
Pushdown Automata and Constant Height:
Decidability and Bounds

Extended Abstract

Giovanni Pighizzini and Luca Prigioniero

Dipartimento di Informatica, Università degli Studi di Milano, Italy
{pighizzini,prigioniero}@di.unimi.it

Abstract. It cannot be decided whether a pushdown automaton accepts
using constant pushdown height, with respect to the input length, or not.
Furthermore, in the case of acceptance in constant height, the height
cannot be bounded by any recursive function in the size of the description
of the machine. In contrast, in the restricted case of pushdown automata
over a one-letter input alphabet, i.e., unary pushdown automata, the
above property becomes decidable. Moreover, if the height is bounded
by a constant in the input length, then it is at most exponential with
respect to the size of the description of the pushdown automaton. This
bound cannot be reduced. Finally, if a unary pushdown automaton uses
nonconstant height to accept, then the height should grow at least as the
logarithm of the input length. This bound is optimal.

1 Introduction

The investigation of computational devices working with a limited amount of
resources is a classical topic in automata theory. It is well known that by lim-
iting the memory size of a device by some constant, the computational power
of the resulting model cannot exceed that of finite automata. For instance, if
we consider pushdown automata in which the maximum height of the push-
down is limited by some constant, the resulting devices, called constant-height
pushdown automata, can recognize only regular languages. Despite their lim-
ited computational power, constant-height pushdown automata are interesting
since they allow more succinct representations of regular languages than finite
automata [4]. A natural generative counterpart of these devices are non-self-
embedding context-free grammars, roughly context-free grammars without “true”
recursion [3], which have been recently showed to be polynomially related in size
to constant-height pushdown automata [6].

In this paper, we focus on standard pushdown automata, namely with an
unrestricted pushdown store, that, however, are able to accept their inputs by
making use only of a constant amount of the pushdown store. More precisely,

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0)

we say that a pushdown automaton M accepts in constant height h, for some
given h, if for each word in the language accepted byM there exists one accepting
computation in which the maximum height reached by the store is bounded
by h. Notice that this does not prevent the existence of accepting or rejecting
computations using an unbounded pushdown height.

It is a simple observation that a pushdown automaton M accepting in con-
stant height h can be converted into an equivalent constant-height pushdown
automaton: in any configuration it is enough to keep track of the current height
in order to stop and reject when a computation tries to exceed the height limit.
The description of the resulting constant-height pushdown automaton has size
polynomial in h and in the size of the description of M.

While studying these size relationships, we tried to understand how large
can h be with respect to the size of the description ofM. We discovered that h can
be arbitrarily large. Indeed, there is no recursive function bounding the maximal
height reached by the pushdown store in a pushdown automaton accepting in
constant height, with respect to the size of its description. Moreover, it cannot
be decided if a pushdown automaton accepts in constant height.

In the second part of the paper we restrict the attention to the case of push-
down automata with a one-letter input alphabet, namely unary pushdown au-
tomata. By studying the structure of the computations of these devices, we were
able to prove that, in contrast to the general case, it can be decided whether or
not they accept in constant height. Furthermore, if a unary pushdown automa-
ton M accepts in height h, constant with respect to the input length, then h
can be bounded by an exponential function in the size ofM. This bound cannot
be reduced.

In the final part of the paper, we consider pushdown automata that accept
using height which is not constant in the input length. Our aim is to investigate
how the pushdown height grows. In particular, we want to know if there exists
a minimum growth of the pushdown height, with respect to the length of the
input, when it is not constant. The answer to this question is already known
and it derives from results on Turing machines: the height of the store should
grow at least as a double logarithmic function [1]. This lower bound cannot be
increased, because a matching upper bound which has been recently obtained
in [2]. In the unary case this lower bound is logarithmic and it cannot be further
increased.

This work is an extended abstract of the conference paper [10].

2 Preliminaries

We assume the reader familiar with the standard notions from formal language
and automata theory as presented in classical textbooks, e.g., [8]. As usual, the
cardinality of a set S is denoted by #S, the length of a string x is denoted by |x|,
and the empty string is denoted by ε.

A pushdown automaton (pda, for short) is a tuple M = 〈Q,Σ, Γ, δ, q0, Z0, F 〉
where Q is the finite set of states, Σ is the input alphabet, Γ is the pushdown

2

alphabet, q0 ∈ Q is the initial state, Z0 ∈ Γ is the start symbol, F ⊆ Q is the set
of final states, and δ is the transition function.

Without loss of generality, we make the following assumptions about pdas:
1. at the start of the computation the pushdown store contains only the start

symbol Z0, being at height 0; this symbol is never pushed on or popped off
the stack;

2. the input is accepted if and only if the automaton reaches a final state, the
pushdown store contains only Z0 and all the input has been scanned;

3. every push adds exactly one symbol on the stack.
The height of a pdaM (i.e., pushdown height) in a given configuration is the

number of symbols in the pushdown store besides the start symbol Z0. Hence,
in the initial and in the accepting configurations the height is 0. The height in a
computation C is the maximum height reached in the configurations occurring
in C.

