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Abstract—Recognizing the activities of daily living (ADLs) in
multi-inhabitant settings is a challenging task. One of the major
challenges is the so-called data association problem: how to assign
to each user the environmental sensor events that he/she actually
triggered? In this paper, we tackle this problem with a context-
aware approach. Each user in the home wears a smartwatch,
which is used to gather several high-level context information,
like the location in the home (thanks to a micro-localization
infrastructure) and the posture (e.g., sitting or standing). Context
data is used to associate sensor events to the users which more
likely triggered them. We show the impact of context reasoning
in our framework on a dataset where up to 4 subjects perform
ADLs at the same time (collaboratively or individually). We also
report our experience and the lessons learned in deploying a
running prototype of our method.

Index Terms—multi-inhabitant, activity recognition, smart-
home

I. INTRODUCTION

The sensor-based recognition of Activities of Daily Living
(ADL) in smart-home environments has been extensively
studied in the last decades. Indeed, continuously monitoring
the behavior of fragile subjects (e.g., elderly) in their homes
enables several health-care applications, like the detection of
early symptoms of cognitive decline [1].

Existing works mainly focus on single inhabitant scenar-
ios [2], [3]. Some research efforts have also considered the
more challenging multi-inhabitant scenario, characterized by
different subjects concurrently performing activities in the
same environment (e.g., Alice watches TV while Bob is
cooking) [4], [5]. This problem has been often formulated in
terms of recognizing activities executed in parallel [6], but in
most cases the task has not considered identifying the specific
user that is performing each activity.

Indeed, the major challenge in sensor-based multi-inhabitant
activity recognition is how to map each environmental sensor
event (e.g., the fridge opening as revealed by a magnetic
sensor, or the TV turned on as revealed by a smart plug)
to the subject which triggered the event. In the literature,
this problem is called data association, and solving it is a
crucial step to identify which subject is performing which
activity [7]. Previous work has partially addressed this problem
by associating behavior patterns to individuals [8] or by using
identifying devices (e.g., RFID readers, apps on smartphones)
carried by the inhabitants and tags or beacons on the home
objects [9]. Other works proposed the use of probabilistic
graphical models (e.g., Hidden Markov Model) [4], [7], [10],

[11]. In [12] these models are used to exploit the correlation
between data from the user’s smartphone and motion sensors.
The evaluation of these approaches was limited to two subjects
and to a very restricted set of activities.

In this paper, we propose a novel multi-inhabitant ADL
recognition framework which exploits context-aware reasoning
to tackle the data association problem. As sensing devices,
we consider a smartwatch at the wrist of each subject and
environmental sensors in the smart home infrastructure. From
the smartwatch we derive the identity of the user, inertial
sensors readings, the user’s location in the home (using a
positioning infrastructure), and the user’s posture (e.g., if
the user is sitting or standing). While constantly wearing
devices or wristbands may be considered unrealistic, smart-
watches nowadays are becoming common and they represent
a non-intrusive technology that can be continuously worn
in home environments. From the environmental sensors we
detect open/close events of doors and drawers, turn on/off
events of electrical devices, and more. The combination of
environmental and mobile devices sensors has the potential of
significantly improving activity recognition [13]–[15]. Indeed,
by exploiting common knowledge we extract context from
these two different sources of data and we use it to address
the data association problem. For instance, based on Alice’s
presence in a given area, we associate her identity only with
the events fired by sensors physically close to her. The actual
activity recognition module will analyze a separate stream of
inertial and ambient sensors for each subject according to the
data association. One of the advantages of our approach is
its modularity: since activity recognition is decoupled from
data association, it is possible to seamlessly integrate any
single-inhabitant activity classifier to recognize the activities
performed by each inhabitant separately. The contributions of
this paper are threefold:

• A multi-inhabitant activity recognition framework which
uses context-aware reasoning to tackle the data associa-
tion problem

• Preliminary results about the impact of context-aware
data association on a multi-inhabitant dataset, where up
to 4 subjects at the same time perform both independent
and collaborative activities

• Our experience and the lessons learned on implementing
and deploying a running prototype of our system



II. THE PROBLEM

The final goal of the activity recognition system (named
just system in the following) is to periodically predict, for
each user, the activity that she has been performing. We also
would like the system to identify situations in which activities
are jointly performed by multiple users. Intuitively, a group
of users jointly performing an activity should include users
that are in the same place, and that, according to the system
prediction are performing the same activity1.

