
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Managing Constraints in Role Based
Access Control
CARLO BLUNDO1, STELVIO CIMATO2, (SENIOR MEMBER, IEEE), AND LUISA
SINISCALCHI3,
1Dipartimento di Scienze Aziendali - Management & Innovation Systems/DISA-MIS, Università di Salerno, Italy (e-mail: cblundo@unisa.it)
2Dipartimento di Informatica, Università degli studi di Milano, Italy. (e-mail: stelvio.cimato@unimi.it)
3Concordium Blockchain Research Center Aarhus University, Denmark (e-mail: lsiniscalchi@cs.au.dk

Corresponding author: Stelvio Cimato (e-mail: Stelvio.Cimato@unimi.it).

This paragraph of the first footnote will contain support information, including sponsor and financial support acknowledgment. For
example, “This work was supported in part by the U.S. Department of Commerce under Grant BS123456.”

ABSTRACT Role-based access control (RBAC) is the most popular access control model currently
adopted in several contexts to define security management. Constraints play a crucial role since they can
drive the selection of the best representation of the organization’s security policies when migrating towards
an RBAC system. In this paper, we examine different types of constraints addressing both theoretical aspects
and practical considerations. On one side, we define the constrained role mining problem for each constraint
type, showing its complexity. On the other hand, we present efficient heuristics adapted to each class of
constraints, all derived from the specialization of a general approach for role mining. We show that our
techniques improve over previous proposals, offering a complete set of experimentations obtained after the
application of the heuristics to standard real-world datasets.

INDEX TERMS Role Mining, RBAC, Constrained Role Mining

I. INTRODUCTION
The possibility of automatizing the process of selecting ap-
propriate roles to define the organization of complex infor-
mation systems has been one of the reasons for the success of
role engineering. As introduced in the seminal paper in 1995
[6], role engineering has indeed the goal to output a Role-
Based Access Control (RBAC) model where permissions to
access restricted resources are not assigned to individuals
but to groups of employees sharing the same role in the
organization. The advantage of such a model is that secu-
rity administration, in organizations with a large number of
users, resources, and associated permissions, becomes more
manageable and flexible.

On the other side, the cost of the transformation of a
traditional system to one having an RBAC architecture can
be very high. In general, two approaches can be pursued
to correctly configure a set of appropriate roles: the top-
down approach and the bottom-up approach. In the top-down
approach, experts analyze the business processes and the
relationships within the organization, decomposing complex
tasks and units in more manageable groups sharing the same
set of permissions [10], [28]. In the bottom-up approach,
data mining techniques are used to analyze the existing user-

permissions assignments. A (semi-)automatic role mining
phase is started to identify a set of roles according to different
organization goals [17], [19].

Role mining has attracted a lot of attention from academia
and industry, with many tools and research efforts [32]. The
problem has also been addressed using results from other
related research fields such as boolean matrix decomposition
[22], graph theory [9], [36], tiling problem for databases
[35], and many others [25]. User permission relations can
be easily represented using a binary matrix, where rows
represent users, columns represent permissions, and each
entry denotes the assigned permission to each user. So, the
basic Role Mining Problem (RMP) consists of finding the
least number of roles consistent with the starting situation
and a valid decomposition of the original relation in two
other relations associating permissions to roles and roles to
users’ assignments [1], [22]. A survey on the role mining
problem describing numerous variants and the corresponding
strategies for finding a valid role set has been given in [25].

In practice, some constraints must often be considered to
define a set of roles compliant with the basic organization
rules within a given company, such as limiting, for example,
the number of permissions that can be included in a role. In

VOLUME 4, 2016 1

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

general, cardinality constraints are associated with different
organizational contexts and policies and limit in some way
the number of roles, or of permissions, or of users that can
be selected after the role mining process. For such reasons,
different kinds of constraints have been considered, such
as role-usage cardinality constraint [16], where a restriction
is posed on the maximum number of roles that can be
assigned to any user, or considering the maximum number
of permissions associated to a role [2], [18]. Other papers
examined the permission-distribution cardinality constraint,
which is the dual of the role-usage constraint and restricts
the number of roles to which a permission can belong to
[14]. Sometimes, multiple cardinality constraints have been
considered [3], [14], [21], [24].

Together with cardinality constraints, separation of duty
constraints (SoD) or statically mutually exclusive roles
(SMER) have also been considered in the definition of the
RBAC2 model [31]. In this case, one user can be assigned to
at most one role in a mutually exclusive set. These constraints
are essential for preventing situations whenever a user is
enabled to carry on multiple tasks that can lead to a conflict
of interests, such as playing the role of the one that both
authorizes a given action and controls that such an action can
be allowed. Li et al. [20] proposed a technique to express SoD
policies as SMER constraints. They showed the complexity
of checking whether a given RBAC system satisfies a given
set of SoD policies. Roy et al. [29] gave a model for the
problem of assignment of a given set of users in an RBAC
system satisfying multiple SMER constraints and described
a solution based on integer linear programming. In [23],
SoD constraints have been modeled introducing negative
permissions in roles, meaning that the user can never exercise
that permission. The approach called constraint aware role
mining, is based on a boolean matrix decomposition method,
extending [22].

In this paper, we focus on cardinality constraints. The
contribution is twofold: on one side, we examine the basic
types of cardinality constraints and give formal definitions
addressing theoretical aspects, defining the associated con-
strained role mining problems, and analyzing their complex-
ity. On the other side, we propose, for each type of constraint,
an efficient heuristic derived from the specialization of an
approach that has been presented solving the basic RMP
[1] (i.e., we propose a unified framework for solving role
mining problems with different cardinality constraints). A
complete set of experiments testing our heuristics on real-
world datasets show that our techniques improve over pre-
vious proposals in many cases. The evaluation takes into
account different metrics and different indicators. The results
are compared to the previously available heuristics.

The paper is organized as follows. In the next sec-
tion, we introduce the terminology and the basic defini-
tions for RBAC and the associated RMP. In Section III,
we formally define the constrained RMP for the different
classes of constraints we consider. In particular we exam-
ine four classes: Permission-Usage Cardinality Constraint

(PUCC), User-Distribution Cardinality Constraint (UDCC),
Role-Usage Cardinality Constraint (RUCC), and Permission-
Distribution Cardinality Constraint (PDCC). In Section IV,
we present our family of heuristics, adapting the general
approach for the basic RMP to the different sets of constraints
considered. In Section V, we present a complete set of
experiments applying the heuristics to standard datasets and
comparing their performance to other proposals. Finally, we
draw some conclusions in Section VI.

II. ROLE MINING
In this section we briefly recall the basic definitions for the
RBAC model and discuss the computational complexity of
the ROLE MINING problem and of some of its variants.

