as a solutions of ordinary differential equations with determined fixed moments of impulses. P-moment exponential stability is defined and some sufficient conditions for this type of stability are obtained. The study is based on the application of Lyapunov functions.

AMS 2010: 34A37, 34D20.

Acknowledgements. The research is supported by the Bulgarian National Science Fund under Project KP-06-N32/7.

References

[1] R. Agarwal, S. Hristova, D. ORegan, Exponential stability for differential equations with random impulses at random times, Adv. Diff. Eq., 372, https://doi.org/10.1186/1687-1847-2013-372, 2013.
[2] S. Hristova, Qualitative Investigations and Approximate Methods for Impulsive Differential Equations, Nova Sci. Publ., 2009.
[3] J.M. Sanz-Serna, A.M. Stuart, Ergodicity of dissipative differential equations subject to random impulses, J. Diff. Equ., 155, 262-284, 1999.
[4] Wu S., D. Hang, X. Meng, p-Moment Stability of Stochastic Equations with Jumps, Appl. Math. Comput.,152, 505-519, 2004.

[^36][5] Wu H., J. Sun, p-Moment Stability of Stochastic Differential Equations with Impulsive Jump and Markovian Switching, Automatica, 42, 1753-1759, 2006.
[6] Yang J., Zhong S., Luo W., Mean square stability analysis of impulsive stochastic differential equations with delays, J. Comput. Appl. Math., 216, 2, (2008), 474-483.

IECMSA - 2020

On the determination of the jump by conjugate Fourier-Jacobi series

Samra Sadiković ${ }^{1}$

Abstract

Conjugate Fourier-Jacobi series was introduced by B. Muckenhoupt and E. M. Stein [3] when $\alpha=\beta$, and by Zh.-K. Li [4] for general α and β. "Conjugacy" is an important concept in classical Fourier analysis which links the study of the more fundamental properties of harmonic functions to that of analytic functions and is used to study the mean convergence of Fourier series. We prove the equiconvergence related to conjugate Fourier-Jacobi series and differentiated Fourier-Jacobi series for functions of harmonic bounded variation. A jump of a such function is determined by the partial sums of its conjugate Fourier-Jacobi series. Also for $H B V$ functions we give a new result on determination of jump discontinuities by the n-th order tails of the conjugate Fourier-Jacobi series.

Keyword: Conjugate Fourier-Jacobi series, determination of the jump, generalized bounded variation. AMS 2010: 42A24, 42C10.

References

[1] M. Avdispahić, Concepts of generalized bounded variation and the theory of Fourier series, Int. J. Math. Math. Sci., 9, 223-244, 1986.
[2] M. Avdispahić, On the determination of the jump of a function by its Fourier series, Acta Math. Hung. 48 (3-4), 267-271, 1986.
[3] B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc. 118, 17-92, 1965.
[4] Zh.-K. Li, Conjugate Jacobi series and conjugate functions, J. Approx. Theory 86, 179-196, 1996.
[5] Samra Sadiković, Determination of a jump by conjugate Fourier-Jacobi series, Filomat, Vol 32, No 8, 1-11, 2018.
[6] S. Sadiković, S. Halilović, Some properties of the conjugate Fourier-Jacobi and Fourier-Chebyshev Series, Adv. Math., Sci. J, vol.7, no.2, pp.57-64, 2018.

[^37]IECMSA - 2020

Construction of a Riesz Wavelet Basis on Locally Compact Abelian Groups

Satyapriya ${ }^{1}$, Raj Kumar ${ }^{2}$

Abstract

We have explored the concept of Riesz multiresolution analysis (Riesz MRA) on a locally compact Abelian group G, and have studied in detail, the methods of construction of a Riesz wavelet from the given Riesz MRA. We have proved that, if δ_{α} is the order of dilation, then precisely $\delta_{\alpha}-1$ functions are required to construct a Riesz wavelet basis for $L^{2}(G)$. An example, supporting our theory and illustrating the methods developed, has also been discussed briefly.

Keyword: Lca groups, riesz basis, multiresolution analysis, order of dilation, refinement equation. AMS 2010:42C40, 22B05.

References

[1] S. G. Mallat, Multiresolution approximations and wavelet orthonormal bases of $L^{2}(\mathbf{R})$, Trans. Amer. Math. Soc. 315 (1989), no. 1, 69-87.
[2] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.
[3] E. Hernández and G. Weiss, A first course on wavelets, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1996.
[4] S. Dahlke, Multiresolution analysis and wavelets on locally compact Abelian groups, in Wavelets, images, and surface fitting (Chamonix-Mont-Blanc, 1993), 141-156, A K Peters, Wellesley, MA.
[5] O. Christensen, An introduction to frames and Riesz bases, second edition, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, 2016.
[6] K. Gröchenig and W. R. Madych, Multiresolution analysis, Haar bases, and self-similar tilings of \mathbf{R}^{n}, IEEE Trans. Inform. Theory, 38, no. 2, part 2, 556-568, 1992.
[7] R. A. Zalik, On MRA Riesz wavelets, Proc. Amer. Math. Soc., 135, no. 3, 787-793, 2007.
[8] A. Ron and Z. Shen, Frames and stable bases for shift-invariant subspaces of $L_{2}\left(\mathbf{R}^{d}\right)$, Canad. J. Math., 47, no. 5, 1051-1094, 1995.

[^38][9] C. Cabrelli and V. Paternostro, Shift-invariant spaces on LCA groups, J. Funct. Anal., 258, No. 6, pp. 2034-2059, 2010.
[10] O. Christensen and S. S. Goh, The unitary extension principle on locally compact Abelian groups, Appl. Comput. Harmon. Anal. ,47, no. 1, 1-29, 2019.

MATHEMATICAL MODELING OF THE ENERGY SAVING PROBLEM IN THE PIPELINE

A. A. Adamov ${ }^{1}$, A. N. Satybaldina ${ }^{2}$

Abstract. Operating main pipelines can provide fault-free operation mode due to the reduction of operating pressure while being under conditions of constant increase of equipment wear, which, in turn, leads to the reduction of oil pipeline capacity. At the same time, pipeline transport should constantly increase capacity, because production volumes are growing annually [1].

The initial dependence for generalizing the experimental data on heat transfer is the general law of temperature distribution in a liquid, expressed by the differential equation of convective heat transfer, which is called the Fourier-Kirchhoff equation in a cylindrical coordinate system:

$$
\begin{equation*}
C_{v} w_{x} \frac{\partial T}{\partial x}=\lambda\left(\frac{\partial^{2} T}{\partial r^{2}}+\frac{1}{r} \frac{\partial T}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} T}{\partial \varphi^{2}}\right) \tag{1}
\end{equation*}
$$

for $r \in\left[0, r_{0}\right], \varphi \in[0,2 \pi], x \in[0, L]$, where r - current radius, φ - angle measured from the vertical, w_{x} - cross section average speed, x - coordinate characterizing the length of the pipe, r_{0} - pipeline radius, L - the length of the pipe. Boundary conditions are accepted as:

$$
\begin{equation*}
\left.T\right|_{x=0}=T_{0}(r, \varphi), \tag{2}
\end{equation*}
$$

$$
\begin{gather*}
\left.\frac{\partial T}{\partial r}\right|_{r=0}=0,\left.\lambda \frac{\partial T}{\partial r}\right|_{r=r_{0}}=-\left.\alpha\left(T-T_{w}\right)\right|_{r=r_{0}}, \tag{3}\\
T(r, \varphi, x)=T(r, \varphi+2 \pi, x) . \tag{4}
\end{gather*}
$$

[^39]Abstract. (Continuation)In this paper, we solved the problem of liquid transporting in underground pipeline. The Fourier-Kirchhoff equation is used for receiving solution of the problem. There are:

1) created a difference problem (1)-(4) by Alternating Direction Method [2,4];
2) solved a problem (1)-(4) by Cyclic Sweep Method [3];
3) constructed algorithm for computer program;
4) conducted the analyses of the received numerical solutions.

Keyword: The Fourier-Kirchhoff equation; the Pisman-Redford scheme; numerical solution; heat transfer equation; boundary conditions.

References

[1] V. I. Klimko, Justification of the rational temperature regime of pipeline transport of high-viscosity and high-setting oil, Saint-Petersburg, 146, 2014.
[2] V. N. Afanasiev, S. I. Isaev, Kozhinov I.A. and others, WorkBook on technical thermodynamics and the theory of heat and mass transfer, Manual; edited by Krutov V.I. and Petrazhitsky G.B., 2nd ed., Saint-Petersburg, BHV-Petersburg, 265, 2011.
[3] M. A. Mikheev, Mikheeva I.M., Fundamentals of heat transfer, Moscow, Energiya, 344, 1977.
[4] A. A. Samara, E. S. Nikolaev, Methods for solving grid equations, Moscow, Nauka, 592, 1978.

A MODIFICATION OF THE FAST ALGORITHM FOR COMPUTING THE MOCK-CHEBYSHEV NODES

B. Ali İbrahimoğlu ${ }^{1}$

Abstract

Polynomial interpolation with equidistant nodes is notoriously unreliable due to the Runge phenomenon, and also numerically ill-conditioned. By taking advantage of the optimality of the interpolation processes on Chebyshev nodes, the mock-Chebyshev subset interpolation is one of the best strategies to overcome the Runge phenomenon [1].

In the recent paper [2], we have presented a fast algorithm to compute the mock-Chebyshev nodes. In this study, we propose a modification of the algorithm by changing the function to compute the quotient of the distance between each pair of consecutive points and show that this modified algorithm is also fast and stable; and always gives a satisfactory grid with the complexity of the algorithm being $O(n)$. Some numerical experiments using the points obtained by the procedure are given to show the effectiveness of the proposed procedure. A discussion of bivariate generalization of the mock-Chebyshev nodes to the Padua nodes is also given.

Keyword: Interpolation, Runge phenomenon, mock-Chebyshev interpolation.
AMS 2010: 65D05, 41A10.

References

[1] J.P. Boyd, J.R. Ong, Exponentially-convergent strategies for defeating the Runge phenomenon for the approximation of non-periodic functions, Part 1: single-interval schemes. Comput. Phys., 5, 2-4, 484-497, 2009.
[2] B.A. Ibrahimoglu, A fast algorithm for computing the mock-Chebyshev nodes. J. Comput. Appl. Math., 373, 2020.

[^40]IECMSA

A COMPARISON OF ROUGHNESS MODELS FOR MEAN FLOW SOLUTIONS OF THE EKMAN BOUNDARY LAYER FLOW

Burhan Alveroğlu ${ }^{1}$

Abstract

Applying roughness on a surface of a rigid body moving through a fluid is an important technique to delay the onset of the turbulence $[1,4]$. This present study aims to compare the effects of two fundamentally different roughness models on the mean flow solutions of the Ekman boundary layer flow. These particular models are called MW model [2] and YHP model [3]. Both models are used to investigate how consecutive increasing roughness levels initiate a divergence from the classic similarity solution of the Ekman flow over a flat disk. The results identified that the models lead to different velocity profiles for the mean flow solutions.

Keyword: Rotating-disk flow, ekman flow, surface roughness.
AMS 2010: 76E15

References

[1] A. J. Cooper, J. H. Harris, S. J. Garrett, M. Özkan and P.J. Thomas, The effect of anisotropic and isotropic roughness on the convective stability of the rotating disk boundary layer, Physics of Fluids, 2015.
[2] M. Miklava, C. Y. Wang, The flow due to a rough rotating disk, Zeitschrift för angewandte Mathematik und Physik ZAMP, 55,2, 235-246, 2004.
[3] M. S. Yoon, J. M. Hyun, and J. S. Park, Flow and eat transfer over a rotating disk with surface roughness, International Journal of Heat and Fluid Flow, 28 (2), 262-267, 2007.
[4] B. Alveroglu, A. Segalini and S. J. Garrett, The effect of surface roughness on the convective instability of the BEK family of boundary-layer flows, European Journal of Mechanics-B/Fluids, 56, 178-187, 2016.

[^41]
ON THE STABILITY OF RELATED ROTATING FLOWS OF THE BEK SYSTEM OVER A ROUGH ROTATING DISK

Burhan Alveroğlu ${ }^{1}$

Abstract

The BEK system refers to a family of boundary-layer flows driven by a differential rotation rate between an incompressible fluid and a disk immersed in it [1]. The characteristic flows in the system are the von Kármán, Ekman, and Bödewadt boundary-layer flows. On the other hand, there are infinitely many flows between these particular ones in which both the disk and fluid co-rotate with different angular velocities. These flows are characterized by Rossby number, Ro. The aim of this study is to establish a theoretical study exploring the convective instability properties of the flows of $0<R o<1$ over a rough rotating disk. The roughness model used in the study is the YHP model suggested by Yoon, Hyun, and Park [2]. The findings can contribute to a better understanding of the transition of laminar flows via surface roughness [3].

Keyword: Rotating-disk flow, BEK system, surface roughness.
AMS 2010: 76E15

References

[1] R. J. Lingwood, Absolute instability of the Ekman layer and related rotating flows, Journal of Fluid Mechanics, 331, 405-428, 1997.
[2] M. S. Yoon, J. M. Hyun, and J. S. Park, Flow and heat transfer over a rotating disk with surface roughness, International Journal of Heat and Fluid Flow, 28 (2), 262-267, 2007.
[3] P. Carpenter, The right sort of roughness, Nature, 388, 6644, 713-714, 1997.

[^42]IECMSA

Inverse Problems of Heat and Mass Transfer for Finding Diffusion Coefficient of Soil

B.Rysbaiuly ${ }^{1}$, Zh.O.Karashbayeva ${ }^{2}$

Abstract

This paper studies the process of heat and mass transfer in soil. Physical Laws based on The Law of Conservation of Mass of dry air, steam and liquid water, as well as the Law of Conservation of Energy, are described in detail in the work of Lykov [1]. Works [2] and [3] are devoted to finding the coefficient of thermal conductivity and moisture characteristics of soil. In the present work we have derived the conjugate system of differential equations with partial derivatives. The boundary and initial conditions of the conjugate problem are defined. An iterative scheme for calculating the diffusion coefficient of soil moisture is derived by using the conjugate and direct system of differential equations, and measured values of temperature and moisture in the accessible area. The Dufort-Frankel Difference scheme is used for the discretization of continuous problems. The main advantages in terms of stability and accuracy of the Dufortâ-Frankel scheme are described in [4]. Numerical calculations are carried out by using MATLAB and compared with experimental data of other scientists.

Keyword: Inverse problems, conjugate problem, heat and mass transfer.
AMS 2010: 80A23, 65Q10.

References

[1] Luikov A.V., Heat and mass transfer in capillary-porous bodies, Pergamon Press, New York, 1966.
[2] B. Rysbaiuly, A. Baimankulov, Development and justification of the method of calculation the capillary diffusion of the soil, Wulfenia Journal, Austria, Volume 21, Issue 3, 483-500, 2014.
[3] B. Rysbaiuly, Mathematical properties of the iterative method to calculate the coefficient of thermal conductivity of multilayer ground, Wulfenia Journal, Austria, Volume 20, Issue 12, 311-335, 2014.
[4] S. Gasparin, J. Berger, D. Dutykh, N. Mendes, An improved explicit scheme for whole-building hygrothermal simulation, Build. Simul. 11, 465-481, 2018.

[^43]
The method for finding the system of Thermophysical parameters for two- Layered STRUCTURE

B.Rysbaiuly ${ }^{1}$, N.Mukhametkaliyeva ${ }^{23}$

Abstract

Nowadays, the construction market often receives a variety of new building materials. Often the thermophysical parameters of these materials are unknown or after a long operation of artificial structures under the influence of wind, moisture and the sun, the physical and chemical properties of the materials of the constituent structures change. As a result of which, all thermophysical parameters of composite materials become different. Under these conditions, long-term reliable prediction of the processes occurring in multilayer structures becomes impossible. Therefore, the development of methods for calculating all the thermophysical parameters of a multilayer medium and the automation of finding these parameters becomes an urgent task. The aim of this work is to develop methods for finding a complex of thermophysical parameters, to prove the stability and convergence of the developed methods, to compile and debug a software product designed to find all thermophysical parameters. As an experiment, two-layered rectangular construction is studied, which is affected by two different ambient temperatures on both sides. The developed methods are numerically implemented using optimization methods. The suitability of the developed methods for solving the inverse problem is established through the stability and convergence of the approximate method. The convergence and stability of the developed method are proved by the method of a priori estimates.

Keyword: Inverse problems, thermophysical parameters, iterative methods.

References

[1] 1. B. Rysbaiuly, M. Ryskeldi, A. Kulzhanov, K. Rysbayeva, Inverse problems of heat and mass transfer in onelayer and multilayer walling, 11 p. Global Journal of Pure and Applied Mathematics, 11p, 2018.

[^44]

A Note on Ring source over semi-infinite lined and perforated duct

Burhan Tiryakioglu ${ }^{1}$

Abstract

An analytical solution is presented for the problem of diffraction of acoustic waves emanating from a ring source by an infinite cylindrical duct. The part $z<l$ of the outer cylinder is coated with acoustically absorbing lining while the part $z>l$ is perforated. Applying the Fourier transform technique the mixed boundary value problem is described by a Wiener Hopf equation and then solved numerically. The present study can be used as a model for many engineering applications, such as noise reduction in exhaust systems, in ventilation systems, etc.

Keyword: Ring source, acoustic wave, perforated duct.
AMS 2010: 47A68, 42B10, 78A45.

References

[1] H. Levine, J. Schwinger, On the radiation of sound from an unflanged circular pipe, Physical Review, 73, 383-406, 1948.
[2] B. Noble, Methods Based on the Wiener-Hopf Techniques, Pergamon Press, London, 1958.
[3] A. D. Rawlins, Radiation of sound from an un anged rigid cylindrical duct with an acoustically absorbing internal surface, Proc. Roy. Soc. Lond. A. 361, 65-91, 1978.
[4] J. V. Sullivan, M. J. Crocker, Analysis of concentric-tube resonators having unpartitioned cavities. Journal of the Acoustical Society of America, 64, 207-215, 1978.
[5] A. Demir, O. Y. Cinar, Propagation of sound in an infinite two-part duct carrying mean flow inserted axially into a larger infinite duct with wall impedance discontinuity. ZAMM - Journal of Applied Mathematics and Mechanics, 89, 454-465, 2009.
[6] B. Tiryakioglu, Analysis of Sound Waves with Semi Perforated Pipe, 7th International Symposium on Innovative Technologies in Engineering and Science, Sanliurfa, Turkey, 704-710, 2019.
[7] B. Tiryakioglu, A Note on Ring Source over Semi-Infinite Rigid Pipe, International Journal of Advances in Engineering and Pure Sciences, 31(2), 133-139, 2019.

[^45]IECMSA - 2020

The new type of the statistical convergence of the functions defined on the time SCALE PRODUCT

Elif Güner ${ }^{1}$, Halis Aygün ${ }^{2}$

Abstract

The aim of this paper is to present the extension of a concept related to aggregation operators from spherical fuzzy sets to generalized spherical fuzzy sets. We first introduce Einstein sum, product and scalar multiplication for generalized spherical fuzzy sets based on Einstein t-norms and t-conorms. Then we give the generalized spherical fuzzy Einstein weighted averaging and generalized spherical fuzzy Einstein weighted geometric operators, namely generalized spherical fuzzy Einstein aggregation operators, constructed on these operations. After investigating some fundamental properties of these operators, we develop a model for generalized spherical fuzzy Einstein aggregation operators to solve a multiple attribute group decision-making problems. Finally, we give a numerical example to demonstrate that the developed method is suitable and effective for the decision process.

Keyword: Generalized spherical fuzzy number, Einstein aggregation operators, multi-criteria group decision making.

AMS 2010: 03E72, 62C86

References

[1] S. Ashraf, S. Abdullah, Spherical aggregation operators and their application in multiattribute group decision-making, International Journal of Intelligent Systems, 34(3), 493-523, 2019.
[2] T. S. Haque, A. Chakraborty, S. P. Mondal, S. Alam, Approach to solve multi-criteria group decision-making problems by exponential operational law in generalised spherical fuzzy environment, CAAI Transactions on Intelligence Technology, 5(2), 106-114, 2020.
[3] F. Kutlu Gündoğdu, C. Kahraman, Spherical fuzzy sets and spherical fuzzy TOPSIS method, Journal of Intelligent and Fuzzy Systems, 36(1), 337-352, 2019.
[4] M. Munir, H. Kalsoom, K. Ullah, T. Mahmood, Y. M. Chu, T-spherical fuzzy Einstein hybrid aggregation operators and their applications in multi-attribute decision making problems, Symmetry, 12(3), 365, 2020.

[^46]IECMSA - 2020

Erhan Piskin ${ }^{1}$, Fatma Ekinci ${ }^{2}$

Abstract. In this talk, we study a system of viscoelastic parabolic type Kirchhoff equation with multiple nonlinearities. We obtain a finite time blow up of solutions and exponential growth of solution with negative initial energy.
Keywords: Blow up, growth, parabolic equation.
AMS 2010: 35B40, 74H35, 35L05

References

[1] Piskin E. and Ekinci F. (2019) Nonexistence and growth of solutions for a parabolic p-Laplacian system, Sigma J Eng \& Nat Sci 10(3), 301-307.
[2] Messaoudi S. (2005) Blow-up of solutions of a semilinear heat equation with a viscoelastic term, Progress in Nonlinear Differential Equations and Their Applications 64, 351-356.
[3] Hu Q., Qi L., Zhang H. (2014) Blowup of solution for a reaction diffusion equation with memory and multiple nonlinearities, Journal of Advances in Mathematics 6(3), 1050-1055.
[4] J. and Qiao B. (2015) Blow-up of solution for initial boundary value problem of reaction diffusion equations, Journal of Advances in Mathematics 10(1), 3138-3144.

[^47]IECMSA

Nonexistence of global solutions for the Timoshenko equation with degenerate

 DAMPINGErhan Piskin ${ }^{1}$, Fatma Ekinci ${ }^{2}$

Abstract. In this work, we consider a Timoshenko equations with degenerate damping term. We prove the nonexistence of global solutions with arbitrary positive initial energy. This result is extensions of earlier results.

Keywords: Nonexistence of solutions, timoshenko equation, degenerate damping.
AMS 2010: 35B40, 74H35, 35L05

References

[1] E. Piskin, Existence, decay and blow up of solutions for the extensible beam equation with nonlinear damping and source terms, Open Mathematics, Vol. 13, pp. 408-420, 2016.
[2] E. Piskin, N. Irkıl, Blow up positive initial-energy solutions for the extensible beam equation with nonlinear damping and source terms, Ser. Math. Inform., Vol. 31, No. 3, pp. 645-654, 2016.
[3] D. C. Pereira, H. Nguyen, C. A. Raposo, C. H. M. Maranhao, On the solutions for an extensible beam equation with internal damping and source terms, Differential Equations \& Applications, Vol. 11, No. 3, pp. 367-377, 2019.

[^48]
WITH DEGENERATE DAMPING TERMS

Erhan Pişkin ${ }^{1}$, Fatma Ekinci ${ }^{2}$

Abstract

In this talk, we consider a system of two viscoelastic equations with degenerate damping terms. We establish global existence and general decay of solutions under suitable conditions.

Keywords: Blow up, growth, parabolic equation
AMS 2010: 35B40, 74H35, 35L05

References

[1] L. He, On decay and blow-up of solutions for a system of equations, Applicable Analysis , 1-30, 2019 doi.org/10.1080/00036811.2019.1689562.
[2] N. Mezouar, E. Pişkin, Decay rate and blow up solutions for coupled quasilinear system, BoletÃn de la Sociedad MatemÃjtica Mexicana, 26, 499-519, 2020.
[3] E. Piskin, F. Ekinci, General decay and blowup of solutions for coupled viscoelastic equation of Kirchhoff type with degenerate damping terms, Math. Methods Appl. Sci. 42(16),1-21, 2019.

