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Radiation to atom quantum mapping by collective recoil in Bose-Einstein condensate
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We propose an experiment to realize radiation to atom continuous variable quantum mapping,
i.e. to teleport the quantum state of a single mode radiation field onto the collective state of atoms
with a given momentum out of a Bose-Einstein condensate. The atoms-radiation entanglement
needed for the teleportation protocol is established through the interaction of a single mode with
the condensate in presence of a strong far off-resonant pump laser, whereas the coherent atomic
displacement is obtained by the same interaction with the radiation in a classical coherent field. In
principle, verification of the protocol requires a joint measurement on the recoiling atoms and the
condensate, however, a partial verification involving populations, i.e. diagonal matrix elements may
be obtained through counting atoms experiments.
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Entanglement is a crucial resource in the manipula-
tion of quantum information, and quantum teleportation
[1, 2] is perhaps the most impressive example of quantum
protocol based on entanglement. Teleportation is the
transferral of (quantum) information between two distant
parties that share entanglement. There is no physical
move of the system from one player to the other, and in-
deed the two parties need not even know each other’s lo-
cations. Only classical information is actually exchanged
between the parties. However, due to entanglement, the
quantum state of the system at the transmitter location
(say Alice) is mapped onto a different physical system at
the receiver location (say Bob). The information trans-
ferral is blind, i.e. the protocol should work also when
the state to be teleported is completely unknown to both
the sender and the receiver. Several teleportation proto-
cols have been suggested either for qubits and continuous
variable systems [3, 4, 5, 6, 7, 8, 9, 10, 11], including in-
terspecies teleportation of atomic spin onto polarization
states of light [12].

In this letter we propose a novel scheme to realize
radiation to atom quantum state mapping i.e. the in-
terspecies teleportation of the quantum state of a single
mode radiation field onto the the collective state of atoms
with a given momentum out of a Bose-Einstein conden-
sate. The four basic ingredients of a quantum teleporta-
tion experiment are the following: i) an entangled state
shared between two parties; ii) a joint Bell measurement
performed on the system whose state is to be teleported
and on one subsystems of the entangled state; iii) a device
able to perform a given class of unitary transformation,
conditioned to the results of the joint measurement; iv) a
readout system to verify teleportation. In the following
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we describe the above points for our teleportation proto-
col, and discuss the feasibility conditions of our proposal.
The setup is schematically illustrated in Fig. 1.
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FIG. 1: Schematic diagram of the proposed experiment to
realize radiation to atom continuous variable quantum map-
ping, i.e. teleportation of the quantum state of a single mode
radiation field onto the collective state of atoms with a given
momentum out of a Bose-Einstein condensate. The experi-
ment proceeds as follows: the atomic mode a1 and the radi-
ation mode a3 are entangled through the interaction of the
light mode with the condensate in presence of a strong far
off-resonant pump laser (CARL dynamics). The outgoing ra-
diation mode a3 is then mixed (in a balanced beam splitter)
at the sender’ location (Alice) with another radiation mode
a4, excited in the state σ, which we want to teleport, and the
joint measurement of a couple of two-mode quadratures is per-
formed. The result of the measurement is sent to the receiver’s
location (Bob), where the corresponding coherent atomic dis-
placement is performed. The latter is obtained through the
same CARL interaction, by injecting a suitably modulated
coherent pulse (M denotes a modulator). The overall dynam-
ics is such that the ensemble of recoiling atoms in the mode
a1 is described by the density matrix τ , which approaches σ

in the limit of high entanglement i.e. high gain of the CARL
interactions.
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The entangled state supporting teleportation will be a
twin-beam-like state of a radiation mode and a collective
mode of atoms with a given momentum out of a Bose-
Einstein condensate. It is given by the quantum CARL
model for interaction of a Bose Einstein condensate
(BEC) with a single-mode quantized radiation field in
the presence of a strong far off-resonant pump laser. The
starting point of such a model is the classical Hamiltonian
for N two-level atoms exposed to an off-resonant pump

laser, whose electric field ~E0 = êE0 cos(~k2 ·~x−ω2t) is po-

larized along ê, propagates along the direction of ~k2 and
has a frequency ω2 = ck2 with a detuning from the atomic
resonance, ∆20 = ω2 − ω0, much larger than the natural
linewidth of the atomic transition, γ. The atoms scatter a
single-mode field circulating in a high-Q ring-cavity, with

frequency ω1, wavenumber ~k1 making an angle φ with ~k2
and electric field ~E = (ê/2)[E(t)ei(~k1·~x−ω1t) + c.c.] with
the same polarization of the pump field. By adiabati-
cally eliminating the internal atomic degree of freedom,
the following CARL Hamiltonian can be derived [14]