A. RBAC DEFINITION
The notation we use is based on the NIST standard for
Core Role-Based Access Control (Core RBAC, or RBAC
0), see [30] and [11]. We denote with U = {u1, . . . , un}
the set of users, P = {p1, . . . , pm} the set of permissions,
and R = {r1, . . . , rk} the set of roles. The many-to-many
mapping assignment relations we consider are: UA ⊆ U×R
that is user-to-role assignment relation; PA ⊆ R×P that is
role-to-permission assignment relation; and UPA ⊆ U × P
that is user-to-permission assignment relation.
Obviously, we can represent the assignment relations by bi-
nary matrices. For instance, by UA we denote the UA’s matrix
representation. The binary matrix UA satisfies UA[i][j] = 1 if
and only if (ui, rj) ∈ UA. This means that user ui is assigned
role rj . In a similar way, we define the matrices PA, and UPA.
In the next sections we use the following definitions:

AssignedRolesU(ui) = {rj : (ui, rj) ∈ UA}
= {rj : UA[i][j] = 1}

AssignedRolesP(pj) = {ri : (ri, pj) ∈ PA}
= {ri : PA[i][j] = 1}

AssignedUsers(rj) = {ui : (ui, rj) ∈ UA}
= {ui : UA[i][j] = 1}

AssignedPrmsR(ri) = {pj : (ri, pj) ∈ PA}
= {pj : PA[i][j] = 1}

AssignedPrmsU(ui) = {pj : (ui, pj) ∈ UPA}
= {pj : UPA[i][j] = 1}

Given the n ×m users-to-permissions assignment matrix
UPA, the role mining problem (see [34], [9], and [12]) consists
in finding a binary decomposition of UPA, that is an n × k
binary matrix UA and a k × m binary matrix PA such that,
UPA = UA⊗PA,where, the operator⊗ is such that, for i ∈ [n]
and j ∈ [m],

UPA[i][j] =

k∨
h=1

(UA[i][h] ∧ PA[h][j]). (1)

Therefore, in solving a role mining problem (see [34] and
[9]), we are looking for a factorization of the matrix UPA.

2 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Notice that, there are several matrices UA and PA satisfying
(1). For instance, trivial solutions can be found considering
the following cases: i) we set a role for each user, hence
UA is the n × n identity matrix and PA = UPA; ii) we set
a role for each permission, hence UA = UPA and PA is the
m×m identity matrix. In particular, the role mining problem
consists in finding a user-to-role assignment UA and a role-
to-permission assignment PA such that the matrices UA and
PA satisfy (1) and the number of columns (rows) of UA (PA)
is minimized. The smallest value k for which UPA can be
factorized as UA⊗ PA is referred to as the binary rank of UPA.

A candidate role consists of a set of permissions along with
a user-to-role assignment. Hence, it can be described by a row
of the matrix PA and a column of the matrix UA. The union
of the candidate roles is referred to as candidate role-set and
can be described by matrices PA and UA. A candidate role-set
is complete if the permissions described by any UPA’s row
can be exactly covered by the union of some candidate roles.
In other words, a candidate role-set is complete if and only
if it is a solution of the equation UPA = UA ⊗ PA. Hence,
equivalently, the role mining problem consists in finding
a complete candidate role-set having minimum cardinality.
Following [26], we refer to the tuple ρ = 〈U ,P,UPA〉 as
a configuration of an RBAC instance. Given a configuration
ρ one wants to find an RBAC state γ = 〈R,UA,PA〉
that is consistent with ρ, i.e., every user in U has the same
permissions in the RBAC state as in UPA.

B. RBAC COMPUTATIONAL COMPLEXITY
The computational complexity of the ROLE MINING prob-
lem (and of some of its variants) was considered in several
papers (see, for instance, [34], [5], [9], and [35]). In this
section we briefly recall some bounds on the computational
complexity we need to establish our results. We start by re-
calling the definition of the decisional version of the general
role mining problem.
Problem 1: (ROLE MINING) Given a set of users U , a set
of permissions P , a user-permission assignment UPA, and
a positive integer k < min{|U|, |P|}, are there a set of roles
R, a user-to-role assignment UA, and a role-to-permission
assignment PA such that |R| ≤ k and UPA = UA⊗ PA?
Notice that requiring k < min{|U|, |P|} is not a limitation
at all. Indeed, assumimg |U| = n and |P| = m, if k ≥ |U|,
then a solution of the above problem is given by setting UA as
the n × n identity matrix and PA = UPA (i.e., we set a role
for each user); while, if k ≥ |P|, then a solution is given by
setting UA as the n×n identity matrix and PA = UPA (i.e., we
set a role for each permission), as previously discussed.

The optimization version of the ROLE MINING problem
can be defined as follows.
Problem 2: (ROLE MINING OPTIMIZATION) Given U , P ,
and UPA, what is the smallest integer k ≤ min{|U|, |P|}
for which there are R, UA, and PA such that |R| = k and
UPA = UA⊗ PA?

Next theorem, whose proof is trivial, holds.
Theorem 1: ROLE MINING OPTIMIZATION is NP-hard.

In [34] it was proved that ROLE MINING is NP-complete
by showing that SET BASIS (see Problem SP7 in Garey
and Johnson’s book [13]) can be reduced to ROLE MINING.
Stockmeyer [33] proved that SET BASIS is NP-complete
by showing that VERTEX COVER can be reduced to SET
BASIS. Therefore, since VERTEX COVER OPTIMIZATION
is APX-complete [7] we have the following simple non-
approximability result:
Theorem 2: The ROLE MINING OPTIMIZATION problem
cannot be approximated within any constant factor in poly-
nomial time unless P=NP.

III. CONSTRAINED ROLE MINING PROBLEM
In this section, we recall the definitions of different role
mining problems where some constraints are enforced on the
number of permissions in a role, on the number of roles a user
can have, on the number of roles a permission is assigned
to, and on the number of users a role can be assigned to.
We show that all constrained role mining problems are NP-
complete (and their optimization versions are NP-hard).

In [18] the authors considered a restriction on the number
of permissions included in any role. They analyzed RBAC
states where the size of each role cannot be larger than
a given threshold (i.e., there is an upper bound t on the
number of permissions that can included in any role). Such
a problem is referred to as PERMISSION-USAGE CARDI-
NALITY CONSTRAINT ROLE MINING problem. One has to
find a binary decomposition of UPA = UA ⊗ PA satisfying
|{j : PA[i][j] = 1}| ≤ t for any row i of PA or, equivalently,
|AssignedPrmsR(r)| ≤ t, for any r ∈ R.

Setting an upper bound t on the number of roles a permis-
sion can be assigned to, we get the model proposed in [14],

referred to as the PERMISSION-DISTRIBUTION CARDI-
NALITY CONSTRAINT ROLE MINING problem. In such a
scenario each column of the matrix PA has to satisfy |{i :
PA[i][j] = 1}| ≤ t or, equivalently, |AssignedRolesP(p)| ≤ t,
for any p ∈ P .

In [15], authors considered a restriction on the number of
users to which any role can be assigned. They justified such a
constraint stating that role administration becomes easier and
more convenient to manage. Moreover, some organizations
are naturally structured in such a way that only a maximum
number of users can be assigned to a given role (e.g., the
number of directors or managers could be fixed a priori).
Hence, in [15] it was defined the USER-DISTRIBUTION
CARDINALITY CONSTRAINT ROLE MINING problem. The
constraint is established by asserting that each column of
the matrix UA has to satisfy |{i : UA[i][j] = 1}| ≤ t, or,
equivalently, |AssignedUsers(r)| ≤ t, for any r ∈ R.