[^49]IECMSA

Blow up and Asymptotic Behaviour of Solutions for a Kirchhoff-Type Equation with Delay and Variable-Exponents

Erhan Pişkin ${ }^{1}$, Hazal Yüksekkaya ${ }^{2}$

Abstract

In this work, we investigate a nonlinear Kirchhoff type equation with time delay and variable exponents. Firstly, we prove the blow up of solutions in a finite time. Then, by applying an integral inequality due to Komornik, we obtain the decay estimates result. Generally, time delays appear in many practical problems such as thermal, biological, chemical, physical and economic phenomena. Several physical phenomena such as flows of electro-rheological fluids or fluids with temperature-dependent viscosity, nonlinear viscoelasticity, filtration processes through a porous media and image processing are modelled by equations with variable exponents of nonlinearity.

Keywords: Blow up, nonlinear equation, delay, variable-exponent.
AMS 2010: 35B40, 74H35, 35L05

References

[1] L. Diening, P. Hasto, P. Harjulehto, M.M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents., SpringerVerlag, 2011.
[2] M. Kafini, S.A. Messaoudi, A blow-up result in a nonlinear wave equation with delay, Mediterr. J. Math., 13, 237-247, 2016.
[3] M. Kafini, S.A. Messaoudi, On the decay and global nonexistence of solutions to a damped wave equation with variable-exponent nonlinearity and delay, Ann. Pol. Math., 122.1, 2019.
[4] S. Nicaise, C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differ. Integral Equ., 21, 935-958, 2008.
[5] E. Piskin, Sobolev Spaces, SeÃ§kin Published, 2017. (in Turkish)

[^50]IECMSA - 2020

Decay and Nonexistence of Solutions for a $p(x)$-Laplacian Equation with
 Variable-Exponents and delay term

Erhan Pişkin ${ }^{1}$, Hazal Yüksekkaya ${ }^{2}$

Abstract

In this work, we consider a nonlinear $p(x)$-Laplacian equation with variable exponents and delay term. Under suitable conditions, we prove the blow up of solutions. We also, obtain the decay estimates result by applying an integral inequality due to Komornik. Time delays arise in many applications, for instance, chemical, physical, biological, thermal and economic phenomena. The problems with variable exponents arise in many branches in sciences such as nonlinear elasticity theory, electrorheological fluids and image processing.

Keywords: Blow up, delay term, variable-exponents.
AMS 2010: 35B40, 35B44, 35L05

References

[1] Y. Chen, S. Levine, M. Rao, Variable Exponent, Linear Growth Functionals in Image Restoration, SIAM J. Appl. Math., 66, 1383-1406, 2006.
[2] M. Kafini, S.A. Messaoudi, A blow-up result in a nonlinear wave equation with delay, Mediterr. J. Math., 13, 237-247, 2016.
[3] M. Kafini, S.A. Messaoudi, On the decay and global nonexistence of solutions to a damped wave equation with variable-exponent nonlinearity and delay, Ann. Pol. Math., 122.1, 2019.
[4] S. Nicaise, C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45, 1561-1585, 2006.
[5] E. Piskin, Sobolev Spaces, SeÃ§kin Published, 2017. (in Turkish)

[^51]
NONEXISTENCE OF SOLUTIONS TO A LOGARITHMIC NONLINEAR WAVE EQUATION WITH DELAY TERM

Erhan Pişkin ${ }^{1}$, Hazal Yüksekkaya ${ }^{2}$

Abstract

In this work, we discuss a logarithmic nonlinear wave equation with delay term. We study the blow up of solutions in a finite time. The logarithmic nonlinearity appears naturally in inflation cosmology and supersymmetric field theories, quantum mechanics, and many other branches of physics such as nuclear physics, optics and geophysics.

Keywords: Blow up, wave equation, delay term.
AMS 2010: 35L05, 35L55, 35B44

References

[1] K. Bartkowski and P. Gorka, One dimensional Klein-Gordon equation with logarithmic nonlinearities, J. Phys. A, Math. Theor., 41(35), 355201, 2008.
[2] P. Gorka, Logarithmic Klein-Gordon equation, Acta Phys. Pol., 40, 59-66, 2009.
[3] M. Kafini, S.A. Messaoudi, Local existence and blow up of solutions to a logarithmic nonlinear wave equation with delay, Appl. Anal., 1-18, 2018.
[4] S. Nicaise, C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differ. Integral Equ., 21, 935-958, 2008.
[5] E. Piskin, On the decay and blow up of solutions for a quasilinear hyperbolic equations with nonlinear damping and source terms, Bound. Value Probl., 2015, 127, 2015.

[^52]
MATHEMATICAL BEHAVIOUR FOR A HIGHER-ORDER KIRCHHOFF-TYPE SYSTEMS WITH LOGARITHMIC NONLINEARITY

Erhan Pişkin, ${ }^{1}$ Nazlı Irkil ${ }^{2}$

Abstract

In this present, our aim is to understand the characteristics of dynamical behaviour for system higher order Kirchhoff type equations with logarithmic nonlinearities. Based on the potential well method, the main ingredient of this study is to construct several conditions for initial data leading to the solution global existence in different case of energy functional. On the other hand, we estimate the decay rate of energy. The logarithmic nonlinearity is encountered naturally in quantum mechanics, inflation cosmolog, supersymmetric field theories, and a lot of different areas of physics such as, optics, geophysics and nuclear physics [2, 4]. These specific applications in physics attract a lot of mathematical scientists to study equation with logarithmic nonlinearity. The authors discussed the different mathematical behaviour of the different versions of equation and system with logarithmic nonlinearity, see $[1,3,5,6,7]$.

Keywords: System of higher-order, kirchhoff type equation, logarithmic nonlinearity. AMS 2010: 35G20, 35L55.

References

[1] M.M. Al-Gharabli, S.A. Messaoudi, The existence and the asymptotic behavior of a plate equation with frictional damping and a logarithmic source term, J. Math. Anal. Appl., (454), 1114-1128, 2017.
[2] I. Bialynicki-Birula, J. Mycielski, Wave equations with logarithmic nonlinearities, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys. 23(4), 461-466, 1975.
[3] S. Boulaaras, A. Draifia, M. Zennir, General decay of nonlinear viscoelastic Kirchhoff equation with BalakrishnanTaylor damping and logarithmic nonlinearity, Math. Methods Appl. Sci. 42(14), 4795-4814, 2019.
[4] P. Gorka, Logarithmic Klein-Gordon equation, Acta Phys. Pol. B 40(1), 59-66, 2009.

[^53][5] E. Pişkin, N. Irkıl, Exponential growth of solutions of higher-order viscoelastic wave equation with logarithmic term, Erzincan Univ. J. Sci. Technol. 13 (1), 106-111, 2020.
[6] X. Wang, Y. Chen, Y. Yang, J. Li, R. Xu, Kirchhoff type system with linear weak damping and logarithmic nonlinearities, Nonlinear Anal. 188, 475-499, 2019.
[7] Y. Ye, Logarithmic viscoelastic wave equation in three dimensional space, Appl. Anal., (in press) 1-18, 2019.

COVID-19 AND THE FIBONACCI NUMBERS

Furkan Semih Dündar ${ }^{1}$

Abstract

The World has been shaken by the appearance of a new type corona virus in December 2019 in the city of Wuhan, China. The virus has then spread around the Globe causing many infections and fatalities. In this paper we have given a simple model for the spread of virus in terms of Fibonacci numbers.

Keyword: Covid-19, Fibonacci numbers.
AMS 2010: 11B39.

References

[1] D. Kalman, R. Mena. The Fibonacci numbers exposed. Mathematics magazine, 76(3):167-181, 2003.
[2] E.P. Miles. Generalized Fibonacci numbers and associated matrices. The American Mathematical Monthly, 67(8):745752, 1960.
[3] L. E. Sigler. Fibonacci's Liber Abaci: A Translation into Modern English of Leonardo Pisano's Book of Calculation. Sources and studies in the history of mathematics and physical sciences. 2002.
[4] N. N. Vorobiev. Fibonacci numbers. Birkhäuser, 2012.
[5] World Health Organization. https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Retrieved on 15 March 2020.
[6] World Health Organization. Q\&A on coronaviruses (COVID-19). https://www.who.int/news-room/q-a-detail/q-acoronaviruses. Retrieved on 15 March 2020.

[^54]

SECOND-ORDER GENERAL DIFFERENTIAL EQUATION FOR MULTI-LEVEL ASYMPTOTICS

Fatih Say ${ }^{1}$

Abstract

Asymptotic representation of differential equations and integrals has attracted the increasing attention of many researchers, for example, see $[1,2,3,4,5]$. A delicate analysis of the second-order general equation leads to its asymptotic representation while the asymptotic parameter approaches zero. In this study, we will demonstrate an effective way of obtaining the asymptotic representations of the particular type of equations and provide an introduction to this.

Keyword: Asymptotic expansion, multi-level asymptotics, summability.
AMS 2010: 34E15, 34M30.

References

[1] R. B. Dingle, Asymptotic expansions: their derivation and interpretation, Academic Press, London-New York, 1973.
[2] J. J. Mahony, Error estimates for asymptotic representations of integrals, J. Austral. Math. Soc., 13, 395-410, 1972.
[3] G. C. Kember, A. C. Fowler, J. D. Evans and S. B. G. O Brien, Exponential asymptotics with a small exponent, Quart. Appl. Math., 58 (3), 561-576, 2000.
[4] F. W. J. Olver, Asymptotics and special functions, Reprint of the 1974 original, A K Peters Ltd., Wellesley, MA, 1997.
[5] F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl and M. A. McClain, eds., NIST Digital Library of Mathematical Functions (DLMF), http://dlmf.nist.gov/, Release 1.0.27 of 2020-06-15.

[^55]
Fatih Say ${ }^{1}$

Abstract

Recent remarkable works, especially in the last three decades, on singular perturbation theory have revealed many features for long-standing problems of the subject where their exact solutions cannot be found. Interpretation of singular differential equations or difference equations has been the subject of considerable research interest in both applied mathematics and theoretical physics. The successive complementary expansion method (SCEM) [1] is among the methods dealing with the interpretation of those equations, in as much detail as possible, whose behavior cannot be captured by traditional perturbative analysis. Recently introduced optimal SCEM for singular differential equations [2] provides the asymptotic behavior of solutions of such singular equations. In this talk, some recent advances on the optimal SCEM along with the numerical computation and efficiency of the method will be illustrated.

Keyword: Successive complementary expansion, asymptotic analysis.
AMS 2010: 34E05.

References

[1] J. Cousteix and J. Mauss, Asymptotic Analysis and Boundary Layers, Springer Science \& Business Media, Berlin, Heidelberg, 2007.
[2] F. Say, Optimal successive complementary expansion for singular differential equations, Math. Methods Appl. Sci., 1-10, 2020.

[^56]IECMSA

Numerical experiments with spline collocation method for 2D reaction-diffusion PROBLEM ON THE DIFFERENT TYPE MESHES

Goran Radojev ${ }^{1}$

Abstract

Collocation with biquadratic C^{1}-splines for a singularly perturbed reaction-diffusion problem in two dimension is studied. Second order a posteriori error estimation is obtained. Numerical results on the different layer-adapted meshes are analyzed.

Keywords: Reaction-diffusion problems, collocation method, supremum norm, singular perturbation and layer-adapted meshes.
AMS 2010: 65N15, 65N35, 65N50

References

[1] N. Kopteva. Maximum norm a posteriori error estimate for a 2 d singularly perturbed semilinear reaction-diffusion problem, SIAM J. Numer. Anal., 46(3):1602-1618, 2008.
[2] T. Linß, G. Radojev. Robust a posteriori error bounds for spline collocation applied to singularly perturbed reactiondiffusion problems, ETNA, Electron. Trans. Numer. Anal., 45: 342-353, 2016.
[3] T. Linß, G. Radojev, H. Zarin. Approximation of singularly perturbed reaction-diffusion problems by quadratic C^{1}-splines, Numer. Alg., 61(1): 35-55, 2012.
[4] G. Radojev, T. Linß. A posteriori maximum-norm error bounds for the biquadratic spline collocation method applied to reaction-diffusion problems, Comput. Appl. Math., 37(4): 4730-4742, 2018.

[^57]IECMSA - 2020

A generalized (3+1)-dimensional Kadomtsev-Petviashvili equation via the Multiple Exp-function Scheme

İlker Burak Giresunlu ${ }^{1}$

Abstract

In this paper, multiple exp-function scheme is offered to construct exact multi-soliton solutions of nonlinear partial differential equations. To explain the effectiveness of the method, we have considered a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation. As a result, we get one-wave, two-wave and three-wave soliton solutions. Also, multi-wave solitons have been sampled by plotting the solutions.

Keyword: a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, soliton solutions, multiple exp-function method, multiple wave solutions.

AMS 2010: 35C08, 83C15.

References

[1] X. Guan, W. Liu, Q. Zhou, A. Biswas, Some lump solutions for a generalized (3+1)-dimensional Kadomtsevâ Petviashvili equation, Applied Mathematics and Computation, 366, 124757, 2020.
[2] L.L. Feng, S.F. Tian, X.B. Wang, T.T. Zhang, Rogue waves, homoclinic breather waves and soliton waves for the (2+ 1)-dimensional B-type Kadomtsevâ Petviashvili equation, Applied Mathematics Letters, 65, 90-97, 2017.
[3] A.R. Adem, Y. Yildirim, E. Yaşar, Complexiton solutions and soliton solutions: (2+1)-dimensional Dateâ Jimboâ Kashiwaraâ Miwa equation. Pramana, 92(3), 36, 2019
[4] Y. Yıldırım, E. Yaşar, Multiple exp-function method for soliton solutions of nonlinear evolution equations, Chinese Physics B, 26(7), 070201, 2017.
[5] J.P. Yu, Y.L. Sun, A direct Backlund transformation for a (3+1)-dimensional Kadomtsevâ Petviashviliâ Boussinesqlike equation, Nonlinear Dynamics, 90(4), 2263-2268, 2017.

[^58]IECMSA

ON POPOVSKI-LIKE METHODS FOR THE SIMULTANEOUS DETERMINATION OF POLYNOMIAL ZEROS

Ivan Petković ${ }^{1}$, Dorde Herceg ${ }^{2}$

Abstract

Algebraic polynomials and polynomial zeros are of great importance from theoretical as well as practical point of view so that a great attention has been devoted for decades to the design of numerical algorithms for finding polynomial zeros, see, e.g., [1]-[5], [7]. The aim of this paper is to present a new very efficient family of simultaneous methods for finding simple (real or complex) zeros of an algebraic polynomial. We focus on almost forgotten Popovski's one-parameter family of third order method [6] from 1980. Starting from this family for finding a single zero, by a suitable transformation we construct a new one-parameter family of Popovski's type for the simultaneous determination of all simple zeros of a polynomial. The order of convergence of new simultaneous methods is four, five or six, depending on the type of the used approximation. The great benefit of these methods is their high order of convergence obtained without any additional calculations of the given polynomial P and its derivatives P^{\prime} and $P^{\prime \prime}$, which points to a high computational efficiency of the proposed one-parameter root-finding methods.

Taking some specific values of the involved parameter, Popovski-like family generates simultaneous Halley-like method, Chebyshev-like method and Euler-like method. We employ computer algebra system Mathematica to perform convergence analysis and numerical experiments of the proposed family. Finally, using computer visualization of some particular methods from Popovski-like family and trajectories of Aberth's type [1], we conjecture their globally convergent properties.

Keyword: Nonlinear equations, polynomial zeros, simultaneous methods, accelerated convergence. AMS 2010: 65H05

References

[1] O. Aberth, Iteration methods for finding all zeros of a polynomial simultaneously, Math. Comp. 27, 339-344, 1973.
[2] J.M. McNamee, Numerical methods for roots of polynomials, Part I, Elsevier, Amsterdam, 2007.

[^59][3] J.M. McNamee, V. Pan, Numerical Methods for Roots of Polynomials, Part II, Elsevier, Amsterdam, 2013.
[4] I. Petković, D. Herceg, Symbolic computation and computer graphics as tools for developing and studying new root-finding methods, Appl. Math. Comput., 295, 95-113, 2017.
[5] I. Petković, D. Herceg, Computer methodologies for comparison of computational efficiency of simultaneous methods for finding polynomial zeros, J. Comput. Appl. Math., 368, 1-19, ID 112513, 2020
[6] D.B. Popovski, A family of one point iteration formulae for finding roots, Int. J. Comput. Math., 8, 85-88, 1980.
[7] P.D. Proinov, Relationships between different types of initial conditions for simultaneous root finding methods, Appl. Math. Lett., 52, 102-111, 2016.

IECMSA

Some generalizations of AK model with data analysis

Jelena Stanojević ${ }^{1}$, Katarina Kukić ${ }^{2}$, Nemanja Vuksanović ${ }^{3}$

Abstract

In this paper we briefly give one overview of the economic AK model, which is one simply modification of the Solow model of the increasing growth and we remark that solution in that case can be found with logistic equation. The main result in this paper is generalization of AK model, through three modifications of that model: modified AK model, AK model and government and simple chaotic AK model with increasing returns. Two of that modifications we can reduce to generalized logistic equation, which is mathematical generalization of the logistic equation. In the last section, we give data analysis with real data, estimate appropriate parameters of the models and we compared that two approaches: simple AK model and one of its generalization.

Keyword: logistic equation, Solow model, AK model, generalized logistic equation, modified AK model. AMS 2010: 39A05, 39A60

References

[1] K.J. Arrow, The economic implications of learning by doing, The Review of Economic Studies Vol. 29, No. 3, pp. 155-173, 1962.
[2] W.D. Dechert, C.H. Hommes, Complex Nonlinear Dynamics and Computational Methods, Journal of Economic Dynamics and Control, 24, pp. 651-662, 2000.
[3] D. Kelsey, The Chaos of Economics, Oxford Economic Papers 40, pp. 1-31, 1988.
[4] P. Kruegman, R. Wells, Macroeconomics, Worth Publisher, 2015.
[5] K. Kukić, J. Stanojević, V. Jablanović, Generalized discrete logistic maps with applications in economics, Quantitative models in Economics, Kočović, J., Selimović, J., Boričić, B., Kašćelan, V., Rajić, V. (eds) ISBN 978-86-403-1561-6, Belgrade: Faculty of Economics, Publishing Centre, Ch. 3, pp. 39-54, 2018.
[6] G. Mankiw, D. Romer, D. Weil, D., A Contribution to the Empirics of Economic Growth, The Quarterly Journal of Economics, vol. (2), pp. 407-437, 1992.

[^60][7] R. Rak, E. Rak, Route to Chaos in Generalized Logistic Map, Acta Physica Polonica A, Vol 127, pp. 113-117, 2015.
[8] J. Stanojević, K. Kukić, V. Jablanović, The Gini coefficient in the generalized logistic form, XLV Symp. Oprat. Res., ISBN 978-86-403-1567 8, pp. 27-31, 2018.
[9] R.M. Solow, A contribution to the theory of economic growth, The Quarterly Journal of Economics, Vol. 70, No. 1, pp. 65-94, 1956.

On an initial and nonlocal boundary condition for a mixed type equation

Khanlar R. Mamedov ${ }^{1}$, Veysel Kılınç ${ }^{2}$

Abstract. We consider the mixed type equation

$$
\begin{equation*}
(1-\text { sgnt }) u_{t t}+(1+s g n t) u_{t}-2 u_{x x}=0, \tag{1}
\end{equation*}
$$

in a rectangular domain

$$
\mathcal{D}=\{x, t: 0<x<t,-\alpha<t<\beta\},
$$

where $\alpha>0, \beta>0$ are given reel numbers with the initial condition

$$
\begin{equation*}
u(x,-\alpha)=\psi(x), \quad 0<x<1, \tag{2}
\end{equation*}
$$

and the nonlocal boundary conditions

$$
\begin{gather*}
u(0, t)=0, \quad-\alpha \leq t \leq \beta \tag{3}\\
\int_{0}^{1} x u(x, t) d x=0, \quad-\alpha \leq t \leq \beta \tag{4}
\end{gather*}
$$

It is encountered with parabolic - hyperbolic, elliptic- hyperbolic type equations in electromagnetic events, gas dynamics and similar non-homogenous processes [1-4]. The nonlocal boundary conditions show that physical process not only at the point but also at the whole object. The boundary conditions are examined in [5-7] and many other works for different mathematical physics equations.

In this work, mixed type equation (1) is considered. Firstly, the integral condition (4) is reduced to the nonclassical point boundary condition. We establish a uniqueness criterion for the solution constructed as the sum of Fourier series. The existence of the solution and the stability of the solution is shown. Keyword: mixed type equation, stability, existence theorem, uniqueness theorem.

AMS 2010: Firstly, Secondly..

References

[1] I. M. Gelfrand, Some a questions of analysis and differential equations, Upsekhi Mat. Nouk [Russian Math. Surveys], 14(3), 3-19, 1959 [Am. Math. Soc. Transl., II. Ser., 26, 201-219, 1963.

[^61][2] Y. S. Uflyand, Propagation of Oscillations in Composite Electric Lines, Inzh.-Fiz. Zhurn., 7(1), 89-92, 1964.
[3] L. A. Zolina, On a boundary-value problem for a model equation of hyperbolic-parabolic type, Zh. Vychisl. Math. i Mat. Fiz., 6(6), 991-1001, 1966.
[4] N. Yu. Kapustin, E. I. Moiseev, On a spectral problem from the theory of the parabolic-hyperbolic heat equation, Dokl. Ross. Akad. Nauk, 352(4), 451-454, 1997.
[5] J. R. Cannon, The solution of the heat equation subject to the specification of energy, Quart.Appl. Math., 21 (2), 155-160, 1963.
[6] L. I. Kamynin, A boundary value problem in the theory of heat conduction with a nonclassical boundary conditions, Computational Mathematics and Mathematical Physics, 4(6), 33-59, 1964.
[7] K. B. Sabitov, On the theory of mixed- type equations, Fizmatlit, Moscow, [in Russian], 2014.

RELAXED MANGSARIAN-FROMOVITZ CONSTRAINT QUALIFICATION IN PARAMETRIC PROGRAMMING

Leonid Minchenko ${ }^{1}$, Sergey Sirotko ${ }^{2}$, Aliaksandr Pashuk ${ }^{3}$

Abstract. We consider a weak constraint qualification, which is called by the relaxed MangasarianFromovitz constraint qualification (RMFCQ) [1] and plays the same role as traditional regularity conditions but do not impose as strong requirements on the structure of the optimization problem as traditional conditions do.
Let us consider a parametric nonlinear programming problem $P(x)$:
minimize $f(x, y)$ subject to $y \in F(x)=i \in I_{0}$, where $I=\{1, \ldots, s\}$ and $I_{0}=\{s+1, \ldots, p\}$, functions $f, h_{i}: R^{n} \times R^{m} \rightarrow R$ are continuous together with their partial gradients $\nabla_{y} f(x, y), \nabla_{y} h_{i}(x, y)$.
It is known that the Mangasarian-Fromovitz constraint qualification (MFCQ) [2] at a point $y^{0} \in F\left(x^{0}\right)$ implies the Aubin property [3] for the multivalued mapping F at a point $\left(x^{0}, y^{0}\right) \in g p h F$.
Our goal is to show that this result is also valid under weaker assumptions.
Let $I(x, y)=\left\{i \in I \mid h_{i}(x, y)=0\right\}$. Introduce the linearized cone $\Gamma(F(x), y)$ to the set $F(x)$ at a point $y \in F(x):$

$$
\Gamma(F(x), y)=\left\{\bar{y} \in R^{m} \mid\left\langle\nabla_{y} h_{i}(x, y), \bar{y}\right\rangle \leq 0 i \in I(x, y),\left\langle\nabla_{y} h_{i}(x, y), \bar{y}\right\rangle=0 i \in I^{0}\right\}
$$

and the index set

$$
I^{a}(x, y)=\left\{i \in I(x, y) \mid\left\langle\nabla_{y} h_{i}(x, y), \bar{y}\right\rangle=0 \forall \bar{y} \in \Gamma(F(x), y)\right\} .
$$

We say that RMFCQ holds at a point $\left(x^{0}, y^{0}\right) \in g p h F$ if there exists a neighborhood $V\left(x^{0}, y^{0}\right)$ such that $\operatorname{rank}\left\{\nabla_{y} h_{i}(x, y) i \in I^{a}\left(x^{0}, y^{0}\right)\right\}=$ const for all $(x, y) \in V\left(x^{0}, y^{0}\right)$.