H =

N
∑

j=1

[

ωrp
2
j − ig

(

aeiθj − c.c.
)]

−∆|a|2 ,

where ωr = ~q2/2M is the recoil frequency, M is the

atomic mass, q = |~q| and ~q = ~k1 − ~k2 is the differ-
ence between the scattered and the incident wave vec-
tors, θj = qzj and pj = pzj/~q are the dimension-
less position and momentum of the j-th atom along the
axis z directed along ~q, g = (Ω0/2∆20)(ω2d

2/2~ǫ0V )1/2,
a = −i(ǫ0V/2~ω2)

1/2Eei∆t, ∆ = ω2 − ω1, Ω0 = dE0/~
is the Rabi frequency of the pump, V is the interaction
volume, d is the atomic dipole and ǫ0 is the permittivity
of the free space.

In order to quantize both the radiation field and the
center-of-mass motion of the atoms, θj , pj and a are con-
sidered as quantum operators satisfying the canonical
commutation relations [θj , pj′ ] = iδj,j′ and [a, a†] = 1.
The model is then second quantized introducing the
atomic field operator Ψ(θ) with equal-time commutation
relations [Ψ(θ),Ψ†(θ′)] = δ(θ− θ′), [Ψ(θ),Ψ(θ′)] = 0 and

the normalization condition
∫ 2π

0
dθΨ(θ)†Ψ(θ) = N . Cre-

ation and annihilation operators are introduced for atoms
with a definite momentum p, i.e. Ψ(θ) =

∑

m cmum(θ),

where um(θ) = exp(imθ)/
√
2π and cm are bosonic oper-

ators obeying the commutation relations [cm, c
†
n] = δm,n

and [cm, cn] = 0, and c†m creates an atom with momen-
tum p = m in ~q unit. This description of the atomic
motion in a BEC assumes that the atoms are delocal-
ized inside the condensate and that, at zero tempera-
ture, the momentum uncertainty σpz

≈ ~/σz can be ne-
glected with respect to ~q. The approximation is valid
for L ≫ λ, if σz ≈ L, where L is the size of the conden-
sate. The Hamiltonian for the second quantized model

becomes [15]

H =

∞
∑

n=−∞

{

ωrn
2c†ncn + ig

(

a†c†ncn+1 − h.c.
)}

−∆a†a

(1)
Notice that the Hamiltonian (1) commutes with the num-
ber of atoms, N =

∑

n c
†
ncn, and the total momentum,

P = a†a +
∑

n nc
†
ncn. Let us now consider the equilib-

rium state with no field and all the atoms at rest, i.e. in
momentum state with n = 0. In the linear regime, we
neglect the atomic depletion of the ground state n = 0,
taking c0 ≈

√
N as a c-number, and we consider only the

transitions induced by the radiation field from the state
n = 0 toward the levels n = −1 and n = 1. Introducing
the operators a1 = c−1 exp(i∆t), a2 = c1 exp(−i∆t) and
a3 = a exp(−i∆t), the atomic field operator reduces to

Ψ(θ, t) ≈ 1√
2π

{√
N + a1(t)e

−i(θ+∆t) + a2(t)e
i(θ+∆t)

}

(2)
and the Hamiltonian (1) reduces to the effective Hamil-
tonian [16]

H0 = δ+a
†
2a2 − δ−a

†
1a1 + ig

√
N [(a†1 + a2)a

†
3 − h.c.], (3)

where δ± = ∆± ωr. Hence, the dynamics of the system
is that of three parametrically coupled harmonic oscilla-
tors a1, a2 and a3, which obey the commutation rules

[ai, aj ] = 0 and [ai, a
†
j ] = δi,j for i, j = 1, 2, 3. Notice

that the Hamiltonian (3) admits C = a†2a2 − a†1a1 + a†3a3
as a constant of motion.
Hence, in the linear regime, the quantum CARL

Hamiltonian reduces to that for three coupled modes, the
first two modes a1 and a2 corresponding to atoms hav-
ing lost or gained respectively a two-photon recoil mo-
mentum ~q, and the third mode a3 corresponding to the
photons of the scattered field. Starting from the vacuum
|0〉 = |0〉1|0〉2|0〉3 the state at a given time is given by

|Ψ〉 = 1√
1 +N1

∞
∑

m,n=0

αmβn

√

(m+ n)!