Finally, role-usage constraint was considered in [16]. The
authors analyzed the RBAC state where there is an upper
bound t on the number of roles that can be assigned to each
user. Such a limitation is enforced either due to security
restrictions or to balance work distribution. Such a problem
is referred to as ROLE-USAGE CARDINALITY CONSTRAINT
ROLE MINING problem. In this case, each column i of the

VOLUME 4, 2016 3

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

matrix UA has to satisfy |{j : UA[i][j] = 1}| ≤ t or,
equivalently, |AssignedRolesU(u)| ≤ t, for any u ∈ U .

We stress that in this paper, we consider each problem
separately. In this case, it is immediate to see that each
problem admits at least a trivial solution. For example in
the case of UDCC and RUCC, it is easy to see that sound
solutions are the ones consisting of a role defined and as-
signed to each user, each role including all the permissions
guaranteed to her. In the case of PDCC, a trivial solution is
the one where each role includes a single permission, and the
so defined roles are assigned to users respecting the values
contained in the UPA matrix. Finally, for the PUCC scenario,
the permissions associated to a users are partitioned into
sets of size at most t, such partitions determine the roles
to assign to the user. Notice that, if we assume that more
than one constraint must be satisfied simultaneously, then
the problem may not have feasible solutions. For instance,
this can happen if we consider both the PUCC and RUCC
constraints. Indeed, assume that |AssignedPrmsR(r)| ≤ 2,
|AssignedRolesU(u)| ≤ 3, and there is a user u such that
|AssignedPrmsU(u)| = 7, then it is immediate to see that
both constraints cannot be satisfied.

The decisional version of the previous problems, referred
to as PUCC, RUCC, PDCC, and UDCC, respectively, can
be defined as follows.
Problem 3: Given a set of users U , a set of permissions P , a
user-permission assignment, UPA, and two positive integers
t and k, with t > 1 and k < min{|U|, |P|}, are there a
set of roles R, a user-to-role assignment UA, and a role-to-
permission assignment PA such that |R| ≤ k, UPA = UA ⊗
PA, and:

PUCC: |AssignedPrmsR(r)| ≤ t, for any r ∈ R?
PDCC: |AssignedRolesP(p)| ≤ t, for any p ∈ P?
UDCC: |AssignedUsers(r)| ≤ t, for any r ∈ R?
RUCC: |AssignedRolesU(u)| ≤ t, for any u ∈ U?

The optimization versions of the previous CARDINALITY
CONSTRAINT ROLE MINING problems can be defined as
follows.
Problem 4: Given a set of users U , a set of permissions P ,
a user-permission assignment UPA, and a positive integer
t > 1, what is the smallest integer k for which there are a
set of roles R, a user-to-role assignment UA, and a role-to-
permission assignment PA such that |R| = k, UPA = UA ⊗
PA, and:

PUCC OPT: |AssignedPrmsR(r)| ≤ t, for any r ∈ R?
PDCC OPT: |AssignedRolesP(p)| ≤ t, for any p ∈ P?
UDCC OPT: |AssignedUsers(r)| ≤ t, for any r ∈ R?
RUCC OPT: |AssignedRolesU(u)| ≤ t, for any u ∈ U?

A. CONSTRAINED RBAC COMPUTATIONAL
COMPLEXITY
In [2] it was proved that PUCC is NP-complete showing that
PUCC (i.e., Problem 1) can be reduced to it. Using similar
arguments, we can show that all the constrained role mining
problems we have defined can be proved to be NP-complete.

Moreover, using the same approach as in Theorem 1, we can
prove that all the constrained role mining problems are also
NP-hard. Finally, the non-approximability result derives from
Theorem 2 and from the reduction of ROLE MINING to all the
constrained role mining problems. Therefore, the following
theorems hold:
Theorem 3: PUCC, PDCC, UDCC, and RUCC are NP-
complete.
Theorem 4: PUCC OPTIMIZATION, PDCC OPTIMIZATION,
UDCC OPTIMIZATION, and RUCC OPTIMIZATION are
NP-hard.
Theorem 5: PUCC OPTIMIZATION, PDCC OPTIMIZATION,
UDCC OPTIMIZATION, and RUCC OPTIMIZATION cannot
be approximated within any constant factor in polynomial
time unless P=NP.

Notice that in [14] RUCC is referred to as RUP and the
authors, using a technique very similar to the one used in [2],
also proved that RUCC (i.e., RUP) is NP-complete. Also in
[14] the authors analysed PDCC’s computational complexity
and in the same way they proved that PDCC is NP-complete.

IV. HEURISTICS
In this section, we present the heuristics we have developed
for all the versions of the constrained role mining problems
described in Section II-B. We propose a unified framework
for solving the role mining problems with different cardinal-
ity constraints. We start by describing the heuristic, referred
to as RM, for the classical role mining problem (i.e., without
considering any constraint). Then, we show how to adapt the
RM heuristic to cope with the different types of constraints.

A. RM HEURISTIC
All the heuristics we propose derive from RM reported below,
by properly adapting some procedures RM is based on (i.e.,
pickRole, selectUsers, and updateUC). Notice that
the heuristic RM is an amended version of the SMAR heuristic
in [1]. RM takes in input the n × m user-to-permission as-
signment matrix UPA and outputs a complete candidate role-
set represented by the pair of matrices (UA, PA) satisfying
UPA = UA⊗PA. We denote with [`] the set of positive integers
up to ` included (i.e., [`] = {1, 2, . . . , `}).

ALGORITHM 1: RM
input : An n×m user-to-permission assignment matrix

UPA
output: A decomposition (UA, PA) of UPA

1 UC← [n] // Set of uncovered users
2 k ← 0 // Size of the current role-set
3 while UC 6= ∅ do
4 (candidateRole, u)← pickRole(UPA,UC)
5 selU ← selectUsers(UPA, candidateRole,UC)
6 k ← k + 1 // Add new role to UA and PA
7 foreach i in selU do UA[i][k]← 1
8 foreach i in candidateRole do PA[k][i]← 1
9 UC← updateUC(UPA, UA, PA, selU,UC)

10 end
11 return (UA, PA)

The set UC denotes the uncovered users, i.e. the users
having permissions not covered by the roles in the candidate

4 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

role-set represented by the pair of matrices UA and PA. At
the beginning, UC includes the whole set U , where users
{u1, . . . , un} are represented by their respective indices. The
procedure pickRole returns a role1 candidateRole to be
added to the candidate role-set along with the user (i.e., the
row’s index u of the UPA matrix) that determined such a role,
while the procedure selectUsers returns all uncovered
users that can be assigned to such a role (line 5 of RM). Notice
that, the index u returned by procedure pickRole is not
used at all in RM, but it will be useful for the heuristics in the
constrained scenario. In lines 7-8, the matrices UA and PA are
updated to reflect the fact that a new role has been added
to the candidate role-set. Finally, in line 9, the procedure
updateUC checks whether all permissions of some users in
selU have been covered. In this case, the set UC of uncovered
users is updated by removing the recently covered users.