Theorem 1. Suppose that the mapping F is lower semicontinuous at $\left(x^{0}, y^{0}\right) \in$ gphF and satisfies RMFCQ at this point. Then F satisfies the Aubin property at the given point.

Keyword: parametric optimization, constraint qualification, Aubin property.
AMS 2010: 90C30,90C31.

[^62]
References

[1] A.Y. Kruger, L.I. Minchenko, J.V. Outrata, On relaxing the Mangasarian-Fromovitz constraint qualification, Positivity, 18, 171-189, 2014.
[2] O.L. Mangasarian, S. Fromovitz, The Fritz-John necessary optimality conditions in presence of equality and inequality constraints, J. Math. Anal. and Appl., 7, 37-47, 1967.
[3] R.T. Rockafellar, R.J.-B. Wets, Variational analysis, Springer, Berlin, 1998.

PREDICTION OF SHORT TIME-SERIES BASED ON THE SMART INTERPOLATION WITH CHEBYSHEV POLYNOMIALS

Loreta Saunoriene ${ }^{1}$, Minvydas Ragulskis ${ }^{2}$

Abstract

We introduce a one-step ahead time-series prediction technique based on Chebyshev polynomials and evolutionary algorithms. Chebyshev polynomials form a special class of polynomials [1] widely used in many areas of numerical analysis $[1,2,3,4]$. Commonly, Chebyshev polynomials are interpolated within a nonuniform time-grid $[1,2]$ with higher density of the interpolation nodes at the ends of the interpolation interval what helps to decrease the effect of Runge's phenomenon [1] and leads to the smaller extrapolation errors. Interpolation within a non-uniform grid also ensures that the values of the time-series close to the present time-moment have more influence on the predicted future value than older ones. Additionally, we incorporate an internal smoothing procedure [5, 6] into the Chebyshev interpolation scheme what helps to reduce the influence of the noise on a predicted future value. The integration of the internal smoothing into the Chebyshev interpolation scheme requires a construction of novel non-standard cost-functions optimized employing evolutionary optimization algorithms. Finally, we demonstrate the effectiveness of the proposed forecasting algorithm via series of computational experiments with standard real-world time-series. We would like to acknowledge that this research was supported by the Research and Innovation Fund of Kaunas University of Technology (Tspredict, grant No. PP59/2011).

Keyword: Time-series prediction, chebyshev polynomials, evolutionary optimization.
AMS 2010: 62M10, 65D05, 90C27.

References

[1] A. Gil, J. Segura, N. Temme, Numerical Methods for Special Functions, Society for Industrial and Applied Mathematics, 3600 University City Science Center Philadelphia, PA, 2007.

[^63][2] Shou-Cun Hu, Jiang-Hui Ji, Using Chebyshev polynomial interpolation to improve the computational efficiency of gravity models near an irregularly-shaped asteroid, Res. Astron. Astrophys. 17, 120, 2017.
[3] A. Atallah, R. Woollands, A. Bani Younes, J. Junkins, Tuning Orthogonal Polynomial Degree and Segment Interval Length to Achieve Prescribed Precision Approximation of Irregular Functions, in 2018 Space Flight Mechanics Meeting, 2018.
[4] A. Dascioglu, Chebyshev polynomial approximation for higher order partial differential equations with complicated conditions, Numer. Methods Partial Differential Eq. 25, 610-621, 2009.
[5] R. Palivonaite, M. Ragulskis, Short-term time series algebraic forecasting with internal smoothing, Neurocomputing, 127, 161-171, 2014.
[6] K. Lukoseviciute, R. Baubliene, D. Howard, M. Ragulskis, Bernstein polynomials for adaptive evolutionary prediction of short-term time series, Applied Soft Computing, 65, 47-57, 2018.

STREAMLINE-DIFFUSION FINITE ELEMENT METHOD ON GRADED MESH FOR A SINGULARLY PERTURBED PROBLEM

Mirjana Brdar ${ }^{1}$, Ljiljana Teofanov ${ }^{2}$, Goran Radojev ${ }^{3}$

Abstract

In this paper we consider a singularly perturbed elliptic model problem with exponential and parabolic layers posed on the unit square. The problem is solved numerically by the streamlinediffusion finite element method using piecewise bilinear elements on a graded mesh. We give superconvergence property of the method in the induced streamline-diffusion norm with the appropriate choice of the streamline-diffusion parameter.

Keyword: convection-diffusion, singular perturbation, streamline -diffusion, graded mesh, stabilization parameter.

AMS 2010: 65N30, 76R99

References

[1] R. G. Durán, A. Lombardi, Finite Element Approximation of Convection Diffusion Problems using Graded Meshes, Applied Numerical Mathematics, 56, 1314-1325, 2006.
[2] R. G. Durán, A. L. Lombardi, M. I. Prieto, Superconvergence for finite element approximation of a convectiondiffusion equation using graded meshes, IMA Journal of Numerical Analysis, 32, 511-533, 2012.
[3] S. Franz, T. Linß, Superconvergence analysis of the Galerkin FEM for a singularly perturbed convection-diffusion problem with characteristic layers, Numer. Methods Partial Differential Equations, 24(1), 144-164, 2008.
[4] S. Franz, T. Linß, H.-G. Roos, Superconvergence analysis of the SDFEM for eliptic problems with characteristic layers, Appl. Numer. Math. 58(12), 1818-1829, 2008.
[5] Y. Yin, P. Zhu, The streamline-diffusion finite element method on graded meshes for a convection-diffusion problem, Appl. Numer. Math. 138, 19-29, 2019.

[^64]IECMSA

Pythagorean Fuzyy Multiset in Robotics: A Theoretical Framework

Murat Kirişci ${ }^{1}$, Mahmut Akyiğit ${ }^{2}$

Abstract

Pythagorean Fuzzy Multisets(PFSMs) is Pythagorean fuzzy set in the framwork of multiset. Supposing the sum of the degrees of membership and non-membership is greater than or equal to 1 at any level, then the concept of PFMS is appropriate to handling such scenario. PFSM is a soft computing technique. This soft computing technique could find expression in other multi-criteria decision-making (MCDM) problems. In its simplest sense, the robot can be described as follows: A robor is an programmable automated machine which can interpret information from the physcial environment in order to adapt its behaviour. It has the capacity to interact with the environment and carry out different functions accordingly. All robots have three types of components:

- Control System: such as the controller board
- Sensors: They can read information on the surronding environment or the robor itself
- Actuators: They produce an effect in the environment for the robot.

When multiple robots are used for completing a task, the system is called a multi robot system.
In present work, th application of PFMS in robotics is investigated. The collobration of robots was worked with PFSM. The scenario in this study is to explain the system created by robots the navigate and surveillance in a certain region through a central server, with PFSM.

References

[1] P. A. Ejegwa, Pythagorean fuzzy multiset and its application to course placements, Open J. Discret. Appl. Math., 3(1), 55-74, 2020, doi:10.30538/psrp-odam2020.0030
[2] T.K. Shinnoj, John J. Sunil, Accuracy in Collaborative Robotics: An Intuitionistic Fuzzy Multiset Approach, Global Journal of Science Frontier Research Mathematics and Decision Sciences, 13(10), 1-9, 2013.
[3] M. Kirişci, Ω-soft sets and medical decision-making application, Interntional Journal of Computer Mathematics, doi:10.1080/00207160.2020.1777404

[^65][4] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Tarns. Fuzzy Syst., 22, 958-965, 2014. Doi: 10.1109/TFUZZ.2013.2278989.
[5] W. D. Blizard, Multiset Theory, Notre Dame Journal of Formal Logic, 30(1), 36-66, 1989.
[6] A. Syropoulos, Mathematics of multisets, Springer-Verlag Berlin Heidelberg, 347-358, 2001.
[7] X. Zhang, A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision making, International Journal of Intelligent Systems, 31, 593-661, 2016.
[8] P. A. Ejegwa, Mathematical techniques to transform intuitionistic fuzzy multisets to fuzzy sets, Journal of Information and Computing Science, 10(2), 169-172, 2015.

IECMSA - 2020

Risk assessment of cognitive development of early childhood children in quarantine DAYS: A NEW AHP APPROACH

Murat Kirişci ${ }^{1}$, Nihat Topaç ${ }^{2}$, Musa Bardak ${ }^{3}$

Abstract

The world is faced with disasters caused by natural or human effects from time to time. The various political, economic, health, and social consequences of these disasters affect people for different periods of time. In natural disasters and especially in epidemic diseases, some measures are taken to protect people from the negative effects of the situation. One of the measures that can be taken is quarantine.

The target audience of this study is children aged 5-6 in early childhood. Children of this age group are in the process of gaining skills in expressing their feelings during this period. In addition, the emotional responses of these children can be noticed by a careful observer or even an expert.

The purpose of this study is to evaluate the risks of the effects of quarantine status related to COVID19 pandemic on cognition and behavior of children staying at home. A new AHP technique was used to assess the risks of the quarantine process in early childhood children.

References

[1] S. Mahmudova, Z. D. Jabrailova, Development of an algorithm using the AHP method for selecting software according to its functionality. Soft Comput, 24,8495-8502, 2020, https://doi.org/10.1007/s00500-020-04902-y.
[2] M. Kirişci, M. Bardak, N. TopaÃ§, The effect of corona-virus disease (COVID-19) outbreak quarantine on the cognition and behavior of children in early childhood with a fuzzy conjoint method, Child Care in Practice, (to appear).
[3] Sh. Mahmudova, Application of the TOPSÄ ${ }^{\circ}$ S method to improve software efficiency and to optimize its management. Soft Comput, 24(1), 697-708, 2020. https://doi.org/10.1007/s00500-019-04549-4.
[4] A. Shaygan, O. M. Testik, A fuzzy AHP-based methodology for project prioritization and selection. Soft Comput, 23, 1309-1319, 2019, https://doi.org/10.1007/s00500-017-2851-9.
[5] L. A. Zadeh, Fuzzy sets, Inf. Comp., 8, 338-353, 1965.

[^66][6] A. D. Cliff, M. R. Smallman-Raynor, Quarantine: Spatial strategies. In A. D. Cliff \& M. R. Smallman-Raynor (Eds.), Oxford Textbook of Infectious Disease Control: A geographical analysis from medieval quarantine to global eradication (pp.64-97). Oxford: Oxford University Press, 2013
[7] A. Delivorias, N. Scholz, Economic impact of epidemics and pandemics, European Parliamentary Research Service, 2020, https :=www:europarl:europa:eu=RegData=etudes=BRIE=2020 $=646195=E \operatorname{ERSBRI}(2020) 646195 \mathrm{EN}$:pdf.
[8] A. Bish, S. Michie, Demographic and attitudinal determinants of protective behaviours during a pandemic: a review. Br J Health Psychol, 15, 797-824, 2010.
[9] E. Ilbahar, A. Karaan, S. Cebi, C. Kahraman, A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP \& fuzzy inference system, Safety Science, 103, 124-136, 2018, https://doi.org/10.1016/j.ssci.2017.10.025.

IECMSA

Numerical solution of the poroelastic wave equation using finite element method

Marat Nurtas ${ }^{1}$, Fatima Tokmukhamedova ${ }^{2}$

Abstract

The problem of acoustics in porous media in three separated subdomains is studied. In each region different physical properties are assumed: geometry of the pore, viscosity of fluid places in the middle of the two elastic domains. In this task, firstly the solution of differential equations is considered. A mathematical model of these physical phenomena is described by the initial boundary-value problems for complex systems of differential equations in partial derivatives. Then these equations were solved using two numerical methods: finite element method (FEM) and the traditional finite difference method (FDM). Solutions allow to analyse wave propagation phenomena in porous media. The polynomial functions were used as the interpolation basis-test functions in order to get weak formulation for the finite element method. The numerical results of our simulation illustrate that this method is obviously effective, especially if we want research physical problems with complex domains in 2D and 3D spaces.

Keyword: Acoustics equation, poroelastic medium, finite difference method, finite element method, basis functions, mixed medium.

References

[1] A. Meirmanov, M. Nurtas, Mathematical models of seismics in composite media: elastic and poro-elastic components, Electronic Journal of Differential Equations, 184, 1-22, 2016.
[2] A. Meirmanov, A description of seismic acoustic wave propagation in porous media via homogenization, SIAM J. Math. Anal. 40(3), 1272-1289, 2008.
[3] M. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range, Journal of the Acoustical Society of America, 28, 168-178, 1955.
[4] A. Meirmanov, Mathematical models for poroelastic flows, Atlantis Press, Paris, 2013.
[5] L.V. Ovsyannikov, Introduction into continuum mechanics, Novosibirsk State University, 1977.

[^67][6] A. Meirmanov, Homogenized models for filtration and for acoustic wave propagation in thermo-elastic porous media, European Journal of Applied Mathematics, 19, 259-284, 2008.

IECMSA

EXISTENCE AND BLOW UP FOR A NONLINEAR PETROVSKY TYPE EQUATION WITH LOGARITHMIC NONLINEARITY

Erhan Pişkin ${ }^{1}$ Nazlı Irkil ${ }^{2}$

Abstract

In this paper, our aim is to work the initial boundary value problem of nonlinear viscoelastic Petrovsky-type equation with logarithmic nonlinearity. Firstly, we prove the local existence of weak solution by using Faedo- Galerkin's method and contraction mapping principle. Later, we derive the finite time blow-up results. The equation with the logarithmic source term is related with many branches of physics. In 1970, the working of Dafermos with viscoelastic term provide a basis to the different papers [3]. The importance of the viscoelastic properties of materials has been realized because of the rapid developments in rubber and plastic industry. Additionally, viscoelasticity influence part on working of biological phenomena. The other important property of viscoelastic material that return back to its original size after a impact force cut off [2]. The studies have intensified about analysis of solutions for a class of viscoelastic equation with logarithmic source term. We refer to work of see $[1,4,5,6]$.

Keywords: Existence, blow up, viscoelastic equation, logar.ithmic nonlinearity.

AMS 2010: 35L05, 35B40, 35B44.

References

[1] M.M. Al-Gharabli, A. Guesmia, S.A. Messaoudi, Well posedness and asymptotic stability results for a viscoelastic plate equation with a logarithmic nonlinearity, Appl. Anal., 99 (1), 50-74, 2020.
[2] M. Cavalcanti, V.N.D. Cavalcanti, J.A. Soriano, Exponential decay for the solution of semi linear viscoelastic wave equations with localized damping, Electron. J. Differ. Equ., 1-14, 2002.
[3] C. Dafermos, Asypmtotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37, 297-308, 1970.
[4] A. Peyravi, General stability and exponential growth for a class of semi-linear wave equations with logarithmic source and memory terms, Appl. Math. Optim. 81, 545-561, 2020.

[^68][5] E. Pişkin, N. Irkıl, Mathematical Behavior of Solutions of Fourth-Order Hyperbolic Equation with Logarithmic Source Term, CPOST, 2(1), 27-36, 2019.
[6] E. Pişkin, N. Irkıl, Well-posedness results for a sixth-order logarithmic Boussinesq equation, Filomat, 33(13), 39854000, 2019.

ON EXCELLENT SAFE PRIMARY NUMBERS AND ENCRYPTION

Nazlı Koca ${ }^{1}$, Serpil Halıcı ${ }^{2}$

Abstract

In this study, we first included the definition of perfectly safe prime numbers that we created. We then examined the RSA and Rabin cryptosystem, which are the techniques of implementing prime numbers in encrypting any message. Finally, we used these perfectly safe prime numbers, which were first defined, in RSA and Rabin's encryption methods.

Keyword: Prime numbers, distribution of primes, applications of prime numbers.
AMS 2010: 11A41, 11N05, 11N99.

References

[1] Akbar, A.A., Asal Sayıların Sifreleme Teorisindeki Uygulamaları, Yuksek Lisans Tezi, Ataturk Uni.Fen Bil. Enst., Erzurum, 2015.
[2] http://bilgisayarkavramlari.sadievrenseker.com/2009/06/04/rabin-sifreleme/.1.06.2020.
[3] Beskirli, A., Ozdemir, D., Beskirli, M., Sifreleme Yontemleri ve RSA Algoritması Uzerine Bir Inceleme, Avrupa Bilim ve Teknoloji Derg., Ozel sayı, 284-291, 2019.
[4] Zuckerman, H.S., Niven, I. And Monygomery H.L., An Introduction to the Theory of Numbers, New York: John Wiley Sons 25-26, 1991.

[^69]IECMSA

Investigation of Gompertz Law through Tempered Fractional Case Ramazan Özarslan ${ }^{1}$

Abstract

The main goal of this work is to analyze the effect of tempered fractional derivative on the Gompertz Law, used for determining biomass growth, fermentation, etc.. Furthermore, the results are compared with other fractional derivatives like Caputo and ψ-Caputo fractional derivatives.

Keyword: Gompertz law, laplace transform, tempered fractional calculus.
AMS 2010: 26A33, 74B15

References

[1] K. M. Owolabi, A. Atangana, Numerical Methods for Fractional Differentiation. Springer Singapore, 2019.
[2] A. Fernandez, C. \& Ustaoğlu, On some analytic properties of tempered fractional calculus. Journal of Computational and Applied Mathematics, 366, 112400, 2020.
[3] F. Sabzikar, M. M. Meerschaert, J. \& Chen, Tempered fractional calculus. Journal of Computational Physics, 293, 14-282015.
[4] L. Frunzo, R. Garra, A. GiustiV. \& Luongo, Modeling biological systems with an improved fractional Gompertz law. Communications in Nonlinear Science and Numerical Simulation, 74, 260-267, 2019.
[5] L. Bolton, A. h. Cloot, S. W. Schoombie, J. P. \& Slabbert, A proposed fractional-order Gompertz model and its application to tumour growth data. Mathematical medicine and biology: a journal of the IMA, 32(2), 187-209, 2015.
[6] Y. Sekerci, R. Ozarslan, Marine system dynamical response to a changing climate in frame of power law, exponential decay, and Mittaga Leffler kernel. Mathematical Methods in the Applied Sciences, 43(8), 5480-5506, 2020.
[7] R. Ozarslan, Y. Sekerci, Fractional order oxygenâ plankton system under climate change. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(3), 033131, 2020s.

[^70]
DETERMINING ALCOHOL CONCENTRATION IN HUMAN BODY WITH GENERALIZED FRACTIONAL DERIVATIVE
 Ramazan Özarslan ${ }^{1}$

Abstract

In this work, a two component system determines the concentration of alcohol in human body is considered within generalized fractional derivative. To obtain the solution of this two component system, a modified Laplace transform is used. Furthermore, two parameters are used for preserving the dimension of quantities. The results obtained are compared with Caputo fractional and integer order counterparts with some illustrations.

Keyword: Fractional differential systems, mathematical modeling, alcohol concentration, mathematical biology.

AMS 2010: 26A33, 92B05.

References

[1] R. Almeida, NR. Bastos, MTT. Monteiro, Modeling some real phenomena by frac- tional differential equations. Math Methods Appl Sci.,39(16):4846-55, 2016.
[2] AR Kanth, N. Garg, Computational simulations for solving a class of fractional models via caputo-fabrizio fractional derivative. Procedia Comput Sci.,125:476-82, 2018.
[3] C. Ludwin, Blood alcohol content. Undergrad J Math Model, 3(2) . 1, 2011
[4] U. N. Katugampola, New approach to a generalized fractional integral. Applied Mathematics and Computation. 218 (3) (2011) 860-865, 2011.
[5] U. N. Katugampola, A new approach to generalized fractional derivatives. Bulletin of Mathematical Analysis and Applications. 6 (4) (2014) 1-15, 2014.
[6] F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo modification. Journal of Nonlinear Sciences and Applications. 10 (5), 2607-2619, 2017.
[7] F. Jarad, T. Abdeljawad, A modified Laplace transform for certain generalized fractional operators. Results in Nonlinear Analysis. 1 (2), 88-98, 2018.

[^71][8] R. Ozarslan, E. Bas, Kinetic Model for Drying in Frame of Generalized Fractional Derivatives. Fractal and Fractional, 4(2), 17, 2020.
[9] R. Ozarslan, E. Bas, D. \& Baleanu, Representation of solutions for Sturm-Liouville eigenvalue problems with generalized fractional derivative. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(3), 033137, 2020.

ON A DIFFERENT METHOD FOR DETERMINING THE PRIMARY NUMBERS

Serpil Halıcı ${ }^{1}$, Hamit Cacur ${ }^{2}$, Nazlı Koca ${ }^{3}$

Abstract

In this study, firstly, ordinal numbers of the odd integers were defined to reach prime numbers, and a new prime number sieve was obtained with the help of these numbers. A general formula was given to examine this sieve. Then, by representing the ordinal numbers with the help of matrices, some properties of these numbers were also examined.

Keyword: Prime numbers, prime number sieves, applications of sieves methods.
AMS 2010: 11A41, 11N05, 11N35.

References

[1] J. J. O'Connor, E. F. Robertson, http:// www-history.mcs.st-andrews.ac.uk/HistTopics/Prime numbers, 2018.
[2] C. Ozgu, Asal Sayi Oruntuleri ve Goldbach Sanısı Uzerine Bir Calısma, Yuksek Lisans Tezi, Ege Uni.Fen Bil.Enst., 2002.
[3] https://www.mersenne.org/. 13.07.2020
[4] T. Yerlikaya, O. Kara, Kriptolojide Kullanılan Asal Sayı Test Algoritmaları, Trakya University, Journal Of Engineering Sciences, 18(1), 2017.

[^72]IECMSA

2020

Investigation of Joint distribution of the first moment of semi-Markov random walk PROCESS CROSSING LEVEL A $(a>0)$ AND JUMP THROUGH IT

U. Y. Kerimova ${ }^{1}$

Abstract

Using sequence of independent identically distributed random variables is constructed semi-Markov random walk process with positive tendency, negative jumps.The Laplace-Stieltjes transformation of a compatible distribution of the first reaching moment to level a ($a>0$) and length of jump from the level of constructed process is obtained.

Keyword: random variables, process of semi-Markov random walk, Laplace-Stieltjes transformation. AMS 2010: 60Jxx.

Introduction

The Laplace-Stieltjes transform and its properties were studied by Geetha K. V. and John J. K. [3]. In [2], the asymptotic method is used to find distributions of the process and its main boundary functionals. In [4] the Laplace transform of the distribution of the first moment of reaching the delaying screen at zero by the semi-Markov process is found. In [5] the first passage of the zero level of the semi-Markov process with positive tendency and negative jumps is found. The Laplace transform for the distribution of this random variable is defined. In [6], the asymptotic behavior of the first moment of crossing a certain level by a semi-Markov random walk is studied. In [7], the asymptotic behavior of the moment of reaching a specified level by a transient onedimensional random walk in a ran dom environment with the delaying screen at zero, whose jumps take three values ($-1,0$, and +1), is studied.

[^73]This article is dedicated to investigation of the Laplace-Stieltjes transformation of joint distribution of the first moment of semi-Markov random walk process with positive tendency crossing level a (a>0) and jump through it

Statement of the problem

Let a sequence of independent and identically distributed pairs of random variables $\left\{\xi_{k}, \varsigma_{k}\right\}_{k \geq 1}$, $k=\overline{1, \infty}$ defined on a probability space (Ω, F, P) such that ξ_{k} and ς_{k} are independent random variables and $\xi_{k}>0, \varsigma_{k}>0$. Using these random variables we will derive the following step processes of semiMarkov random walk:

$$
X_{z}(t)=z+t-\sum_{i=1}^{k-1} \zeta_{i}, \text { if } \sum_{\mathrm{i}=1}^{\mathrm{k}-1} \xi_{\mathrm{i}} \leq \mathrm{t}<\sum_{\mathrm{i}=1}^{\mathrm{k}} \xi_{\mathrm{i}}, \mathrm{k}=\overrightarrow{1, \infty}, \quad \mathrm{z} \geq 0
$$

$X_{z}(t)$ process is the (asymptotic) semi-Markov random processes with positive tendency and negative jump.

