Chapter 3 )
The Standard Model of Electroweak G
Interactions

Guido Altarelli and Stefano Forte

3.1 Introduction

In this chapter,! we summarize the structure of the standard EW theory [1]
and specify the couplings of the intermediate vector bosons W*, Z and of the
Higgs particle with the fermions and among themselves, as dictated by the gauge
symmetry plus the observed matter content and the requirement of renormalizability.
We discuss the realization of spontaneous symmetry breaking and of the Higgs
mechanism [2]. We then review the phenomenological implications of the EW
theory for collider physics (that is we leave aside the classic low energy processes
that are well described by the “old” weak interaction theory (see, for example, [3])).
Moreover, a detailed description of experiments for precision tests of the EW theory
is presented in Chap. 6.

For this discussion we split the lagrangian into two parts by separating the terms
with the Higgs field:

L= ﬁgauge + ﬁHiggs . 3.1

Both terms are written down as prescribed by the SU (2) ® U(1) gauge symmetry
and renormalizability, but the Higgs vacuum expectation value (VEV) induces the
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spontaneous symmetry breaking responsible for the non vanishing vector boson and
fermion masses.

3.2 The Gauge Sector

We start by specifying Lgauge, Which involves only gauge bosons and fermions,
according to the general formalism of gauge theories discussed in Chap. 2:

3
1 1 - o
Lgage = =, > FiaFM = o BuvB" + iy Dy + Yriy  Duyr -
A=l
(3.2)

This is the Yang—Mills lagrangian for the gauge group SU (2) ® U (1) with fermion
matter fields. Here

By, =9,B,—0,B, and Fj\, =3, W} —3,W) —geapc WiWS  (33)

are the gauge antisymmetric tensors constructed out of the gauge field B,, associated
with U(1), and W,f‘ corresponding to the three SU(2) generators; €4pc are the
group structure constants (see Egs. (3.8, 3.9)) which, for SU (2), coincide with the
totally antisymmetric Levi-Civita tensor (recall the familiar angular momentum
commutators). The normalization of the SU(2) gauge coupling g is therefore
specified by Eq. (3.3).

The fermion fields are described through their left-hand and right-hand compo-
nents:

ViR =[1F )2, Yrr=vI1+ys)/2], (3.4)

with y5 and other Dirac matrices defined as in the book by Bjorken—Drell [4]. In
particular, )/52 =1, )/5T = ys. Note that, as given in Eq. (3.4),

VL =v1v0 =¥ (= y5)/21v0 = Uyl — y5)/2ly0 = T+ ys)/2] .

The matrices P+ = (1 & ys)/2 are projectors. They satisfy the relations P+ P+ =
Py, PLPr=0,P, +P_ =1

The sixteen linearly independent Dirac matrices can be divided into ys-even and
y5-odd according to whether they commute or anticommute with ys. For the ys-
even, we have

YTeYy = Y Tpvr + UrTeyr  (Tp = 1,iys, ou) , (3.5)
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whilst for the y5-odd,

UToV = ¥iToVL +¥rTovr  (To = Vu, Yus) - (3.6)

The standard EW theory is a chiral theory, in the sense that ¥, and g behave
differently under the gauge group (so that parity and charge conjugation non
conservation are made possible in principle). Thus, mass terms for fermions (of
the form 1/_fL Yr + h.c.) are forbidden in the symmetric limit. In particular, in the
Minimal Standard Model (MSM: i.e. the model that only includes all observed
particles plus a single Higgs doublet), all ¢, are SU(2) doublets while all ¥g
are singlets. But for the moment, by i, g we mean column vectors, including
all fermion types in the theory that span generic reducible representations of
SUR)®@U1).

In the absence of mass terms, there are only vector and axial vector interactions
in the lagrangian and those have the property of not mixing v; and ¥g. Fermion
masses will be introduced, together with W+ and Z masses, by the mechanism of
symmetry breaking. The covariant derivatives D,V g are explicitly given by

3

. 1

DyyL.R = [au +ig Yy  tf pWi + lg’zYL,RBM} VLR (3.7)
A=1

where ti‘ g and 1/2Y g are the SU(2) and U (1) generators, respectively, in the
reducible representations vy, g. The commutation relations of the SU (2) generators
are given by

A B . C A B . C
[l‘L,tL]ZléABcl‘L and [l‘R,l‘R]ZIEABcl‘R. (3.8)

We use the normalization (3.8) [in the fundamental representation of SU (2)]. The
electric charge generator Q (in units of e, the positron charge) is given by

Q=13 +1/2Y, =13 +1/2Yr. (3.9)

Note that the normalization of the U (1) gauge coupling g’ in (3.7) is now specified
as a consequence of (3.9). Note that ¢,y g = 0, given that, for all known quark and

leptons, Y is a singlet. But in the following, we keep tﬁe Yr for generality, in case
1 day a non singlet right-handed fermion is discovered.

3.3 Couplings of Gauge Bosons to Fermions

All fermion couplings of the gauge bosons can be derived directly from Egs. (3.2)
and (3.7). The charged W, fields are described by W12 while the photon A « and

weak neutral gauge boson Z,, are obtained from combinations of Wj and B,,. The
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charged-current (CC) couplings are the simplest. One starts from the Wli’z terms in
Egs. (3.2) and (3.7) which can be written as:

g'Wh+ 2w = ¢ {[(t1 + i) N2AW) — W /N2 + h.c.}
= ¢ fiet W)V +he ] (3.10)

where 1+ = ! +ir> and W* = (W' i W?)/+/2. By applying this generic relation
to L and R fermions separately, we obtain the vertex

Viuw = 80 [ /N2 = y5) 2+ (G5 /NDA +y39)/2] W, +he.
3.11)

Given that g = 0 for all fermions in the SM, the charged current is pure V — A.

In the neutral-current (NC) sector, the photon A, and the mediator Z,, of the weak
NC are orthogonal and normalized linear combinations of B, and Wi:

Ay = cosbOw By + sin Oy W3
Z, = —sin6yB, + cosOy W, . (3.12)
and conversely:

Wi =sinfwA, +cosbwZ, ,
B, =cosbwA, —sinfwZ, . (3.13)

Equations (3.12) define the weak mixing angle 8y,. We can rewrite the Wlf and B,
terms in Eqgs. (3.2) and (3.7) as follows:

g’W) +g'Y/2B, = [g’sinfy + g'(Q — 7) cosOw]A, +
+ [ cosbw — g'(Q — ) sinbw1Z,, (3.14)
where Eq. (3.9) for the charge matrix Q was also used. The photon is characterized
by equal couplings to left and right fermions with a strength equal to the electric
charge. Thus we immediately obtain
g sinfy = g’ cosOy =e, (3.15)

or equivalently,

tgbw =g'/g (3.16)
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Once Oy has been fixed by the photon couplings, it is a simple matter of algebra to
derive the Z couplings, with the result

o 4 7 3 3 )
Viwz = ZCOSQWWVM[ILU —y5) +tp(1 4 y5) — 20 sin” Ow |y ZH (3.17)

where VIN z is a notation for the vertex. Once again, recall that in the MSM, t13e =0
and 1} = £1/2.

In order to derive the effective four-fermion interactions that are equivalent, at
low energies, to the CC and NC couplings given in Eqs.(3.11) and (3.17), we
anticipate that large masses, as experimentally observed, are provided for W* and
Z by LHiggs. For left-left CC couplings, when the momentum transfer squared can
be neglected, with respect to m%‘,, in the propagator of Born diagrams with single
W exchange (see, for example, the diagram for u decay in Fig. 3.1, from Eq. (3.11)
we can write

2
L =~ [Wyu(l —ys)t Yl y* (A = ys)e ¥l (3.18)
8mW
By specializing further in the case of doublet fields such as v, — e~ orv, — u~,

we obtain the tree-level relation of g with the Fermi coupling constant G r precisely
measured from p decay (see Chap. 2, Egs. (2), (3)):

Gr/V2 =g*/8m3, . (3.19)
By recalling that g sin 6 = e, we can also cast this relation in the form
mwy = UBorn/ Sin Oy , (3.20)
with
UBom = (o /~2G p)Y/? ~ 37.2802GeV , (3.21)
where « is the fine-structure constant of QED (« = ¢ /4r = 1/137.036).

In the same way, for neutral currents we obtain in Born approximation from
Eq. (3.17) the effective four-fermion interaction given by

LNE ~ V2 Grpoyul. . Wiyl v, (3.22)

Fig. 3.1 The Born diagram Vu Ve
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where
[.1=1(1—ys)+1p(1 +ps) — 20 sin’ Oy (3.23)
and
2
m
=, W2 ) (3.24)
m7 cos= Oy

All couplings given in this section are obtained at tree level and are modified in
higher orders of perturbation theory. In particular, the relations between my and
sin O (Egs. (3.20) and (3.21)) and the observed values of p (p = po at tree level)
in different NC processes, are altered by computable EW radiative corrections, as
discussed in Sect. (3.11).

The partial width T'(W — £ f) is given in Born approximation by the simplest
diagram in Fig. 3.2 and one readily obtains from Eq. (3.11) with g = 0, in the limit
of neglecting the fermion masses and summing over all possible f’ for a given f:

= .7 G Fm%,v amwy

PW = 119 =Ne 62 Ne 12sin” Oy (3:25)
where Nc = 3 or 1 is the number of colours for quarks or leptons, respectively, and
the relations Eqgs. (3.15, 3.19) have been used. Here and in the following expressions
for the Z widths the one loop QCD corrections for the quark channels can be
absorbed in a redefinition of N¢c: N¢ — 3[1 + as(mz)/m + ...]. Note that the
widths are particularly large because the rate already occurs at order g2 or Gp.
The experimental values of the W total width and the leptonic branching ratio (the
average of e,  and T modes) are [5, 8] (see Chap. 6):

Ty = 2.147£0.060 GeV,  B(W — lv;) = 10.80 % 0.09. (3.26)

The branching ratio B is in very good agreement with the simple approximate
formula, derived from Eq. (3.25):

1
B(W — lv)) ~ ) ~ 10.8%. (3.27)
23(1 + as(m2) /) + 3

Fig. 3.2 Diagrams for (a) the

W and (b) the Z widths in W 7
Born approximation
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The denominator corresponds to the sum of the final states d'u, s'¢C, e Ve, My,
77, (for the definition of d’ and s’ see Eq. (3.66)).
For tgp = 0 the Z coupling to fermions in Eq. (3.17) can be cast into the form:

B _ 8 T f_f 7
Vipwiz =, cos Oy Vrvulgy — gxvslyrZ™, (3.28)
with:
o .
gh=0" . gl/eh = 1—-4]0|sin> 0y . (3.29)

and tz'f = =+1/2 for up-type or down-type fermions. In terms of g4 v given in
Egs. (3.29) (the widths are proportional to (g3, +g3)), the partial width ['(Z — £ f)
in Born approximation (see the diagram in Fig. 3.2), for negligible fermion masses,
is given by:

NZ—> Ff)=Ne % [1+4(1—4|Q,]sin®0w)?]
12 sin2 20y f
G;r:m3 )
= Ncp024n\/22[1 + (1 — 4|Q ¢| sin® ). (3.30)

where pg = m%v / mzz cos? Ay is given in Eq. (3.55). The experimental values of the
Z total width and of the partial rates into charged leptons (average of e, i and 1),
into hadrons and into invisible channels are [5, 8] (see Chap. 6):

'z =2.4952 £ 0.0023 GeV,
[+~ = 83.985 £+ 0.086 MeV,
'y =1744.4 +£2.0 MeV,
Fipy = 499.0 £ 1.5 MeV. (3.31)
The measured value of the Z invisible width, taking radiative corrections into

account, leads to the determination of the number of light active neutrinos (see
Chap. 6):

N, =2.9841 £ 0.0083, (3.32)

well compatible with the three known neutrinos v,, v, and v;; hence there exist only
the three known sequential generations of fermions (with light neutrinos), a result
with important consequences also in astrophysics and cosmology.