More in detail, the procedure pickRole selects an un-
covered user having the least number of assigned permis-
sions, that is, it chooses, from UPA, a row whose index is
in UC having the minimum amount of entries equal to one.
Such a row represents a role to be added to the candidate
role-set. In case more than one row in UPA has the minimum
number of entries, say mR, equal to one, pickRole returns
the role represented by the row having a lower index in UPA.
This choice is not a limitation at all, as during the subsequent
iterations of the while statement, all rows of weight mR will
be eventually selected. Notice that the procedure pickRole
could have returned the whole set of mR-sized roles without
affecting the final results (the procedure selectUsers
should have changed as well), but in this way we have a
framework that can be easily adapted to handle the more
general case of constrained role mining.
The procedure selectUsers, on input the user-to-
permission association (i.e., the matrix UPA), the set
candidateRole representing the new role to be added to
the candidate role-set, and the set of uncovered users UC,
returns the set of uncovered users, the role represented by
candidateRole can be assigned to (i.e., the set of users pos-
sessing all the permissions represented by candidateRole).
In other words, the procedure selectUsers adds to
the set candidateRole all indices i ∈ UC such that
candidateRole ⊆ {j : UPA[i][j] = 1}. In the following
the procedure selectUsers will be adapted to handle
constraints during the role mining process.
Finally, the procedure updateUC checks whether some
users the new role has been assigned to (i.e., the users
identified by selU) have all permissions covered. Such a
procedure, for each i ∈ selU , checks whether UPA[i][j]
is equal to

∨k
h=1(UA[i][h] ∧ PA[h][j]), for all permissions

pj ∈ P and in this case it removes i from UC.

1To be more precise, the procedure pickRole returns the set of indices
representing the permissions belonging to the candidate role r. Hence, {pj |
j ∈ candidateRole} corresponds to AssignedPrmsR(r).

B. PUCC HEURISTICS
In this section, we consider the scenario presented in Sec-
tion III, where a restriction on the number of permissions
included in each role is imposed (i.e., we consider the
PERMISSION-USAGE CARDINALITY CONSTRAINT ROLE
MINING problem). Since we proved that finding an op-
timal solution to such a problem is NP-hard, we present
some heuristics to mine, from a given initial configuration
ρ = 〈U ,P,UPA〉, an RBAC state γ = 〈R,UA,PA〉,
where the size of each role is not larger than a given thresh-
old, say t. The first heuristic we present is referred to as
CRM−PUCCRand was firstly proposed in [2] under the name
t-SMAR. We describe its modified version below to fit our
unified framework (i.e., the RM heuristic). The modification
affects the way UPA’s rows with minimum weight (i.e., users
possessing the least number of permissions) are selected by
pickRole.

ALGORITHM 2: pickRolePUCC
input : The n×m matrix UPA, its decomposition (UA, PA),

the set UC of uncovered users, and the threshold t
output: A new role candidateRole and a user u owning it

1 mnp←∞, u← 0, candidateRole← ∅
2 k ← number of rows in PA // Number of roles
3 foreach i in UC do
4 if |{j : UPA[i][j] = 1}| < mnp then
5 mnp← |{j : UPA[i][j] = 1}|
6 u← i
7 end
8 end
9 uncPerms← {j ∈ [m] : UPA[u][j] = 1 and∨k

h=1(UA[u][h] ∧ PA[h][j]) = 0}
10 foreach j in uncPerms do
11 candidateRole← candidateRole ∪ {j}
12 if |candidateRole| = t then break
13 end
14 return (candidateRole, u)

In [2], when more than one row in UPA has the minimum
weight, a random row is picked, while, our heuristic selects
the row having the smallest index. This strategy speeds up a
bit the heuristic running time, while the quality of the solution
is not degraded. Another way of selecting a row has also
been proposed in [2], where the designed row is the one
having the least number of permissions not covered by the
roles already selected (i.e., the ones described by PA). In
the case of unconstrained role mining, this does not affect
the returned candidate role-set. In the case of constrained
role mining (PUCC scenario), there are very few differences
between the results obtained by selecting roles from the
whole permissions associated with users or just from the
uncovered ones. Therefore, we decided not to implement this
strategy. We will exploit this strategy in Section IV-C when
analyzing the PDCC scenario. In such a case, we will show
that adding to the candidate role only uncovered permissions
will reduce the size of the final candidate role-set.

The differences between CRM−PUCCR and RM are con-
centrated on how one selects a role to be added to the
candidate role-set. In CRM−PUCCR, roles are determined by
the procedure pickRolePUCC previously described. Such

VOLUME 4, 2016 5

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

a procedure, as regards the corresponding one described in
Section IV, takes as input also the matrices UA and PA com-
puted so far and the parameter t representing the maximum
number of permissions that any role can have and returns a
role containing at most t permissions.

It is easy to see that heuristics CRM−PUCCR correctly
returns a complete role set as it follows the same pattern
as RM described in Section IV. We have only to show that
pickRolePUCC produces each time a new candidate role
containining at maximum t permissions. The procedure first
finds an uncovered user, identified by the row’s index u,
having the least number of assigned permissions (lines 3-8).
Then, in line 9, it computes the set of uncovered permissions
such a user possesses. Indeed, if such a user possesses per-
mission pj (i.e., UPA[u][j] = 1), but UA[u][h] ∧ PA[h][j] = 0,
for each role rh with h ∈ [k], then it is immediate to verify
that permission pj has not been covered yet. More in detail, if
UA[u][h]∧PA[h][j] = 0, then either permission pj is assigned
to role rh (i.e, PA[h][j] = 1) and role rh has not been assigned
to the selected user (i.e., UA[u][h] = 0), or role rh does not
contain permission pj (i.e, PA[h][j] = 0) and the selected user
has role rh (i.e, UA[u][h] = 1), or role rh does not contain
permission pj (i.e, PA[h][j] = 0) and role rh has not been
assigned to u (i.e., UA[u][h] = 0). In any of the previous cases
we have that pj is not covered by the roles selected so far (i.e.,
PA) and the current user-to-role assignment (i.e., UA). Finally
(see lines 10-13), procedure pickRolePUCC selects at most
t uncovered permissions possessed by u and assigns them to
the candidate role represented by candidateRole.
Notice, that in lines 10-13, we decided to select the first
up to t permissions, but any strategy could be used. We
could have chosen any random t permissions or any up to
t permissions belonging to the greatest number of users.
We experimentally observed that a random choice does not
improve the obtained solution. Indeed, the solutions we get
have quite similar characteristics (i.e., about the same role-
set size and similar Weighted Structural Complexity - to be
defined later). Moreover, using the ”best” t permissions can
cover a larger part of UPA, but determining such t permissions
could take a prohibitively large amount of time.