m!n!
|m+ n,m, n〉

(4)
where |α|2 = (N2)/(1 +N1), |β|2 = (N3)/(1 +N1), and
N1, N2 and N3 are the (time dependent) average number
of quanta of the three oscillators [see Eqs.(6-8)]. Since we
start from vacuum we have N1 = N2 +N3 at any time.
Eq. (4) shows that, in general, the system is entan-

gled and that the distribution over the different occu-
pation numbers, N1,N2 and N3, is thermal. In par-
ticular, for N3 ≪ N1 ∼ N2, the state |Ψ〉 reduces to
|ψ12〉 = 1√

1+N1

∑∞
n=0 α

n|n, n, 0〉, showing maximal en-

tanglement between atoms with different momenta. On
the other hand, for N2 ≪ N1 ≈ N3, |Ψ〉 reduces to

|ψ13〉 =
1√

1 +N1

∞
∑

n=0

βn|n, 0, n〉. (5)
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showing maximal entanglement between atoms and pho-
tons. Both the states |ψ12〉 and |ψ13〉 are pure bipartite
states. They are maximally entangled states for the given
number of quanta, according to the excess von Neumann
entropy criterion [17], whereas the presence of a third
mode reduces, in general, the entanglement between the
other two modes [18]. The atom-radiation entangled
state (5) is what supports our teleportation scheme. In-
cidentally, it has the same form of the twin-beam state of
radiation used to realize continuous variable optical tele-
portation [9], and this will allows us to employ the same
kind of Bell measurement scheme.
In the quantum limit g

√
N ≪ 2ωr and for 2g

√
Nt≫ 1

the population of the three oscillators are given by

N1(t) ≈ 1

4



1 +

(

g
√
N

2ωr

)2


 e2g
√
Nt, (6)

N2(t) ≈ 1

4

(

g
√
N

2ωr

)2

e2g
√
Nt, (7)

N3(t) ≈ 1

4
e2g

√
Nt. (8)

so that N1 ≈ N3 ≫ N2. Furthermore, maximal entan-
glement between modes 1 and 3 requires N2 ≤ 1, so that
the interaction time must satisfy the following limits

1

g
√
N

≪ tint ≤
1

g
√
N

ln

(

4ωr

g
√
N

)

. (9)

The state σ we want to teleport onto the atomic mode
a1 pertains to an additional radiation mode a4. The Bell
measurement is jointly performed on a3 and a4, and con-
sists in the measurement of the real and the imaginary

part of the complex operator Z = a3 + a†4. The mea-
surement of ZR = Re[Z] and ZI = Im[Z] corresponds to
measuring the sum- and difference-quadratures x3 + x4
and y3 − y4 of the two modes, where the quadrature x of
a mode b is the operator (b + b†)/2, and the quadrature
y is the operator (b − b†)/2i. Such a measurement can
be experimentally implemented by multiport homodyne
detection (i.e by mixing the two modes in balanced beam
splitter and then measuring two conjugated quadratures
on the outgoing modes, see Fig. 1), if the two modes
have the same frequencies [19, 20], or by heterodyne de-
tection otherwise [21]. The measurement is described by
the following probability operator-valued measurement
(POVM) [22], acting on the Hilbert space of mode a3

Πα =
1

π
D(α) σT D†(α) (10)

where α is a complex number, D(α) is the displacement

operator D(α) = exp{αa†3 − ᾱa3} and (· · ·)T denotes the
transposition operation. The result of the measurement
is classically transmitted to the receiver’s location (Bob),
where a displacement operation D(α)† is performed on
the conditional state ̺α (see below on how to implement

coherent atomic displacement). The dynamics of the con-
ditional measurement is described by [22]

pα = Tr13 [|ψ13〉〈ψ13|I1 ⊗Πα] (11)

̺α =
1

pα
Tr3 [|ψ13〉〈ψ13|I1 ⊗Πα]

τα = D(α)̺αD
†(α) ,

where pα is the probability for the result α in the Bell
measurement, I the identity operator, ̺α is the condi-
tioned state of the atomic beam after the measurement,
and τα is is the conditioned state after the displacement
operation. The teleported state is the average over all
the possible outcomes, i.e.

τ =

∫

C

d2α pα τα (12)

=

∫

C

d2α D(α) Tr3 [|ψ13〉〈ψ13| I1 ⊗Πα]D
†(α) .