At the Z peak, besides total cross sections, various types of asymmetries have
been measured. The results of all asymmetry measurements are quoted in terms of
the asymmetry parameter A 7, defined in terms of the effective coupling constants,
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Fof £of
3
Ap=2 f‘ngAﬂ =2 gvégf‘f . ALy = TAAn (333
gy +&4 1+ (g7, /84)? 4

The measurements are: the forward-backward asymmetry (A wp = (3/4)AAy), the
tau polarization (A ;) and its forward backward asymmetry (A.) measured at LEP, as
well as the left-right and left-right forward-backward asymmetry measured at SLC
(A, and Ay, respectively). Hence the set of partial width and asymmetry results
allows the extraction of the effective coupling constants: widths measure (g%, + gi)
and asymmetries measure gy /g4-

The top quark is heavy enough that it can decay into a real bW pair, which is by
far its dominant decay channel. The next mode, t — sW, is suppressed in rate by a
factor |Vts|2 ~ 1.7-1073, see Egs. (3.71-3.73). The associated width, neglecting m
effects but including 1-loop QCD corrections in the limit my = 0, is given by (we
have omitted a factor | V;5|> that we set equal to 1):

Grm? m? ag(myz) 272 5
It — bWt = (- W21+2 iy - -+
( ) 87“/2( mtz)( )[ 3 ( 3 2) ]

(3.34)

The top quark lifetime is so short, about 0.5 10~2*s, that it decays before hadroniz-
ing or forming toponium bound states.

3.4 Gauge Boson Self-interactions

The gauge boson self-interactions can be derived from the Fy,, term in Lgauge, by
using Eq. (3.12) and W+ = (W' £iW?)/v2.

Defining the three-gauge-boson vertex as in Fig. 3.3 (with all incoming lines), we
obtain (V =y, Z)

Vw-wv = igw-w+vIguwP — @)+ gu(r — phv + guilg —r)ul,  (3.35)
with

gw-w+y = g sinfw =e and gy-w+z =g cosOy . (3.36)

Note that the photon coupling to the W is fixed by the electric charge, as imposed

by QED gauge invariance. The ZWW coupling is larger by a tan 6y factor. This

form of the triple gauge vertex is very special: in general, there could be departures
from the above SM expression, even restricting us to Lorentz invariant, em gauge
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W W W W Y.z

w* w* W v,Z
Fig. 3.3 The three- and four-gauge boson vertices. The cubic coupling is of order g, while the

quartic one is of order g2

v W

vy |\

Fig. 3.4 The three- and four-gauge boson vertices. The cubic coupling is of order g, while the
quartic one is of order g2

symmetric and C and P conserving couplings. In fact some small corrections are
already induced by the radiative corrections. But, in principle, more important could
be the modifications induced by some new physics effect. The experimental testing
of the triple gauge vertices has been done mainly at LEP2 and at the Tevatron. At
LEP2 the crosssection and angular distributions for the process ete™ — WTW~
have been studied (see Chap. 6).

In Born approximation the Feynman diagrams for the LEP2 process are shown
in Fig. 3.4 [6]. Besides neutrino exchange which only involves the well established
charged current vertex, the triple weak gauge vertices Vy -y +y appear in the y and
Z exchange diagrams. The Higgs exchange is negligible because the electron mass is
very small. The analytic cross section formula in Born approximation can be found,
for example, in Ref. [5]. The experimental data are compared with the SM prediction
in Chap. 6 [7]. The agreement is very good. Note that the sum of all three exchange
amplitudes has a better high energy behaviour. This is due to cancellations among
the amplitudes implied by gauge invariance, connected to the fact that the theory is
renormalizable (the crosssection can be seen as a contribution to the imaginary part
of the ete™ — eTe™ amplitude).

The quartic gauge coupling is proportional to g2espc WEWCespr WPWE.
Thus in the term with A = 3 we have four charged W’s. For A = 1 or two
we have two charged W’s and 2 W3’s, each W3 being a combination of y and Z
according to Eq. (3.13). With a little algebra the quartic vertex can be cast in the
form:

Vwwvv =igwwvvI28uw&p — §ur&vp — Eup8&vil (3.37)
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where, u and v refer to W W™ in the 4W vertex and to V'V in the WWV V case
and:

gwwww = g% Ewwyy = —é?, gwwyz = —egcosbw, gwwzz = —g*cos? Oy .
(3.38)

In order to obtain these result for the vertex the reader must duly take into account
the factor of —1/4 in front of F 31, in the lagrangian and the statistical factors
which are equal to two for each pair of identical particles (like W W™ or yy, for
example). The quartic coupling, being quadratic in g, hence small, could not be
directly tested so far.

3.5 The Higgs Sector

We now turn to the Higgs sector of the EW lagrangian. The Higgs lagrangian is
specified by the gauge principle and the requirement of renormalizability to be

Lhtiges = (D) (D*$) — V(@ d) — 1. Tyred — YrT Y107, (3.39)

where ¢ is a column vector including all Higgs fields; it transforms as a reducible
representation of the gauge group. The quantities I' (which include all coupling
constants) are matrices that make the Yukawa couplings invariant under the Lorentz
and gauge groups. Without loss of generality, here and in the following, we take "
to be ys-free. The potential V(p'p), symmetric under SU(2) ® U (1), contains, at
most, quartic terms in ¢ so that the theory is renormalizable:

1
Vigp'g) = —u?oTe + 2A<¢*¢>2 (3.40)

As discussed in Chap.2, spontaneous symmetry breaking is induced if the
minimum of V, which is the classical analogue of the quantum mechanical vacuum
state (both are the states of minimum energy), is obtained for non-vanishing ¢
values. Precisely, we denote the vacuum expectation value (VEV) of ¢, i.e. the
position of the minimum, by v (which is a doublet):

Olp(x)[0) =v = (S) #0. (3.41)

The reader should be careful that the same symbol is used for the doublet and the
only non zero component of the same doublet. The fermion mass matrix is obtained
from the Yukawa couplings by replacing ¢ (x) by v:

M =y Myg + yrMyp (3.42)
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with
M=Tv. (3.43)

In the MSM, where all left fermions ¥; are doublets and all right fermions ¥ r are
singlets, only Higgs doublets can contribute to fermion masses. There are enough
free couplings in I', so that one single complex Higgs doublet is indeed sufficient to
generate the most general fermion mass matrix. It is important to observe that by a
suitable change of basis we can always make the matrix M Hermitian and diagonal.
In fact, we can make separate unitary transformations on v and ¥ r according to

Yy =Uvr, Yr=Wyg (3.44)
and consequently
M->M=UMW. (3.45)

This transformation does not alter the structure of the fermion couplings in Lsymm
(because both the kinetic terms and the couplings to gauge bosons do not mix L
and R spinors) except that it leads to the phenomenon of mixing, as we shall see in
Sect. (3.6).

If only one Higgs doublet is present, the change of basis that makes M diagonal
will at the same time diagonalize the fermion—Higgs Yukawa couplings. Thus, in
this case, no flavour-changing neutral Higgs vertices are present. This is not true,
in general, when there are several Higgs doublets. But one Higgs doublet for each
electric charge sector i.e. one doublet coupled only to u-type quarks, one doublet to
d-type quarks, one doublet to charged leptons (and possibly one for neutrino Dirac
masses) would also be all right, because the mass matrices of fermions with different
charges are diagonalized separately. For several Higgs doublets in a given charge
sector it is also possible to generate CP violation by complex phases in the Higgs
couplings. In the presence of six quark flavours, this CP-violation mechanism is not
necessary. In fact, at the moment, the simplest model with only one Higgs doublet
seems adequate for describing all observed phenomena.

We now consider the gauge-boson masses and their couplings to the Higgs. These
effects are induced by the (DM¢)*(D“¢) term in Lhiges (Eq. (3.39)), where

3
Dup = [aﬂ +ig Y WA+ ig/(Y/2)Bu] ¢ . (3.46)
A=1

Here t4 and Y /2 are the SU(2) ® U (1) generators in the reducible representation
spanned by ¢. Not only doublets but all non-singlet Higgs representations can
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contribute to gauge-boson masses. The condition that the photon remains massless
is equivalent to the condition that the vacuum is electrically neutral:

0lv) =(t3+;Y)|v) =0. (3.47)

We now explicitlly consider the case of a single Higgs doublet:

+
¢ = (ZO) v= (S) , (3.48)

The charged W mass is given by the quadratic terms in the W field arising from
LHiggs, when ¢ (x) is replaced by v in Eq. (3.41). By recalling Eq. (3.10), we obtain

my WIW ™ = (v N PWI W (3.49)

whilst for the Z mass we get [recalling Egs. (3.12-3.14)]
1
Zmzzzﬂzﬂ = |[gcos Owr® — g’ sinOw (Y/2)v|>Z, 2" , (3.50)

where the factor of 1/2 on the left-hand side is the correct normalization for the
definition of the mass of a neutral field. By using Eq. (3.47), relating the action of ¢
and Y /2 on the vacuum v, and Egs. (3.16), we obtain

1

zmzz = (gcos By + g sinOw)?|3v)? = (g2/ cos® Ow)| 0] . (3.51)

For a Higgs doublet, as in Eq. (3.48), we have
o2 =%, |Pv)? =1/40%, (3.52)
so that
my, = 1/2g%v?,  m% = 1/2g*v*/cos’ Oy . (3.53)
Note that by using Eq. (3.19) we obtain

v=2"¥4G"* =174.1GeV . (3.54)
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It is also evident that for Higgs doublets

2

my
po= , ) =1. (3.55)
m7, cos= Oy

This relation is typical of one or more Higgs doublets and would be spoiled by the
existence of Higgs triplets etc. In general,

> (1) = () + 107
po = s (3.56)
25 26
for several Higgs bosons with VEVs v;, weak isospin #;, and z-component t;3-
These results are valid at the tree level and are modified by calculable EW radiative
corrections, as discussed in Sect. (3.7).
The measured values of the W and Z masses are [5, 8] (see Chap. 6):

mwy = 80.398 £0.025 GeV, mz = 91.1875+0.0021 GeV. (3.57)

In the minimal version of the SM only one Higgs doublet is present. Then
the fermion-Higgs couplings are in proportion to the fermion masses. In fact,
from the Yukawa couplings g(pf-f(qu&fR + h.c.), the mass my is obtained by
replacing ¢ by v, so that my = g, Frv In the minimal SM three out of the four
Hermitian fields are removed from the physical spectrum by the Higgs mechanism
and become the longitudinal modes of W+, W~, and Z. The fourth neutral
Higgs is physical and should be found. If more doublets are present, two more
charged and two more neutral Higgs scalars should be around for each additional
doublet.