Another way to mine a role is to apply the method de-
scribed by pickRolePUCC to UPA’s columns by suitably
adapting it to meet the cardinality constraint. This approach
is similar to run the heuristic on the UPA’s transpose looking
for a UPA’s covering by a subset of its columns. The idea is to
select from UPA a column, say j-th column that corresponds
to permission pj , having the least number of ones. Then, we
consider all users, say {ui1 , . . . , uig}, possessing permission
pj . Finally, the candidate role will include the first up to t per-
missions that belong to all users {ui1 , . . . , uig}. We will refer
to such a heuristic by CRM−PUCCC (the subscript C stands
for column), and we describe the modified pickRolePUCC
procedure below.

The procedure C-pickRolePUCC first selects a column
having the minimum number of entries equal to one (see
lines 2-12). That is, it selects the permission that has been

ALGORITHM 3: C-pickRolePUCC
input : The n×m matrix UPA, the set UC of uncovered

users, and the threshold t
output: A new role candidateRole and a user u owning it

1 mnu←∞, column← 0, candidateRole← ∅
2 for j ← 1 to m do
3 // Number of ones in column j
4 nu← |{i : UPA[i][j] = 1}|
5 // Number of uncov. users possessing

pj
6 uu← |{i : UPA[i][j] = 1 and i ∈ UC}|
7 if nu < mnu and uu > 0 then
8 mnu← nu
9 // Select uncovered permission pj

10 column← j
11 end
12 end
13 assignedUsers← {i : UPA[i][column] = 1}
14 u← min(assignedUSers)
15 for j ← 1 to m do
16 if assignedUsers ⊆ {i : UPA[i][j] = 1} and

|candidateRole| < t then
17 candidateRole← candidateRole ∪ {j}
18 end
19 end
20 return (candidateRole, u)

assigned to the minimum number of users. Notice that the
selected column, say column j, must include at least an un-
covered user. This condition is why we compute, in line 6, the
number uu of uncovered users. Such value must be positive
to consider column j; if all users possessing permission pj
have already been covered, it makes no sense to consider pj .
We could speed up the code in lines 2-12 by keeping track
of uncovered columns as done for users by means of UC. In
this way, we can avoid computing uu in line 6. We decided
not to improve the running time of C-pickRolePUCC to
keep the code simpler and to avoid keeping track in other
procedures of unnecessary variables (i.e., the ones related to
the uncovered columns). Once the minimum weight column
has been selected, procedure C-pickRolePUCC computes
the set of users possessing the permission associated to such
a column (see line 13), then it looks for other permissions
assigned to the same set of users (lines 15-19) and add
them to candidateRole (see line 18). At most t permis-
sions are added to candidateRole (see line 16). To keep
all pickRoles procedures uniform, we have to return a
user the candidateRole is assigned to. Hence, in line 14 we
assign u the index with minimum value.
Notice that in line 13 we could select the users possess-
ing permission pj as assignedUsers ← {i ∈ UC :
UPA[i][column] = 1} (i.e., we do not add users that have pre-
viously been covered). However, some experiments show that
such a choice does not change much the solution. For the sake
of space, we omit the CRM−PUCCC’s proof of correctness. It
is easy to see that also procedure C-pickRolePUCC always
returns a candidate role including at most t permissions.

a: Related Works
Constraints on the number of permissions included in each
role have been one of the first classes of constraints con-
sidered in literature [18]. The algorithm thereby presented,

6 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

denoted as Constrained RoleMiner (CRM), is derived from
the ORCA approach [32] and is based on a clustering tech-
nique where clusters are formed based on users’ permissions.
Users who have the same set of permissions are placed in the
same cluster. A role is created from a cluster that satisfies the
cardinality constraint and has the highest number of associ-
ated users. The permissions associated with the selected role
are then removed from the remaining clusters, which are also
reordered according to the number of included uncovered
permissions. Then, the procedure is recursively invoked.

C. PDCC HEURISTICS
In this section, we consider the scenario presented in Sec-
tion III, where it was assumed that there is an upper bound
t on the number of roles to which any permission can be as-
signed. We propose two heuristics referred to as CRM−PDCC1

and CRM−PDCC2, respectively. Our heuristics derive from RM
by modifying the procedure pickRole. We consider two
versions of such a procedure, the first one selects, as for
the previous heuristics, the role from the matrix UPA (i.e.,
for each user ui it considers all permissions assigned to
ui); while, the second one keeps track of the permissions
assigned to ui that have not been covered yet (referred to as
uncovered permissions) and selects the role by considering
the uncovered permissions. Such procedures are referred to
as pickRole-PDCC1 and pickRole-PDCC2 and they
are described below.

ALGORITHM 4: pickRole-PDCC1

input : The matrix UPA, its decomposition (UA, PA), the
uncovered users UC, the threshold t, and NR
denoting the number of roles a permission has been
assigned to

output: The new candidateRole and user u possessing it
1 mnp←∞, candidateRole← ∅
2 k ← number of rows in PA // Number of roles
3 foreach i in UC do // Select minimum weight

row
4 if |{j : UPA[i][j] = 1}| < mnp then
5 mnp← |{j : UPA[i][j] = 1}|
6 u← i
7 end
8 end
9 uncPerms← {j : UPA[u][j] = 1 and∨k

h=1(UA[u][h] ∧ PA[h][j]) = 0}
10 // Form a candidate role
11 foreach j in uncPerms do
12 if NR[j] < t− 1 then
13 candidateRole← candidateRole ∪ {j}
14 uncPerms← uncPerms\{j}
15 NR[j]← NR[j] + 1
16 end
17 end
18 // NR[j] ≥ t− 1 for all j ∈ uncPerms
19 if candidateRole = ∅ then
20 j′ ←R uncPerms // A random permission
21 candateRole← {j′}
22 NR[j]← NR[j] + 1
23 end
24 return (candidateRole, u)

Both procedures, with respect to the corresponding ones
described in Section IV, take as inputs also the matrices UA
and PA, the parameter t representing the maximum number

of roles a permission can be assigned to, and the vector NR
denoting the number of roles a permission has been assigned
to (e.g., NR[j] = d means that permission pj has been
assigned to d roles). Initially, NR[j] = 0 for all j ∈ [m].

The procedure pickRole-PDCC2 is almost identical to
pickRole-PDCC1. Indeed, they differ in line 4, where
pickRole-PDCC1 selects the minimum weight row, while,
pickRole-PDCC2 selects the row having the minimum
number of uncovered permissions. More precisely, the pro-
cedure pickRole-PDCC2 is obtained by substituting line 4
of pickRole-PDCC1,

if |{j : UPA[i][j] = 1}| < mnp then

with
unc = {j : UPA[i][j] = 1 and∨k

h=1(UA[i][h] ∧ PA[h][j]) = 0}

if |unc| < mnp then.