Let's include the τ_{a} random variable defined as below:
$\tau_{a}=\min \left\{\mathrm{k}: X_{z}(t) \geq a\right\} \mathrm{k}=0,1,2, .$. and $\gamma_{a}=X\left(\tau_{a}\right)-a$, where τ_{a} is the first reaching moment to level a $(a>0)$ and is the length of jump from the level of constructed process:

$$
\tau_{a}=\left\{\begin{array}{l}
a-z \text { if } \mathrm{z}+\xi_{1}>\mathrm{a} \\
\xi_{1}+T(\omega) \text { if }, \mathrm{z}+\xi_{1}<\mathrm{a}
\end{array}\right.
$$

We need to find the evident form of the Laplace-Stieltjes transformation of joint distribution of τ_{a} and γ_{a}. Let us set Laplace-Stieltjes transformation of joint distribution of τ_{a} and random vaiables as:

$$
L(\theta, \gamma \mid z)=E\left(e^{-\theta \tau_{a}} \mid \mathrm{X}(0)=\mathrm{z}\right), z \geq 0
$$

The main aim of this study is to express the Laplace-Stieltjes transformation of joint distribution of the first moment of semi-Markov random walk process with positive tendency crossing level a (a>0) and jump through it by means of some probability characteristics of random variables ξ_{k} and ς_{k}.

By the additivity of the definite integral, we have

$$
\begin{gathered}
E\left(e^{-\theta \tau_{\mathrm{a}}} / X_{z}(0)=(z)=\int_{\Omega} e^{-\theta \tau_{\mathrm{a}}} P(d \omega / X(0)=z)\right. \\
=\int_{\left\{\omega: z+\xi_{1}>a\right\}} e^{-\theta(a-z)} P(d \omega) \\
+\int_{\left\{\omega: z+\xi_{1}<a\right\}} e^{-\theta\left(\xi_{1}+T(\omega)\right)} P\left(d \omega \mid X(0)=z+\xi_{1}-\zeta_{1}\right)
\end{gathered}
$$

Applying the following change of variables $\xi_{1}=t \quad, \quad \zeta_{1}=y$ and $z+t-y=u \Rightarrow y=z+t-u$ we can find

$$
\begin{aligned}
L(\theta \mid z)= & E\left(e^{-\theta \tau_{\mathrm{a}}} / \mid X_{z}(0)=z\right)=e^{-\theta(a-z)} P\left\{\xi_{1}>a-z\right\} \\
& +L(\theta \mid 0) \int_{t=0}^{a-z} \mathrm{e}^{-\theta \mathrm{t}} \int_{y=z+t}^{\infty} d_{y} P\left\{\zeta_{1}<y\right\} \mathrm{d}_{\mathrm{t}} \mathrm{P}\left\{\xi_{1}<\mathrm{t}\right\} \\
& +\int_{t=0}^{a-z} \mathrm{e}^{-\theta \mathrm{t}} \int_{u=-\infty}^{z+t} L(\theta \mid u) d_{u} P\left\{\zeta_{1}<z+t-u\right\} \mathrm{d}_{\mathrm{t}} \mathrm{P}\left\{\xi_{1}<\mathrm{t}\right\}
\end{aligned}
$$

Making substitutions, $u=y$, we obtain an integral equation of Laplace-Stieltjes transformation of joint distribution of the first moment of semi-Markov random walk process with positive tendency crossing level a (a>0) and jump through it by means of some probability characteristics of random variables ξ_{k} and ς_{k}.

$$
\begin{gathered}
L(\theta \mid z)=e^{-\theta(\mathrm{a}-\mathrm{z})} P\left\{\xi_{1}>a-z\right\} \\
+\int_{t=0}^{a-z} e^{-\theta \mathrm{t}} \int_{\mathrm{y}=\mathrm{z}+\mathrm{t}}^{\infty} \mathrm{d}_{y} \mathrm{P}\left\{\zeta_{1}<y\right\} d_{t} P\left\{\xi_{1}<t\right\} L(\theta \mid 0) \\
+\int_{t=0}^{a-z} e^{-\theta \mathrm{t}} \int_{y=0}^{\mathrm{z}+\mathrm{t}} L(\theta \mid y) \mathrm{d}_{y} \mathrm{P}\left\{\zeta_{1}<z+t-\alpha\right\} d_{t} P\left\{\xi_{1}<t\right\} .
\end{gathered}
$$

Therefore we obtain an integral equation of Laplace-Stieltjes transformation of joint distribution of the first moment of semi-Markov random walk process with positive tendency crossing level a (a>0) and jump through it by means of some probability characteristics of random variables ξ_{k} and ς_{k}. This integral equation can be solved by the method of successive approximation. However, the obtained expressions are not suitable for applications. Therefore, we can restrict the class of walks in order to obtain the explicit form.

References

[1] A. A. Borovkov probabilistic processes in queuing theory, Moscow: Nauka, 1972.
[2] A. A. Borovkov On the asymptotic behavior of the distributions of first-passage, Mat. Zametki, 75, pp.24-39, 2004.
[3] K. V. Geetha, J. K. John The Laplace-Stieltjes Transformation, The Journal of the Indian Acadamy of Mathematics, 20(2), pp.135-145, 1998.
[4] T. I. Nasirova, E. A. Ibayev, T. A. Aliyeva The laplace transform of the ergodic distribution of the process of semimarkovian random walk with negative drift, nonnegative jumps, delays, and delaying screen at zero, 2009.
[5] T. H Nasirova, U. Y. Kerimova Definition of Laplace ransform of the first passage of zero level of the semimarkov random process with positive tendency and negative jump, Applied mathematics, 2, pp 908-912, 2011.
[6] T. A. Khaniev, I. Unver The study of the level zero crossing time of a semi-Markovian random walk with delaying screen, Turkish J. Mathem., 2(1), pp.257-268, 1997.
[7] V. A. Busarov On asymptotic behavior of random wanderings in random medium with delaying screen, Vest. Mos. Gos. Univ.. Ser 1, 5, pp.61-63, 2004.

IECMSA - 2020

Exact solutions of a conformable fractional equation via Improved Bernoulli

Sub-Equation Function Method

Volkan Ala ${ }^{1}$, Ulviye Demirbilek ${ }^{2}$, Khanlar R. Mamedov ${ }^{3}$

Abstract

The aim of this study is to present several new exact solutions of a conformable fractional nonlinear partial differential equation. For this purpose, the improved Bernoulli sub-equation function method has been used. The obtained results are shown by way of the 3D-2D graphs and contour surfaces for suitable values. The results show that the proposed method is powerful and applicable for solving different types of conformable fractional partial differential equations.

Keywords: Conformable fractional derivative, improved bernoulli sub-equation function method.
AMS 2010: 35C08, 34K20, 32W50.

References

[1] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., Pramana, 264, 65-70, 2014.
[2] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279, 2015.
[3] V. Ala, U. Demirbilek, Kh. R. Mamedov, An application of improved Bernoulli sub-equation function method to thenonlinear conformable time-fractional SRLW equation, Aims Mathematics, 5(4), 3751-3761, 2020.

[^74]IECMSA - 2020

The new type of the statistical convergence of the functions defined on the time SCALE PRODUCT

Victor Martinez-Luaces ${ }^{1}$

Abstract

In this paper the mathematical models corresponding to a couple of chemical problems -chemical kinetics and mixing problems- are studied. Both situations can be represented by using directed graphs and multigraphs [1] and both of them -under certain conditions- are modeled by linear ODE systems, which associated matrices, so-called FOCKM and MP [2-3] have important similarities [4]. Moreover, several formulas and equations can be considered as analogous in both cases. As a consequence of the previous facts, some FOCKM and MP theorems have similar statements, while others need to be adapted to the corresponding chemical situation. These similarities and differences in mathematical models are deeply analyzed in the article.

Keywords: Chemical kinetics, mixing problems, linear ODE systems, directed graphs and multigraphs. AMS 2010: 34A30, 05C20, 80A30.

References

[1] V. Martinez-Luaces, Matrices in chemical problems modeled using directed graphs and multigraphs, In: Hot Topics in Linear Algebra, Nova Science Publishers, New York, 2020.
[2] V. Martinez-Luaces, First order chemical kinetics matrices and stability of o.d.e. systems, In: Advances in Linear Algebra Research, Nova Science Publishers, New York, 2015.
[3] V. Martinez-Luaces, Square matrices associated to mixing problems, In: Matrix Theory: Applications and Theorems, InTech Open Science, London, 2018.
[4] V. Martinez-Luaces, Matrices in chemical problems: characterization, properties and consequences about the stability of ode systems, In: Advances in Mathematics Research, Nova Science Publishers, New York, 2017.

[^75]
INVESTIGATION OF RANDOM ZIKA VIRUS TRANSMISSION WITH MODIFIED RANDOM DIFFERENTIAL TRANSFORMATION METHOD

Zafer Bekiryazıcı ${ }^{1}$, Tülay Kesemen ${ }^{2}$, Mehmet Merdan ${ }^{3}$, Tahir Khaniyev ${ }^{4}$

Abstract

In this study, a deterministic model of Zika virus transmission is investigated under random conditions. The random model, obtained as a system of random differential equations, is analyzed by using the random differential transformation method (rDTM). The approximate solutions obtained with rDTM are modified with Laplace-Pade technique to achieve a better approximation. Numerical and simulation results show the improvement of the approximation through the use of modified random differential transformation method.

Keyword: Differential transformation method, random differential equation, simulation.
AMS 2010: 34F05, 92D30, 37M05

Acknowledgment: This work was supported by Research Fund of the Recep Tayyip Erdogan University. Project Number: FBA-2019-992.

References

[1] T.T. Soong, Random Differential Equations in Science and Engineering, Academic Press Inc, New York, 1973.
[2] Z. Bekiryazici, M. Merdan, T. Kesemen, Modification of the random differential transformation method and its applications to compartmental models, Communications in Statistics-Theory and Methods, 1-22, 2020.
[3] E. Bonyah, M.A. Khan, K.O. Okosun, S. Islam, A theoretical model for Zika virus transmission. PloS one, 12(10), 2017.
[4] M.M. Rashidi, The modified differential transform method for solving MHD boundary-layer equations, Comput. Phys. Commun. 180(11), 2210-2217, 2009.

[^76][5] World Health Organization, Zika Virus, https://www.who.int/news-room/fact-sheets/detail/zika-virus, 2018.

IECMSA - 2020

AN ANALYTICAL APPROACH TO AN ELASTIC CIRCULAR ROD EQUATION

Zehra Pınar ${ }^{1}$

Abstract

Recently, studies on the size-dependent dynamic models of small-scaled rods are arising, especially in optics. In this work, the generalized form of the nonlinear elastic circular equation is considered. Solutions obtained by different methods are discussed and illustrated in details. The considered studies are the special case of the elastic rod equation, such as magneto-electro circular equation, which has not been studied in the literature with the proposed methods. Therefore, for further analytical and numerical analyses for waves in such two-phase media, the obtained results could play important role.

Keyword: Analytical method, the elastic rod equation, travelling wave solutions.
AMS 2010: 35DXX, 35QXX, 35CXX .

References

[1] M.A. Abdou, Exact travelling wave solutions in a nonlinear elastic rod equation, International Journal of Nonlinear Science. 7(2), 167-173, 2009.
[2] H.-H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mechanica, 127, 193-207, 1998.
[3] W. Zhuang, Y. Guiltong, The propagation of solitary wave in a nonlinear elastic rod, Applied Mathematics and Mechanics, 7(7), 615-626, 1986.
[4] C.A. Gomez, H.G. Garzon, J.C. Hernandez, On elastic rod equation with forcing term: Traveling wave solutions, Contemporary Engineering Sciences, 11(4), 173-181, 2018.
[5] Z. Pinar, H. Kocak, Exact solutions for the third-order dispersive-Fisher equations, Nonlinear Dynamics, 91(1), 421-426, 2018.
[6] H. Kocak, Z. Pinar, On solutions of the fifth-order dispersive equations with porous medium type non-linearity, Waves in Random and Complex Media, 28(3), 516-522, 2018.
[7] Z. Pinar, Analytical study on the balancing principle for the nonlinear Klein-Gordon equation with a fractional power potential, Journal of King Saud University - Science, 32(3), 2190-2194, 2020.

[^77]

IECMSA - 2020

Disjunctive Total Domination Subdivision Number of Some Graphs

Canan Çiftçi ${ }^{1}$

Abstract

It is often of interest to know how the value of a graph parameter is affected when a small change is made in a graph. Under the consideration that how many modifications influence the change of the domination number, some graph modification parameters are defined such as bondage number [1], reinforcement number [2] and domination subdivision number [3]. The concept of the subdivision was first introduced for domination and then extended for some variations of graph domination $[5,6,7]$. In this study, effects on the disjunctive total domination are concentrated on. A set S of vertices in a graph G is a disjunctive total dominating set of G if every vertex is adjacent to a vertex of S or has at least two vertices in S at distance two from it. The disjunctive total domination number is the minimum cardinality of such a set. Çiftçi and Aytaç [8] defined the disjunctive total domination subdivision number of a graph G as the minimum number of edges which must be subdivided (every edge in G is subdivided exactly once) to increase the disjunctive total domination number of G. In this study, the disjunctive total domination subdivision number of some graphs are determined.

Keyword: Domination, disjunctive total domination, disjunctive total domination subdivision. AMS 2010: 05C69, 05C35.

References

[1] D. Bauer, F. Harary, J. Nieminen and C. L. Sujel, Domination Alteration Sets in Graphs, Discrete Math., 47, 153-161, 1983.
[2] J. Kok and C. Mynhardt. Reinforcement in Graphs. Congr. Numer. 79, 225-231, 1990.
[3] S. Velammal. Studies in Graph Theory: Covering, Independence, Domination and Related Topics. Ph.D. thesis, Manonmaniam Sundaranar University Tirunelveli, 1997.
[4] M. A. Henning and V. Naicker, Disjunctive Total Domination in Graphs, J. Comb. Optim., 31(3), 1090-1110, 2016.
[5] T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, D. Jacobs, J. Knisely and L. Van Der Merwe. Domination Subdivision Numbers. Discuss. Math. Graph Theory, 21(2), 239-253, 2001.

[^78][6] T. W. Haynes, S. T. Hedetniemi, and L. C. van der Merwe, Total Domination Subdivision Numbers, J. Combin. Math. Combin. Comput., 44, 115-128, 2003.
[7] M. Atapour, S. M. Sheikholeslami, A. Hansberg, L. Volkmann and A. Khodkar, 2-Domination Subdivision Number of Graphs, AKCE Int. J. Graphs Comb., 5 (2), 165-173, 2008.
[8] C. Çiftçi and V. Aytaç, Disjunctive Total Domination Subdivision Number of Graphs, Fundamenta Informaticae, 174 (2), 2020.

IECMSA - 2020

Disuunctive Total Bondage Number of Graphs

Canan Çiftçi ${ }^{1}$, Aysun Aytaç ${ }^{2}$

Abstract

In network design, as well as a parameter is significant to study, it is also significant to know the effects on the value of the parameter when a graph is modified for example by deleting a vertex or an edge or adding an edge. One of the graph parameters is domination. The bondage number $[1,2]$ is defined as the minimum number of edges that must be removed from a graph in order to increase the domination number. There are many variations of domination, one of which is disjunctive total domination [3]. A set S of vertices in a graph G is a disjunctive total dominating set of G if every vertex is adjacent to a vertex of S or has at least two vertices in S at distance two from it. The disjunctive total domination number is the minimum cardinality of such a set. In this study, we consider disjunctive total bondage which was first defined in [4] and we present some bounds for the disjunctive total bondage number of a graph.

Keyword: Domination, disjunctive total domination, disjunctive total bondage.
AMS 2010: 05C69.

References

[1] D. Bauer, F. Harary, J. Nieminen and C. L. Sujel, Domination Alteration Sets in Graphs, Discrete Math., 47, 153-161, 1983.
[2] J. F. Fink, M. S. Jacobson, L. F. Kinch and J. Roberts, The Bondage Number of a Graph, Discrete Math., 86(1-3), 47-57, 1990.
[3] M. A. Henning and V. Naicker, Disjunctive Total Domination in Graphs, J. Comb. Optim., 31(3), 1090-1110, 2016.
[4] E. Yi, The Disjunctive Bondage Number and the Disjunctive Total Bondage Number of Graphs, Combinatorial optimization and applications, 9486, 660-675, 2015.
${ }^{1}$ Department of Mathematics, Ordu University, Ordu, Turkey, cananciftci@odu.edu.tr
${ }^{2}$ Department of Mathematics, Ege University, Izmir, Turkey, aysun.aytac@ege.edu.tr

SOME CHARACTERIZATIONS FOR THE B-LIFT CURVE

Anıl Altınkaya ${ }^{1}$, Mustafa Çalışkan ${ }^{2}$

Abstract. In this study, firstly, the B-lift curve α_{B} of a curve α defined and then the Frenet vector fields T_{B}, N_{B}, N_{B} and the curvature κ_{B} and the torsion τ_{B} of the B-lift α_{B} of a curve α calculated. Finally these operators are compared with each other for curve α.

Keyword: B-lift, frenet formula, curvature, torsion.
AMS 2010: 51B20, 53A15, 53A04, 53A05.

References

[1] M. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1976.
[2] J.A. Thorpe, Elementary Topics in Differential Geometry, Springer Verlag, New York, Heidelberg-Berlin, 1979.
[3] E. Ergün, M. Bilici, M. Çalışkan, The Frenet vector fields and the curvatures of the natural lift curve, The Bulletin of Society for Mathematical Services and Standarts 2, 38-43, 2012.
[4] E. Ergün, M. Çalışkan, On natural lift of a curve, Pure Mathematical Sciences 2, 81-85, 2012.
[5] Ergün, E., Çalışkan, M., Ruled Surface Pair Generated by a Curve and its Natural Lift in \mathbb{R}^{3}, Pure Mathematical Sciences, 1, 2, 0 /2012.

[^79]
COMMUTATIVE OCTONION MATRICES

Arzu Cihan ${ }^{1}$, Mehmet Ali Güngör ${ }^{2}$

Abstract

In this article, commutative octonions the matrix representations of commutative octonions and their properties are described. Firstly, definitions and theorems are given for commutative octonion matrices using commutative quaternions matrices. Adjoint matrices, eigenvalues and eigenvectors of these matrices are investigated. Then the Gersgorin Theorem is proved using these eigenvalues and eigenvectors. Finally, the result that found in Gershgorin Theorem supported in the example.

Keyword: Commutative octonions, fundamental matrices, commutative octonion matrices.
AMS 2010: 15A27, 17A35.

References

[1] W. R. Hamilton, Lectures on quaternions, Hodges and Smith, Dublin, 1853.
[2] L. A. Wolf, Similarity of matrices in which the elements are real quaternions, Bull. Amer. Math. Soc., 42, 737-743, 1936.
[3] F. Catoni, R. Cannata, P. Zampetti, An introduction to commutative quaternions, Adv. Appl. Clifford Algebras, 16, 1-28, 2005.
[4] H. H. Kösal, M. Tosun, Commutative quaternions matrices, Adv. Appl. Clifford Algebras, 24, 769-779, 2014.
[5] Y. Tian, Similarity and consimilarity of elemants in the real Cayley-Dickson algebras, Adv. Appl. Cliffrod Algebras, 9, 61-76, 1999.
[6] Y. Tian, Matrix representations of octonions and their applications, Adv. Appl. Cliffrod Algebras, 10, 61-90, 2000.
[7] T. Dray, C.A. Manague, The octonionic eigenvalue problem, Adv. Appl. Cliffrod Algebras, 8, 341-364, 1998.
[8] F. Zhang, Gershgorin type theorems for quaternionic matrices, Linear Algebra and its Applications, 424, 139-153, 2007.
[9] F. Zhang, Quaternions and matrices of quaternions, Linear Algebra and its Applications, 251, 21-57, 1997.
[10] P. J. Daboul, R. Delbourga, Matrix representation of octonions and generalizations, J. Math. Phys., 40, 4134-4150, 1999.

[^80]IECMSA - 2020

SINGULAR MAXIMAL TRANSLATION HYPERSURFACES IN
LORENTZ-MINKOWSKI SPACE
Ayla Erdur ${ }^{1}$, Muhittin Evren Aydın ${ }^{2}$, Mahmut Ergüt ${ }^{3}$

Abstract. Let the pair $\left(\mathbb{R}^{2},<,>\right)$ denote the Euclidean 2-space, $\beta=\beta(s)$ a curve in \mathbb{R}^{2} and $a \in \mathbb{R}^{2}$ a fixed unit vector. For some real constant α, the curve β is called α-catenary if the following holds

$$
\begin{equation*}
\kappa(s)=\alpha \frac{\langle n, a\rangle}{\langle\beta, a\rangle} \tag{1}
\end{equation*}
$$

where κ and n are the curvature and unit principle normal vector field of β. By a change of coordinate we may take $a=(0,1)$ and $\beta(s)=(s, \phi(s)), \phi: I \subset \mathbb{R} \rightarrow \mathbb{R}^{+}$. In this case, Eq. (1) writes

$$
\begin{equation*}
\frac{\phi^{\prime \prime}}{1+\left(\phi^{\prime}\right)^{2}}=\frac{\alpha}{\phi} . \tag{2}
\end{equation*}
$$

In case $\alpha=1$ in Eq.(2), we have well known catenary equation. Physically, Eq. (2) defines a configuration in which a uniform chain, whose two ends are fixed and hanged under its own weight, is in balance with the effect of the gravitational field. So, a α-catenary actually minimizes potential energy under the influence of gravity force, in other words has the lowest center of gravity.

In this talk, by generalizing this poperty of the catenary, we are interested in the problem of characterizing spacelike translation hypersurfaces with the lowest center of gravity in the halfspace $x_{n+1}>0$ in Lorent-Minkowski space \mathbb{R}_{1}^{n+1}, which satisfy the following equation so called singular maximal hypersurfaces equation :

$$
\begin{equation*}
n H=\alpha \frac{<\xi, a>_{L}}{\left\langle\phi, a>_{L}\right.}, n \geq 2, \tag{3}
\end{equation*}
$$

where $a \in \mathbb{R}_{1}^{n+1}$ is fixed timelike unit vector, ξ and H the timelike Gauss map and the mean curvature of the smooth immersion ϕ of an oriented spacelike hypersurface M^{n}.

Keyword: α-catenary, singular maximal surface, translation graphs.
AMS 2010: Firstly 53A10, Secondly 53C42.

[^81]
References

[1] U. Dierkes, The n-dimensional analogue of the catenary:existence and non-existence, Pac. J. Math.(I) 141, 47-54, 1990.
[2] U. Dierkes, Singular minimal surfaces, geoemtric Analysis and Nonlinear Partial Differntial Equations, Springer, Berlin, Heidelberg, 176-193, 2003.
[3] R. Lopez, Invariant singular minimal surfaces, Annals of Global Analysis and Geometry, 53(4), 5241-541, 2018.
[4] R. Lopez, The two dimensional analogue of the Lorentzian catenary and the Dirichlet problem, Pacific Journal of Mathematics, 305(2), 693-719, 2020
[5] K. Seo, Translation hypersurfaces with constant curvature in space form, Osaka J. Math., 50, 631-641, 2013.

IECMSA - 2020

On Canal Surfaces obtained by the curves in the space forms

Ali Uçum ${ }^{1}$

Abstract

Canal surfaces was firstly investigated by Monge in 1850. A canal surface is defined as a surface formed as the envelope of a family of spheres whose centers lie on a space curve $C(t)$ with radius $r(t)$. If the radius $r(t)$ is constant, then the canal surface is called as pipe surface or tubular surface.

In [1] and [2], the author defines the Frenet equations of the curves on the sphere S^{2}, hyperbolic sphere H^{2} and lightlike cone.

In this paper, we consider the canal surfaces whose center curves are the curve on the sphere S^{2}, in the hyperbolic space H^{2} and lightlike cone. Also we classify the such curves with constant curvature and give the related examples for canal surfaces.

Keyword: Canal surfaces, tubular surfaces, hyperbolic curve, lightlike cone.

AMS 2010: 53A35, 53C42, 53C50.