After performing the partial trace and with some algebra
[22], one has

τ =

∫

d2α

πK
exp{−|α|2

K
}D(α)σD†(α) , (13)

where K = 1 + N1 + N3 −
√

(N1 +N3)(N1 +N3 + 2).
Eq. (13) shows that the overall dynamics of our scheme
is equivalent to that of a Gaussian noisy channel with
parameter K [22, 23]. The density matrix τ , describing
the final state of the atomic mode a1 coincides with σ in
the limit N1 +N3 −→ ∞ i.e. for high gain in the CARL
dynamics. Notice that N , and in turn N1 and N3, may
vary in the repeated preparations of the condensate, thus
introducing additional noise in the teleported state.
The displacement operation D(α) that should be per-

formed on the conditional atomic state ̺α can be ob-
tained using the same CARL Hamiltonian in the con-
densate, by injecting a suitably modulated pulse, i.e. by
exciting the mode a3 in a classical coherent state. In this
case, assuming a short pulse, the effective Hamiltonian
may be written as H2 = ig

√
Nγ(a1+a2+h.c) where γ is

the amplitude of the modulated pulse. The terms propor-

tional to a†jaj , j = 1, 2 in (3) can be discarded, and the

evolution operator U = exp(iH2τ) = D1(α) ⊗D†
2(α) co-

incides with the product of two displacement operators,
one for each of the atomic modes, with amplitude given
by α = −gγ̄

√
Nτ , where τ is an effective interaction

time. The amplitude γ of the pulse can suitably tuned
to obtain the desired value of the amplitude α, matching
the results of the Bell measurements. The above dynam-
ics displaces both the atomic modes, however without
introducing quantum correlations. Therefore, we just ig-
nore the effect on the atomic mode a2, which does not
participate to the teleportation protocol.
The time duration of the pulse should be small when

compared to the time scale of the CARL dynamics and
the decoherence time of |ψ13〉 under free evolution. This
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is in order for two reasons: on one hand we have that
the CARL dynamics should be switched off after pro-
ducing the desired entangled state |ψ13〉, and therefore
the whole protocol should be completed within the de-
coherence time. On the other hand, the displacement
should be performed on a time scale comparable to that
of the Bell measurement, i.e before the reset of the dy-
namics and the generation of the subsequent copy of
the atom-radiation entangled state in the new conden-
sate by CARL. Overall, our protocol may be described
as a feed forward control scheme, randomized according
to the statistics of the Bell measurement.
In order to discuss the readout part of our scheme, we

should go back to the initial entangled scheme produced
by the CARL dynamics. This should be more properly

written as |ψ13〉 = (1+N1)
−1/2

∑N
n=0 β

n|n, 0, n,N−n >
where the fourth entry in the ket describes the number of
atoms in the condensate. Since N is a large number (of
the order of 107) writing the state as in Eq. (4) is per-
fectly admissible as far as we are concerned with its dy-
namics. However, this should be taken into account if we
want to reconstruct the state of the output atomic beam.
Let us consider, for the sake of simplicity, the initial light
signal state as a pure state σ = |ϕ〉〈ϕ|, |ϕ〉 =∑n ϕn |n〉.
In the limit of high CARL gain the teleported state on the
atomic beam is given by |ϕ′〉 =∑n ϕn|n,N−n〉. This in-
dicates that any proper verification of the teleportation
should involve a measurement also on the condensate,
e.g. a two mode tomographic method involving both
the measurement of both momentum-mode and conden-
sate quadratures [24]. Such kind of measurements are
at present experimentally challenging and therefore, in

order to obtain an experimentally accessible readout sys-
tem, we propose to check only the statistics of the popu-
lation |ϕn|2, i.e. the diagonal part of the teleported state,
which can be achieved by counting atoms. If we choose
|ϕ〉 as a squeezed vacuum or a Fock number state, we
end up with an even-odd statistics or with a very sharp
atomic number distribution. This should be convincing
enough, in order to show that nonlocal correlations be-
tween the input radiation mode and the output atomic
mode has been established and exploited.
In conclusion, we have proposed a novel scheme to re-

alize the interspecies teleportation of the quantum state
of a single mode radiation field onto the collective state
of atoms with a given momentum out of a Bose-Einstein
condensate. The entangled resource needed for the tele-
portation protocol is established through the CARL in-
teraction of a single mode with the condensate in pres-
ence of a strong far off-resonant pump laser, whereas the
coherent atomic displacement is obtained through the
same interaction by injecting a suitably modulated short
coherent pulse. In principle, verification of the teleporta-
tion scheme requires a joint measurement on the recoiling
atoms and the condensate. However, for diagonal matrix
elements in the photon representation only atom count-
ing measurements are needed.
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