It is immediate to see that our heuristics CRM−PDCC1

and CRM−PDCC2 return a complete role-set as they
both follow the same pattern as the procedure RM. In-
deed, heuristics’ correctness is based on the fact that
procedures pickRole-PDCC1 and pickRole-PDCC2

never assign a permission to more than t roles. Let
us analyze pickRole-PDCC1 (the same holds for
pickRole-PDCC2). The procedure pickRole-PDCC1 in
lines 3-8 selects an uncovered user having the least number
of assigned permissions (such a user is represented by the
variable u pointing to a UPA’s row). These steps are identical
to the ones of algorithms pickRole and pickRolePUCC in
Sections IV and IV-B, respectively. The variable uncPerms,
see line 9, represents the permissions possessed by user u
that do not appear in any role already assigned to u (i.e.,
uncPerms represents the uncovered permissions of user u).
To satisfy the PDCC constraint, in lines 11-17, we select
from uncPerms only the permissions that have been already
assigned to at most t − 2 roles (see line 12). In line 13, we
add such permissions to candidateRole and increment by
one the number of roles such permissions have been assigned
to (i.e., in line 15, for j ∈ candidateRole, we increment
NR[j] by one). In this way, we ensure that all permissions
represented by candidateRole have been assigned to at most
t− 1 roles, satisfying in this way the PDCC constraint. If all
permissions in uncPerms have been already assigned to at
least t − 1 roles (equivalently, see line 19, candidateRole
is empty), then we form a role consisting of a unique per-
mission randomly chosen in uncPerms and increment by
one the number of roles it has been assigned to (see lines 19-
23). Notice that any permission will never be assigned by
pickRole-PDCC1 to more than t roles; indeed permission
pj is assigned to a role either in line 13 or in line 21. In the
former case, pj is assigned to at most t−1 roles as we assign
it to a role only if NR[j] < t−1. In the latter case, we create a
role, consisting only of permission pj , that will be assigned to
all users possessing pj . This implies that pj will be covered in
UPA and it will never appear in any subsequently discovered

VOLUME 4, 2016 7

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

uncPerms. In other words, a permission can be assigned
to a t-th role only in lines 19-23. Once this is done, such a
permission will not influence subsequent role formation.

a: Related Works
Harika et al. in [14] proposed a heuristic named Enforc-
ing Role Usage Constraint and based on a bipartite graph
representation of the user-permission matrix, extending the
approach described in [9] (we will refer to such a heuristic as
ERUC). The basic RMP is thereby mapped to the problem of
finding a minimum biclique cover of the edges of the bipartite
graph having as vertices the elements in set U , representing
users, and the elements of the set P , representing permis-
sions. An edge is then a pair (u, p), which represents the fact
that user u ∈ U has permission p ∈ P as reported in the
original UPA matrix. The heuristic selects only permission
vertices covering the highest number of possible uncovered
incident edges, respecting at each iteration the permission-
distribution cardinality constraint.

Li et al. [21] also proposed a heuristic considering PDCC
constraints. Their approach is based on the graph optimiza-
tion theory described by Zhang et al. in [36]. It works by
iteratively updating the role state after that the role update
algorithm has selected a role pair. Graph optimization is
used to define the role hierarchy, and weighted structural
complexity drives the selection of the roles still verifying that
the updated state satisfies the given constraints.

D. UDCC HEURISTICS
In this section, we consider the scenario presented in Sec-
tion III, where a restriction on the number of users as-
signed to any given role was imposed. More precisely, it
was assumed that there is an upper bound t on the number
of users that can possess any given role. We propose two
heuristics referred to as CRM−UDCC1 and CRM−UDCC2, re-
spectively. The differences with RM are concentrated on how
they select a candidateRole and on how they compute the
set of uncovered users to whom to assign candidateRole.
Both heuristics select such users by invoking the algo-
rithm selectUsersUDCC. It takes as input the parameters
t (the maximum number of users that a role can be as-
signed to) and u returned, in the case of CRM−UDCC1, by
pickRole (see Section IV) and, in the case of CRM−UDCC2,
by pickRole-UDCC2 described below.

The procedure selectUsersUDCC does not differ much
from the corresponding one for the uncostrained role mining.
The main difference is that it adds the user u, returned
by either pickRole or pickRole-UDCC2, to the set
candidateRole along with at most other t − 1 indices i ∈
UC\{u} such that candidateRole ⊆ {j : UPA[i][j] = 1}.
The procedure pickRole-UDCC2 differs from algorithm
pickRole in Section IV as it considers only uncovered
permissions (i.e., it selects roles by analyzing permissions
that have not been covered yet). Indeed, the set defined in
line 4 contains all the permissions assigned to a given user
that have not been covered yet by the candidate role-set rep-

ALGORITHM 5: pickRole-UDCC2

input : The n×m matrix UPA, its decomposition (UA, PA),
and the set UC of uncovered users

output: The new role candidateRole and a user u
possessing it

1 u← 0, candidateRole←,mnp←∞
2 k ← number of rows in PA // Number of roles
3 foreach i in UC do
4 uncPerms← {j : UPA[i][j] =

1 and
∨k

h=1(UA[i][h] ∧ PA[h][j]) = 0}
5 if |uncPerms| < mpn then
6 candidateRole← uncPerms
7 mnp← |candidateRole|
8 u← i
9 end

10 end
11 return (candidateRole, u)

resented by UA and PA (for the explanation that such sets com-
prise only uncovered permissions, we refer to the arguments
following the description of algorithm pickRolePUCC in
Section IV-B).

It is immediate to see that both heuristics CRM−UDCC1

and CRM−UDCC2 return a complete role-set as they fol-
low the same pattern as heuristic RM and procedure
selectUsersUDCC satisfies the UDCC constraint. Indeed,
procedure selectUsersUDCC does not differ much from
the corresponding one for the uncostrained role mining.
The main difference is that selectUsersUDCC adds u,
returned by pickRole and by pickRole-UDCC, to the
set candidateRole along with at most other t−1 indices i ∈
UC\{u} such that candidateRole ⊆ {j : UPA[i][j] = 1}.
Then the candidate role is assigned to at most t users. �

a: Related Works
In [15] three heuristics for the UDCC case have been pre-
sented, referred to as Algorithm 1, 2, and 3, respectively. All
heuristics are based on the bipartite graph representation of
the UPA matrix given in [9], where the role minimization
problem is mapped to the problem of finding minimum bi-
clique cover of the edges of the graph. The greedy algorithm
thereby described has been modified in three different ver-
sions to limit the number of users assigned to each resulting
role. The strategy to identify biclique in Algorithm 1 is to
start selecting the vertex representing the user with a mini-
mum amount of uncovered incident edges and assign him all
the included permissions. Successively all the users with the
same set of permissions are retrieved and ordered according
to the minimum number of uncovered incident edges. A
corresponding number of users is selected such that the con-
straint is satisfied. In Algorithm 2, the strategy starts selecting
the vertex with the minimum number of uncovered incident
edges, that can represent either a user or a permission. In the
first case, when the selected vertex represents a user, then
the users having the same permissions are assigned to that
role until the maximum number allowed by the constraint
is reached. If the selected vertex is a permission, similarly,
the role is assigned to some users, not exceeding the limit
specified by constraint. Finally, for Algorithm 3, the vertex

8 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

representing the permission with the minimum number of
uncovered incident edges is selected, and all the users with
that permission are chosen. If the number of users, say n, is
above the constraint limit t, then all the combinations of t
users out of n users are retrieved. For each combination, the
permissions assigned to the t users are collected. The selected
combination is the one that maximizes the number of covered
permissions. Notice that the last strategy has an exponential
running time. For this reason, for our comparison, we imple-
mented Algorithm 1 and Algorithm 2, which are referred to
as BC1 and BC2, respectively.