The couplings of the physical Higgs H can be simply obtained from Liggs, by
the replacement (the remaining three hermitian fields correspond to the would be
Goldstone bosons that become the longitudinal modes of W= and Z):

(6T ) 0
o) = (¢°<x)) ” <v + (HN2>> ’ 3:38)

[so that (DM¢)*(D“¢) = 1/2(8,LH)2 4+ ...], with the results

g2

CIH W, Z] = g% ° 4

V2

+¢r U z.zrH Y
24/2 cos? Oy

WIW™H+° WIW T H? 4

2
8 2
Z,Z*H-. (359
8cos2 oy ¥ (3.59)
Note that the trilinear couplings are nominally of order g2, but the adimensional
coupling constant is actually of order g if we express the couplings in terms of the
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masses according to Eqgs. (3.53):

2
LUHW.Z) = gmwW,i W H + 5 Wiw e +

g2

8 cos? Oy

gmz

Z,ZMH? | 3.60
2 cos? Oy " (3.60)

Z,ZMH +
Thus the trilinear couplings of the Higgs to the gauge bosons are also proportional
to the masses. The quadrilinear couplings are genuinely of order g2. Recall that to
go from the lagrangian to the Feynman rules for the vertices the statistical factors
must be taken into account: for example, the Feynman rule for the ZZH H vertex
is ig,wgz/Z cos? Oy .

The generic coupling of H to a fermion of type f is given by (after diagonaliza-
tion):

LIH, ¥, y] = ifsz, (3.61)
with
8f _ Mf _ 517412
= =2'"G . 3.62
NN, F s (5.62)

The Higgs self couplings are obtained from the potential in Eq. (3.40) by the
replacement in Eq. (3.58). Given that, from the minimum condition:

2
v = \/’f\ (3.63)

one obtains:

H /LZ H ,u2v2 ,u2 /LZ
1% 2 2 4 2 HZ H3 H4
=M (U + \/2) + 2U2 (U + «/2) 2 + 12 + \/21) + 8U2
(3.64)

The constant term can be omitted in our context. We see that the Higgs mass is
positive (compare with Eq. (3.40)) and is given by:

m3; =2u* = 2)0° (3.65)

We see that for +/A ~ o(1) the Higgs mass should be of the order of the weak scale.

The difficulty of the Higgs search is due to the fact that it is heavy and coupled
in proportion to mass: it is a heavy particle that must be radiated by another heavy
particle. So a lot of phase space and luminosity is needed. At LEP2 the main process
for Higgs production was the Higgs-strahlung process e™e~™ — ZH shown in
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Fig. 3.5 Higgs production
diagrams in Born
approximation: (a) The
Higgs-strahlung process
ete™ — ZH, (b) the WW
fusion process ete™ — Hvv

<

Fig.3.5 [9]. The alternative process ete™ — Hvv, via WW fusion, also shown
in Fig.3.5 [10], has a smaller crosssection at LEP2 energies but would become
important, even dominant at higher energy e*e™ colliders, like the ILC or CLIC
(the corresponding ZZ fusion process has a much smaller crosssection). The analytic
formulae for the crosssections of both processes can be found, for example, in [11].
The direct experimental limit on m g from LEP2 is mpy = 114 GeV at 95% c.1. (see
Chap. 6).

3.6 The CKM Matrix

Weak charged currents are the only tree level interactions in the SM that change
flavour: for example, by emission of a W an up-type quark is turned into a down-
type quark, or a v; neutrino is turned into a [~ charged lepton (all fermions are
letf-handed). If we start from an up quark that is a mass eigenstate, emission of a
W turns it into a down-type quark state d’ (the weak isospin partner of u) that in
general is not a mass eigenstate. The mass eigenstates and the weak eigenstates do
not coincide and a unitary transformation connects the two sets:

d’ d
D=|s]|=Vv|s]=VD (3.66)
b/

V is the Cabibbo-Kobayashi-Maskawa (CKM) matrix [12] (and similarly we can
denote by U the column vector of the three up quark mass eigenstates). Thus in
terms of mass eigenstates the charged weak current of quarks is of the form:

I o Uyu(1—ys)itvD (3.67)

where

V=UU, (3.68)
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Here U, and Uy, are the unitary matrices that operate on left-handed doublets in
the diagonalization of the u and d quarks, respectively (see Eq.(3.44)). Since V
is unitary (i.e. vvT = viv = 1) and commutes with 72, T3 and Q (because
all d-type quarks have the same isospin and charge), the neutral current couplings
are diagonal both in the primed and unprimed basis (if the down-type quark terms
in the Z current are written in terms of weak isospin eigenvectors as D'T'D’,
then by changing basis we get DVIT'VD and V and I' commute because, as
seen from Eq.(3.23), I' is made of Dirac matrices and of 73 and Q generator
matrices). It follows that D'T’D’ = DI D. This is the GIM mechanism [13] that
ensures natural flavour conservation of the neutral current couplings at the tree
level.

For N generations of quarks, V is a NxN unitary matrix that depends on N2
real numbers (N2 complex entries with N2 unitarity constraints). However, the 2N
phases of up- and down-type quarks are not observable. Note that an overall phase
drops away from the expression of the current in Eq. (3.67), so that only 2N — 1
phases can affect V. In total, V depends on N> — 2N + 1 = (N — 1) real physical
parameters. A similar counting gives N(N — 1)/2 as the number of independent
parameters in an orthogonal N xN matrix. This implies that in V we have N(N —
1)/2 mixing angles and (N — D2—N(N—-1)/2=(N—-1)(N-2)/2 phases: for
N = 2 one mixing angle (the Cabibbo angle 6¢) and no phases, for N = 3 three
angles (612, 013 and 6»3) and one phase ¢ etc.

Given the experimental near diagonal structure of V a convenient parametrisation
is the one proposed by Maiani [14]. It can be cast in the form of a product of
three independent 2 x 2 block matrices (s;; and ¢;; are shorthands for sin6;; and
cos0;;):

1 0 O C13 0 s13e'? cr2 s12 0
V=10 c3 s23 0 1 0 —s12c¢c120] - (3.69)
0 —s523 €23 —s13¢7% 0 ¢p3 0 01

The advantage of this parametrization is that the three mixing angles are of different
orders of magnitude. In fact, from experiment we know that s;o = A, s23 ~ o(kz)
and s13 ~ 0(A3), where A = sin 6 is the sine of the Cabibbo angle, and, as order
of magnitude, s;; can be expressed in terms of small powers of A. More precisely,
following Wolfenstein [15] one can set:

S12 = A, 523 = AAZ, size ' = AN (p —in) (3.70)

As aresult, by neglecting terms of higher order in A one can write down:

2 .
Vud Vus Vub 1- )\2 A A)\?’(,O —in)
2
V=1 Vea Ves Veb ~ —A 1-— )\2 A2 + 0()\4)-
Via Vis Vib AV (1 —p—in) —AA? 1

(3.71)
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It has become customary to make the replacement p, n — p, n with:
p—in= """
V1=22

Present values of the CKM parameters as obtained from experiment are [16] [17] (a
survey of the current status of the CKM parameters can also be found in Ref. [5]):

~ (p—if)(1+2r224...). (3.72)

A = 0.2258 4 0.0014
A =0.818+0.016
5 =0.164 +0.029; i = 0.340 £ 0.017 (3.73)

A more detailed discussion of the experimental data is given in Chap. 10.

In the SM the non vanishing of the n parameter (related to the phase ¢ in
Egs. 3.69 and 3.70) is the only source of CP violation. Unitarity of the CKM matrix
V implies relations of the form Za VbaVE = 6be. In most cases these relations
do not imply particularly instructive constraints on the Wolfenstein parameters. But
when the three terms in the sum are of comparable magnitude we get interesting
information. The three numbers which must add to zero form a closed triangle in the
complex plane, with sides of comparable length. This is the case for the t-u triangle
(unitarity triangle) shown in Fig. 3.6 (or, what is equivalent in first approximation,
for the d-b triangle):

th Vu*d + Vt_y ‘/:s + th Vu*h == O (374)

All terms are of order A3. For n = 0 the triangle would flatten down to vanishing
area. In fact the area of the triangle, J of order J ~ nA21°, is the Jarlskog invariant
[18] (its value is independent of the parametrization). In the SM all CP violating
observables must be proportional to J, hence to the area of the triangle or to 1. A
direct and by now very solid evidence for J non vanishing is obtained from the
measurements of € and €’ in K decay. Additional direct evidence is being obtained
from the experiments on B decays at beauty factories and at the TeVatron where the
angles B (the most precisely measured), ¢ and y have been determined. Together
with the available information on the magnitude of the sides all the measurements

Fig. 3.6 The unitarity
triangle corresponding to
Eq.(3.74)
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Fig. 3.7 Box diagrams d \W 5 d d

describing K° — K° mixing VWY
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are in good agreement with the predictions from the SM unitary triangle [16, 17]
(see Chap. 10).

As we have discussed, due to the GIM mechanism, there are no flavour changing
neutral current (FCNC) transitions at tree level in the SM. Transitions with [AF| =
1, 2 are induced at one loop level. In particular, meson mixing, i.e. M — M off
diagonal |A F| = 2 mass matrix elements (with M = K, D or B neutral mesons),
are obtained from box diagrams. For example, in the case of K* — K° mixing the
relevant transition is 5d — sd (see Fig. 3.7). In the internal quark lines all up-type
quarks are exchanged. In the amplitude, two vertices and the connecting propagator
(with virtual four momentum p,,) at one side contribute a factor (u; = u, c, 1):

FGIM—Z W o Vaia (3.75)
ui

which, in the limit of equal m,,;, is clearly vanishing due to the unitarity of the CKM
matrix V. Thus the result is proportional to mass differences. For K* — K mixing
the contribution of virtual u quarks is negligible due to the small value of m, and the
contribution of the t quark is also small due to the mixing factors V% V4 ~ 0(A%A3).
The dominant ¢ quark contribution to the real part of the box diagram quark-level
amplitude is approximately of the form (see, for example, [19]):

G? _
ReHpo = | :zmzRe(v;; Vea)?m 025=2, (3.76)

where 11 ~ 0.85 is a QCD correction factor and 085=2 — chyMsL SLyudy is the
4-quark dimension six relevant operator. To obtain the K® — K mixing its matrix
element between meson states must be taken which is parametrized in terms of a
“Bg parameter” which is defined in such a way that Bx = 1 for vacuum state
insertion between the two currents:

- 16
(K°102=2|KY) = 3 fxkm% Bk , (3.77)

where fx ~ 113MeV is the kaon pseudoscalar constant. Clearly to the charm
contribution in Eq. (3.76) non perturbative additional contributions must be added,
some of them of o(m%( / m%), because the smallness of m. makes a completely
partonic dominance inadequate. In particular, By is best evaluated by QCD lattice
simulations. In Eq. (3.76) the factor o(mg / m%‘,) is the “GIM suppression” factor
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Fig. 3.8 Examples of |A F| = 1 transitions at the quark level at 1-loop: (a) Diagram fora Z — ¢ ¢
vertex, (b) b — s y, (c) a “penguin” diagram for b — s eTe™

(1 /m%v is hidden in Gr according to Eq.(3.19)). For B mixing the dominant
contribution is from the t quark. In this case, the partonic dominance is more realistic
and the GIM factor o(mt2 / m%v) is actually larger than one.