Formally, let U = {u1, u2, . . . , un} be the set of users (the
inhabitants of the smart-home) and A = {A1, A2, . . . , Ak} the
set of considered ADLs. Given an instant t, the system should
return a set of tuples PAt = {〈(ur, . . . , us), Ai〉|ur, . . . , us

are all the users predicted to jointly perform activity
Ai at time t}. Since we assume that each user is performing
a single activity at a time, the same user cannot appear in
more than one tuple. Moreover, each user that is present in a
monitored room should appear in a tuple.

In order to solve this problem, the system continuously
records a stream of time-stamped events coming from inertial
and environmental sensors. Given an instant t and a user
u, the system needs to solve a data association problem by
computing a personal stream s(u)t of sensor events associated
with user u and collected in a time window [t, t− k] where k
is the window size parameter. For example, suppose that Alice
turns on the cooker at time t′. The corresponding sensor event
(and its timestamp) generated by the plug sensor connected to
the cooker and recorded by our system should be associated
with Alice and hence considered part of s(Alice)t when
0 ≤ t− t′ ≤ k.

The data association problem is straightforward for events
coming from inertial sensors on personal devices, but chal-
lenging for environmental sensors.

III. OUR FRAMEWORK

In this section, we describe our multi-inhabitant activity
recognition framework, whose architecture is depicted in Fig-
ure 1. Raw data from smartwatches and environmental sensors
are pre-processed by the CONTEXT AGGREGATION module to
obtain high-level context data. The resulting context, as well
as raw sensor data, is then used by the CONTEXT-AWARE
DATA ASSOCIATION module to generate, for each user, a
personal stream of sensor data. For each stream, SENSOR-
BASED ACTIVITY RECOGNITION infers for each user the
activity that she is performing. Finally, high-level context is
used to refine the statistical prediction by the PREDICTION
REFINEMENT module. In the following, we describe in detail
each component.

A. Context aggregation

The CONTEXT AGGREGATION module receives as input
raw data from multiple sensing devices and it derives high-

1Note that here we make the assumption that users that are performing the
same activity in the same semantic location at the same time are actually
jointly performing the activity. This is indeed the case in our considered
setting.
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Fig. 1. Overall architecture of our framework

level context information, which is used to enable both data
association and the refinement of statistical predictions. Given
a time instant t, the system infers for each user u her
personalized context C(u)t = (l(u)t, p(u)t), where l(u)t is
the location of u in the home at time t and p(u)t is the posture
of u at time t. For instance, if Bob is sitting in the kitchen
at time t then C(Bob)t = (kitchen, sitting). Moreover, the
system also infers the home context Ct

H , which keeps track
of the status and the position of each sensor in the home.
For instance, consider a home H instrumented with two plug
sensors: one to detect the usage of the electrical stove in
the kitchen and one to detect the usage of the television in
the living room. Suppose that at time t Bob is watching TV
and that no one is using the electrical stove. In this case
Ct

H = {(stove,kitchen,OFF), (television, living room,ON)}.
In the following, we describe in more detail how this module
infers these types of context data.

1) User’s position: For each user u, the CONTEXT AGGRE-
GATION module aims to derive her semantic position l(u)t

inside the home (e.g., kitchen, living room). Note that the
organization of the home in semantic positions has to be
performed in an offline phase, and its granularity depends
on the accuracy of the underlying micro-localization system.
A coarse granularity may consider room-level semantic posi-
tions (e.g., living room, kitchen, dining room), while a fine-
grained granularity may map specific regions of each room
into semantic positions (e.g., cooking area, dining table and
sink area). Micro-localization can be implemented with a
wide range of technologies (e.g., BLE Beacons, WiFi access
points, passive localization). In our experimental setup, our
positioning infrastructure is composed of BLE beacons and
WiFi access points, whose signal strengths are collected by
each user’s smartwatch while we employ a Random Forest
classifier to map the stream of positioning data into semantic
positions at the room-level granularity.

2) User’s posture: The posture p(u)t (e.g., standing, sitting,
lying) of a user u is computed by applying machine learning



methods to inertial sensors (i.e., accelerometer, gyroscope and
magnetometer) data gathered by the user’s smartwatch. In
our experimental setup, we use a fully connected deep neural
network to distinguish between the sitting and standing pos-
tures, considering state-of-the-art time-domain and frequency-
domain features from temporal windows of sensor data [16].