E. RUCC HEURISTICS
In this section, we consider the scenario presented in Sec-
tion III, where an upper bound t on the number of roles as-
signed to each user is assumed. Our heuristics, referred to as
CRM−RUCCR (roles are selected by considering UPA’s rows)
and CRM−RUCCC (roles are selected by considering UPA’s
columns), are quite similar to RM. To select a candidate role
we use pickRole in CRM−RUCCR and C-pickRoleRUCC
in CRM−RUCCC. Notice that, C-pickRoleRUCC is obtained
from C-pickRolePUCC by removing from line 16 the test
|candidateRole| < t (i.e., we set no limit on the role size).
In our heuristics, we also change the way we compute the set
of uncovered users the role returned by either pickRole
or C-pickRoleRUCC is assigned to. Such changes are de-
scribed in the following selectUsersRUCC procedure.

ALGORITHM 6: selectUsersRUCC
input : The matrix UPA, the set UC of uncovered users, the

role candidateRole, the user u to assign
candidateRole, and the threshold t

output: The set of users selectedUsers possessing the role
candidateRole

1 selectedUsers← {u}
2 foreach i in UC and i 6= u do
3 numr ← |{j : UA[i][j] = 1}|
4 r ← {j : UPA[i][j] = 1}
5 if candidateRole ⊆ r and numr < t− 1 then

selectedUsers← selectedUsers ∪ {i}
6 end
7 return selectedUsers

It is easy to see that heuristics CRM−RUCCR and
CRM−RUCCC return a complete role set as they follow the
same pattern as RM described in Section IV. We have only to
show that selectUsersRUCC assigns no more than t roles
to any user in U (i.e., any user in U satisfies the role-usage
constraint). Indeed, the procedure selectUsersRUCC de-
termines which users the role candidateRole can be as-
signed to. In particular, it will be assigned to user u (see
line 1) and to any other user possessing all permissions
included in candidateRole and having less than t − 1 other
roles (see lines 2-6). Notice that a user will be assigned the
role represented by candidateRole only if she/he (i.e., the
index representig her/him) belongs to selectedUsers. An
index is added to such a set either in line 1 or in line 5. In
the latter case, the user that will be assigned candidateRole
already possesses at most t − 2 roles. This implies that,

when selectUsersRUCC is invoked, any user in UC can
possess at most t − 1 roles. Hence, in line 1, by adding
u to selectedUsers it will assign to u at most t roles,
being candidateRole the last one as all uncovered permis-
sions possessed by u will be covered by candidateRole.
Indeed, candidateRole and u are returned by pickRole
(C-pickRoleRUCC) and, accordingly to them, the permis-
sions represented by candidateRole are all the permissions
possessed by the user represented by u. Therefore, procedure
selectUsersRUCC guarantees that to any user are assigned
at most t − 1 roles unless the t-th role covers all his/her
permissions.

a: Related Works
In [16], two approaches considering role usage cardinality
constraints have been proposed, one denoted as Role Priority-
based Approach (RPA) and the second called Coverage of
Permissions based Approach (CPA). In both heuristics, a role
can be assigned to a user if the permissions it includes are
a subset of the permissions required by that user, and those
permissions have not already been assigned using another
previously defined role. The starting set of candidate roles
is the one generated according to the optimal boolean matrix
decomposition strategy proposed in [22]. In RPA, roles are
prioritized according to the number of included permissions.
In CPA, roles are selected by considering the role with the
largest number of permissions that are not yet assigned to
that user by any other role. Each time, before the selection,
the satisfaction of the role-usage cardinality constraint is
checked. The reported experimental results show that RPA
behaves better than CPA.

Similarly to what done for the permission-distribution
constraint case, in [14], a heuristic named Enforcing Role
Usage Constraint (EPDC) was proposed, based on the same
construction of the bipartite graph representing the UPA ma-
trix. The heuristic selects user vertices covering the greatest
number of possible uncovered incident edges, respecting at
each iteration the role-usage cardinality constraint.

V. EXPERIMENTAL EVALUATION
In this section, we present the experimental evaluation of
our heuristics by comparing the obtained results with the
ones obtained using state of the art techniques. The goal is
to validate our proposals, by showing that our heuristics’
performances considering both the execution speed and the
quality of the returned role set, are almost equivalent or
improve over the state of the art heuristics. All heuristics
have been implemented in Java and tested on a MacBook
Pro running OS X 10.10 on a 2.7 GHz Intel Core i5 CPU
having 8 GB 1867 MHz DDR3 RAM. In the evaluation,
we use nine real-world datasets that have been widely used
in literature for analyzing the performances of various role
mining heuristics (see, for instance, [9], [14], [16], [18],
[27]). Such real-world datasets, once available from HP Labs,
were first used in [9]; their parameters are summarized in
Table 1. The datasets Americas small and Americas large

VOLUME 4, 2016 9

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

have been obtained from Cisco firewalls granting access to
the HP network to authenticated users (users’ access depends
on their profiles). Similar datasets are Apj and Emea. The
Healthcare dataset was obtained from the US Veteran’s Ad-
ministration; the Domino data was from a Lotus Domino
server; Customer is based on the access control graph ob-
tained from the IT department of an HP customer. Finally,
the Firewall 1 and Firewall 2 datasets are results of running
an analysis algorithm on Checkpoint firewalls.

Dataset |U| |P| |UPA| min#P max#P min#U max#U

Americas large 3485 10127 185294 1 733 1 2812
Americas small 3477 1587 105205 1 310 1 2866
Apj 2044 1164 6841 1 58 1 291
Emea 35 3046 7220 9 554 1 32
Healthcare 46 46 1486 7 46 3 45
Domino 79 231 730 1 209 1 52
Customer 10021 277 45427 1 25 1 4184
Firewall 1 365 709 31951 1 617 1 251
Firewall 2 325 590 36428 6 590 46 298

TABLE 1. Characteristics of the real-world datasets considered in this paper

More in details, for each dataset Table 1 specifies the number
of users |U|, the number of permissions |P|, the number of
user-to-permission assignments |UPA|, the minimum and
the maximum number of permissions assigned to a user
(respectively, min#P and max#P), and the minimum and the
maximum number of users that have the same permission
(respectively, min#U and max#U)2.