All sorts of transitions with | A F'| = 1 are also induced at loop level. For example,
an effective vertex Z — tc, which does not exist at tree level, is generated at 1-loop
(see Fig. 3.8). Similarly, transitions involving photons or gluons are also possible,
liket - cgorb — s y (Fig.3.8) or b — s g. For light fermion exchange
in the loop the GIM suppression is also effective in |AF| = 1 amplitudes. For
example, analogous leptonic transitions like 4 — e y or t — pu y also exist but
are extremely small in the SM because the tiny neutrino masses enter in the GIM
suppression factor. But new physics effects could well make these rare processes
accessible to experiments in the near future. The external Z, photon or gluon can be
attached to a pair of light fermions, giving rise to an effective four fermion operator,
as in “penguin diagrams” like the one shown in Fig.3.8 for b — s [TI~. The
inclusive rate B — X y with X a hadronic state containing a unit of strangeness
corresponding to an s-quark, has been precisely measured. The world average result
for the branching ratio with E,, > 1.6 GeV is [5]:

B(B — Xy ¥)exp = (3.55+0.26)107* . (3.78)

The theoretical prediction for this inclusive process is to a large extent free of
uncertainties from hadronisation effects and is accessible to perturbation theory as
the b-quark is heavy enough. The most complete result at order af is at present [20]
(and refs. therein):

B(B — X5 y)in = (2.98 £0.26)1074 . (3.79)
Note that the theoretical value has recently become smaller than the experimental

value. The fair agreement between theory and experiment imposes stringent con-
straints on possible new physics effects.
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3.7 Neutrino Masses

In the minimal version of the SM the right handed neutrinos v;g, which have no
gauge interactions, are not present at all. With no vg no Dirac mass is possible
for neutrinos. If lepton number conservation is also imposed, then no Majorana
mass is allowed either and, as a consequence, all neutrinos are massless. But, at
present, from neutrino oscillation experiments (see Chapter 11 of the present work),
we know that at least 2 out of the 3 known neutrinos have non vanishing masses:
the two mass squared differences measured from solar (Am%z) and atmospheric
oscillations (Am%) are given by Am%2 ~ 8107 ¢V? and Am%3 ~ 251073
[21]. The absolute values of the masses are very small, with an upper limit of a
fraction of eV, obtained from laboratory experiments (tritium B decay near the end
point: m,, < 2 eV [5], absence of visible neutrinoless double B decay : |me.| <
0.3—0.7eV (m,, is a combination of neutrino masses; for a review, see, for example
[22]) and from cosmological observations: m, < 0.1 — 0.7 eV (depending on the
cosmological model assumptions) [23]. If v;r are added to the minimal model and
lepton number is imposed by hand, then neutrino masses would in general appear as
Dirac masses, generated by the Higgs mechanism, like for any other fermion. But,
for Dirac neutrinos, to explain the extreme smallness of neutrino masses, one should
allow for very small Yukawa couplings. However, we stress that, in the SM, baryon
B and lepton L number conservation, which are not guaranteed by gauge symmetries
(as is the case for the electric charge Q), are understood as “accidental” symmetries,
due to the fact that, out of the SM fields, it is not possible to construct gauge invariant
operators which are renormalizable (i.e. of operator dimension d < 4) and violate
B and/or L. In fact the SM lagrangian should contain all terms allowed by gauge
symmetry and renormalizability. The most general renormalizable lagrangian, built
from the SM fields, compatible with the SM gauge symmetry, in absence of v;g, is
automatically B and L conserving. But in presence of v; g, this is no more true and
the right handed Majorana mass term is allowed:

MRR = \_)iCRM,'jVjR = vz?;?CMijij s (3.80)

where vi, = Cf)ﬁe is the charge conjugated neutrino field and C is the charge
conjugation matrix in Dirac spinor space. The Majorana mass term is an operator
of dimension d = 3 with AL = 2. Since the v;g are gauge singlets the Majorana
mass MRr is fully allowed by the gauge symmetry and a coupling with the Higgs is
not needed to generate this type of mass. As a consequence, the entries of the mass
matrix M;; do not need to be of the order of the EW symmetry breaking scale v and
could be much larger. If one starts from the Dirac and RR Majorana mass terms for
neutrinos, the resulting mass matrix, in the L, R space, has the form:

. 0 mp
m, = [mD M} (3.81)
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where mp and M are the Dirac and Majorana mass matrices (M is the matrix M;;
in Eq. (3.80)). The corresponding eigenvalues are three very heavy neutrinos with
masses of order M and three light neutrinos with masses

m, = —m{)M_lmD , (3.82)

which are possibly very small if M is large enough. This is the see-saw mechanism
for neutrino masses [24]. Note that if no v;g exist a Majorana mass term could
still be built out of v;,. But v;; have weak isospin 1/2, being part of the left
handed lepton doublet /. Thus, the left handed Majorana mass term has total weak
isospin equal to one and needs two Higgs fields to make a gauge invariant term. The
resulting mass term:

Os = Al pijl; HH/M , (3.83)

with M alarge scale (apriori comparable to the scale of Mrr) and A a dimensionless
coupling generically of o(1), is a non renormalizable operator of dimension 5. The
corresponding mass terms are of the order m,, ~ Av>/M, hence of the same generic
order of the light neutrino masses from Eq. (3.82).

In conclusion, neutrino masses are believed to be small because neutrinos are
Majorana particles with masses inversely proportional to the large scale M of energy
where L non conservation is induced. It is interesting that the observed magnitudes
of the mass squared splittings of neutrinos are well compatible with a scale M
remarkably close to the Grand Unification scale, where in fact L non conservation
is naturally expected.

In the previous Section we have discussed flavour mixing for quarks. But, clearly,
given that non vanishing neutrino masses have been established, a similar mixing
matrix is also introduced in the leptonic sector, but will not be discussed here (see
Chapter 11).

3.8 Renormalization of the Electroweak Theory

The Higgs mechanism gives masses to the Z, the W* and to fermions while the
lagrangian density is still symmetric. In particular the gauge Ward identities and the
symmetric form of the gauge currents are preserved. The validity of these relations
is an essential ingredient for renormalizability. In the previous Sections we have
specified the Feynman vertices in the “unitary” gauge where only physical particles
appear. However, as discussed in Chap. 2, in this gauge the massive gauge boson
propagator would have a bad ultraviolet behaviour:

—&uw + ‘i:g”
W=, oW (3.84)
q- —my
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A formulation of the standard EW theory with good apparent ultraviolet behaviour
can be obtained by introducing the renormalizable or Rg¢ gauges, in analogy with
the abelian case discussed in detail in Chap. 2. One parametrizes the Higgs doublet

as:
(") = («m ~|—i¢2> _( et
- <¢°> “\gstio) = (U ) o

and similarly for ¢ ', where w™ appears. The scalar fields w® and z are the pseudo
Goldstone bosons associated with the longitudinal modes of the physical vector
bosons W* and Z. The R: gauge fixing lagrangian has the form:

ALgF = —; |9 Wy, — Emww|* — 21;7 (0" Z, —nmzz)* — 21a A, (3.86)
The W* and Z propagators, as well as those of the scalars w* and z, have exactly
the same general forms as for the abelian case in Egs. (67)-(69) of Chap. 2, with
parameters £ and 7, respectively (and the pseudo Goldstone bosons w* and z have
masses Emwy and nmz). In general, a set of associated ghost fields must be added,
again in direct analogy with the treatment of R gauges in the abelian case of
Chap. 2. The complete Feynman rules for the standard EW theory can be found
in a number of textbooks (see, for example, [25]).

The pseudo Goldstone bosons w* and z are directly related to the longitudinal
helicity states of the corresponding massive vector bosons W* and Z. This
correspondence materializes in a very interesting “equivalence theorem”: at high
energies of order E the amplitude for the emission of one or more longitudinal gauge
bosons Vy, (with V. = W, Z) becomes equal (apart from terms down by powers of
my /E) to the amplitude where each longitudinal gauge boson is replaced by the
corresponding Goldstone field w* or z [26]. For example, consider top decay with
a longitudinal W in the final state: t — bWZr . The equivalence theorem asserts that
we can compute the dominant contribution to this rate from the simpler t — bw™
matrix element:

C(t — bW, =Tt — bw D[l +o(my,/mH)]. (3.87)

In fact one finds:

h? Grm?
T(t—bwt)= 't m=_T" (3.88)
32 8A/2

where h; = m, /v is the Yukawa coupling of the top quark (numerically very close
to 1), and we used l/v2 =2V2Gr (see Eq. (3.54)). If we compare with Eq. (3.34),
we see that this expression coincides with the total top width (i.e. including all
polarizations for the W in the final state), computed at tree level, apart from terms
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down by powers of o(m%,v / mtz). In fact, the longitudinal W is dominant in the final
state because /; >> g2. Similarly the equivalence theorem can be applied to find
the dominant terms at large /s for the crosssection e™e™ — WZr W, , or the leading
contribution in the limit mg >> my to the width for the decay I'(H — VV).

The formalism of the R gaugesis also very useful in proving that spontaneously
broken gauge theories are renormalizable. In fact, the non singular behaviour of
propagators at large momenta is very suggestive of the result. Nevertheless to
prove it is by far not a simple matter. The fundamental theorem that in general a
gauge theory with spontaneous symmetry breaking and the Higgs mechanism is
renormalizable was proven by 't Hooft and Veltman [27, 28].

For a chiral theory like the SM an additional complication arises from the
existence of chiral anomalies. But this problem is avoided in the SM because the
quantum numbers of the quarks and leptons in each generation imply a remarkable
(and, from the point of view of the SM, mysterious) cancellation of the anomaly,
as originally observed in Ref.[29]. In quantum field theory one encounters an
anomaly when a symmetry of the classical lagrangian is broken by the process of
quantization, regularization and renormalization of the theory. Of direct relevance
for the EW theory is the Adler-Bell-Jackiw (ABJ) chiral anomaly [30]. The classical
lagrangian of a theory with massless fermions is invariant under a U(1) chiral
transformations ¥/ = ¢'¥5%y. The associated axial Noether current is conserved
at the classical level. But, at the quantum level, chiral symmetry is broken due to the
ABJ anomaly and the current is not conserved. The chiral breaking is produced by a
clash between chiral symmetry, gauge invariance and the regularization procedure.

The anomaly is generated by triangular fermion loops with one axial and two
vector vertices (Fig. 3.9). For example, for the Z the axial coupling is proportional
to the third component of weak isospin 3, while the vector coupling is proportional
to a linear combination of 73 and the electric charge Q. Thus in order for the chiral
anomaly to vanish all traces of the form tr{t3 Q O}, tr{t:313Q}, tr{t3t3t3} (and also
tr{tyt_t3} when charged currents are also included) must vanish, where the trace
is extended over all fermions in the theory that can circulate in the loop. Now all
these traces happen to vanish for each fermion family separately. For example take
tr{t30 Q}. In one family there are, with 13 = +1/2, three colours of up quarks with

Fig. 3.9 Triangle diagram
that generates the ABJ
anomaly

Y
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charge O = +2/3 and one neutrino with Q = 0 and, with 13 = —1/2, three colours
of down quarks with charge Q = —1/3 and one /= with Q = —1. Thus we obtain
tr{iQQ} = 1/2:34/9 — 1/2:3:1/9 — 1/2'1 = 0. This impressive cancellation
suggests an interplay among weak isospin, charge and colour quantum numbers
which appears as a miracle from the point of view of the low energy theory but is in
fact understandable from the point of view of the high energy theory. For example,
in Grand Unified Theories (GUTs) (for reviews, see, for example, [31]) there are
similar relations where charge quantization and colour are related: in the five of
SU(5) we have the content (d, d, d, e, v) and the charge generator has a vanishing
trace in each SU(5) representation (the condition of unit determinant, represented by
the letter S in the SU(5) group name, translates into zero trace for the generators).
Thus the charge of d quarks is —1/3 of the positron charge because there are three
colours. A whole family fits perfectly in one 16 of SO(10) which is anomaly free.
So GUTs can naturally explain the cancellation of the chiral anomaly.