3) Sensor status and position: As previously mentioned, we
consider as high-level context data of the home environment
Ct

H the semantic position of each environmental sensor and its
readings. The semantic position of each sensor is considered
as prior knowledge defined during the deployment phase in the
smart-home. Clearly, the granularity of sensors’ semantic po-
sitions should be the same as the one considered for the users.
On the other hand, the status of environmental sensor events
is dynamic. Each event is automatically mapped to a corre-
sponding high-level concept. For example, when the magnetic
sensor installed on the kitchen’s fridge door fires, it generates
the high-level concept (fridge door, kitchen,OPEN), which
means that the fridge door in the kitchen has been opened. This
high-level concept will be part of the current home context
Ct

H . In our experimental setup, we consider several types of
environmental sensing devices like magnetic sensors, smart
plugs, and pressure mats.

B. Context-Aware Data Association

Given the high-level context information obtained from
the CONTEXT AGGREGATION module and the raw sensor
data gathered from inertial and environmental sensors, the
CONTEXT-AWARE DATA ASSOCIATION module assigns to
each user u a personal sensor data stream s(u)t. A stream
s(u)t consists of: a) inertial sensor readings gathered from
the personal device of u and b) environmental sensor events
triggered by u. Note that an environmental sensor event
(e, st, t) (e.g. (fridge door,OPEN, 12:32)) can not directly
identify the user who triggered it. This module approximates
a stream s(u)t by including all environmental events that are
consistent with C(u)t and Ct

H . For example, suppose that
Alice and Bob are both in the living room, and a pressure mat
on a chair generates an event at time t, thus indicating that
someone is sitting. Suppose that Alice is standing, while Bob is
the one which actually was sitting on that chair. Thanks to our
posture detection module, our system infers that the pressure
mat event is consistent with Bob’s context, while it is not-
consistent with Alice’s context (i.e., a user can not activate
a pressure mat if she is standing). Hence, in this case the
pressure mat event will be included in s(Bob)t and not in
s(Alice)t.

The output of CONTEXT-AWARE DATA ASSOCIATION is
hence a personal stream s(u)t ∀u ∈ U. The solution is
approximate since there may not be sufficient information to
associate an event to a single user and in this case the event
will be associated with the stream of each candidate user.

The notion of consistency used above is inherently related
to the semantics of the context and of the action revealed by
the event. In our experimental setup, the CONTEXT-AWARE
DATA ASSOCIATION module is implemented with ontological

reasoning. We built an OWL2 ontology that defines the rela-
tionships between environmental sensor events and contexts.
For instance, in the terminological part of our ontology there
is an axiom that imposes that a user can trigger a sensor event
only if she is in the same semantic position where the sensor
is located. Other axioms combine user’s posture and sensor
status and position to better associate environmental sensor
events when more than one user is in the same semantic
position at the same time. Referring to the example above, an
axiom states that a pressure mat activation can be associated
only to those users which recently switched to the sitting
posture. Similarly, other rules state that the sitting posture is
not compatible with sensor events that can be triggered only
while standing (e.g., turning on the stove).

Whenever a sensor event (e, st, t′) is triggered, our system
computes its context-consistency for each user u. In particular,
we add facts to the assertional part of the ontology to describe
the sensor event and the context C(u)t

′
and CH . Then,

by using the automatic consistency check of the resulting
ontology, the system decides whether (e, st, t′) should be
included in s(u)t (with t′ in the time window defined by t).

C. Sensor-based Activity Recognition

The SENSOR-BASED ACTIVITY RECOGNITION module is
in charge of inferring the activity performed by each user in
the home, by analyzing each personal stream s(u)t received
from CONTEXT-AWARE DATA ASSOCIATION. The advantage
of this approach is its modularity, since it is possible to use any
single-inhabitant classifier h on each s(u)t to periodically infer
a probability distribution over the possible activities performed
by the user u at time t:

h(s(u)t) = 〈pA1
, pA2

, . . . , pAn
〉

where pAi
is the probability P (Ai|s(u)t) that the user u at

time t is performing activity Ai ∈ A, based on the sensor data
stream s(u)t. We also have pAi

∈ [0, 1] ∀i and
∑n

i=1 pAi
= 1.

In our experimental setup, we use a state-of-the-art deep-
learning neural network that combines convolutional and
recurrent layers [17]. By using this technique, features are
automatically learned by the classifier from raw data. Envi-
ronmental sensor events and inertial sensor data are provided
as two separate channels to the network. On each channel,
the network first applies 4 convolutional layers interleaved
with batch normalization and max pooling layers. Then, we
apply on each channel a recurrent layer (i.e., LSTM). In the
following step we apply to each channel 5 fully connected
layers. Finally, the two channels are concatenated into a single
one and we apply 3 fully connected layers interleaved with a
dropout layer. The probability distribution over the possible
activities h(s(u)t) is finally obtained by using a softmax layer.