We say that M uses height h(x) on an accepted input x ∈ Σ∗ if and only if
h(x) is the minimum pushdown height necessary to accept x, namely, there exists
a computation accepting x using pushdown height h(x), and no computations
accepting x using height less than h(x). Moreover, if x is rejected then h(x) = 0.
To study pushdown height with respect to input lengths, we consider the worst
case among all possible inputs of the same length. Hence, we define h(n) =
max {h(x) | x ∈ Σ∗, |x| = n}. When there is a constant H such that, for each n,
h(n) is bounded by H, we say that M accepts in constant height. Each pda
accepting in constant height can be easily transformed into an equivalent finite
automaton. So the language accepted by it is regular.

In the following, by the size of a pda we mean the length of its description.
Notice that for each pda in the above-defined form, over a fixed input alpha-
bet Σ, the size is polynomial in the cardinalities of the set of states and of the
pushdown alphabet. If we consider pdas in different form, as for instance that
in [8], to define the size we need to take into account also the number of symbols
that can be pushed on the stack in one move. However, pdas in that form can
be turned in the form we consider here, with a polynomial increase in size and
by preserving the property of being constant height.

3 Undecidability and Non-Recursive Bounds

We consider the problem of deciding if a pda accepts in constant height. Using
a technique introduced in [7], based on suitable encodings of single-tape Turing
machine computations, we have proved the following result:

Theorem 1. It is undecidable whether a pda accepts in constant height.

We also studied the problem of relating the maximal height h reached by a
pdaM accepting in constant height to its size. Adapting an argument presented
in [9] to prove non recursive trade-offs between the size of pdas accepting reg-
ular languages and the number of states of equivalent automata, we proved the
following “negative” result:

3

Theorem 2. For any recursive function f : N→ N and for infinitely many inte-
gers n there exists a pda of size n accepting in constant height H(n), where H(n)
cannot be bounded by f(n).1

With the same argument, we also obtained:

Theorem 3. There is no recursive function bounding the size blowup from pdas
accepting in constant height to finite automata.

4 Restricting to the Unary Case

In the restricted case of unary pdas, the “negative” results in Section 3 do not
hold.

Theorem 4. It is decidable whether a unary pda accepts in constant height.

We will give an informal outline of the proof. To this aim, some technical
notions are useful. Let M = 〈Q,Σ, Γ, δ, q0, Z0, F 〉 be a fixed pda and let s =
1 + (#Q)2 ·#Γ .

A surface pair is defined by a state q ∈ Q and a symbol A ∈ Γ , and it
is denoted by [qA]. The surface pair in a given configuration is defined by the
current state and the topmost stack symbol, namely the only part of the stack
which is relevant in order to decide the next move. A surface triple is defined
by two states q, p ∈ Q and a symbol A ∈ Γ , and it is denoted by [qAp]. Surface
triples are used to study computation paths starting and ending at the same
pushdown height and that do not go below that height in between. In particular,
a computation C of such a form is called [qAp]-computation if q and p are the
states at the beginning and at the end of C, respectively, and A is the symbol at
the top of the stack at the beginning (and at the end) of C.

A horizontal loop on a surface pair [qA] is any [qAq]-computation which
consumes at least one input symbol.

If a [qAp]-computation C contains a proper [qAp]-computation C′ (the surface
triple is the same), which starts with stack higher than at the beginning of C,
then the pair (X ,Y) where X is the prefix of C ending in the first configuration
of C′, and Y is the suffix of C starting from the last configuration of C′, is
called vertical loop. Notice that at the end of X a nonempty string Aα is on the
pushdown above the occurrence of A which was on the top at the beginning of C,
and such a string is popped off during Y.

We now sketch the proof of Theorem 4. Informally, any accepting computa-
tion on a sufficiently long input should contain horizontal or vertical loops. The
use of vertical loops could lead to computations using unbounded height. Hence,
to study how long strings are accepted, it is useful to consider the following two
languages Lh and Lv, where L = Lh ∪ Lv is the language accepted by M:
– Lh is the set of strings accepted by the computations of M which visit at

least one surface pair having a horizontal loop.

1 Notice that here H(n) is a function of the size of the pda and not of the input.

4

– Lv is the set of strings accepted by the computations of M which visit only
surface pairs that do not have horizontal loops.

According to the following lemma, for every string a` in Lh, namely for which
there exists an accepting computation visiting a surface pair having a horizontal
loop, there is another accepting computation for the same input in which almost
all occurrences of the vertical loops are replaced by occurrences of such horizontal
loop. The number of vertical loops which remain in the resulting computation
is bounded by a constant. As a consequence, the amount of pushdown store
sufficient to accept a` is also bounded by a constant. This allows to bound by a
constant the amount of pushdown store sufficient to accept a`.