An important implication of chiral anomalies together with the topological
properties of the vacuum in non abelian gauge theories is that the conservation of the
charges associated to baryon (B) and lepton (L) numbers is broken by the anomaly
[32], so that B and L conservation is actually violated in the standard electroweak
theory (but B-L remains conserved). B and L are conserved to all orders in the
perturbative expansion but the violation occurs via non perturbative instanton effects
[33] (the amplitude is proportional to the typical non perturbative factor exp —c/g?,
with ¢ a constant and g the SU(2) gauge coupling). The corresponding effect is
totally negligible at zero temperature 7', but becomes relevant at temperatures close
to the electroweak symmetry breaking scale, precisely at T ~ o(TeV). The non
conservation of B4-L and the conservation of B—L near the weak scale plays a role
in the theory of baryogenesis that quantitatively aims at explaining the observed
matter antimatter asymmetry in the Universe (for a recent review, see, for example,
[34]; see also Chap. 9).

3.9 QED Tests: Lepton Anomalous Magnetic Moments

The most precise tests of the electroweak theory apply to the QED sector. Here
we discuss some recent developments. The anomalous magnetic moments of the
electron and of the muon are among the most precise measurements in the whole
of physics. The magnetic moment i and the spin S are related by i = —geS/2m,
where g is the gyromagnetic ratio (g = 2 for a pointlike Dirac particle). The quantity
a = (g — 2)/2 measures the anomalous magnetic moment of the particle. Recently
there have been new precise measurements of a, and a, for the electron [35] and
the muon [36]:

as™ =11596521808.5(7.6) 1013, a%? = 11659208.0(6.3) 1077,
(3.89)
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Fig. 3.10 The hadronic
contributions to the
anomalous magnetic moment:
vacuum polarization (left)
and light by light scattering
(right)

The theoretical calculations in general contain a pure QED part plus the sum of
hadronic and weak contribution terms:

a= aQED +ahadrum'c + aweak _ Zci(a)i +ahadranic _i_aweak. (3.90)
- b
i

The QED part has been computed analytically for i = 1,2, 3, while fori = 4
there is a numerical calculation with an error (see, for example, [38] and refs
therein). Some terms for i = 5 have also been estimated for the muon case. The
hadronic contribution is from vacuum polarization insertions and from light by light
scattering diagrams (see Fig. 3.10). The weak contribution is from W or Z exchange.

For the electron case the weak contribution is essentially negligible and the
hadronic term (aé’“d’ onic ~ (16.71 % 0.19)-10~!3) does not introduce an important
uncertainty. As a result this measurement can be used to obtain the most precise
determination of the fine structure constant [37]:

a~! ~ 137.035999710(96) (3.91)

with an uncertainty about 10 times smaller than the previous determination.
However, very recently a theoretical error in the o* terms was corrected [39]. As a
result the value of @1 in Eq.(3.91) is shifted by —6.41180(73) 10~/ (about 7 o'’s).
This change has a minor impact in the following discussion of the muon (g — 2).

In the muon case the experimental precision is less by about three orders of
magnitude, but the sensitivity to new physics effects is typically increased by a
factor (m/ me)? ~ 4-10* (one mass factor arises because the effective operator
needs a chirality flip and the second one is because, by definition, one must factor
out the Bohr magneton e/2m). From the theory side, the QED term (using the value
of « from a, in Eq. (3.91)), and the weak contribution are affected by small errors
and are given by (all theory number are taken here from the review [40])

aZEP = (116584718.09+ 1.6)' 107!, a¥e% = (154 £2.2)107""  (3.92)

The dominant ambiguities arise from the hadronic term. The lowest order (LO)
vacuum polarization contribution can be evaluated from the measured cross sections
in eTe™ — hadrons at low energy via dispersion relations (the largest contribution
is from the 777 final state), with the result a%?-10~!! = 6909 = 44. The higher
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order (HO) vacuum polarization contribution (from 2-loop diagrams containing an
hadronic insertion) is given by: a[f 0-10~!"" = —98 + 1. The contribution of the
light by light (LbL) scattering diagrams is estimated to be: a-?%- 10711 = 120 £ 35.
Adding the above contributions up the total hadronic result is reported as:

ahtdronic = (6931 & 56)10~ 11, (3.93)

At face value this would lead to a 3.30 deviation from the experimental value affp

in Eq. (3.89):

as? —ath€’e) = 275 £ 84y107!. (3.94)
However, the error estimate on the LbL term, mainly a theoretical uncertainty, is
not compelling, and it could well be somewhat larger (although probably not by as
much as to make the discrepancy to completely disappear). Another puzzle is the
fact that, using the conservation of the vector current (CVC) and isospin invariance,
which are well established tools at low energy, aﬁO can also be evaluated from 7
decays. But the results on the hadronic contribution from e*e™ and from 7 decay,
nominally of comparable accuracy, do not match well, and the discrepancy would be
much attenuated if one takes the t result [41]. Since it is difficult to find a theoretical
reason for the ete™ vs 7 difference, one must conclude that there is something
which is not understood either in the data or in the assessment of theoretical errors.
The prevailing view is to take the eTe™ determination as the most directly reliable,
which leads to Eq. (3.94), but doubts certainly remain. Finally, we note that, given
the great accuracy of the a, measurement and the relative importance of the non
QED contributions, it is not unreasonable that a first signal of new physics can
appear in this quantity.

3.10 Large Radiative Corrections to Electroweak Processes

Since the SM theory is renormalizable higher order perturbative corrections can
be reliably computed. Radiative corrections are very important for precision EW
tests. The SM inherits all successes of the old V-A theory of charged currents
and of QED. Modern tests have focussed on neutral current processes, the W
mass and the measurement of triple gauge vertices. For Z physics and the W
mass the state of the art computation of radiative corrections include the complete
one loop diagrams and selected dominant two loop corrections. In addition some
resummation techniques are also implemented, like Dyson resummation of vacuum
polarization functions and important renormalization group improvements for large
QED and QCD logarithms. We now discuss in more detail sets of large radiative
corrections which are particularly significant (for reviews of radiative corrections
for LEP1 physics, see, for example: [42]).
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Even leaving aside QCD corrections, a set of important quantitative contributions
to the radiative corrections arise from large logarithms [e.g. terms of the form
(a/m In (mz/mg;))" where fj; is a light fermion]. The sequences of leading and
close-to-leading logarithms are fixed by well-known and consolidated techniques (8
functions, anomalous dimensions, penguin-like diagrams, etc.). For example, large
logarithms from pure QED effects dominate the running of « from m,, the electron
mass, up to mz. Similarly large logarithms of the form [o/7 In (mz/w)]" also
enter, for example, in the relation between sin? Ow at the scales mz (LEP, SLC)
and p (e.g. the scale of low-energy neutral-current experiments). Also, large logs
from initial state radiation dramatically distort the line shape of the Z resonance as
observed at LEP1 and SLC and this effect was accurately taken into account for
the measurement of the Z mass and total width. The experimental accuracy on m z
obtained at LEP1 is émz = £2.1 MeV (see Chap. 6). Similarly, a measurement of
the total width to an accuracy 6I" = +2.3 MeV has been achieved. The prediction of
the Z line-shape in the SM to such an accuracy has posed a formidable challenge to
theory, which has been successfully met. For the inclusive process ete™ — ffX,
with f # e (for a concise discussion, we leave Bhabha scattering aside) and X
including y’s and gluons, the physical cross-section can be written in the form of a
convolution [42]:

1
o(s) = / dz 6(z5)G(z,s) , (3.95)
Zi

0

where & is the reduced cross-section, and G(z, s) is the radiator function that
describes the effect of initial-state radiation; & includes the purely weak corrections,
the effect of final-state radiation (of both y’s and gluons), and also non-factorizable
terms (initial- and final-state radiation interferences, boxes, etc.) which, being small,
can be treated in lowest order and effectively absorbed in a modified &. The radiator
G (z, s) has an expansion of the form

Gz, 5) =81 —2) +a/m(anL + ai) + («/7)*(anl® +anL +ax) + ... +

+ (@/m)" Y anl’, (3.96)

i=0

where L = In s/ mg ~ 24.2 for \/s >~ mz. All first- and second-order terms
are known exactly. The sequence of leading and next-to-leading logs can be
exponentiated (closely following the formalism of structure functions in QCD). For
mz =~ 91GeV, the convolution displaces the peak by +110MeV, and reduces it
by a factor of about 0.74. The exponentiation is important in that it amounts to an
additional shift of about 14 MeV in the peak position with respect to the one loop
radiative correction.

Among the one loop EW radiative corrections, a very remarkable class of
contributions are those terms that increase quadratically with the top mass. The
sensitivity of radiative corrections to m; arises from the existence of these terms. The



62 G. Altarelli and S. Forte

quadratic dependence on m; (and on other possible widely broken isospin multiplets
from new physics) arises because, in spontaneously broken gauge theories, heavy
virtual particles do not decouple. On the contrary, in QED or QCD, the running
of o and «y at a scale Q is not affected by heavy quarks with mass M > Q.
According to an intuitive decoupling theorem [43], diagrams with heavy virtual
particles of mass M can be ignored at Q < M provided that the couplings do not
grow with M and that the theory with no heavy particles is still renormalizable.
In the spontaneously broken EW gauge theories both requirements are violated.
First, one important difference with respect to unbroken gauge theories is in the
longitudinal modes of weak gauge bosons. These modes are generated by the Higgs
mechanism, and their couplings grow with masses (as is also the case for the
physical Higgs couplings). Second the theory without the top quark is no more
renormalizable because the gauge symmetry is broken as the (t,b) doublet would
not be complete (also the chiral anomaly would not be completely cancelled).
With the observed value of m; the quantitative importance of the terms of order
G Fmtz/4712\/ 2 is substancial but not dominant (they are enhanced by a factor
mt2 / m%v ~ 5 with respect to ordinary terms). Both the large logarithms and the
G pmt2 terms have a simple structure and are to a large extent universal, i.e. common
to a wide class of processes. In particular the G Fm,2 terms appear in vacuum
polarization diagrams which are universal (virtual loops inserted in gauge boson
internal lines are independent of the nature of the vertices on each side of the
propagator) and in the Z — bb vertex which is not. This vertex is specifically
sensitive to the top quark which, being the partner of the b quark in a doublet, runs in
the loop. Instead all types of heavy particles could in principle contribute to vacuum
polarization diagrams. The study of universal vacuum polarization contributions,
also called “oblique” corrections, and of top enhanced terms is important for
an understanding of the pattern of radiative corrections. More in general, the
important consequence of non decoupling is that precision tests of the electroweak
theory may apriori be sensitive to new physics even if the new particles are too
heavy for their direct production, but aposteriori no signal of deviation has clearly
emerged.