References

[1] H. Liu, Curves in three dimensional Riemannian space forms, Results. Math., 66, 469-480, 2014.
[2] H. Liu, Curves in the lightlike cone, Contributions to Algebra and Geometry, 45(1), 291-303, 2004.
[3] M. K. Karacan, B. Bukcu, An alternative moving frame for a tubular surface around a spacelike curve with a spacelike normal in Minkowski 3-space, Rendiconti del Circolo Matematico di Palermo, 57, 193-201, 2008.
[4] M. K. Karacan, D. W. Yoon, Y. Tuncer, Tubular Surfaces of Weingarten Types in Minkowski 3-space, Gen. Math. Notes, 22, 44-56, 2014.
[5] A. Uçum, K. İlarslan, New types of canal surfaces in Minkowski 3-space, Adv. Appl. Clifford Algebras, 26, 449-468, 2016.
[6] İ. Gök, Quaternionic approach of canal surfaces constructed by some new ideas, Adv. Appl. Clifford Algebras, 27(2), 1175-1190, 2017.

[^82]
CLASSIFICATION OF FRAMED RECTIFYING CURVES IN EUCLIDEAN SPACE

Bahar Doğan Yazıcı ${ }^{1}$, Sıddıka Özkaldı Karakuş ${ }^{2}$, Murat Tosun ${ }^{3}$

Abstract

There are many studies on regular rectifying curves in classical differential geometry and important results have been obtained. As smooth curves with singular points, we consider framed curves in the Euclidean space. A framed curve in the 3-dimensional Euclidean space is a smooth space curve with a moving frame[8]. We study framed rectifying curves via the dilation of unit speed framed curves on the unit sphere S^{2} in the Euclidean space E^{3}. Also, the result of this dilation of framed curves is the framed rectifying curve or not. Classifications for this situation are given. Finally, we give some related examples with their figures.

Keyword: Framed curves, singular point, framed rectifying curves, framed spherical curves, dilation of framed curves.
AMS 2010: 53A04, 58K05, 58K030.

References

[1] B. Y. Chen, When does the position vector of a space curve always lie in its rectifying plane? Amer Math Monthly, 110: 147-152, 2003.
[2] B. Y. Chen, F. Dillen, Rectifying curves as centrodes and extremal curves. Bull Inst Math Acad Sinica, 33, 77-90, 2005.
[3] B. Y. Chen, Rectifying curves and geodesics on a cone in the Euclidean 3-space. Tamkang J Math., 48, 209-214, 2017
[4] S. Deshmukh, B. Y. Chen, N. B. Turki, A differential equations for Frenet curves in Euclidean 3-space and its applications. Rom. J. Math. Comput. Sci.,8(1), 1-6, 2018.
[5] S. Deshmukh, B. Y. Chen, S. H. Alshammari, On rectifying curves in Euclidean 3-space. Turk J Math., 42(2), 609-620, 2018.
[6] B. Doğan Yazıcı, S. Özkaldi Karakuş, M. Tosun, Some characterizations of framed spherical curves. (Submitted paper)

[^83][7] T. Fukunaga, M. Takahashi, Existence conditions of framed curves for smooth curves. Journal of Geometry, 108, 763-774, 2017.
[8] S. Honda, M. Takahashi, Framed curves in the Euclidean space. Advances in Geometry, 16(3), 265-276, 2016.
[9] S. Honda, Rectifying developable surfaces of framed base curves and framed helices. Advanced Studies in Pure Mathematics, 78, 273-292, 2018.
[10] S. Honda, Takahashi M. Evolutes and focal surfaces of framed immersions in the Euclidean space. Proceedings of the Royal Society of Edinburgh. Sect. A., 150(1), 497-516, 2020
[11] K. Ilarslan, E. Nesovic, Some characterizations of rectifying curves in the Euclidean space E4. Turk J Math., 32, 21-30, 2008.
[12] S. Izumiya, N. Takeuchi, New special curves and developable surfaces. Turk J Math (2004); 28:153-163.
[13] D. S. Kim, H. S. Chung, K. H. Cho, Space curves satisfying $\tau / \kappa=a s+b$. Honam Math J., 15, 5-9, 1993.
[14] Y. Wang, D. Pei, R. Gao, Generic properties of framed rectifying curves. Mathematics, 7, 37.
[15] Y. C. Wong, On an explicit characterization of spherical curves. Proc. Amer. Math. Soc., 34, 239-242, 1972.

SURFACES WITH CONSTANT MEAN CURVATURE ALONG A CURVE IN 3-DIMENSIONAL EUCLIDEAN SPACE

Ergin Bayram ${ }^{1}$, Hüsnü Çoşanoğlu ${ }^{2}$

Abstract

In this study, the sufficient conditions are obtained to find surfaces that pass through any given curve in 3-dimensional Euclidean space and whose mean curvature is constant along this curve. For this purpose, firstly, surfaces passing through the given curve are expressed parametrically with the help of the tangent vector field, the principal normal vector field and the binormal vector field of the Frenet frame of the given curve, and the so called marching scale functions which are real valued C1 functions of two variables. The mean curvature of these surfaces along the given curve was calculated in terms of curvature and torsion of the given curve and, marching scale functions and their partial derivatives. Sufficient conditions are obtained to keep the mean curvature constant along the given curve. Some examples are given.

Keyword: Surface family, constant mean curvature, Euclidean 3-space.
AMS 2010: 53A04, 53A05.

References

[1] G. J. Wang, K. Tang, C. L. Tai, Parametric representation of a surface pencil with a common spatial geodesic, Comp. Aided Des., 36, 447-459, 2004.
[2] B. O'Neill, Elementary differential geometry, Academic Press, New York, 1966.

[^84]

ON THE LIGHTCONE FRAME IN MINKOWSKI 3-SPACE

Ergin Bayram ${ }^{1}$

Abstract

There are three types of curves in Minkowski 3-space, e.g. timelike, spacelike and lightlike curves. A mixed type curve is a regular curve, and there are both non-lightlike points and lightlike points in a mixed-type curve. Using lightcone frame for mixed-type curves we study some fundamental properties of surfaces.

Keyword: Mixed-type curves, the lightcone frame, Minkowski 3-space.
AMS 2010: 53A35, 53B30, 51B20.

References

[1] T. Liu, D. Pei, Mixed-type curves and the lightcone frame in Minkowski 3-space, Int. J. Geom. Methods M., 17, no. 6, 2050088, 2020.S0219887820500887.
[2] G. J. Wang, K. Tang, C. L. Tai, Parametric representation of a surface pencil with a common spatial geodesic, Comp. Aided Des., 36, 447-459, 2004.
[3] B. O'Neill, Elementary differential geometry, Academic Press, New York, 1966.

[^85]
ON SLANT RULED SURFACES AND TANGENT BUNDLE OF UNIT 2-SPHERE

Emel Karaca ${ }^{1}$ Mustafa Çalışkan ${ }^{2}$

Abstract

In this study, firstly, new types of ruled surfaces called slant ruled surfaces generated by natural lift curves are defined by using E. Study mapping and the isomorphism between the unit dual sphere, $D S^{2}$ and the subset of tangent bundle of unit 2- sphere, $T \bar{M}$. Secondly, some characterizations for a regular ruled surface to be a slant ruled surface in Euclidean 3- space are denoted. Finally, an example is given to support the obtained results.

Keyword: Ruled surface, natural lift curve, slant ruled surface.
AMS 2010: 51A04, 53A25, 14J26.

References

[1] E. Ergün, M. Caliskan, On natural lift of a curve, Pure Mathematical Sciences, 1(2), 81-85, 2012.
[2] M. Onder, Slant ruled surfaces, arXiv: 1311. 0627v2, 4 Nov 2013.
[3] B. O Neill, Semi-Riemannian Geometry, with applications to relativity.Academic Press, New York, 1983.
[4] F. Hathout, Y. Yayli, M. Bekar, Ruled surfaces and tangent bundle of unit 2-sphere, International Journal of Geometric Methods in Modern Physics, 14(10), 2017.
[5] B. Karakas, H. Gundogan, A relation among $D S^{2}, T S^{2}$ and non-cyclindrical ruled surfaces, 8, 9-14, 2003.

[^86]IECMSA

HOMOTHETIC MOTIONS VIA GENERALIZED TRICOMPLEX NUMBERS

Gülşah Özaydın ${ }^{1}$, Sıddıka Özkaldı Karakuş ${ }^{2}$

Abstract

In this paper, we define the generalized tricomplex numbers and give some algebraic properties of them. By using the matrix representation of generalized tricomplex numbers, we define the homothetic motion on the hypersurface M in eight dimensional generalized linear space $\mathbb{R}_{\alpha \beta \gamma}^{8}$. It is shown that this is a homothetic motion. Also, it is found that the motion defined by a regular curve of order r and derivations curves on the hypersurface M has only one acceleration center of order $(r-1)$ at every t-instant.

Keyword: Tricomplex number, generalized tricomplex numbers, homothetic motion.
AMS 2010: 53A05, 53A17.

References

[1] F. Babadag, Y. Yaylı and N. Ekmekçi, Homothetic motions at E^{8} with bicomplex numbers C_{3}, Int. J. Contemp. Math. Sciences, Vol. 4, No. 33, 1619-1626, 2009.
[2] F. Babadag, Y. Yaylı and N. Ekmekçi, Homothetic motion and bicomplex numbers, Commun. Fac. Sci. Univ. Ank. Series, 58, 23-28, 2009.
[3] F. Kahraman Aksoyak and S. Özkaldı Karakuş, Homotetic motions via Generalized Bicomplex Numbers, 2019, (Submitted).
[4] G. B. Price, An Introduction to Multicomplex Spaces and Functions. Marcel Deccer, Inc., New York, 1990.
[5] G. Özaydın, Genelleştirilmiş Bikompleks Sayılarla Homotetik Hareketler, Master Thesis, Bilecik Şeyh Edebali University, Graduate School of Natural and Applied Science, Department of Mathematics, Bilecik, Turkey, 2019.
[6] H. Kabadayı, Y. Yaylı, Homothetic motion at E^{4} with bicomplex numbers. Adv. App. Clifford Algebra, 21, 541-546, 2011.
[7] M. Jafari and Y. Yaylı, Homothetic motion at $\mathbb{R}_{\alpha \beta}^{4}$, Int. J. Contemp. Math. Sciences, Vol. 5, 47, 2319-2326, 2010.
[8] S. Özkaldı Karakuş and F. Kahraman Aksoyak, Generalized Bicomplex Numbers and Lie Groups, Adv. App. Clifford Algebra, 25, 943-963, 2015.

[^87][9] Y. Yayl, Homothetic motion at E^{4}. Mech. Mach. Theory, 27, 303-305, 1992.
[10] Y. Yaylı and B. Bükcü, Homothetic motion at E^{8} with Cayley numbers. Mech. Mach. Theory, 30, 417-420, 1995.

IECMSA

Algebraic Techniques for Least Squares Problems in Elliptic Complex Matrix Theory and Applications

Hidayet Hüda Kösal ${ }^{1}$, Müge Pekyaman ${ }^{2}$

Abstract

In this study, we derive the expressions of the minimal norm least squares solution for the elliptic complex matrix equation $A X=B$ by using the real representation of RB matrices, and the Moore-Penrose generalized inverse. To prove the authenticity of our results and to distinguish them from existing ones, some illustrative examples are also given.

Keyword: Elliptic complex numbers, real representations, least squares problems.

References

[1] M. Dehghan and M. Hajarian, Efficient iterative method for solving the second-order sylvester matrix equation $E V F^{2}-A V F-C V=B W$, IET Contr. Theory Appl., 3(10), 1401-1408, 2009.
[2] B. Zhou, Z. Li, G. Duan, and Y.Wang, Weighted least squares solutions to general coupled Sylvester matrix equations, J. Comput. Appl. Math., 224(2), 759-776, 2009.
[3] C. Song and G. Chen, On solutions of matrix equations $X F-A X=C$ and $X F-A \widetilde{X}=C$ over quaternion field, J. Appl. Math. Comput., 37(1-2), 57-68, 2011.
[4] J.H. Bevis, F.J. Hall, R.E. Hartwing, Consimilarity and the matrix equation AX - XB = C, in: Current Trends in Matrix Theory, Auburn, Ala., 1986, North-Holland, New York, 1987, pp. 51-64.
[5] J.H. Bevis, F.J. Hall, R.E. Hartwig, The matrix equation AX -XB $=\mathrm{C}$ and its special cases, SIAM Journal on Matrix Analysis and Applications, 9 (3), 348-359, 1988.
[6] A.G. Wu, G.R. Duan, H.H. Yu, On solutions of $X F-A X=C$ and $X F-A \bar{X}=C$, Applied Mathematics and Applications, 182 (2), 932-941, 2006.
[7] T. Jiang, S. Ling, On a solution of the quaternion matrix equation $A \tilde{X}-X B=C$ and its applications, Adv. Appl. Clifford Algebr., 23, 689-699, 2013.

[^88][8] H. H. Kosal, M. Tosun, Some equivalence relations and results over the commutative quaternions and their matrices, An. S.t. Univ. Ovidius Constanta., 25, 125-142, 2017.
[9] F. Catoni, R. Cannata, P. Zampetti, An introduction to commutative quaternions, Adv. Appl. Clifford Algebr., 16, 1-28, 2006.
[10] H. H. Kosal, An Algorithm for solutions to the elliptic quaternion matrix equation $A X=B$, Conference Proceedings of Science and Technology, 1(1), 36-40, 2018.

IECMSA

TUBULAR SURFACES ASSOCIATED WITH FRAMED BASE CURVES

Kemal Eren ${ }^{1}$, Önder Gökmen Yıldız ${ }^{2}$, Mahmut Akyiğit ${ }^{3}$

Abstract

The aim of this paper is to examine tubular surfaces with framed base curves, which play an important role in design to guide the studies on the tubular surface. We build the structure of the tubular surface which has singular points. In section 2 and 3, we give a brief exposition of framed base curves and framed surfaces, respectively. In the fourth section our main results are stated and proved. Moreover section 4 normal of the tubular surface, mean and Gauss curvatures are found and the characterization of the parameter curves on the surface are given. Finally, we have expressed the tubular surface with a framed base curve with an example.

Keyword: Tubular surfaces, frame base curve, geodesic curve, asymptotic curve, line of curvature, Gaussian and mean curvature

AMS 2010: 53A10, 53C50

References

[1] S. Honda and M. Takahashi, Framed curves in the Euclidean space, Adv. Geom., 16, 265-276, 2016.
[2] J. W. Bruce and P. J. Giblin, Curves and singularities, a geometrical introduction to singularity theory, 2nd edn, Cambridge University Press, Cambridge, 1992.
[3] T. Fukunaga and M. Takahashi, Existence and uniqueness for Legendre curves, J. Geom., 104, 297-307, 2013.
[4] T. Fukunaga and M. Takahashi, Framed surfaces in the Euclidean space, Bull Braz Math Soc, New Series, 50, 37-65, 2019.
[5] T. Fukunaga and M. Takahashi, Framed surfaces and one-parameter families of framed curves in Euclidean 3-space, Journal of Singularities, 21, 30-49, 2020.
[6] S. Honda and M. Takahashi, Evolutes and focal surfaces of framed immersions in the Euclidean space, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 150, 497-516, 2020.

[^89][7] J. Huang and D. Pei, Singularities of non-developable surfaces in three-dimensional Euclidean space, Mathematics, 7(11), 1106, 2019.
[8] Ö. G. Yıldız, M. Akyiğit and M. Tosun, On the trajectory ruled surfaces of framed base curves in the Euclidean space, Mathematical Methods in The Applied Sciences, https://doi.org/10.1002/mma.6267, 2020.

IECMSA

On Curve Pairs of Tzitzeica Type

Kemal Eren ${ }^{1}$, Soley Ersoy ${ }^{2}$

Abstract

The most important curve pairs in differential geometry are involute evolute, Bertrand and Mannheim curve pairs. In this study, for each of these special curve pairs, the condition of the conjugate of the original curve to be a Tzitzeica curve in Euclidean 3-space is formulated. Moreover, under consideration of the special states of the curvatures of the original curve of curve pairs, the condition of the conjugate curve to be a Tzitzeica curve is investigated. Especially, if a curve is a planar curve, circle or helix, it is found whether its conjugate satisfies the condition of being Tzitzeica curve.

Keyword: Tzitzeica curve, involute evolute curve, Bertrand curve, Mannheim curve AMS 2010: 53A04, 53A05

References

[1] G. Tzitzeica, Sur certaines courbes gauches, Ann. de IÊc. Normale Sup., 28, 9-32, 1911.
[2] A. F. Agnew, A. Bobe, W. G. Boskoff and B. D. Suceava, Tzitzeica curves and surfaces, The Mathematica J., 12, 1-18, 2010.
[3] A. Bobe, W. G. Boskoff, M. G. Ciuca, Tzitzeica-type centro-affine invariants in Minkowski spaces, An. Univ. Ovidius Constanta Ser. Mat., 20(2), 27-34, 2012.
[4] O. Constantinescu, M. Crasmareanu, A new Tzitzeica hypersurface and cubic Finslerian metrics of Berwald type, Balkan J. Geom. Appl., 16(2), 27-34, 2011.
[5] N. Bila, Symmetry reductions for the Tzitzeica curve equation Math and Comp.Sci. Working Papers, Paper 16, 2012.
[6] B. Bayram, E. Tunç, K. Arslan, G. Öztürk, On Tzitzeica curves in Euclidean 3-space E^{3}. Facta Univ. Ser. Math. Inform., 33(3), 409-416, 2018.
[7] M.E. Aydın, M. Ergüt, Non-null curves of Tzitzeica Type in Minkowski 3-space. Rom. J. Math. Comput. Sci., 4(1), 81-90, 2014.

[^90][8] M.K. Karacan, B. Bükcü, On the elliptic cylindrical Tzitzeica curves in Minkowski 3-space. Sci. Manga, 5, 44-48, 2009.

A NOTE ON D-HOMOTHETIC DEFORMATION ON ALMOST PARACONTACT METRIC MANIFOLDS

Mehmet Solgun ${ }^{1}$

Abstract

In this work, we introduce the notion of D-homothetic deformation on almost paracontact metric manifolds. Besides, we show that the structure after the deformation is also almost paracontact metric structure. Moreover, we investigate the classes of the structures after deformation for some certain conditions.

Keyword: Almost paracontact structure, d-homothetic deformation, almost paracomplex structure. AMS 2010: 53C15, 53C25, 53C50.

References

[1] B. O'Neill, Semi-Riemannian Geometry. Academic Press, New York, 1983.
[2] I. Sato, On a structure similar to the almost contact structure, Tensor, New Series, 30, 219-224,1976.
[3] S. Kaneyuki, F. L. Williams, Almost paracontact and parahodge structureson manifolds, Nagoya Math. J., 99, 173-187, 1985.
[4] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Global Anal. Geom., 36, 37-60, 2009.
[5] S. Zamkovoy, G. Nakova, The decomposition of almost paracontact metric manifolds in eleven classes revisited. J. Geom. 109, 18, 2018.

[^91]

Frenet Curve Couples in Three Dimensional Lie Groups

Osman Zeki Okuyucu ${ }^{1}$

Abstract

In this study, we examine the possible relations between the Frenet planes of given two curves in three dimensional Lie groups with left invariant metric. Also, we give some characterizations for these curves. Moreover, we introduce these notions for bi-invariant metric case.

Keyword: Curves in Lie groups, Curvatures, Frenet plane.
AMS 2010: 53A04, 22E15.

References

[1] A. Yampolsky, A. Opariy, Generalized helices in three-dimensional Lie groups, Turk. J. Math., 43, 1447-1455, 2019.
[2] İ. Gök, O. Z. Okuyucu, N. Ekmekci, Y. Yaylı, On mannheim partner curves in three dimensional lie groups, Miskolc Mathematical Notes, 15(2), 467-479, 2014.
[3] M. Barros, General helices and a theorem of Lancert, Proc. Amer. Math. Soc., 125(5), 1503-1509, 1997.
[4] M. A. Lancret, Mémoire sur la théorie des courbes à double courbure, Memoires présentés a Institut, 416-454, 1806.
[5] O. Z. Okuyucu, İ. Gök, Y. Yaylı, N. Ekmekci, Slant helices in three dimensional Lie groups, Applied Mathematics and Computation, 221, 672-683, 2013.
[6] O. Z. Okuyucu, İ. Gök, Y. Yaylı, N. Ekmekci, Bertrand curves in three dimensional lie groups, Miskolc Mathematical Notes, 17(2), 999-1010, 2017.
[7] S. Ö. Karakuş, K. İlarslan, Y. Yayl, A new approach characterization of curve couples in eucledean 3-space, Honam Mathematical J., 36(1), 113-129, 2014.
[8] Ü. Çiftçi, A generalization of Lancretâs theorem, Journal of Geometry and Physics, 59, 1597-1603, 2009.
[9] Z. Bozkurt, İ. Gök, O. Z. Okuyucu, F. N. Ekmekci, Characterizations of rectifying, normal and osculating curves in three dimensional compact Lie groups, Life Science Journal, 10(3), 819-823, 2013.

[^92]
ON THE MATRIX REPRESENTATION OF BEZIER CURVES AND DERIVATIVES IN
 E^{3}

Şeyda Kılıçog̃lu ${ }^{1}$, Süleyman Şenyurt ${ }^{2}$

Abstract

In this study we have examined, the coefficient matrix of a general Bezier curve. It's derivatives have been examined too with matrix form based on the control points in E^{3}. Also a simple way has been given to find the control points of any $4^{t h}$ degree Bezier curve.

Keyword: Bezier curve, control points, matrix representation.
AMS 2010: 53A04, 53A05.

References

[1] W.R. Hamilton, Lectures on quaternions, Hodges and Smith, Dublin, 1853.
[2] Ş. Kılıçoğlu, S. Şenyurt, On the involute of the cubic bezier curve by using matrix representation in e^{3}, European Journal of Pure and Applied Mathematics, 13, 216-226, 2020.
[3] G. Farin, Curves and surfaces for computer-aided geometric design, Academic Press, 1996.
[4] S. Celik, H. Kusak, M. Incesu, The bishop frame of bezier curves, Life Science Journal, 12(6), 2015.
[5] H. Hacısalihog̃lu, Diferensiyel geometri (in turkish), University of Inonu Press, Malatya, 1994.
[6] H. Hagen, Bezier-curves with curvature and torsion continuity, Rocky Mountain J. Math., 16(3), 629-638, 1986.
[7] M. İncesu, O. Gürsoy, Ls(2)-equivalence conditions of control points and application to planar bezier curves, New Trends in Mathematical Sciences, 3(5), 70-84, 2017.
[8] A. Levent, B. Şahin, Cubic bezier-like transition curves with new basis function, Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan, 44(2), 222-228, 2018.
[9] D. Marsh, Applied Geometry for Computer Graphics and CAD, Springer Science and Business Media, 2006.
[10] F. Tas, K. İlarslan, A new approach to design the ruled surface, International Journal of Geometric Methods in Modern Physics, 16(6):1950093, 2019.
[11] H. Zhang, F. Jieqing, Bezier curves and surfaces (2), State Key Lab of CAD\&CG, Zhejiang University, 2006.

[^93][12] Ş. Kıliçõ̃lu, S. Şenyurt, On the cubic bezier curves in E^{3}, Ordu University Journal of Science and Technology, 9(2), 83-97, 2019.

Mannheim curves in E^{3} and spinors

Tülay Erişir ${ }^{1}$

Abstract

In this paper, the spinors with two complex components have been studied and the spinor representations of Mannheim curves in \mathbb{E}^{3} have been obtained. Firstly, the spinor representations of Frenet vectors of curve in three dimensional Euclidean space \mathbb{E}^{3} have been introduced. Moreover, the Mannheim curves corresponding two spinor with complex components have been chosen. So, the relations between the spinors corresponding to the Mannheim curves have been researched. Finally, an example which crosscheck to theorems throughout this study has been given.

Keyword: Spinors, mannheim curves.
AMS 2010: 11B39, 11R52.