Lemma 1. For any accepting computation on input a` which visits a surface
pair having a horizontal loop there exists another accepting computation on a`

which uses pushdown height at most 2O(s2).

In contrast, when all accepting computations on a long string a` do not visit
any surface pair having a horizontal loop, vertical loops and an increasing of
the stack cannot be avoided. Hence, deciding if M works in constant height is
equivalent to decide if the cardinality of the set Lv \Lh is finite. We notice that
by modifying M we can obtain two pdas Mv and Mh accepting languages Lv

and Lh, respectively. So these two languages are context-free. Furthemore, since
the alphabet is unary, they are also regular [5]. So the finiteness of their difference
is decidable. This allows to decide if M accepts in constant height.

We can also evaluate the height of the stack used to accept the strings in Lv \
Lh, in case M accepts in constant height. According to Corollary 2 in [11], the

pdas Mv and Mh can be converted into equivalent dfas with 2O(s2) states.
Hence Lv \Lh, which is finite, is accepted by a dfa with less than 2O(s2) states.

So, the longest string in Lv \Lh has length at most 2O(s2). This implies that each

string in Lv \ Lh is accepted by M using height 2O(s2). From this discussion,
we obtain the following result which gives an exponential upper bound for the
maximum stack height, with respect to the size of M:

Theorem 5. A unary pda accepts in constant height if and only if it accepts
in height bounded by 2O(s2).

Such an exponential bound cannot be reduced:

Theorem 6. For each integer k > 0 there exists a pda having a size polynomial
in k and accepting in height which is constant with respect to the input length
but exponential in k.

In conclusion, we turn our attention to pdas that accept using height which
is not constant in the input length. It is known that in this case the height of
the pushdown store should grow at least as the function log log n, with respect
to the input length n [1]. Furthermore, this lower bound is optimal [2]. In the
unary case the optimal bound increases to a logarithmic function.

Theorem 7. Let M be a unary pda using height h(n). Then either h(n) is
bounded by a constant or there exists c > 0 such that h(n) ≥ c log n infinitely
often. This bound is tight.

5

References

1. Alberts, M.: Space complexity of alternating Turing machines. In: Budach, L.
(ed.) Fundamentals of Computation Theory, FCT ’85, Cottbus, GDR, September
9-13, 1985. Lecture Notes in Computer Science, vol. 199, pp. 1–7. Springer (1985).
https://doi.org/10.1007/BFb0028785

2. Bednárová, Z., Geffert, V., Reinhardt, K., Yakaryilmaz, A.: New results on the
minimum amount of useful space. Int. J. Found. Comput. Sci. 27(2), 259–282
(2016). https://doi.org/10.1142/S0129054116400098

3. Chomsky, N.: A note on phrase structure grammars. Information and Control 2(4),
393–395 (1959). https://doi.org/10.1016/S0019-9958(59)80017-6

4. Geffert, V., Mereghetti, C., Palano, B.: More concise representation of regular
languages by automata and regular expressions. Inf. Comput. 208(4), 385–394
(2010). https://doi.org/10.1016/j.ic.2010.01.002

5. Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. J. ACM
9(3), 350–371 (1962). https://doi.org/10.1145/321127.321132

6. Guillon, B., Pighizzini, G., Prigioniero, L.: Non-self-embedding grammars,
constant-height pushdown automata, and limited automata. In: Câmpeanu, C.
(ed.) CIAA 2018, Proceedings. Lecture Notes in Computer Science, vol. 10977, pp.
186–197. Springer (2018). https://doi.org/10.1007/978-3-319-94812-6 16

7. Hartmanis, J.: Context-free languages and Turing machine computations. In:
Mathematical Aspects of Computer Science. Proceedings of Symposia in Applied
Mathematics, vol. 19, pp. 42–51. American Mathematical Society (1967)

8. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

9. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: 12th Annual Symposium on Switching and Automata Theory,
East Lansing, Michigan, USA, October 13-15, 1971. pp. 188–191. IEEE Computer
Society (1971). https://doi.org/10.1109/SWAT.1971.11

10. Pighizzini, G., Prigioniero, L.: Pushdown automata and constant height: Decid-
ability and bounds. In: Descriptional Complexity of Formal Systems, DCFS 2019,
Proceedings. Lecture Notes in Computer Science, vol. 11612, pp. 260–271. Springer
(2019). https://doi.org/10.1007/978-3-030-23247-4 20

11. Pighizzini, G., Shallit, J., Wang, M.: Unary context-free grammars and pushdown
automata, descriptional complexity and auxiliary space lower bounds. J. Comput.
Syst. Sci. 65(2), 393–414 (2002). https://doi.org/10.1006/jcss.2002.1855

6