While radiative corrections are quite sensitive to the top mass, they are unfortu-
nately much less dependent on the Higgs mass. If they were sufficiently sensitive
by now we would precisely know the mass of the Higgs. But the dependence
of one loop diagrams on mpy is only logarithmic: ~ Gpm%vlog(m%{/m%v).
Quadratic terms ~ G%m% only appear at two loops [44] and are too small to
be detectable. The difference with the top case is that the splitting m,2 — m%
is a direct breaking of the gauge symmetry that already affects the 1- loop
corrections, while the Higgs couplings are “custodial” SU(2) symmetric in lowest
order.
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3.11 Electroweak Precision Tests in the SM and Beyond

For the analysis of electroweak data in the SM one starts from the input parameters:
as is the case in any renormalizable theory, masses and couplings have to be
specified from outside. One can trade one parameter for another and this freedom is
used to select the best measured ones as input parameters. Some of them, «, G r and
mgz, are very precisely known, as we have seen, some other ones, m , ehe> Mt and
ag(mz) are less well determined while mg is largely unknown. Among the light
fermions, the quark masses are badly known, but fortunately, for the calculation
of radiative corrections, they can be replaced by «(mz), the value of the QED
running coupling at the Z mass scale. The value of the hadronic contribution to
the running, embodied in the value of Aa,g)d (mzz) (see Table 3.1, [8] ) is obtained
through dispersion relations from the data on ete™ — hadrons at moderate centre-
of-mass energies. From the input parameters one computes the radiative corrections
to a sufficient precision to match the experimental accuracy. Then one compares the
theoretical predictions with the data for the numerous observables which have been
measured [45], checks the consistency of the theory and derives constraints on m;,
ag(mz) and mpy. A detailed discussion of all experimental aspects of precision tests
of the EW theory is presented in Chap. 6.
The basic tree level relations:

g2 Gr

2 2 2
= , sin“ Oy = e =4na 3.97
8m%v V2 § v ( )
can be combined into
.2 To
sin“ Qy = (3.98)
v \/ZGFm%V

Always at tree level, a different definition of sin’ @y is from the gauge boson
masses:

2 2
m m
, W =p=1 = sinfoy=1-Y (3.99)
m?, cos? Oy m2,

where pp = 1 assuming that there are only Higgs doublets. The last two relations
can be put into the convenient form

2 2
m m To

1= "W = (3.100)
m2 " m% \/ZGszz
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Beyond tree level, these relations are modified by radiative corrections:

(1 m%‘, m%‘, _ ma(mz) 1
mzz mzz \/ZGszzl—AVW
" 4 3.101
m2 cos2 Oy + B0m (3.101)
Z

The Z and W masses are to be precisely defined in terms of the pole position in
the respective propagators. Then, in the first relation the replacement of « with the
running coupling at the Z mass «(mz) makes Ary completely determined at 1-loop
by purely weak corrections (G r is protected from logarithmic running as an indirect
consequence of (V-A) current conservation in the massless theory). This relation
defines Arwy unambigously, once the meaning of «(my) is specified (for example,
MS). On the contrary, in the second relation Ap,, depends on the definition of
sin” Oy beyond the tree level. For LEP physics sin” Ay is usually defined from the
Z — wtu~ effective vertex. At the tree level the vector and axial-vector couplings
g"f and gﬁ are given in Eqs. (3.29). Beyond the tree level a corrected vertex can be
written down in terms of modified effective couplings. Then sin’ Oy = sin® Ocrf is
in general defined through the muon vertex:

gh/gy =1 —4sin®6,p¢
ma(mz)

sin? Gpr = (1 + Ak)s3, sgc(%:\/ZG )
FMy

1
g’ = L+ 20) (3.102)

We see that sg and c(z) are “improved” Born approximations (by including the
running of &) for sin6.r; and cos?f.rr. Actually, since in the SM lepton
universality is only broken by masses and is in agreement with experiment within
the present accuracy, in practice the muon channel can be replaced with the average
over charged leptons.

We can write a symbolic equation that summarizes the status of what has been
computed up to now for the radiative corrections (we list some recent work on each
item from where older references can be retrieved) Ary [46], Ap [47] and Ak [48]:

2 4 2

m m m
Arw, Ap, Ak =g> 7 (I +as+ o))+ (U +ag+~ad) +g* [ +g* 1 +...
My My My
(3.103)

The meaning of this relation is that the one loop terms of order g2 are completely
known, together with their first order QCD corrections (the second order QCD



3 The Standard Model of Electroweak Interactions 65

corrections are only estimated for the g2 terms not enhanced by mt2 / m%‘,), and the
terms of order g* enhanced by the ratios mf / mév or m,2 / m%v are also known.

In the SM the quantities Arw, Ap, Ak, for sufficiently large m;, are all
dominated by quadratic terms in m; of order G Fmtz. The quantity Ap,, is not
independent and can expressed in terms of them. As new physics can more easily be
disentangled if not masked by large conventional m;, effects, it is convenient to keep
Ap while trading Arw and Ak for two quantities with no contributions of order
G Fmtz. One thus introduces the following linear combinations (epsilon parameters)
[49]:

€1 = Ap,
2
SAAF
€ = C(Z)A,O + (2) u; — ZSgAk,
o —%
_ 2 2 2
€3 = cgAp + (cg— sy)Ak. (3.104)

The quantities €3 and €3 no longer contain terms of order G Fmt2 but only logarithmic
terms in m,. The leading terms for large Higgs mass, which are logarithmic, are
contained in €; and €3. To complete the set of top-enhanced radiative corrections
one adds ¢, defined from the loop corrections to the Zbb vertex. One modifies gl",
and gg as follows:

1 Ap
b
= — (1 1
84 2( + ) Y1+ ep),

b 2
g}; _ 1 4/318111 Ocrf —i—éb. (3.105)
84 + €p
€y can be measured from R, = ['(Z — bb)/T'(Z — hadrons) (see Table 3.1).
This is clearly not the most general deviation from the SM in the Z — bb vertex
but €, is the quantity where the large m; corrections are located in the SM. Thus,
summarizing, in the SM one has the following “large” asymptotic contributions:

3Grm?2  3Gpm?
€ = Fite Pty tan29wln mH +....,
8724/2 4722 mz
G rm?
€ = — F Wlnmt + ...,
222 myz
Grm? G pm?
€3 = F™w an— F ant....,
12722 mz 6722 mz
G 2
€ = Fite (3.106)

Cax2y2
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The €; parameters vanish in the limit where only tree level SM effects are kept
plus pure QED and/or QCD corrections. So they describe the effects of quantum
corrections (i.e. loops) from weak interactions. A similar set of parameters are the
S, T, U parameters [50]: the shifts induced by new physics on S, T and U are
proportional to those induced on €3, €1 and €3, respectively. In principle, with no
model dependence, one can measure the four €; from the basic observables of LEP
physics I'(Z — utu™), A’;B and R on the Z peak plus my . With increasing
model dependence, one can include other measurements in the fit for the €;. For
example, use lepton universality to average the w with the e and t final states, or
include all lepton asymmetries and so on. The present experimental values of the ¢;,
obtained from a fit of all LEP1-SLD measurements plus myy, are given by The LEP
Electroweak Working Group [8]:

€10=544+10, &10°=-894+1.2,
3103 =5344+094, ¢,°10°=-5.0+1.6. (3.107)

Note that the € parameters are of order a few in 10~> and are known with an accuracy
in the range 15-30%. As discussed in the next Section, these values are in agreement
with the SM with a light Higgs. All models of new physics must be compared with
these findings and pass this difficult test.

3.12 Results of the SM Analysis of Precision Tests

The electroweak Z pole measurements, combining the results of all the experiments,
are summarised in Table 3.1. The various asymmetries determine the effective
electroweak mixing angle for leptons with highest sensitivity. The weighted average
of these results, including small correlations, is:

sin? 0,77 = 0.23153 £ 0.00016, (3.108)

Note, however, that this average has a X2 of 11.8 for 5 degrees of freedom,
corresponding to a probability of a few %. The x? is pushed up by the two most
precise measurements of sin’ Ocrf, namely those derived from the measurements
of A; by SLD, dominated by the left-right asymmetry A(z r» and of the forward-

backward asymmetry measured in bb production at LEP, A%g, which differ by about
30s.

We now discuss fitting the data in the SM. One can think of different types
of fit, depending on which experimental results are included or which answers
one wants to obtain. For example, in Table 3.2 we present in column 1 a fit of
all Z pole data plus mw and I'y (this is interesting as it shows the value of m;
obtained indirectly from radiative corrections, to be compared with the value of
m; measured in production experiments), in column 2 a fit of all Z pole data plus
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Table 3.1 Summary of Observable Measurement SM fit
electroweak precision

measurements at high 02 [8] mz [GeV] 91.1875 +£0.0021  91.1875
Iz [GeV] 2.4952 + 0.0023 2.4957
o) [nb] 41.540 £ 0.037 41477
R} 20.767 + 0.025 20.744
AFBY 0.01714 £0.00095  0.01645
A; (SLD) 0.1513 = 0.0021 0.1481
Ar (Pr) 0.1465 = 0.0032 0.1481
R) 0.21629 £ 0.00066  0.21586
RY 0.1721 = 0.0030 0.1722
A%y 0.0992 £0.0016  0.1038
A% 0.0707 = 0.0035 0.0742
Ap 0.923 £ 0.020 0.935
A 0.670 = 0.027 0.668
sin? 0,77 (Q"4d) 0.2324 £ 0.0012 0.2314
my [GeV] 80.398 + 0.025 80.374
Ty [GeV] 2.140 £ 0.060 2.091
m; [GeV (pp) 170.9 & 1.8 171.3
Aal) (m%) 0.02758 +0.00035  0.02768

The first block shows the Z-pole measurements. The second
block shows additional results from other experiments: the
mass and the width of the W boson measured at the Tevatron
and at LEP-2, the mass of the top quark measured at the
Tevatron, and the contribution to « of the hadronic vacuum
polarization. The SM fit results are derived from the SM
analysis of these results

m; (here it is my which is indirectly determined), and, finally, in column 3 a fit
of all the data listed in Table 3.1 (which is the most relevant fit for constraining
mpy). From the fit in column 1 of Table 3.2 we see that the extracted value of
m; is in good agreement with the direct measurement (see Table 3.1). Similarly
we see that the experimental measurement of my in Table 3.1 is larger by about
one standard deviation with respect to the value from the fit in column 2. We
have seen that quantum corrections depend only logarithmically on mg. In spite
of this small sensitivity, the measurements are precise enough that one still obtains
a quantitative indication of the mass range. From the fit in column 3 we obtain:
log gmu(GeV) = 1.88 £ 0.16 (or my = 7613, GeV). This result on the Higgs
mass is particularly remarkable. The value of log;,m g (GeV) is compatible with
the small window between ~2 and ~3 which is allowed, on the one side, by the
direct search limit (my > 114 GeV from LEP-2 [8]), and, on the other side, by the
theoretical upper limit on the Higgs mass in the minimal SM, m g < 600 — 800 GeV
[51].