References

[1] É. Cartan, The Theory of Spinors, The M.I.T. Press, Cambridge, MA, 1966.
[2] G. F. T. Del Castillo and G. S. Barrales, Spinor formulation of the differential geometry of curves, Revista Colombiana de Matematicas, 38, 27-34, 2004.
[3] T. Erisir, M. A. Gungor and M. Tosun, Geometry of the hyperbolic spinors corresponding to alternative frame, Adv. in Appl. Cliff. Algebr., 25, 4, 799-810, 2015.
[4] Y. Balci, T. Erisir and M. A. Gungor, Hyperbolic spinor darboux equations of spacelike curves in minkowski 3-space, Journal of the Chungcheong Mathematical Society, 28, 4, 525-535, 2015.
[5] Z. Ketenci, T. Erisir and M.A. Gungor, A construction of hyperbolic spinors according to frenet frame in minkowski space, Journal of Dynamical Systems and Geometric Thedories, 13, 2, 179-193, 2015.
[6] D. Unal, I. Kisi and M. Tosun, Spinor bishop equation of curves in euclidean 3-space, Adv. in Appl. Cliff. Algebr., 23, 3, 757-765, 2013.
[7] I. Kişi and M. Tosun, Spinor darboux equations of curves in euclidean 3-space, Math. Morav., 19, 1, 87-93, 2015.
[8] H. Liu and F. Wang, Mannheim partner curves in 3-space, Journal of Geometry, 88, 120-126, 2008.
[9] K. Orbay and E. Kasap, On Mannheim partner curves in \mathbb{E}^{3}, International Journal of Physical Science, 4, 261-264, 2009.

[^94]
ABOUT LORENTZ TRANSFORMATIONS WITH ELLIPTIC BIQUATERNIONS

Zülal Derin ${ }^{1}$, Mehmet Ali Güngör ${ }^{2}$

Abstract

In this study, the Lorentz transformations which are in accordant with special relativity have been examined for the first time with elliptic biquaternions. Since the elliptic biquaternions contain the complex structure, it is quite beneficial to examine with elliptic biquaternions the Lorentz transformations which one of the building blocks of relativistic physics via elliptic biquaternions. Therefore, as a result of relativistic transformation relation, it has been seen that the Lorentz transformations can be expressed with elliptic biquaternions and some special results have been given. In addition, matrix representations of obtained mathematical expressions are given. Thanks to the matrix representations of elliptical biquaternions, the property of commutativeness which is not valid for elliptic biquaternions has been eliminated and these representations provide easiness for relativistic transformation relation. In this context, the presented method in this article is very useful in many other areas of physics such as relativistic electromagnetism.

Keyword: Lorentz transformations, elliptic biquaternions.
AMS 2010: 11R52, 00A79

References

[1] B.L Van Der Waerden, Discovery of quaternions, Math. Magazine, 49, 227-234, 1976.
[2] H. Hilmi Hacısalihoğlu, Hareket geometrisi ve kuaterniyonlar teorisi, Gazi Üniversitesi, Fen Edebiyat Fakültesi Yayınları, Ankara, 1983.
[3] W.R. Hamilton, Lectures on quaternions, Hodges and Smith, Dublin, 1853.
[4] A. Kyrala, Theoretical physics: applications of vectors, matrices, tensors and quaternions, Philadelphia, London, W. B. Saunders Company, 1967.
[5] L. Silberstein, Quaternionic form of relativity, Philosophical Magazine, 23, 790-809, 1912.
[6] K. N. Srinivasa Rao, A. V. Gopala Rao and B. S. Narahari, On the quaternion representation of the proper lorentz group so(3,1), Journal of Mathematical Physics, 24, 1945-1954, 1983.

[^95][7] R. Dahm, Complex quaternions in spacetime symmetry and relativistic spin-flavor supermultiplets, Physics of Atomic Nuclei, 61, 1885-1891, 1998.
[8] K. Özdağ, Fiziksel niceliklerin kuaterniyonlarla temsili, Fen-Edebiyat Dergisi, 2, 101-113, 1939.
[9] M. Tanışl, K. Özdağ, Application of quaternion representation to stanford manipulator, Balkan Physics Letters, 5, 65-68, 1997.
[10] J.P. Ward, Quaternions and cayley numbers: algebra and applications, Kluwer Academic Publishers, Dordrecht, Boston, London, 1997.
[11] C. Manogue, J. Schray, Finite lorentz transformations, Automorphisms and Divison Algebras, Journal of Mathematical Physics, 34, 3746-3767, 1993.
[12] S. De Leo, Lorentz group and dirac equation, Foundations of Physics Letters, 14, 37-50, 2001.
[13] S. Demir, Elektromanyetizmanın kompleks kuaternionik dönüşüm bağıntıları, Anadolu Unıversity Journal of Scıence and Technology, 7, 247-253, 2006.
[14] Y. Tian, Biquaternions and their complex matrix representations, BeitrÃOge zur Algebra und Geometrie/ Contributions to Algebra and Geometry, 54, 575-592, 2013.
[15] M. Jafari, On the matrix algebra of complex quaternions, TWMS Journal of Pure and Applied Mathematics,In press, DOI: 10.13140/RG.2.1.3565.2321, 2016.
[16] T. Y. Lam, The algebraic theory of quadratic forms, Benjamin, Newyork, 1973.
[17] M. L. Mehta, Matrix theory:matrix theory : selected topics and useful results, 1989.
[18] R. S. Pierce, Associative algebras, Springer-Verlag, 1982.
[19] B. L. Van Der Waerden, A history of algebra from al-khwarizmi to emmy noether, Springer-Verlag, New York, 1985.
[20] S. Demir, Lorentz dönüsümlerinin kompleks kuaternionlarla incelenmesi, C.B.A. Fen Bilimleri Dergisi 3.1, 1-14, 2007.
[21] K. E. Özen, M. Tosun, Further results for elliptic biquaternions, Conference Proceeding of 7 th International Eurasian Conference on Mathematical Sciences and Application, 1, 20-27, 2018.
[22] Yaglom, Complex numbers in geometry, Academic Press, New York, 1968.
[23] A. A. Harkin and J. B. Harkin, Geometry of generalized complex numbers, Mathematics Magazine 77, 118-129, 2004.
[24] T. Erisir, M. A. Güngör, Holditch-type theorem for non-linear points in generalized complex plane, Universal Journal of Mathematics and Applications, 1, 239-243, 2018.
[25] T. Erişir, M.A. Güngör, On fibonacci spinors, International Journal Of Geometric Methods In Modern Physics, doi: 10.1142/S0219887820500656, 2020.
[26] K.E. Özen, M. Tosun, P-trigonometric approach to elliptic biquaternions, Adv. Appl. Clifford Alg., 28, 3-16, 2018.
[27] K. E. Özen, M. Tosun, Elliptic matrix representations of elliptic biquaternions and their applications, Int. Electron. J. Geom. 11, 96-103, 2018.

A STUDY OF ELLIPTIC BIQUATERNIONIC ANGULAR MOMENTUM AND DIRAC EQUATION

Zülal Derin ${ }^{1}$, Mehmet Ali Güngör ${ }^{2}$

Abstract

In this article, we deal with the Dirac equation and angular momentum, which have an important place in physics, in terms of elliptic biquaternions. Thanks to the elliptic biquaternionic representation of angular momentum, we have expressed some useful mathematical and physical results. We obtained the solutions of the Dirac equation with elliptic Dirac matrices. Then, we expressed the elliptic biquaternionic rotational Dirac equation. This equation could be interpreted as the combination of rotational energy and angular momentum of the particle and antiparticle. Therefore, we also discuss the rotational energy momentum in the Euclidean space the elliptic biquaternionic form of the relativistic mass. Further, we expressed the spinor wave function with elliptic biquaternions. Accordingly, we also showed elliptic biquaternionic rotational Dirac energy-momentum solutions through this function.

Keyword: Dirac equation, elliptic biquaternions, angular momentum.
AMS 2010: 11R52, 00A79

References

[1] S. De Leo, Quaternionic lorentz group and dirac equation, Foundations of Physics Letters, 14, 37-50, 2001.
[2] S. Conte, On a generalization of quantum mechanics by biquaternions, Haddronnic Journal, 16, 261-275, 1993.
[3] O. P. S. Negi et al., Revisiting quaternion formulation and electromagnetism, Nuovo Cimento, 113B, 1449-1467, 1998.
[4] J. P. Ward, Quaternions and cayley numbers, Dordrecht, Boston, London, Kluwer Academic Publishers, 1997.
[5] B. C. Chanyal, Sandhya, A comparative study of quaternionic rotational dirac equation and its interpretation, International Journal of Geometric Methods in Modern Physics, 17, 2020.
[6] I. M. Yaglom, Complex numbers in geometry, Academic Press, New York, 1968.
[7] A. A. Harkin, J. B. Harkin, Geometry of generalized complex numbers, Mathematics Magazine, 77, 118-129, 2004.

[^96][8] H. Hilmi Hacısalihoğlu, Hareket geometrisi ve kuaterniyonlar teorisi, Gazi Üniversitesi Fen Edebiyat Fakültesi Yayınları, Ankara, 1983.
[9] M. Tanışl, G. Özgür, Biquaternionic representationa of angular momentum and dirac equation, Acta Physica Slovaca, 53, 243-252, 2003.
[10] K. E.Özen, M. Tosun, Elliptic biquaternion algebra, AIP Conf. Proc., https://doi.org/10.1063/1.5020481, 2018.
[11] Z. Derin, M. A. Güngör, On lorentz transformations with elliptic biquaternions, Tbilisi Mathematical Journal, accepted, 2020.
[12] K. E. Özen, M. Tosun, Further results for elliptic biquaternions, Conference Proceeding of 7 th International Eurasian Conference on Mathematical Sciences and Application, 2018.

MATHEMATICS EDUCATION

IECMSA - 2020

Tasks Enrichment, Modeling Problems and Inverse Reformulations: An Experience with Prospective Teachers in Spain

Victor Martinez-Luaces ${ }^{1}$, Jose Antonio Fernandez-Plaza ${ }^{2}$, Luis Rico ${ }^{3}$

Abstract

This article is devoted to study the enrichment of tasks by prospective teachers, focusing on the reformulation of direct problems. For this purpose, we worked with a population of 74 students of the Master's Degree in Teaching Secondary Education offered by the University of Granada, Spain [1-2]. In order to guide the participants, several examples of possible reformulations were provided all of them posed in an inverse forma although the subjects were allowed to answer without any constraint, only focusing on producing richer proposals. Some prospective teachers were very creative, but the majority preferred to copy or to adapt the given examples [3], simply making small changes in the geometry and/or in the given conditions.

Keyword: Tasks enrichment, teaching training courses, inverse modeling problems.
AMS 2010: 97B50, 97D50, 97C70.

References

[1] V. Martinez-Luaces, L. Rico, J. F. Ruiz-Hidalgo, J. A. Fernandez-Plaza, Inverse modeling problems and task enrichment in teacher training courses, In: Progress in Education, 53, Nova Science Publishers, New York, 2018.
[2] V. Martinez-Luaces, J. A. Fernandez-Plaza, L. Rico, Inverse modeling problems in task enrichment for STEM courses. In: Theorizing STEM Education in the 21st Century, IntechOpen, London, 2020.
[3] V. Martinez-Luaces, J. A. Fernandez-Plaza, L. Rico, J. F. Ruiz-Hidalgo, Inverse reformulations of a modelling problem proposed by prospective teachers in Spain. International Journal of Mathematical Education in Science and Technology. DOI: 10.1080/0020739X.2019.1683773, 2019.

[^97]

IECMSA

COMPARING APPROACHES FOR APPROXIMATING CONTINUOUS RANDOM DISTRIBUTIONS WITH APPLICATION IN RELIABILITY ENGINEERING

Alessandro Barbiero ${ }^{1}$, Asmerilda Hitaj ${ }^{2}$

Abstract

In many problems of applied probability, it is a common procedure to represent a continuous random variable through a finite number k of points, that is, approximating it with a discrete random variable. This may occur when the solution to a complex problem involving several random variables cannot be derived in an analytic closed-form; in this case, approximation through discretization is a valid alternative to Monte Carlo evaluation.

Many discretization techniques have been proposed so far, which possibly try to retain different features of the original continuous distribution. We can roughly classify them into two main broad classes. The techniques belonging to the first class try to match the first moments of the original distribution: among them, we find an early method based on the Gaussian quadrature [1], which, despite its name, can be applied to other distributions than the Gaussian and matches all the first $2 k-1$ moments; the techniques belonging to the second class try instead to preserve the cumulative distribution function (or, equivalently, the survival function) of the original distribution (see, e.g., [2]).

In this work, we revise several techniques, highlighting their pros and cons, and empirically investigate their performance through a comparative study applied to a well-known engineering problem, formulated as a stress-strength model, with the aim of assessing their feasibility and accuracy (in terms of mean absolute deviation) in recovering the value of the reliability parameter over a large array of artificial scenarios. The results overall reward a recently introduced method [3] as the best performer, which derives the discrete approximation as the solution to a constrained non-linear optimization, preserving the first two moments of the original distribution.

Keyword: Discrete approximation, Gaussian quadrature, reliability parameter, stress-strength model. AMS 2010: 62-XX, 62E17

[^98]
References

[1] G.H. Golub, J.H. Welsch, Calculation of Gauss quadrature rules, Mathematics of Computation, 23(106), 221-230, 1969.
[2] Z. Drezner, D. Zerom, A simple and effective discretization of a continuous random variable, Communications in Statistics - Simulation and Computation, 45(10), 3798-3810, 2016.
[3] D. Roy, T. Dasgupta, A discretizing approach for evaluating reliability of complex systems under stress-strength model, IEEE Transactions on Reliability, 50(2), 145-150, 2001.

INFERENCE FOR $P(X>Y)$ UNDER NON-IDENTICAL COMPONENT STRENGTHS BASED ON THE RAYLEIGH DISTRIBUTION

Çağatay Çetinkaya ${ }^{1}$

Abstract

The simple stress-strength reliability model contains a strength variable X and a stress variable Y which is exposed to it. Such a system will properly function when X exceeds Y and $R=P(X>Y)$ denotes to the system reliability. This model can be extended for the systems with two or more components and denoted by multicomponent stress-strength models [1]. However, these reliability models mostly have unrealistic assumptions such as they have independently and identically distributed components. Since these assumptions are not quite realistic in most cases due to different structures of the system components, Johnson [2] was introduced the system reliability with non-identical component strengths and Pandey et al.[3] generalized to more than two groups of components. Recent studies considered these reliability models under various cases.

On the other hand, as a special case of the two parameter Weibull distribution and mostly used distribution in reliability studies, Rayleigh distribution has significantly importance for modelling lifetimes which have increasing failure rates. There are many various studies based on Rayleigh distribution in the literature. These studies generally take part in project effort loadings modelling, life testing experiments, wind speed modelling, reliability analysis, communication theory, physical sciences, engineering, medical imaging science, applied statistics and clinical studies. Recently, multicomponent stress-strength reliability estimation under Rayleigh distribution was studied by Rao [4]. As a further study, in this study, we consider a stress-strength model with non-identical strength components under assumptions of Rayleigh distribution. In this purpose, we assume two different categories for strength variables of the system. Maximum likelihood estimation (MLE), method of moments (MOM) estimation and Bayesian estimation procedures are used for inference of this reliability problem. Further, corresponding asymptotic confidence intervals for the MLEs and MOM estimations and the highest posterior density (HPD) credible intervals for Bayesian estimation of reliability are obtained. Proposed estimation methods are compared numerically with simulation studies.

Keyword: Maximum likelihood, methods of moment estimation, rayleigh distribution, stress-strength. AMS 2010: 62N05, 62F10, 78M05

[^99]
References

[1] G.K. Bhattacharyya and R.A. Johnson, Estimation of reliability in a multicomponent stress-strength model. Journal of the American Statistical Association, 69(348), 966-970,1974.
[2] R.A. Johnson, 3 Stress-strength models for reliability. Handbook of statistics, 7, 27-54, 1988.
[3] M. Pandey, M.B. Uddin and J. Ferdous, Reliability estimation of an s-out-of-k system with non-identical component strengths: the Weibull case. Reliability Engineering and System Safety, 36(2), 109-116, 1992.
[4] G.S. Rao, Estimation of reliability in multicomponent stress-strength model based on Rayleigh distribution. In ProbStat Forum. 5(1), 150-161, 2012.

IECMSA

ORTHOGONAL MIXED MODELS and PRIME BASIS FACTORIALS

Dário Ferreira ${ }^{1}$, Sandra S Ferreira ${ }^{2}$, Célia Nunes ${ }^{3}$, João T Mexia ${ }^{4}$

Abstract

Prime basis factorial models have the advantage of allowing the simultaneous study of a larger number of interactions compared to classical approaches. However, the procedures for obtaining the sums of squares can be a bit cumbersome. In this work we present a recurrence way for obtaining the sums of squares, for cases with any number of factors and levels, even when it is neither a prime or a power of a prime. We illustrate the method with an application to real data, where the $\%$ of total deaths due to cancer, diabets and any circulatory system disease in three European countries, in three years, is compared. We compare our results with the ones obtained using ANOVA.

Keyword: ANOVA, inference, mixed models, prime basis factorial models.
AMS 2010: 62E20, 62F10, 62J10.

Acknowledgements

This work was partially supported by the Portuguese Foundation for Science and Technology through the projects UIDP/MAT/00212/2020 and UIDP/MAT/00297/2020.

References

[1] R.A. Bailey, Orthogonal partitions in designed experiments. Designs, Codes and Cryptography, 8, 45-77, 1996.
[2] R.A. Bailey, S.S. Ferreira, D. Ferreira, C. Nunes, Estimability of Variance Components when all Model Matrices Commute, Linear Algebra and its Applications, 492, 144-160, 2015.

[^100][3] F. Carvalho, Strictly associated models, prime basis factorials: an application, Discussiones Mathematicae Probability and Statistics, 31, 77-86, 2011.
[4] D. Ferreira, S.S. Ferreira, C. Nunes, J.T. Mexia, Tests and relevancies for the hypotheses of an orthogonal family in a model with orthogonal block structure, Journal of Statistical Computation and Simulation, 90, 3, 412-419, 2020.
[5] S. Oliveira, C. Nunes, E. Moreira, M. Fonseca and J. T. Mexia, Balanced prime basis factorial fixed effects model with random number of observations, Journal of Applied Statistics, 2019, Doi: https://doi.org/10.1080/02664763.2019.1679097
[6] V. Jesus, J.T. Mexia, M. Fonseca and R. Zmyślony, Binary operations and canonical forms for factorial and related models, Linear Algebra and its Applications, 430, 2781-2797, 2009.

IECMSA

On modeling time series of counts using INAR models

Miroslav M. Ristić ${ }^{1}$, Aleksandar S. Nastić ${ }^{2}$, Predrag M. Popović ${ }^{3}$, Petra N. Laketa ${ }^{4}$

Abstract

Modeling time series of counts is a topic that arise a lot of interest among researchers and practitioners in recent decades. Since each and every time series has its specificity, there is a necessity to define an appropriate model for the observed series. We will discuss the main approaches in modeling time series of counts, and present some of the recent results in this field of science. The models that we discuss are autoregressive and they are composed of two components: the survival and the innovation. The survival component is the autoregressive part of the model. It is defined by using the thinning operators. We will present models based on different types of thinning operators. Also, we will discuss how the choice of the innovation component influence on the model properties. We will give some comments regarding models dimensionality where we pay special attention on bivariate models. Stationary as well as non-stationary models will be presented, and we will demonstrate the practical aspect of these models on real life data series.

Keyword: Binomial thinning operator, negative binomial thinning operator, stationary model, nonstationary model.
AMS 2010: 62M10.

References

[1] A.S. Nastić, P.N. Laketa, M.M. Ristić, Random Environment Integer-Valued Autoregressive process, Journal of Time Series Analysis 37, 267-287, 2016.
[2] P.M. Popović, H.S. Bakouch, A bivariate integer-valued bilinear autoregressive model with random coefficients, Statistical Papers, https://doi.org/10.1007/s00362-018-1005-1, 2018.
[3] P.M. Popović, M.M. Ristić, A.S. Nastić, A geometric bivariate time series with different marginal parameters. Statistical Papers, 57(3), pp.731-753, 2016.

[^101][4] M.M. Ristić, A.S. Nastić, H.S. Bakouch, A new geometric first-order integer-valued autoregressive (NGINAR(1)) process, Journal of Statistical Planning and Inference 139, 2218-2226, 2012.
[5] M.G. Scotto, C.H. Weiss, S. Gouveia, Thinning-based models in the analysis of integer-valued time series: a review. Statistical Modelling, 15(6), 590-618, 2015.
[6] F.W. Steutel, K. Van Harn, Discrete analogues of self-decomposability and stability. The Annals of Probability, 893-899, 1979.

IECMSA

CUMULANTS AND THEIR ESTIMATORS IN ADDITIVE MODELS

Patrícia Antunes ${ }^{1}$, Sandra Ferreira ${ }^{2}$, Dário Ferreira ${ }^{3}$, João T Mexia ${ }^{4}$

Abstract

In this work we will show how to estimate the cumulants of order r of the components of the vectors of the random part of an additive model. We will see how to overcome the estimation problem of the fourth cumulant, through the use of pairs of observation vectors, in order to find an unbiased estimator for the square of variance. Note that this requirement can be discarded if we only want to estimate the cumulants up to the third order. In the particular case where the distributions of the vector components of the random part of the model have parameters of location and dispersion, we will no longer need pairs of models since the cumulant estimators are linear combinations of the central moments. Thus, we can estimate all cumulants of any order, including fourth order, which previously offered estimation problems. We will particularize for the case in which distributions of the vector components are Normal.

Keyword: Cumulants, estimators, mixed models, moments.
AMS 2010: 62E20, 62F10, 62J10.

Acknowledgements

This work was partially supported by the Portuguese Foundation for Science and Technology through the projects UIDP/MAT/00212/2020 and UIDP/MAT/00297/2020.

References

[1] B. Prabir. Estimation of generalized additive models, J. Multivar. Anal., Elsevier, 32(2), 230-255, 1990.

[^102][2] B. A. Turlach, M. G. Schimek, Additive and generalized additive models: A survey. SFB 373 Discussion Papers. RePEc:zbw:sfb373:199897, 1998.
[3] H. Wolfgang, O. Linton. Nonparametric Regression, SFB 373 Discussion Papers 1995,29, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes, 1995.

IECMSA

CONFIDENCE REGIONS AND TESTS FOR NORMAL MODELS WITH ORTHOGONAL BLOCK STRUCTURE

Sandra S Ferreira ${ }^{1}$, Dário Ferreira ${ }^{2}$, Célia Nunes ${ }^{3}$, João T Mexia ${ }^{4}$

Abstract

We emphasize the using of pivot variables to obtain confidence regions and, through duality, to test hypothesis for variance components, estimable functions and estimable vectors. In deriving confidence regions for the variance components and the estimable vectors we apply the GlivenkoCantelli theorem and related results to samples of values of pivot variables. Moreover, for estimable vectors we consider families of samples in order to adjust confidence ellipsoids using a similar technique to least square adjustments of linear regressions that may bring some gain relatively to the previous one. A numerical example using real data set is presented to illustrate the methodology developed (confidence intervals [spheres] for estimable functions [vectors]). The nearness of the estimators and the modes is remarkable, validating the numerical results and allowing the safe use of induced densities.

Keyword: Confidence regions, estimable functions, mixed models, orthogonal block structure, variance components.
AMS 2010: 62E20, 62F10, 62J10.

Acknowledgements

This work was partially supported by the Portuguese Foundation for Science and Technology through the projects UIDP/MAT/00212/2020 and UIDP/MAT/00297/2020.

[^103]
References

[1] R. Anderson, Use of variance component analysis in the interpretation of biological experiments, Bull. Int. Stat. Inst., 37, 1-22, 1960.
[2] T. Caliński, S. Kageyama, Block Designs: A Randomization Approach. Vol. I: Analysis, Lecture Notes in Statistics, 150, Springer-Verlag, New York, 2000.
[3] M. Fonseca, J.T. Mexia and R. Zmyślony, Estimating and testing of variance components: an application to a grapevine experiment, Listy Biometryczne-Biometrical Letters, 40, 1, 1-7, 2003.
[4] A. Khuri, H. Sahai, Variance components analysis: a selective literature survey, Int. stat. rev., 279-300, 1985.
[5] S. Searle, G. Casella, C. McCulloch. Variance Components. John Wiley \& Sons, Inc, 1992.