D. Prediction refinement

Finally, we refine each activity prediction h(s(u)t) obtained
from SENSOR-BASED ACTIVITY RECOGNITION using the
high-level context C(u)t and Ct

H computed by the CONTEXT
AGGREGATION module. Indeed, activity recognition methods



are not completely accurate and sometimes they can derive a
wrong activity that is not compatible with the user’s context.
For instance, considering activity recognition methods based
on machine learning, the training set used to create the
model may not be representative and may not generalize on
unseen activity patterns. To mitigate these issues, we adopt an
approach similar to the one proposed in [18]. In particular, the
PREDICTION-REFINEMENT module applies knowledge-based
reasoning on context data to exclude from the probability
distribution resulting from activity recognition those activities
which are not context-consistent.

In our experimental setup this mechanism is based on the
same ontology used by the CONTEXT-AWARE DATA ASSO-
CIATION module. Indeed, this ontology also contains axioms
about the relationships between context data and activities. Our
system evaluates whether an activity A is context-consistent
by adding to the assertional part of the ontology the current
context C(u)t and Ct

H and the fact that u is currently
performing activity A. The non context-consistent activities
are removed from the probability distribution h(s(u)t), thus
generating a refined probability distribution h′(s(u)t) over the
possible context-consistent activities.

For example, suppose that the system inferred that Bob is
watching television with 60% of probability, eating with the
30% of probability and working at pc with the remaining 10%.
According to our ontology, the watching television activity
can be carried out only when: a) the user is sitting (user
posture), b) the television is in the same semantic position
of the user (user and sensor position), and c) the television
is turned on (sensor status). Suppose that Bob is actually
sitting at the dining table while eating and the television in
the living room is turned on. Hence, watching television is
not context-consistent for Bob considering how this activity
is described in our knowledge-base. The resulting refined
probability distribution of Bob in this case is 75% eating and
25% working at pc.

Finally, the output of the system is a set PAt of tuples
〈(ur, . . . us), A〉 such that for each user u in {ur, . . . , us} the
most likely activity according to h′(s(u)t) is A and l(ui)

t =
l(uj)

t ∀ui, uj ∈ {ur, . . . , us}.

IV. EVALUATION

A. Dataset

To the best of our knowledge, there is no public multi-
inhabitant annotated dataset suitable to experimentally evaluate
our method. Hence, we collected a dataset in our research lab,
simulating a smart-home environment. The lab area (about
80 square meters) was divided into 6 semantic areas, each
representing a different room (hall, kitchen, dining room,
closet room, living room and office). Different environmental
sensors were installed to monitor the interaction of the users
with their surrounding environment: 14 BLE beacons, 5 mag-
netic sensors, 9 pressure mats and 2 smart-plugs. We involved
12 different subjects in our acquisition, each one wearing a
smartwatch on the dominant arm when performing activities.
We simulated both single- and multi-inhabitants scenarios,

recording activities performed at the same time by one, two or
four subjects. Before the acquisition, we informed the subjects
about the sequence of activities they had to perform, but in
order to increase the dataset variability, they were free to
execute each activity in their own way. Overall, we acquired
12 scenarios in a single-inhabitant setting, 10 scenarios with 2
subjects, and 10 with 4 subjects involved. Table I shows, for
each activity, the number of recording minutes and the average
length expressed in seconds related to the data acquisition
process.

TABLE I
STATISTICS ON LABELED ACTIVITIES

recording minutes average length (s)
ANSWERING PHONE 70.8 83.3

CLEARING TABLE 44.3 61.8
COOKING 81.8 101.5

EATING 136.1 29.2
GETTING IN 17.9 15.6

GETTING OUT 15.0 18.7
MAKING PHONE CALL 63.9 68.4

PREPARING COLD MEAL 54.0 70.5
SETTING UP TABLE 52.5 58.4
TAKING MEDICINES 36.1 31.0

USING PC 102.2 107.6
WASHING DISHES 54.3 66.5

WATCHING TV 274.9 134.1

B. Results

We evaluated our method on the dataset described above,
adopting a leave-one-subject-out cross-validation technique.
Figure 2 shows the resulting confusion matrix. From the results

Fig. 2. Confusion matrix concerning the dataset activities

it emerges that some activities (e.g., Answering call, eating,
watching TV) are recognized with a recall around 99%. This
is due to the fact that, in our setup, these activities can be
performed in unique semantic areas, triggering sensors that are



specific for that activity. For example, watching television is
the only activity that can be performed in the living room and
it involves the smart-plug sensor connected to the television.
On the other hand, the accuracy of other activities decreases
when the available context data can not provide additional
information to perform data association (e.g. cooking, prepar-
ing a cold meal, setting up table). For instance, consider the
scenario where Alice is preparing a salad and Bob is cooking
pasta in the kitchen. Since both users are standing in the same
semantic position, it is not possible to assign sensor events
(e.g., the usage of the cooker) at a fine granularity. Hence,
our system associates both to Alice and Bob the sensor events
triggered in the kitchen, inferring their activities mainly relying
on inertial sensor data. For the same reason, the prediction-
refinement process does not have an impact in these situations.