Thus the whole picture of a perturbative theory with a fundamental Higgs is well
supported by the data on radiative corrections. It is important that there is a clear
indication for a particularly light Higgs: at 95% c.l. my < 182 GeV (including

~
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Table 3.2 Standard Model fits of electroweak data [8]

Fit 1 2 3

Measurements my my ms, my

m; (GeV) 178.9742 170.9 £ 1.8 1713 £ 1.7

mp (GeV) 1451210 99132 76135

log [mp(GeV)] 2.16 & +0.39 2.00 +0.19 1.88 +£0.16
ay(mz) 0.1190 + 0.0028 0.1189 £ 0.0027 0.1185 £ 0.0026
my (MeV) 80385 £ 19 80360 £ 20 80374 £ 15

All fits use the Z pole results and Aoz/(jl)d (mzz) as listed in Table 3.1. In addition, the measurements
listed on top of each column are included as well. The fitted W mass is also shown [8] (the directly
measured value is my = 80398 £ 25 MeV)

the input from the direct search result). This is quite encouraging for the ongoing
search for the Higgs particle. More general, if the Higgs couplings are removed
from the Lagrangian the resulting theory is non renormalizable. A cutoff A must
be introduced. In the quantum corrections logm g is then replaced by log A plus
a constant. The precise determination of the associated finite terms would be lost
(that is, the value of the mass in the denominator in the argument of the logarithm).
A heavy Higgs would need some unfortunate accident: the finite terms, different in
the new theory from those of the SM, should by chance compensate for the heavy
Higgs in a few key parameters of the radiative corrections (mainly €1 and €3, see,
for example, [49]). Alternatively, additional new physics, for example in the form
of effective contact terms added to the minimal SM lagrangian, should accidentally
do the compensation, which again needs some sort of conspiracy.

To the list of precision tests of the SM one should add the results on low
energy tests obtained from neutrino and antineutrino deep inelastic scattering
(NuTeV [52]), parity violation in Cs atoms (APV [53]) and the recent measurement
of the parity-violating asymmetry in Moller scattering [54] (see Chap.6). When
these experimental results are compared with the SM predictions the agreement
is good except for the NuTeV result that shows a deviation by three standard
deviations. The NuTeV measurement is quoted as a measurement of sin?fy =
1 - m%v / mZZ from the ratio of neutral to charged current deep inelastic cross-
sections from v, and v, using the Fermilab beams. But it has been argued and it
is now generally accepted that the NuTeV anomaly probably simply arises from an
underestimation of the theoretical uncertainty in the QCD analysis needed to extract
sin” Oy . In fact, the lowest order QCD parton formalism on which the analysis has
been based is too crude to match the experimental accuracy.

When confronted with these results, on the whole the SM performs rather well,
so that it is fair to say that no clear indication for new physics emerges from the
data. However, as already mentioned, one problem is that the two most precise
measurements of sin’ Befr from Az g and AI; g differ by about 3os. In general, there
appears to be a discrepancy between sin” 6 measured from leptonic asymmetries
((sin2 Ocfr);) and from hadronic asymmetries ((sin2 Betr)n). In fact, the result from
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ApR is in good agreement with the leptonic asymmetries measured at LEP, while
all hadronic asymmetries, though their errors are large, are better compatible with
the result of A'I’p - These two results for sin? Gefr are shown in Fig.3.11 [55]. Each of
them is plotted at the m g value that would correspond to it given the central value
of m;. Of course, the value for my indicated by each sin? O has an horizontal
ambiguity determined by the measurement error and the width of the 10 band for
m;. Even taking this spread into account it is clear that the implications on m g are
sizably different. One might imagine that some new physics effect could be hidden
in the Zbb vertex. Like for the top quark mass there could be other non decoupling
effects from new heavy states or a mixing of the b quark with some other heavy
quark. However, it is well known that this discrepancy is not easily explained in
terms of some new physics effect in the Zbb vertex. A rather large change with
respect to the SM of the b-quark right handed coupling to the Z is needed in order to
reproduce the measured discrepancy (precisely a ~30% change in the right-handed
coupling), an effect too large to be a loop effect but which could be produced at the
tree level, e.g., by mixing of the b quark with a new heavy vectorlike quark [56]),
or some mixing of the Z with ad hoc heavy states [57]. But then this effect should
normally also appear in the direct measurement of A; performed at SLD using the
left-right polarized b asymmetry, even within the moderate precision of this result.
The measurements of neither A; at SLD nor Rj, confirm the need of a new effect.
Alternatively, the observed discrepancy could be simply due to a large statistical
fluctuation or an unknown experimental problem. As a consequence of this problem,
the ambiguity in the measured value of sin” fefy is in practice larger than the nominal
error, reported in Eq. 3.108, obtained from averaging all the existing determinations,
and the interpretation of precision tests is less sharp than it would otherwise be.

We have already observed that the experimental value of my (with good
agreement between LEP and the Tevatron) is a bit high compared to the SM
prediction (see Fig.3.12). The value of mpy indicated by my is on the low side,

. . . 2 lept . .
just in the same interval as for sin’ GC? measured from leptonic asymmetries.
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In conclusion, overall the validity of the SM has been confirmed to a level that we
can say was unexpected at the beginning. In the present data there is no significant
evidence for departures from the SM, no compelling evidence of new physics. The
impressive success of the SM poses strong limitations on the possible forms of new
physics.

3.13 Phenomenology of the SM Higgs

The Higgs problem is really central in particle physics today. On the one hand,
the experimental verification of the Standard Model (SM) cannot be considered
complete until the structure of the Higgs sector is not established by experiment.
On the other hand, the Higgs is also related to most of the major problems of
particle physics, like the flavour problem and the hierarchy problem, the latter
strongly suggesting the need for new physics near the weak scale. In turn the
discovery of new physics could clarify the dark matter identity. It is clear that the
fact that some sort of Higgs mechanism is at work has already been established.
The W or the Z with longitudinal polarization that we observe are not present in an
unbroken gauge theory (massless spin-1 particles, like the photon, are transversely
polarized). The longitudinal degree of freedom for the W or the Z is borrowed from
the Higgs sector and is an evidence for it. Also, it has been verified that the gauge
symmetry is unbroken in the vertices of the theory: all currents and charges are
indeed symmetric. Yet there is obvious evidence that the symmetry is instead badly
broken in the masses. Not only the W and the Z have large masses, but the large
splitting of, for example, the t-b doublet shows that even a global weak SU(2) is
not at all respected by the fermion spectrum. This is a clear signal of spontaneous
symmetry breaking and the implementation of spontaneous symmetry breaking in a
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gauge theory is via the Higgs mechanism. The big remaining questions are about
the nature and the properties of the Higgs particle(s). The present experimental
information on the Higgs sector, is surprisingly limited and can be summarized in
a few lines, as follows. First, the relation M%V = M% cos? 6w, Eq. (3.55), modified
by small, computable radiative corrections, has been experimentally proven. This
relation means that the effective Higgs (be it fundamental or composite) is indeed
a weak isospin doublet. The Higgs particle has not been found but, in the SM, its
mass can well be larger than the present direct lower limit mpy 2 114GeV (at
95% c.l.) obtained from searches at LEP-2. The radiative corrections computed
in the SM when compared to the data on precision electroweak tests lead to a
clear indication for a light Higgs, not too far from the present lower bound. The
exact experimental upper limit for mg in the SM depends on the value of the top
quark mass m;. The CDF and DO combined value after Run II is at present [8]
m; = 170.9 £ 1.8GeV (it went down with respect to the value m; = 178 +
4.3 GeV from Run I and also the experimental error is now sizably reduced). As
a consequence the present limit on m g is more stringent [8]: mpy < 182 GeV (at
95% c.1., after including the information from the 114 GeV direct bound). On the
Higgs the LHC will address the following questions : one doublet, more doublets,
additional singlets? SM Higgs or SUSY Higgses? Fundamental or composite (of
fermions, of WW...)? Pseudo-Goldstone boson of an enlarged symmetry? A
manifestation of large extra dimensions (5th component of a gauge boson, an effect
of orbifolding or of boundary conditions...)? Or some combination of the above
or something so far unthought of? Here in the following we will summarize the
main properties of the SM Higgs that provide an essential basis for the planning
and the interpretation of the LHC Higgs programme. We start from the mass,
then the width and the branching ratios and, finally, the most important production
channels.

3.13.1 Theoretical Bounds on the SM Higgs Mass

It is well known [58-60] that in the SM with only one Higgs doublet a lower limit
on mpy can be derived from the requirement of vacuum stability (or, in milder
form, of a moderate instability, compatible with the lifetime of the Universe [61]).
The limit is a function of m, and of the energy scale A where the model breaks
down and new physics appears. The Higgs mass enters because it fixes the initial
value of the quartic Higgs coupling A for its running up to the large scale A.
Similarly an upper bound on mpy (with mild dependence on m;) is obtained, as
described in [62] and refs. therein, from the requirement that for A no Landau pole
appears up to the scale A, or in simpler terms, that the perturbative description
of the theory remains valid up to A. We now briefly recall the derivation of these
limits.

The possible instability of the Higgs potential V[¢] is generated by the quantum
loop corrections to the classical expression of V[¢]. At large ¢ the derivative
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V’[¢] could become negative and the potential would become unbound from below.
The one-loop corrections to V[¢] in the SM are well known and change the
dominant term at large ¢ according to Mt — A4y log ¢*/A%)¢*. This one-
loop approximation is not enough in this case, because it fails at large enough ¢,
when y log ¢?/A? becomes of order one. The renormalization group improved
version of the corrected potential leads to the replacement At = A(A)PH(A)
where A(A) is the running coupling and ¢’(1) = ¢ exp ft y (t")dt', with y (1) being
an anomalous dimension function and r = logA /v (v is the vacuum expectation
value v = (2v/2Gr)~1/?). As a result, the positivity condition for the potential
amounts to the requirement that the running coupling A(A) never becomes negative.
A more precise calculation, which also takes into account the quadratic term in the
potential, confirms that the requirements of positive A(A) leads to the correct bound
down to scales A as low as ~1TeV. The running of A(A) at one loop is given
by:

di

3
g = a2 [A% + 31h? — 9h? 4 small gauge and Yukawa terms] , (3.109)
v

with the normalization such thatatt = 0, A = Xp = m%{ /2v? and the top Yukawa
coupling h? = m; /v. We see that, for my small and m;, fixed at its measured value,
X decreases with ¢ and can become negative. If one requires that A remains positive
up to A = 10'5-10'° GeV, then the resulting bound on 7 g in the SM with only one
Higgs doublet is given by, (also including the effect of the two-loop beta function
terms) [60] :

ag(mz) —0.118
mp(GeV) > 1284 4 2.1 [m; — 170.9] — 4.5 0.006 . (3.110)

Note that this limit is evaded in models with more Higgs doublets. In this case the
limit applies to some average mass but the lightest Higgs particle can well be below,
as it is the case in the minimal SUSY extension of the SM (MSSM).

The upper limit on the Higgs mass in the SM is clearly important for assessing
the chances of success of the LHC as an accelerator designed to solve the Higgs
problem. The upper limit [62] arises from the requirement that the Landau pole
associated with the non asymptotically free behaviour of the A¢* theory does not
occur below the scale A. The initial value of A at the weak scale increases with
mp and the derivative is positive at large A (because of the positive A> term—the
X theory is not asymptotically free—which overwhelms the negative top- Yukawa
term). Thus, if my is too large, the point where A computed from the perturbative
beta function becomes infinite (the Landau pole) occurs at too low an energy. Of
course in the vicinity of the Landau pole the 2-loop evaluation of the beta function
is not reliable. Indeed the limit indicates the frontier of the domain where the theory
is well described by the perturbative expansion. Thus the quantitative evaluation
of the limit is only indicative, although it has been to some extent supported by
simulations of the Higgs sector of the EW theory on the lattice. For the upper limit
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on m g one finds [62]

mpyg 5 180 GeV for A ~ MGUT — Mp[
my <0.5—0.8TeV for A~ 1TeV. (3.111)

In conclusion, for m; ~ 171 GeV, only a small range of values for my is allowed,
130 <mpy < ~200GeV, if the SM holds up to A ~ Mgyt or Mp;.