IECMSA

EXAMINATION OF PARALLEL AND SERIES CONNECTED COMPONENTS UNDER REPAIRABLE PRINCIPLE

Yunus Güral ${ }^{1}$, Mehmet Gürcan ${ }^{2}$

Abstract

Investigation of the reliability of technical systems is one of the application areas of stochastic processes. The reliability of a technical system is basically based on two main elements. The first is the connection type of the system, and the second is the distribution of the working times of the components consisting of the system. In this study, system signatures and their reliability will be calculated under the principle of repairable parallel and serial systems consisting of two components. Although there are a limited number of studies in the literature for repairable systems, there is no study on creating the signature of repairable systems. In technical systems where there is no repair principle, although the system signature has limited components, the technical systems working under the repair principle, have infinite components of the system signature. While creating the system signature, the probability that the working time of the component that is in the state of the system failure is greater than the repair time was defined as the parameter ξ. In the application part of the study, under the principle of repair, the system signature, and the reliability of the system were be successfully calculated.

Keyword: Technical systems, system signature, system reliability, repairable technical systems.
AMS 2010: 60H30.

References

[1] F.J. Samaniego, On closure the ifr class under formation of coherent systems, IEEE Trans. Reliab., 34, 69-72, 1985.
[2] S. Kochar, H. Mukerjee, F.J. Samaniego, The signature of a coherent system and its application to comparison among systems, Naval Research Logistic, 46, 507-523, 1999.
[3] F.J. Samaniego ,On the comparison of engineered systems of different sizes, Proceedings of the 12th Annual Army Conference on Applied Statistics, 2006.

[^104][4] F. J. Samaniego, N. Balakrishnan, J. Navarro, Dynamic signatures and their use in comparing the reliability of new and used systems, Naval Research Logistic, 56, 577-591, 2009.
[5] M. Mahmoudi, M. Asadi, The dynamic signature of coherent systems, IEEE Trans. Reliab.,60, 817-822, 2011.
[6] S. Eryılmaz, Computing reliability indices of repairable systems via signature, Journal of Computational and Applied Mathematics, 260, 229-235, 2014.
\qquad

TOPOLOCY

IECMSA - 2020

Suzuki Type E-Contraction via Simulation Functions in Modular b-Metric Spaces

Abdurrahman Büyükkaya ${ }^{1}$, Mahpeyker Öztürk ${ }^{2}$

Abstract

This study aims to introduce Suzuki type E-contraction mappings with simulation functions in the frame of modular b-metric spaces. Also, some coincidence and common fixed point results are obtained for four mappings using the weakly compatibility property which these results are the extensions and improvements of the existing literature.

Keyword: Modular b-metric space, simulation function, suzuki type contraction, weakly compatible mappings.

AMS 2010: $54 \mathrm{H} 25,47 \mathrm{H} 10$.

References

[1] S. Banach, Sur les operations dans les emsembles abstraits et leurs applications aux equations integrales, Fund. Math., 1, 133-181, 2012.
[2] Khojasteh, F., Shukla, S., Radenovic, S., A new approach to the study of fixed point theorems for simulation functions. Filomat, 29, 2015.
[3] A. Fulga, E. Karapınar, Some results on S-contractions of Type E, Mathematics, 1-9, 195(6), 2018. 737-743, 1936.
[4] Ege, M. E., Alaca, C., Some results for modular b-metric spaces and an application to system of linear equations. Azerbaijan Journal of Mathematics, 8(1), 3-14, 2018.
[5] Parvaneh, V., Hussain N., Khorshidi M., Mlaiki N., Aydi H., Fixed Point Results for Generalized F-Contractions in Modular b-Metric Spaces with Applications, Mathematics, 1-16, 7(10), 2019.
[6] Czerwik, S., Contraction Mappings in b-Metric Spaces, Acta. Math. Inform. Univ. Ostrav., 1 (1), 5-11, 2018.
[7] C. Mongkolkeha, Y.J. Cho, and P.Kumam, Fixed point theorems for simulation functions in $b-$ metric spaces via the $w t$-distance, Applied General Topology, 91-105, 1(18), 2017.
[8] Suzuki, T., A new type of fixed point theorem in metric spaces. Nonlinear Anal., 71, 5313-5317, 2009.
[9] P. Kumam, D. Gopal, L. Budhia, A new fixed point theorem under Suzuki type Z-contraction mappings, J. Math. Anal., 8, 113-119, 2017.

[^105][10] D. Yu, C. Chen,H. Wang, Common fixed point theorems for $(T, g)_{F}$-contraction in b-metric-like spaces, Journal of Inequalities and Applications, 1-10, (222), 2018.
[11] G.V.R. Babu, D. Ratna Babu, Common fixed points of rational type and geraghty-suzuki type contraction maps in partial metric spaces, Journal of the int. Math. virtual Inst., 9(2), 341-359, 2019.
[12] G.V.R. Babu, D. Ratna Babu, Common Fixed Points of Geraghty-Suzuki Type Contraction Maps in b-Metric Spaces,Proceedings of International Mathematical Sciences, 26-47, (1), 2020.

IECMSA

REDEFINING DISORIENTED KNOTS AND LINKS

İsmet Altıntas ${ }^{12}$, Hatice Parlatıcı ${ }^{3}$

Abstract

The concept of disoriented knot was first introduced by Altintaş [1] in 2018. In [1], a disoriented knot was defined as the embedding of a disoriented circle with two arcs into 3-dimensional space or 3-dimensional sphere. In this paper, we define a disoriented knot as an embedding of a disoriented circle with a $2 n$ arcs into 3 -dimensional space or 3 -dimensional sphere, and provide diagrammatic methods such as disoriented Reidemeister moves and disoriented Gauss diagrams to create invariants of the diagrams of disoriented knots and links.

Keyword: Disoriented knot, disoriented connected sum, disoriented Reidemeister moves, disoriented Gauss codes, disoriented Gauss diagrams.
AMS 2010: 57M25, 57M27

References

[1] İ. Altıntaş, Introduction to disoriented knot theory, Open Math. 16 (1), 346-357, 2018.
[2] ̇. Altintaş, On disoriented knot theory, ICMME-2018, Ordu University, 27-29 June 2018, Book of Abstracts, acikerisim.bartin.edu.tr.
[3] L.H. Kauffman, Knot and physics, 3rd edition, Series on Knots and Everything: Volume 1, Word Scientific, Singapore, 2001.
[4] K. Murasugi, Knot theory and its applications, Modern BirkhÃouser Classics, BirkhÃ̛user, Boston, Inc., Boston, MA, 2008.
[5] H. A. Dye, L. H. Kaufman, Virtual crossing number and the arrow polynomial, J. Knot Theory Ramications, 18, 1335-1357, 2009.
[6] H. A. Dye, L. H. Kaufman, V. O. Manturov, On two categorications of the arrow polynomial for virtual knots, In: The mathematics of knots, Contrib. Math. Comput. Sci., 1, Springer, Heidelberg, 95-124, 2011.

[^106][7] D. Clark, S. Morrison, K. Walker, Fixing the functoriality of Khovanov homology, Geom. Topol., 13, 1499-1582, 2009.
[8] M. Polyak, Minimal generating sets of Reidemeister moves, Quantum Topol. 1, 4, 399-411, 2010.

A SOFT SET APPROACH TO RELATION

Kemal Taşköprü ${ }^{1}$

Abstract

This paper presents a soft set approach to the relations via the soft elements. Here, we introduce soft relation on the collection of soft elements, give basic properties of them and some examples. Also, we investigate the relationships between soft relations and classical relations.

Keyword: Soft relation, order, equivalance.
AMS 2010: 54A05, 54A10, 54H25.

References

[1] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37(4), 19-31, 1999.
[2] K.V. Babitha, J.J. Sunil, Soft set relations and functions, Comput. Math. Appl., 60(7), 1840-1849, 2010.
[3] J.H. Park, O.H. Kim, Y.C. Kwun, Some properties of equivalence soft set relations, Comput. Math. Appl., 63(6), 1079-1088, 2012.
[4] M. Abbas, B. Ali, S. Romaguera, On Generalized Soft Equality and Soft Lattice Structure, Filomat, 28(6), 1191-1203, 2014.
[5] H.L. Yang, Z.L. Guo, Kernels and closures of soft set relations, and soft set relation mappings, Comput. Math. Appl., 61(3), 651-662, 2011.
[6] G. Yaylalı, N. Çakmak Polat, B. Tanay, Soft Intervals and Soft Ordered Topology, CBU J. of Sci., 13(1), 81-89, 2017.
[7] K. Taşköprü, İ. Altıntaş, A new approach for soft topology and soft function via soft element, Math. Meth. Appl. Sci., pp 1-15, 2020.

[^107]IECMSA - 2020

ON SOFT PARTIAL METRIC
İsmet Altıntaş ${ }^{1}$ Kemal Taşköprü ${ }^{2}$, Peyil Esengul Kyzy ${ }^{3}$

Abstract

In this paper, an introduction has been made to soft partial metric spaces via soft elements, which is a generalisation of the soft metric. Some properties of soft partial metric and the relationships of soft partial metric, classical metric and soft metric are investigated. Also, a generalised soft metric for non-Hausdorff soft topologies is proposed and a new approach that guides how to expand soft metric implements like the Banach theorem to such topologies is given.

Keyword: Soft set, soft element, soft partial metric.
AMS 2010: 54A05, 54A10, 54H25.

References

[1] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37(4), 19-31, 1999.
[2] S. Das, S.K. Samanta, On soft metric spaces, J. Fuzzy Math., 21(3), 707-734, 2013.
[3] M. Bukatin, R. Kopperman, S. Matthews, H. Pajoohesh, Partial metric spaces, Amer. Math. Monthly, 116(8), 708718, 2009.
[4] H.P. Kanzi, H. Pajoohesh, M. Schellekens, Partial quasi-metrics, Theoret. Comput. Sci., 365(3), 237-246, 2006.
[5] K. Taşköprü, İ. Altıntaş, A new approach for soft topology and soft function via soft element, Math. Meth. Appl. Sci., pp 1-15, 2020.
[6] S. Oltra, O. Valero, Banachas fixed point theorem for partial metric spaces, Rend. Istit. Mat. Univ. Trieste, 36, 17-26, 2004.
[7] İ. Altıntaş, K. Taşköprü, P. Esengul kyzy, Soft partial metric spaces, Soft Comput., submitted, 2020.

[^108]

IECMSA - 2020

List of Participants of IECMSA-2020

Invited Speakers	
Prof. Dr. Bayram Sahin	(Ege University, Turkey)
Prof. Dr. Jean-Michel Coron	(Université Pierre et Marie Curie, France)
Prof. Dr. Metin Başarır	(Sakarya University, Turkey)
Prof. Dr. Ulrich Kohlenbach	(Technische Universität Darmstadt, Germany)
Participants	
Prof. Dr. Abilmazhin Adamov	(Eurasian National University, Kazakhstan)
Prof. Dr. Bolatbek Rysbaiuly	(International IT University, Kazakhstan)
Prof. Dr. Célia Nunes	(University of Beira Interior, Portugal)
Prof. Dr. Cristina Flaut	(Ovidius University)
Prof. Dr. Djordje Herceg	(University of Novi Sad, Serbia)
Prof. Dr. Friedrich Wehrung	(Université de Caen, France)
Prof. Dr. Ivan Petkovic	(University of Nis, Serbia))
Prof. Dr Jerzy Cioslowski	(University of Szczecin, Poland)
Prof. Dr. João T. Mexia	(New University of Lisbon, Portugal)
Prof. Dr. José Antonio Fernández-Plaza	(University of Granada, Spain)
Prof. Dr. Khanlar Reşidoğlu Mamedov	(Mersin University, Turkey)
Prof. Dr. Leonid Minchenko	(Belarusian State University, Belarus)
Prof. Dr. Ljiljana Teofanov	(University of Novi Sad, Serbia)
Prof. Dr. Luis Rico	(University of Granada, Spain)
Prof. Dr. Mahmut Ergüt	(Tekirdag Namık Kemal University, Turkey)
Prof. Dr. Mehmet Ali Güngör	(Sakarya University, Turkey)
Prof. Dr. Messaoud Boulbrachene	(Sultan Qaboos University, Oman)

Prof. Dr. Mikail Et	(Fırat University, Turkey)
Prof. Dr. Minvydas Ragulskis	(Kaunas University of Technology, Lithuania)
Prof. Dr. Miroslav M. Ristic	(University of Nis, Serbia)
Prof. Dr. Murat Tosun	(Sakarya University, Turkey)
Prof. Dr. Petko D. Proinov	(University of Plovdiv Paisii Hilendarski, Bulgaria)
Prof. Dr. Predrag Vukovic	(University of Zagreb, Croatia)
Prof. Dr. Sıddıka Özkaldı Karakuş	(Bilecik Seyh Edebali University, Turkey)
Prof. Dr. Sidney A. Morris	(Federation University Australia)
Prof. Dr. Snezhana Hristova	(Plovdiv University, Bulgaria)
Prof. Dr. Soley Ersoy	(Sakarya University, Turkey)
Prof. Dr. Victor Martinez-Luaces	(University of the Republic of Uruguay, Uruguay)
Prof. Dr. Vladimir Vasilyev	(Belgorod State National Research University, Russia)
Prof. Dr. Wutiphol Sintunavarat	(Thammasat University, Thailand)
Assoc. Prof. Dr. Aleksandar S. Nastic	(University of Nis, Serbia)
Assoc. Prof. Dr. Alessandro Barbiero	(Università Degli Studi Di Milano, Italy)
Assoc. Prof. Dr. Celil Nebiyev	(Ondokuz Mayıs University, Turkey)
Assoc. Prof. Dr. İsmet Altıntas	(Sakarya University, Turkey)
Assoc. Prof. Dr. Katarina Kukic	(University of Belgrad, Serbia)
Assoc. Prof. Dr. Loreta Saunoriene	(Kaunas University of Technology, Lithuania)
Assoc. Prof. Dr. Mahmut Akyiğit	(Sakarya University, Turkey)
Assoc. Prof. Dr. Mahpeyker Öztürk	(Sakarya University, Turkey)
Assoc. Prof. Dr. Murat Kirişci	(Istanbul University - Cerrahpaşa, Turkey)
Assoc. Prof. Dr. Osman Zeki Okuyucu	(Bilecik Seyh Edebali University, Turkey)
Assoc. Prof. Dr. Önder Gökmen Yıldız	(Bilecik Seyh Edebali University, Turkey)
Assoc. Prof. Dr. Samra Sadikovic	(University of Tuzla, Bosnia and Herzegovina)
Assoc. Prof. Dr. Sanela Halilovic	(University of Tuzla, Bosnia and Herzegovina)
Assoc. Prof. Dr. Serpil Halıcı	(Pamukkale University, Turkey)
Assoc. Prof. Dr. Şeyda Kılıçoğlu	(Baskent University, Turkey)
Assoc. Prof. Dr. Yoritaka Iwata	(Kansai University, Japan)
Assist. Prof. Dr. Abdelaziz Maouche	(Sultan Qaboos University, Oman) 162

Assist. Prof. Dr. Ali İbrahimoğlu	(Yıldız Technical University, Turkey)
Assist. Prof. Dr. Altan Erdoğan	(Gebze Technical University, Turkey)
Assist. Prof. Dr. Burhan Alveroğlu	(Bursa Technical University, Turkey)
Assist. Prof. Dr. Dário Ferreira	(University of Beira Interiorc, Portugal)
Assist. Prof. Dr. Ergin Bayram	(Ondokuz Mayıs University, Turkey)
Assist. Prof. Dr. Figen Erylmaz	(Ondokuz Mayıs University, Turkey)
Assist. Prof. Dr. Furkan Semih Dündar	(Amasya University, Turkey)
Assist. Prof. Dr. Goran Radojev	(University of Novi Sad, Serbia)
Assist. Prof. Dr. Hasan Hüseyin Ökten	(Amasya University, Turkey)
Assist. Prof. Dr. Hidayet Hüda Kösal	(Sakarya University, Turkey)
Assist. Prof. Dr. İlker Burak Giresunlu	(Bilecik Seyh Edebali University, Turkey)
Assist. Prof. Dr. Ivana Stanisev	(Belgrade University, Serbia)
Assist. Prof. Dr. Kemal Taşköprü	(Bilecik Seyh Edebali University, Turkey)
Assist. Prof. Dr. Marat Nurtas	(International IT University, Kazakhstan)
Assist. Prof. Dr. Mehmet Solgun	(Bilecik Seyh Edebali University, Turkey)
Assist. Prof. Dr. Milena Petkova	(Plovdiv University Paisii Hilendarski, Bulgaria)
Assist. Prof. Dr. Mine Babaoğlu	(Kahramanmaraş Sütçü İmam University, Turkey)
Assist. Prof. Dr. Mirela Jukic Bokun	(University of Osijek, Croatia)
Assist. Prof. Dr. Mirjana Brdar	(University of Novi Sad, Serbia)
Assist. Prof. Dr. Muhammet Cihat Dağlı	(Akdeniz University, Turkey)
Assist. Prof. Dr. Osman Alagöz	(Bilecik Seyh Edebali University, Turkey)
Assist. Prof. Dr. Predrag Popovic	(University of Nis, Serbia)
Assist. Prof. Dr. Stoil Ivanov	(University of Plovdiv Paisii Hilendarski, Bulgaria)
Assist. Prof. Dr. Tülay Erişir	(Erzincan Binali Yıldırım University, Turkey)
Assist. Prof. Dr. Zafer Bekiryazicı	(Recep Tayyip Erdoğan University, Turkey)
Assist. Prof. Dr. Zehra Pınar	(Namık Kemal University, Turkey)
Lecturer Dr. Hamed K. Mostafa Awad	(Damanhour University, Turkey)
Lecturer Dr. Sergey Sirotko	(Belarusian State University, Belarus)
Lecturer Patrícia Antunes	(University of Beira Interior, Portugal)
Lecturer Reena Reena Vyas	(Govt. P.G. College, India)

Lecturer Ulviyye Kerimova	(Baku State Univesity, Azerbaijan)
Teaching Assistant Nemanja Vuksanovic	(University of Belgrad, Serbia)
Dr. A. N. Satybaldina	(Eurasian National University, Kazakhstan)
Dr. Alexander Vasilyevich Glushak	(Belgorod State University, Russia)
Dr. Ali Uçum	(Kırıkkale University, Turkey)
Dr. Aliaksandr Pashuk	(Belarusian State University, Belarus)
Dr. Beyaz Başak Eskişehirli	(İstanbul University, Turkey)
Dr. Burhan Tiryakioğlu	(Marmara University, Turkey)
Canan Ciftci	(Ordu University, Turkey)
Dr. Fatih Say	(Ordu University, Turkey)
Dr. Fatima Tokmukhamedova	(International IT University, Kazakhstan)
Dr. Kemal Eren	(Sakarya University, Turkey)
Dr. Manish Chauhan	(University of Delhi, India)
Dr. O. A. Tarasova	(Belgorod State National Research University, Russia)
Dr. Rabia Savas	(Turkey)
Dr. Raj Kumar	(University of Delhi, India)
Dr. Sandra Ferreira	(Universidade Da Beira Interior, Portugal)
Rsc. Assist. Dr. Cagatay Cetinkaya	(Bingöl University, Turkey)
Rsc. Assist. Dr. Elis Soylu Yılmaz	(Osmangazi University, Turkey)
Rsc. Assist. Dr. Ezgi Erdoğan	(Marmara University, Turkey)
Rsc. Assist. Dr. Ramazan Özarslan	(Fırat University, Turkey)
Researcher Antonia Dobreva	(Plovdiv University Paisii Hilendarski, Bulgaria)
Rsc. Assist. Abdurrahman Büyükkaya	(Karadeniz Technical University, Turkey)
Rsc. Assist. Andromeda Sonea	(University Alexandru Ioan Cuza, Romania)
Rsc. Assist. Anıl Altınkaya	(Gazi University, Turkey)
Rsc. Assist. Ayla Erdur	(Tekirdag Namik Kemal University, Turkey)
Rsc. Assist. Bahar Doğan Yazıcı	(Bilecik Seyh Edebali University, Turkey)
Rsc. Assist. Cesar Catalan Capaccioni	(Universidad Politecnica De Valencia, Spain)
Rsc. Assist. Emel Karaca	(Ankara Hacı Bayram Veli University, Turkey)
Rsc. Assist. Petra N. Laketa	(University of Nis, Serbia)
	164

Rsc. Assist. Volkan Ala	(Mersin University, Turkey)
Rsc. Assist. Yunus Güral	(Fırat University, Turkey)
Student Aigul Satybaldina	(Eurasian National University, Kazakhstan)
Student Ali Turab	(Thammasat University, Thailand)
Student Arthana Islamilova	(Indonesia)
Student Arzu Cihan	(Sakarya University, Turkey)
Student Darshana Devi	(Tezpur University, India)
Student Duranta Chutia	(Tezpur University, India)
Student Ekber Girgin	(Sakarya University, Turkey)
Student Elif Güner	(Kocaeli University, Turkey)
Student Faruk Kaplan	(Düzce University, Turkey)
Student Fatma Ekinci	(Dicle University, Turkey)
Student Hasan Civanbay	(University of Dundee, Scotland)
Student Hatice Parlatıcı	(Sakarya University, Turkey)
Student Hazal Yüksekkaya	(Dicle University, Turkey)
Student Hilal Başak Özdemir	(Ondokuz Mayıs University, Turkey)
Student Iş̧l Arda Kösal	(Sakarya University, Turkey)
Student Nazlı Irkıl	(Dicle University, Turkey)
Student Nazrke Mukhametkaliyeva	(Kazakh British Technical University, Kazakhstan)
Student Plamena Marcheva	(University of Plovdiv Paisii Hilendarski, Bulgaria)
Student Satyapriya	(University of Delhi, India)
Student Süleyman Aydınyüz	(Pamukkale University, Turkey)
Student Veysel Kılınç	(Mersin University, Turkey)
Student Yavuz Sahin	(Amasya University, Turkey)
Student Zehra İşbilir	(Yıldız Technical University, Turkey)
Student Zhanat Karashbayeva	(Eurasian National University, Kazakhstan)
Student Zülal Derin	(Sakarya University, Turkey)

IECMSA - 2020

ACADEMIC SPONSORS

SAKARYA

ONIVERSITESI

[^0]: ${ }^{1}$ Department of Mathematics, Ege University, İzmir, Turkey, bayram.sahin@ege.edu.tr

[^1]: ${ }^{1}$ Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie, jean.m.coron@gmail.com

[^2]: ${ }^{1}$ Department of Mathematics, Sakarya University, Sakarya, 54050, Turkey, basarir@sakarya.edu.tr

[^3]: ${ }^{1}$ Department of Mathematics Technische Universität Darmstadt Schlossgartenstraße 7D-64289 Darmstadt, Germany, kohlenbach@mathematik.tu-darmstadt.de

[^4]: ${ }^{1}$ University Alexandru Ioan Cuza, Iaşi, Romania, soneaandromeda@yahoo.com

[^5]: ${ }^{1}$ Amasya University, Amasya, Turkey, burcunisancie@hotmail.com
 ${ }^{2}$ Ondokuz Mayıs University, Samsun, Turkey, figenyuzbasi@gmail.com

[^6]: ${ }^{1}$ Ondokuz Mayıs University, Samsun, Turkey, cnebiyev@omu.edu.tr
 ${ }^{2}$ Amasya University, Amasya, Turkey, huseyin.okten@amasya.edu.tr

[^7]: ${ }^{1}$ Ondokuz Mayıs University, Samsun, Turkey, cnebiyev@omu.edu.tr

[^8]: ${ }^{1}$ Ondokuz Mayıs University, Samsun, Turkey, cnebiyev@omu.edu.tr
 ${ }^{2}$ Amasya University, Amasya, Turkey, huseyin.okten@amasya.edu.tr

[^9]: ${ }^{1}$ Ondokuz Mayıs University, Samsun, Turkey, cnebiyev@omu.edu.tr
 ${ }^{2}$ Ondokuz Mayıs University, Samsun, Turkey, hilal-basak@windowslive.com