Figure 3 shows the impact of our context-aware data asso-
ciation technique. Note that, to better highlight how data asso-
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Fig. 3. Impact of data association.

ciation impacts activity recognition, those results are obtained
without applying prediction refinement. We compared our
method with a hypothetical perfect data association method
where each sensor event is correctly assigned to the correct
user that triggered it. Our solution is only 2% behind perfect
data association in terms of F1 score averaged over all the
activities. We also show that our method significantly outper-
forms a naive data association strategy, where each sensor
event is simply assigned to all the users currently present in
the home without considering the context.

The impact of our context-based prediction-refinement
method is shown in Figure 4 where the increment in the
recognition rate can be clearly observed in terms of the average
F1 score.

V. OUR EXPERIENCE ON THE DEPLOYMENT OF A
PROTOTYPE

We implemented a running prototype of our system to
detect multi-inhabitant activities in real-time. As expected,
the implementation of this prototype turned out to be more
challenging than simply applying our method to a dataset,
since it required a significant amount of engineering (mainly
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Fig. 4. Impact of prediction refinement.

due to temporal synchronization problems). Our prototype
takes advantage of an activity recognition model built offline
from the dataset described in Section IV-A. We deployed
the prototype in a slightly different environmental setup with
respect to the one of the dataset to evaluate the system’s
robustness. The major difference regards the environment and
the position of sensors: while the dataset was acquired in 6
semantic locations in the same large space, the prototype was
deployed in 3 different rooms corresponding to 3 semantic
locations: office, kitchen and living room equipped with the
same type of sensors.

In order to quantitatively evaluate the recognition rate of
our prototype, we asked some volunteers to perform scripted
scenarios where up to 2 subjects at the same time performed
both collaborative and individual activities. We only consid-
ered users that were not involved in the acquisition of the
training set. The scripted scenarios involved a subset of the
dataset activities: cooking, preparing a cold meal, eating,
setting up table, clearing table, washing dishes and watching
TV. Overall, the volunteers performed 45 activity instances.
In order to compute the recognition rate of our prototype,
we manually annotated those activities in real-time while
the system automatically stored its predictions. Our prototype
reached an overall F1 score of 88%. The drop in recognition
rate with respect to the results on the dataset as presented in
Section IV-B is due to the fact that the recorded predictions
include periods of time in which the subjects transition from
an activity to another. In these cases, the system exhibits
a high uncertainty, since the dataset we used to build the
recognition model does not capture transitions. Hence, we also
evaluated our prototype considering “stable” predictions where
the probability of the most likely activity is higher than 90%,
since these are the ones we expect to be used in an application
context. The average F1 score in this case was ∼ 93%, which
is close to the one obtained using the dataset. We are currently
working to introduce in our recognition model a ’transition’
activity to better capture the uncertainty status between two
subsequent activities.

While evaluating our prototype, we also observed the ca-



pability of our context-aware approach to overcome very
common mistakes of machine learning only solutions. For
instance, our dataset does not contain situations where posture
detection has a significant impact on the overall recognition
rate. However, during the evaluation of the prototype, the
volunteers interleaved activities in a different way with respect
to the dataset. Considering these new scenarios, we observed
that the posture positively affects data association and the
overall activity recognition rate. Despite this fact might seem a
data collection design problem, this situation is very common
in supervised machine learning, since it is always possible
that the system is deployed in scenarios not considered in the
training set.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a multi-inhabitant activity
recognition framework which takes advantage of a novel
data association mechanism based on context-aware reasoning.
The preliminary results on a real rich dataset and on the
deployment of a real-time prototype show the benefits of
coupling context reasoning with machine learning for multi-
inhabitant activity recognition.

Despite the clear advantage in exploiting context reasoning,
the problem of building a reliable machine learning model
from a sufficiently rich training set remains. As future work we
plan to extend our framework with semi-supervised learning,
so that the recognition model can be initialized with a limited
training set avoiding the high cost of collecting annotated data.
Moreover, this approach will continuously update the model
with a combination of self-learning and active learning.
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