An additional argument indicating that the solution of the Higgs problem cannot
be too far away is the fact that, in the absence of a Higgs particle or of an alternative
mechanism, violations of unitarity appear in some scattering amplitudes at energies
in the few TeV range [63]. In particular, amplitudes involving longitudinal gauge
bosons (those most directly related to the Higgs sector) are affected. For example,
at tree level in the absence of Higgs exchange, for s >> mZZ one obtains:
AW W, = ZLZ1)no Higes ~ i ;2 (3.112)
In the SM this unacceptable large energy behaviour is quenched by the Higgs

exchange diagram contribution:

2

_ R N
AW W, = Z1Z1) Higes ~ —i ) ) (3.113)

ve(s —my)
Thus the total result in the SM is:

2

+wr— . smH
AW W, — Z1LZ1)sm ~ — (3.114)

i
v2(s — m%{)

which at large energies saturates at a constant value. To be compatible with unitarity
bounds one needs m%_, < 472 /GFrormyg < 1.5TeV. Both the Landau pole and
the unitarity argument show that, if the Higgs is too heavy, the SM becomes a non
perturbative theory at energies of o(1 TeV). In conclusion, these arguments imply
that the SM Higgs cannot escape detection at the LHC.

3.13.2 SM Higgs Decays

The total width and the branching ratios for the SM Higgs as function of mpy are
given in Figs. 3.13 and 3.14, respectively [64].

Since the couplings of the Higgs particle are in proportion to masses, when m g
increases the Higgs becomes strongly coupled. This is reflected in the sharp rise of
the total width with m g . For m i near its present lower bound of 114 GeV, the width
is below 5 MeV, much less than for the W or the Z which have a comparable mass.
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Fig. 3.13 The total width of
the SM Higgs boson [64]

Fig. 3.14 The branching
ratios of the SM Higgs boson
[65]
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The dominant channel for such a Higgs is H — bb. In Born approximation the
partial width into a fermion pair is given by Djouadi [64] and Haber [66]:

- GF
FH = ff)=Ne, szﬂmifﬁ}

(3.115)

where 85 = (1 — 4m§c / m%{)l/ 2. The factor of B3 appears because the fermion pair
must be in a p-state of orbital angular momentum for a Higgs with scalar coupling,
because of parity (this factor would be 8 for a pseudoscalar coupling). We see that
the width is suppressed by a factor m?c / m%i with respect to the natural size G Fm%
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for the width of a particle of mass m g decaying through a diagram with only one
weak vertex.

A glance to the branching ratios shows that the branching ratio into t pairs is
larger by more than a factor of two with respect to the cc channel. This is at first
sight surprising because the colour factor N¢ favours the quark channels and the
masses of 7’s and of D mesons are quite similar. This is due to the fact that the
QCD corrections replace the charm mass at the scale of charm with the charm
mass at the scale m g, which is lower by about a factor of 2.5. The masses run
logarithmically in QCD, similar to the coupling constant. The corresponding logs
are already present in the 1-loop QCD correction that amounts to the replacement
mg — m2[1 + 2a,/w(logmz /m3; + 3/2)] ~ m2(m7).

The Higgs width sharply increases as the WW threshold is approached. For decay
into a real pair of V’s, with V.= W, Z, one obtains in Born approximation [64, 66]:

Gpmil 2
I'(H—>VV)= | Sy Bw (1 — 4x + 12x?) (3.116)

672

where By = /1 —4x with x = m?3,/m% and 8y = 2, 5z = 1. Much above
threshold the V'V channels are dominant and the total width, given approximately
by:

~ 3

OSTeV(lT V) (3.117)
becomes very large, signalling that the Higgs sector is becoming strongly interacting
(recall the upper limit on the SM Higgs mass in Eq.(3.111)). The V'V dominates
over the t7 because of the B threshold factors that disfavour the fermion channel
and, at large m g, by the cubic versus linear behaviour with m g of the partial widths
for VV versus . Below the V'V threshold the decays into virtual V particles is
important: VV* and V*V*. Note in particular the dip of the ZZ branching ratio
just below the ZZ threshold: this is due to the fact that the W is lighter than the Z
and the opening of its threshold depletes all other branching ratios. When the ZZ
threshold is also passed then the ZZ branching fraction comes back to the ratio of
approximately 1:2 with the WW channel (just the number of degrees of freedom:
two hermitian fields for the W, one for the Z).

The decay channels into yy, Zy and gg proceed through loop diagrams, with
the contributions from W (only for yy and Zy ) and from fermion loops (for all)
(Fig.3.15).

We reproduce here the results for '(H — yy) and I'(H — gg) [64, 66]:

G Fa2m3

128734/2

PH—ge)= 3\/2 | Z Ag(rp)? (3.119)

I'(H — yy) = 1A W(TW)+ZNCQfAf(Tf)| (3.118)
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Fig. 3.15 One-loop diagrams A
for Higgs decay into yy, Zy H H
and gg

— 2 2 .
where T; = m%; /4m7 and:

2
Ag(r) = Tz[r + (@ =D f(r)]
Aw(z) = _:2 272 + 37 + 327 — 1) f(1)] (3.120)
with:

f(r) = arcsin’ v/t for T <1

1++/1—171
g1—\/1—rl

For H — yy (as well as for H — Zy) the W loop is the dominant contribution at
small and moderate m . We recall that the ¥y mode can be a possible channel for
Higgs discovery only for m g near its lower bound (i.e for 114 < mg < 150GeV).
In this domain of my we have I'(H — yy)~6-23KeV. For example, in the
limit mp << 4m?, or T — 0, we have Ay (0) = —7 and Af(0) = 4/3. The
two contributions become comparable only for mg ~ 650GeV where the two
amplitudes, still of opposite sign, nearly cancel. The top loop is dominant among
fermions (lighter fermions are suppressed by mzf / m%_, modulo logs) and, as we have
seen, it approaches a constant for large m,. Thus the fermion loop amplitude for
the Higgs would be sensitive to effects from very heavy fermions, in particular the
H — gg effective vertex would be sensitive to all possible very heavy coloured
quarks. As discussed in the QCD Chapter (Chap.4) the gg — H vertex provides
one of the main production channels for the Higgs at hadron colliders.

f(r) = —i[lo —in]> for T >1 (3.121)

3.14 Limitations of the Standard Model

No signal of new physics has been found neither in electroweak precision tests nor
in flavour physics. Given the success of the SM why are we not satisfied with this
theory? Why not just find the Higgs particle, for completeness, and declare that
particle physics is closed? The reason is that there are both conceptual problems
and phenomenological indications for physics beyond the SM. On the conceptual
side the most obvious problems are that quantum gravity is not included in the SM
and the related hierarchy problem. Among the main phenomenological hints for new
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physics we can list coupling unification, dark matter, neutrino masses (discussed in
Sect. (3.7)), baryogenesis and the cosmological vacuum energy.

The computed evolution with energy of the effective SM gauge couplings clearly
points towards the unification of the electro-weak and strong forces (GUT’s) at
scales of energy Mgyr ~ 10> — 10'GeV [31] which are close to the scale
of quantum gravity, Mp; ~ 10' GeV. One is led to imagine a unified theory
of all interactions also including gravity (at present superstrings provide the best
attempt at such a theory). Thus GUT’s and the realm of quantum gravity set a
very distant energy horizon that modern particle theory cannot ignore. Can the SM
without new physics be valid up to such large energies? One can imagine that some
obvious problems could be postponed to the more fundamental theory at the Planck
mass. For example, the explanation of the three generations of fermions and the
understanding of fermion masses and mixing angles can be postponed. But other
problems must find their solution in the low energy theory. In particular, the structure
of the SM could not naturally explain the relative smallness of the weak scale of
mass, set by the Higgs mechanism at u ~ 1//Gr ~ 250 GeV with G ¢ being the
Fermi coupling constant. This so-called hierarchy problem is due to the instability
of the SM with respect to quantum corrections. This is related to the presence of
fundamental scalar fields in the theory with quadratic mass divergences and no
protective extra symmetry at 4 = 0. For fermion masses, first, the divergences are
logarithmic and, second, they are forbidden by the SU (2) ® U (1) gauge symmetry
plus the fact that at m = 0 an additional symmetry, i.e. chiral symmetry, is restored.
Here, when talking of divergences, we are not worried of actual infinities. The
theory is renormalizable and finite once the dependence on the cut off A is absorbed
in a redefinition of masses and couplings. Rather the hierarchy problem is one of
naturalness. We can look at the cut off as a parameterization of our ignorance on the
new physics that will modify the theory at large energy scales. Then it is relevant to
look at the dependence of physical quantities on the cut off and to demand that no
unexplained enormously accurate cancellations arise.

The hierarchy problem can be put in very practical terms (the “little hierarchy
problem”): loop corrections to the Higgs mass squared are quadratic in A. The most
pressing problem is from the top loop. With mﬁ = m%a,e + (Smﬁ the top loop gives

3GFr

2472 2
- mIA% ~ —(0.2A 3.122
2212 020 (122

2 ~
Smh\mp

If we demand that the correction does not exceed the light Higgs mass indicated
by the precision tests, A must be close, A ~ o(1 TeV). Similar constraints arise
from the quadratic A dependence of loops with gauge bosons and scalars, which,
however, lead to less pressing bounds. So the hierarchy problem demands new
physics to be very close (in particular the mechanism that quenches the top loop).
Actually, this new physics must be rather special, because it must be very close, yet
its effects are not clearly visible neither in precision electroweak tests (the “LEP
Paradox” [67]) nor in flavour changing processes and CP violation. Examples of
proposed classes of solutions for the hierarchy problem are: (1) Supersymmetry
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[68]. In the limit of exact boson-fermion symmetry the quadratic divergences
of bosons cancel so that only log divergences remain. However, exact SUSY is
clearly unrealistic. For approximate SUSY (with soft breaking terms), which is the
basis for all practical models, A is replaced by the splitting of SUSY multiplets,
A% ~ m%U sy — mgr 4- In particular, the top loop is quenched by partial cancellation
with s-top exchange, so the s-top cannot be too heavy. (2) Technicolor [69]. The
Higgs system is a condensate of new fermions. There is no fundamental scalar
Higgs sector, hence no quadratic divergences associated to the ;> mass in the scalar
potential. This mechanism needs a very strong binding force, Arc ~ 103 Aocp.-
It is difficult to arrange that such nearby strong force is not showing up in precision
tests. Hence this class of models has been disfavoured by LEP, although some
special class of models have been devised aposteriori, like walking TC, top-color
assisted TC etc (for recent reviews, see, for example, [69]). (3) Extra dimensions (for
a recent review, see, for example, [70]). The idea is that M p; appears very large, or
equivalently that gravity appears very weak, because we are fooled by hidden extra
dimensions so that either the real gravity scale is reduced down to a lower scale,
even possibly down to o(1 TeV') or the intensity of gravity is red shifted away by
an exponential warping factor [71]. This possibility is very exciting in itself and it
is really remarkable that it is compatible with experiment. It provides a very rich
framework with many different scenarios. (4) “Little Higgs” models [72]. In these
models the Higgs is a pseudo-Goldstone boson and extra symmetries allow my, % 0
only at two-loop level, so that A can be as large as 0(10 TeV) with the Higgs within
present bounds (the top loop is quenched by exchange of heavy vectorlike new
quarks with charge 2/3). The physics beyond the SM will be discussed in Chap. 8.
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