[^10]: ${ }^{1}$ Ondokuz Mayıs University, Samsun, Turkey, cnebiyev@omu.edu.tr
 ${ }^{2}$ Amasya University, Amasya, Turkey, huseyin.okten@amasya.edu.tr

[^11]: ${ }^{1}$ Osmangazi University, Eskişehir, Turkey, esoylu@ogu.edu.tr
 ${ }^{2}$ Dumlupınar University, Kütahya, Turkey, koray.yilmaz@dpu.edu.tr

[^12]: ${ }^{1}$ Duzce University, Duzce, TURKEY, farkaplan@gmail.com
 ${ }^{2}$ Duzce University, Duzce, TURKEY, arzuozkoc@duzce.edu.tr

[^13]: ${ }^{1}$ University of Osijek, Osijek, Croatia, mirela@mathos.hr

[^14]: ${ }^{1}$ Pamukkale University, Denizli, Turkey, aydinyuzsuleyman@gmail.com
 ${ }^{2}$ Pamukkale University, Denizli, Turkey, mustafa.asci@yahoo.com

[^15]: ${ }^{1}$ Pamukkale University, Denizli, Turkey, scuruk.9220@gmail.com
 ${ }^{2}$ Pamukkale University, Denizli, Turkey, shalici@pau.edu.tr

[^16]: ${ }^{1}$ Amasya University, Amasya, Turkey, yavuzsahinn@yahoo.com
 ${ }^{2}$ Amasya University, Amasya, Turkey, burcu.turkmen@amasya.edu.tr

[^17]: ${ }^{1}$ Sultan Qaboos university, Muscat, Oman, maouche@squ.edu.om

[^18]: ${ }^{1}$ Department of Mathematics and Statistics Faculty of Science and Technology Thammasat University Rangsit Center, Pathumthani 12120, Thailand, taurusnoor@yahoo.com
 ${ }^{2}$ Department of Mathematics and Statistics Faculty of Science and Technology Thammasat University Rangsit Center, Pathumthani 12120, Thailand, wutiphol@mathstat.sci.tu.ac.th

[^19]: ${ }^{1}$ Istanbul University, Istanbul, Turkey, basakoca@istanbul.edu.tr

[^20]: ${ }^{1}$ Marmara University, Istanbul, Turkey, ezgi.erdogan@marmara.edu.tr

[^21]: ${ }^{1}$ Sakarya University, Sakarya, Turkey, girginekber@gmail.com
 ${ }^{2}$ Sakarya University, Sakarya, Turkey, mahpeykero@sakarya.edu.tr

[^22]: ${ }^{1}$ Sakarya University, Sakarya, TURKEY, isilarda@hotmail.com
 ${ }^{2}$ Sakarya University, Sakarya, TURKEY, mahpeykero@sakarya.edu.tr

[^23]: ${ }^{1}$ University of Belgrade, Bor, Serbia, radojevic.ivanica@gmail.com

[^24]: ${ }^{1}$ Sultan Qaboos University, Muscat, Oman, boulbrac@squ.edu.om

[^25]: ${ }^{1}$ Department of Mathematics, Fırat University, Elazığ-23119, TURKEY, mikailet68@gmail.com

[^26]: ${ }^{1}$ Department of Mathematics, Fırat University, Elazığ-23119, TURKEY, mikailet68@gmail.com
 ${ }^{2}$ Faculty of Education, Harran University, Sanliurfa, Turkey, hacer.sengul@hotmail.com
 ${ }^{3}$ Department of Mathematics, Muş Alparslan University, Muş, Turkey, muhammedcinar23@gmail.com

[^27]: ${ }^{1}$ Bilecik Şeyh Edebali University, Bilecik, Türkiye, osman.alagoz@bilecik.edu.tr

[^28]: ${ }^{1}$ Belgorod State National Research University, Belgorod, Russia, tarasova_o@bsu.edu.ru
 ${ }^{2}$ Belgorod State National Research University, Belgorod, Russia, alexvassel@gmail.coml
 ${ }^{3}$ Belgorod State National Research University, Belgorod, Russia, vladimir.b.vasilyev@gmail.com

[^29]: ${ }^{1}$ University of Plovdiv Paisii Hilendarski, Plovdiv, Bulgaria, proinov@uni-plovdiv.bg
 ${ }^{2}$ University of Plovdiv Paisii Hilendarski, Plovdiv, Bulgaria, stoil@uni-plovdiv.bg

[^30]: ${ }^{1}$ University of Plovdiv Paisii Hilendarski, Plovdiv, Bulgaria, proinov@uni-plovdiv.bg
 ${ }^{2}$ University of Plovdiv Paisii Hilendarski, Plovdiv, Bulgaria, milenapetkova@uni-plovdiv.bg

[^31]: ${ }^{1}$ University of Plovdiv Paisii Hilendarski, Plovdiv, Bulgaria, plami@uni-plovdiv.bg
 ${ }^{2}$ University of Plovdiv Paisii Hilendarski, Plovdiv, Bulgaria, stoil@uni-plovdiv.bg

[^32]: ${ }^{1}$ University of Zagreb, Faculty of Teacher Education, Savska cesta 77, 10000 Zagreb, Croatia, predrag.vukovic@ufzg.hr

[^33]: ${ }^{1}$ Department of Mathematics, Kirori Mal College, University of Delhi, India, rajkmc@gmail.com
 ${ }^{2}$ Department of Mathematics, University of Delhi, India, manish17102021@gmail.com
 ${ }^{3}$ Department of Mathematics, Govt. P.G. College, Gurugram, India, reena.bhagwat29@gmail.com
 ${ }^{4}$ Department of Mathematics, University of Delhi, India, kmc.satyapriya@gmail.com

[^34]: ${ }^{1}$ Sakarya University, Sakarya, Turkey, rabiasavass@hotmail.com

[^35]: ${ }^{1}$ University of Tuzla, Tuzla, Bosnia and Herzegovina, sanela.halilovic@untz.ba

[^36]: ${ }^{1}$ University of Plovdiv "Paisii Hilendarski", Plovdiv, Bulgaria, snehri@gmail.com

[^37]: ${ }^{1}$ University of Tuzla, Bosnia and Herzegovina, samra.sadikovic@untz.ba

[^38]: ${ }^{1}$ Department of Mathematics, University of Delhi, India, kmc.satyapriya@gmail.com
 ${ }^{2}$ Department of Mathematics, Kirori Mal College, University of Delhi, India, rajkmc@gmail.com

[^39]: ${ }^{1}$ L.N.Gumilyov Eurasian National University, Nur-Sultan, Republic of Kazakhstan, adam1955@mail.ru
 ${ }^{2}$ L.N.Gumilyov Eurasian National University and International Information Technology University, Nur-Sultan, Republic of Kazakhstan, aigul1191@gmail.com

[^40]: ${ }^{1}$ Yıldız Technical University, Istanbul, Turkey, bibrahim@yildiz.edu.tr

[^41]: ${ }^{1}$ Bursa Technical University, Bursa, Turkey, burhan.alveroglu@btu.edu.tr

[^42]: ${ }^{1}$ Bursa Technical University, Bursa, Turkey, burhan.alveroglu@btu.edu.tr

[^43]: ${ }^{1}$ International Information Technology University, Almaty, Kazakhstan, b.rysbaiuly@mail.ru
 ${ }^{2}$ L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan, zhanat.k.o.91@gmail.com

[^44]: ${ }^{1}$ International Information Technology University, Almaty, Kazakhstan, b.rysbaiuly@mail.ru
 ${ }^{2}$ Kazakh-British Technical University, Almaty, Kazakhstan, nazerkem09@gmail.com
 ${ }^{3}$ International Information Technology University, Almaty, Kazakhstan, n.mukhametkaliyeva@iitu.kz

[^45]: ${ }^{1}$ Marmara University, Istanbul, Turkey, burhan.tiryakioglu@marmara.edu.tr

[^46]: ${ }^{1}$ Kocaeli University, Department of Mathematics, Kocaeli, TURKEY, elif.guner@kocaeli.edu.tr
 ${ }^{2}$ Kocaeli University, Department of Mathematics, Kocaeli, TURKEY, halis@kocaeli.edu.tr

[^47]: ${ }^{1}$ Dicle University, Diyarbakır, Turkey, episkin@dicle.edu.tr
 ${ }^{2}$ Dicle University, Diyarbakır, Turkey, ekincifatma2017@gmail.com

[^48]: ${ }^{1}$ Dicle University, Diyarbakır, Turkey, episkin@dicle.edu.tr
 ${ }^{2}$ Dicle University, Diyarbakır, Turkey, ekincifatma2017@gmail.com

[^49]: ${ }^{1}$ Dicle University, Diyarbakır, Turkey, episkin@dicle.edu.tr
 ${ }^{2}$ Dicle University, Diyarbakır, Turkey, ekincifatma2017@gmail.com

[^50]: ${ }^{1}$ Dicle University, Diyarbakır, Turkey, episkin@dicle.edu.tr
 ${ }^{2}$ Dicle University, Diyarbakır, Turkey, hazally.kaya@gmail.com

[^51]: ${ }^{1}$ Dicle University, Diyarbakır, Turkey, episkin@dicle.edu.tr
 ${ }^{2}$ Dicle University, Diyarbakır, Turkey, hazally.kaya@gmail.com

[^52]: ${ }^{1}$ Dicle University, Diyarbakır, Turkey, episkin@dicle.edu.tr
 ${ }^{2}$ Dicle University, Diyarbakır, Turkey, hazally.kaya@gmail.com

[^53]: ${ }^{1}$ Dicle University, Diyarbakır, Turkey, episkin@dicle.edu.tr
 ${ }^{2}$ Dicle University, Diyarbakır, Turkey, nazliirkil@gmail.com

[^54]: ${ }^{1}$ Amasya University, Amasya, Turkey, furkan.dundar@amasya.edu.tr

[^55]: ${ }^{1}$ Department of Mathematics, Ordu University, Ordu, Turkey, fatihsay@odu.edu.tr

[^56]: ${ }^{1}$ Department of Mathematics, Ordu University, Ordu, Turkey, fatihsay@odu.edu.tr

[^57]: ${ }^{1}$ University of Novi Sad, Faculty of Sciences, Novi Sad, Serbia, goran.radojev@dmi.uns.ac.rs

[^58]: ${ }^{1}$ Bilecik Seyh Edebali University, Bilecik, Turkey, iburak.giresunlu@bilecik.edu.tr

[^59]: ${ }^{1}$ Faculty of Electronic Engineering, University of Niš, 18000 Niš, Serbia, email: ivan.petkovic@gmail.com ${ }^{2}$ Faculty of Science, University of Novi Sad, 21000 Novi Sad, Serbia, email: herceg@dmi.uns.ac.rs

[^60]: ${ }^{1}$ Faculty of Economics, University of Belgrade, Serbia, email: jelenas@ekof.bg.ac.rs
 ${ }^{2}$ Faculty of Transport and Traffic Engineering, University of Belgrade, Serbia, email: k.mijailovic@sf.bg.ac.rs
 ${ }^{3}$ Faculty of Economics, University of Belgrade, Serbia, email: nemanja.vuksanovic@ekof.bg.ac.rs

[^61]: ${ }^{1}$ Mersin University, Mersin, Turkey, hanlar@mersin.edu.tr
 ${ }^{2}$ Mersin University, Mersin, Turkey, veysel.kilinc2012@gmail.com

[^62]: ${ }^{1}$ Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus, leonidm@insoftgroup.com
 ${ }^{2}$ Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus, sergeyis@bsuir.by
 ${ }^{3}$ Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus, pashuk@bsuir.by

[^63]: ${ }^{1}$ Kaunas University of Technology, Kaunas, Lithuania, loreta.saunoriene@ktu.lt
 ${ }^{2}$ Kaunas University of Technology, Kaunas, Lithuania, minvydas.ragulskis@ktu.lt

[^64]: ${ }^{1}$ University of Novi Sad, Faculty of Technology, Novi Sad, Serbia, mirjana.brdar@uns.ac.rs
 ${ }^{2}$ University of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia, ljiljap@uns.ac.rs
 ${ }^{3}$ University of Novi Sad, Faculty of Sciences, Novi Sad, Serbia, radojev@dmi.uns.ac.rs

[^65]: ${ }^{1}$ Istanbul University-Cerrahpasa, Istanbul, Turkey, mkirisci@hotmail.com
 ${ }^{2}$ Sakarya University, Sakarya, Turkey, makyigit@sakarya.edu.tr

[^66]: ${ }^{1}$ Istanbul University-Cerrahpasa, Istanbul, Turkey, mkirisci@hotmail.com
 ${ }^{2}$ Istanbul University-Cerrahpasa, Istanbul, Turkey, ntopac@istanbul.edu.tr
 ${ }^{3}$ Istanbul Sabahattin Zaim University, Istanbul, Turkey, musa.bardak@izu.edu.tr

[^67]: ${ }^{1}$ International Information Technology University, Almaty, Kazakhstan, m.nurtas@iitu.kz
 ${ }^{2}$ International Information Technology University, Almaty, Kazakhstan, f.tokmukhamedova@iitu.kz

[^68]: ${ }^{1}$ Dicle University, Diyarbakır, Turkey, episkin@dicle.edu.tr
 ${ }^{2}$ Dicle University, Diyarbakır, Turkey, nazliirkil@gmail.com

[^69]: ${ }^{1}$ Pamukkale University, Denizli, Turkey, nazli-537@hotmail.com
 ${ }^{2}$ Pamukkale University, Denizli, Turkey, shalici@pau.edu.tr

[^70]: ${ }^{1}$ Firat University, Elazig, Turkey, ozarslanramazan@gmail.com

[^71]: ${ }^{1}$ Firat University, Elazig, Turkey, ozarslanramazan@gmail.com

[^72]: ${ }^{1}$ Pamukkale University, Denizli, Turkey, shalici@pau.edu.tr
 ${ }^{2}$ Pamukkale University, Denizli, Turkey, shalici@pau.edu.tr
 ${ }^{3}$ Pamukkale University, Denizli, Turkey, nazli-537@hotmail.com

[^73]: ${ }^{1}$ Department of International Relations and Economy, Baku State University, Baku, Azerbaijan, e-mail: ulviyye_kerimova@yahoo.com

[^74]: ${ }^{1}$ Mersin University, Science and Letters Faculty, Department of Mathematics, Mersin, Turkey, volkanala@mersin.edu.tr
 ${ }^{2}$ Mersin University, Science and Letters Faculty, Department of Mathematics, Mersin, Turkey, ulviyedemirbilek@gmail.com
 ${ }^{3}$ Mersin University, Science and Letters Faculty, Department of Mathematics, Mersin, Turkey, hanlar@mersin.edu.tr

[^75]: ${ }^{1}$ IIQ-Fing-UdelaR, Montevideo, Uruguay

[^76]: ${ }^{1}$ Recep Tayyip Erdogan University, Rize, Turkey, zafer.bekiryazici@erdogan.edu.tr
 ${ }^{2}$ Karadeniz Technical University, Trabzon, Turkey, tkesemen@gmail.com
 ${ }^{3}$ Gumushane University, Gumushane, Turkey, mmerdan@gumushane.edu.tr
 ${ }^{4}$ TOBB University of Economics and Technology, Ankara, Turkey, tahirkhaniyev@etu.edu.tr

[^77]: ${ }^{1}$ Tekirdağ Namik Kemal University, Tekirdağ, Turkey, zpinar@nku.edu.tr

[^78]: ${ }^{1}$ Department of Mathematics, Ordu University, Ordu, Turkey, cananciftci@odu.edu.tr

[^79]: ${ }^{1}$ Gazi University, Ankara, Turkey, anilaltinkaya@gazi.edu.tr
 ${ }^{2}$ Gazi University, Ankara, Turkey, mustafacaliskan@gazi.edu.tr

[^80]: ${ }^{1}$ Sakarya University, Sakarya, Turkey, arzu.cihan3@ogr.sakarya.edu.tr
 ${ }^{2}$ Sakarya University, Sakarya, Turkey, agungor@sakarya.edu.tr

[^81]: ${ }^{1}$ Tekirdag Namik Kemal University, Tekirdag, Turkey, aerdur@nku.edu.tr
 ${ }^{2}$ Firat University, Elazıg, Turkey, meaydin@firat.edu.tr
 ${ }^{3}$ Tekirdag Namik Kemal University, Tekirdag, Turkey, mergut@nku.ed.tr

[^82]: ${ }^{1}$ Kırıkkale University,Kırıkkale, Turkey, aliucum05@gmail.com

[^83]: ${ }^{1}$ Bilecik Seyh Edebali University, 11000 Bilecik, Turkey, bahar.dogan@bilecik.edu.tr
 ${ }^{2}$ Bilecik Seyh Edebali University, 11000 Bilecik, Turkey, siddika.karakus@bilecik.edu.tr
 ${ }^{3}$ Sakarya University, 54000 Sakarya, Turkey, tosun@sakarya.edu.tr

[^84]: ${ }^{1}$ Ondokuz Mayıs University, Samsun, Turkey, erginbayram@yahoo.com
 ²Ondokuz Mayıs University, Samsun, Turkey, hsn09.01@gmail.com

[^85]: ${ }^{1}$ Ondokuz Mayıs University, Samsun, Turkey, erginbayram@yahoo.com

[^86]: ${ }^{1}$ Hacı Bayram Veli University, Ankara, Turkey, , emel.karaca@hbv.edu.tr
 ${ }^{2}$ Gazi University, Ankara, Turkey, mustafacaliskan@gazi.edu.tr

[^87]: ${ }^{1}$ Bilecik Şeyh Edebali University, Bilecik, Turkey, gulsahd4@yahoo.com
 ${ }^{2}$ Bilecik Şeyh Edebali University, Bilecik, Turkey, siddika.karakus@bilecik.edu.tr

[^88]: ${ }^{1}$ Sakarya University, Sakarya, TURKEY, hhkosal@sakarya.edu.tr
 ${ }^{2}$ Sakarya University, Sakarya, TURKEY, muge.pekyaman1@ogr.sakarya.edu.tr

[^89]: ${ }^{1}$ Department of Mathematics, Sakarya University, Sakarya, Turkey, kemaleren52@gmail.com
 ${ }^{2}$ Department of Mathematics, Bilecik University, Bilecik, Turkey, ogokmen.yildiz@bilecik.edu.tr
 ${ }^{3}$ Department of Mathematics, Sakarya University, Sakarya, Turkey, makyigit@sakarya.edu.tr

[^90]: ${ }^{1}$ Department of Mathematics, Sakarya University, Sakarya, Turkey, kemaleren52@gmail.com
 ${ }^{2}$ Department of Mathematics, Sakarya University, Sakarya, Turkey, sersoy@sakarya.edu.tr

[^91]: ${ }^{1}$ Bilecik Şeyh Edebali University, Bilecik, Turkey, mehmet.solgun@bilecik.edu.tr

[^92]: ${ }^{1}$ Bilecik Şeyh Edebali University, Bilecik, TURKEY, osman.okuyucu@bilecik.edu.tr

[^93]: ${ }^{1}$ Baskent University, Ankara, Turkey, seyda@baskent.edu.tr
 ${ }^{2}$ Ordu University, Ordu, Turkey, senyurtsuleyman@hotmail.com

[^94]: ${ }^{1}$ Erzincan Binali Yildirim University, Erzincan, Turkey, tulay.erisir@erzincan.edu.tr

[^95]: ${ }^{1}$ Sakarya University, Sakarya, Turkey, zulal.derin1@ogr.sakarya.edu.tr
 ${ }^{2}$ Sakarya University, Sakarya, Turkey, agungor@sakarya.edu.tr

[^96]: ${ }^{1}$ Sakarya University, Sakarya, Turkey, zulal.derin1@ogr.sakarya.edu.tr
 ${ }^{2}$ Sakarya University, Sakarya, Turkey, agungor@sakarya.edu.tr

[^97]: ${ }^{1}$ University of Granada, Granada, Spain, victorml@correo.ugr.es
 ${ }^{2}$ University of Granada, Granada, Spain, joseanfplaza@ugr.es
 ${ }^{3}$ University of Granada, Granada, Spain, lrico@ugr.es

[^98]: ${ }^{1}$ Università degli Studi di Milano, Milan, Italy, alessandro.barbiero@unimi.it
 ${ }^{2}$ Università degli Studi di Milano-Bicocca, Milan, Italy, asmerilda.hitaj1@unimib.it

[^99]: ${ }^{1}$ Bingöl University, Bingöl, Turkey, ccetinkaya@bingol.edu.tr

[^100]: ${ }^{1}$ Department of Mathematics and Center of Mathematics and Applications, University of Beira Interior, Portugal, dario@ubi.pt
 ${ }^{2}$ Department of Mathematics and Center of Mathematics and Applications, University of Beira Interior, Portugal, sandraf@ubi.pt
 ${ }^{3}$ Department of Mathematics and Center of Mathematics and Applications, University of Beira Interior, Portugal, celian@ubi.pt
 ${ }^{4}$ Center of Mathematics and its Applications, Faculty of Science and Technology, New University of Lisbon, Portugal, jtm@fct.unl.pt

[^101]: ${ }^{1}$ University of Niš, Faculty of Sciences and Mathematics, Serbia, miristic72@gmail.com
 ${ }^{2}$ University of Niš, Faculty of Sciences and Mathematics, Serbia, anastic78@gmail.com
 ${ }^{3}$ University of Niš, Faculty of Civil Engineering and Architecture, Serbia, popovicpredrag@yahoo.com
 ${ }^{4}$ University of Niš, Faculty of Sciences and Mathematics, Serbia, petra.laketa@pmf.edu.rs

[^102]: ${ }^{1}$ Center of Mathematics and Applications, University of Beira Interior, Covilh \tilde{a}, Portugal, antunes.patricia03@gmail.com
 ${ }^{2}$ Department of Mathematics and Center of Mathematics and Applications, University of Beira Interior, Portugal, sandraf@ubi.pt
 ${ }^{3}$ Department of Mathematics and Center of Mathematics and Applications, University of Beira Interior, Portugal, dario@ubi.pt
 ${ }^{4}$ Center of Mathematics and its Applications, Faculty of Science and Technology, New University of Lisbon, Monte da Caparica, Portugal, jtm@fct.unl.pt

[^103]: ${ }^{1}$ Department of Mathematics and Center of Mathematics and Applications, University of Beira Interior, Portugal, dario@ubi.pt
 ${ }^{2}$ Department of Mathematics and Center of Mathematics and Applications, University of Beira Interior, Portugal, sandraf@ubi.pt
 ${ }^{3}$ Department of Mathematics and Center of Mathematics and Applications, University of Beira Interior, Portugal, celian@ubi.pt
 ${ }^{4}$ Center of Mathematics and its Applications, Faculty of Science and Technology, New University of Lisbon, Portugal, jtm@fct.unl.pt

[^104]: ${ }^{1}$ Firat University, Elazığ, TURKEY, ygural@firat.edu.tr
 ${ }^{2}$ Firat University, Elazığ, TURKEY, mgurcan@firat.edu.tr

[^105]: ${ }^{1}$ Karadeniz Technical University, Trabzon, TURKEY, abdurrahman.giresun@hotmail.com
 ${ }^{2}$ Sakarya University, Sakarya, TURKEY, mahpeykero@sakarya.edu.tr

[^106]: ${ }^{1}$ Sakarya University, Sakarya, Turkey, ialtintas@sakarya.edu.tr
 ${ }^{2}$ Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan, ismet.altintas@manas.edu.kg
 ${ }^{3}$ Sakarya University, Sakarya, Turkey, hparlatici@sakarya.edu.tr

[^107]: ${ }^{1}$ Bilecik Şeyh Edebali University, Bilecik, Turkey, kemal.taskopru@bilecik.edu.tr

[^108]: ${ }^{1}$ Sakarya University, Sakarya, Turkey and Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan, ialtintas@sakarya.edu.tr,
 ${ }^{2}$ Bilecik Şeyh Edebali University, Bilecik, Turkey, kemal.taskopru@bilecik.edu.tr
 ${ }^{3}$ Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan, peyilesengulova@gmail.com