To compare the heuristics on the real-world datasets of
Table 1, we take into account the number of roles generated
by the heuristics, the execution time3 of the heuristics, and
the Weighted Structural Complexity (WSC). The Weighted
Structural Complexity measures the size of a Core RBAC
state γ = 〈R,UA,PA〉 that is consistent with a given
configuration ρ = 〈U ,P,UPA〉 of a Core RBAC instance.
According to [19], [26] the Weighted Structural Complexity
can be defined as follows.
Definition 1: Given W = 〈wr, wu, wp, wh, wd〉, where
wr, wu, wp, wh, wd ∈ Q+ ∪ {∞}, the Weighted Struc-
tural Complexity (WSC) of an RBAC state γ, denoted by
wsc(γ,W), is computed as follow.

wsc(γ,W) = wr · |R|+ wu · |UA|+ wp · |PA|+ (2)
wh · |treduce(RH)|+ wd · |DUPA| (3)

The relation RH ⊆ R × R, called inheritance relation
and denoted by �, was introduced in [31] in defining Hi-
erarchical RBAC (or RBAC 1). One has that r1 � r2
(i.e, role r1 inherits role r2) if and only if all permissions
assigned to r2 are also assigned to r1 and all users as-
signed to r1 are also assigned to r2. The transitive reduc-
tion treduce(RH) of the role hierarchy relation RH is the
minimum relation having the same transitive closure asRH.
For instance, {(r1, r2), (r2, r3)} is the transitive reduction of

2Formally, min#P is defined as min{|AssignedPrmsU(u)| : u ∈ U}, we
can define max#P, min#U, and max#U analogously.

3We point out that the reported execution times do not correspond to real-
world times, but we use those data to compare CPU usage among different
heuristics as it is irrespective of background process that might slow down
the execution.

{(r1, r2), (r2, r3), (r1, r3)}. The relation DUPA ⊆ U × P
represents a direct user-permission assignment relation use-
ful when considering incomplete role-set where there are
uncovered permissions in the matrix UPA. Notice thatDUPA
is not considered in standard RBAC models [30]. Still, this
approach is more general and can handle the exceptional
situation where a role cannot explain an assignment of a
permission to a user (or, in other words, it does not make
sense to introduce for a user a role having single permission).

Given a weight vector W = 〈wr, wu, wp, wh, wd〉, one
would like to find an RBAC state having the smallest
Weighted Structural Complexity. Hence, different weight
vectors encode different mining objectives and minimization
goals. For example, by setting W = 〈1, 0, 0,∞,∞〉 one
wants to minimize the number of role forbidding role hier-
archy and direct user-permission assignment; while setting
W = 〈0, 1, 1,∞,∞〉 one wants to minimize the number
of assignments user-roles and role-permissions (this problem
was referred to as min-edge role mining in [22]). In our case
we set W = 〈1, 1, 1, 0,∞〉, because we want to compare
heuristics that generate RBAC states exhibiting a complete
role-set (i.e., we do not allow direct user-permission assign-
ment) and we stick to the Core RBAC model, where hierar-
chy relations do not come into play (since our heuristics and
the ones we compare with, do not generate roles hierarchies).

To set-up the experiments, for each scenario, we have to
fix the constraint’s values. In particular, for each dataset and
each heuristic, we run three tests changing the constraint’s
value. To choose the values used in our tests, we consider the
characteristics of the optimal solutions (Table 2) provided by
[9]. Such solutions, except the one for the Customer dataset,
are available from [9]’s authors upon request.
In Table 2, column |R| specifies the optimal number of roles
in an unconstrained setting, the columns

min
ppr and

max
ppr repre-

sent, respectively, the minimum and the maximum number of
permissions assigned to roles in the optimal candidate role-
set. The constraint’s values for the PUCC scenario will be set
to the 20%, 50%, and 100% of

max
ppr . Analogously, columns

min
rpu and

max
rpu represent the the minimum and the maximum

number of roles assigned to users (to be used in the RUCC
scenario). Similarly, in the PDDC scenario, the constraint’s
value will be limited by the values in the columns

min
rpp and

max
rpp corresponding, respectively, to the minimum and the
maximum number of roles assigned to permissions. Finally,
for the UDCC scenario, the columns

min
upr and

max
upr denote the

range of the number of users that are assigned to each role
in the optimal solution. Since, for the Customer dataset an
optimal solution is not available, as upper bounds we use the
values max#P and max#U given in Table 1.

In the following, using the datasets summarized in Table 1
and the upper bounds in Table 2, we compare the perfor-
mances of the heuristics described Section IV for the various
constrained role mining problems. We evaluated separately
the heuristics dividing them according to the type of con-
straint (e.g., PUCC, RUCC, PDCC, and UDCC). In each

10 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Dataset |R| min
ppr

max
ppr

min
rpu

max
rpu

min
rpp

max
rpp

min
upr

max
upr

Americas large 398 1 733 1 4 1 129 1 2777
Americas small 178 1 263 1 12 1 43 1 2809
Apj 453 1 52 1 8 1 15 1 278
Emea 34 9 554 1 1 1 31 1 2
Healthcare 14 1 32 1 6 1 4 1 27
Domino 20 1 201 1 9 1 6 1 51
Customer - 1 25 1 25 1 4184 1 4184
Firewall 1 66 1 395 1 9 1 18 1 203
Firewall 2 10 2 307 1 3 1 4 1 239

TABLE 2. Characteristics of optimal RBAC states (in red not optimal solutions)

table reporting heuristics’ performances, the best results are
highlighted in boldface. Table 3 summarizes the comparisons
we made, where each heuristic takes as input the user-to-
permission assignment matrix UPA, and constraints are sat-
isfied during the role mining process.

Notice that, once a candidate role has been selected, all
our heuristics assign the selected role to all users (with some
limitations due the imposed constraint) possessing the per-
missions associated with the selected role. This assignment
could be unnecessary as it could attribute to some user more
roles than needed and, at the same time, increase the value
of |UA| (thus, consequently, it increases the Weighted Struc-
tural Complexity of the computed Core RBAC state). Hence,
to avoid such unnecessary assignment, instead of modifying
our heuristics, we devised a simple technique to reduce the
value of |UA|. We define a post-processing phase, as done
in previous works [4], where the RBAC state returned by
our heuristics is modified by deleting redundant roles. More
precisely, if the roles r and r′ are assigned to a user u ∈ U and
AssignedPrmsR(r

′) ⊂ AssignedPrmsR(r), then we remove
r′ from u’s role list. The number of overall generated roles
is not affected, but |UA| might be lowered. Although not
optimized, the proposed technique is speedy and takes on
average few milliseconds to complete on the RBAC states
returned by our heuristics on the datasets listed in Table 1.
On average, the time required to reduce |UA| is much lower
than the time needed to mine a candidate role-set. Hence, we
do not report this algorithm’s running time in the following
sections when commenting on the experiments.

a: PUCC Scenario
For each dataset and each heuristic, we run three tests setting
the constraint’s value, respectively, to the 20%, 50%, and
100% of the maximum number of permissions assigned to
roles in the optimal solution (Table 2). We compare the best
solution provided by our heuristics with the one given by
CRM. From Table 4, one can see that, concerning the size of
the candidate role-set returned by the heuristics, in 11 tests
out 27, our best heuristic returns a smaller role-set than CRM.
For the Emea, Domino, and Firewall 1 datasets, the returned
role-set has an equal size, while in the remaining 13 tests
CRM returns a smaller role-set (notice that in 9 of such tests
the role-set sizes are less than 5% apart).
If we consider heuristics’ running time, we see that our

heuristics are much faster than CRM. In particular, for the
Customer and Apj datasets, CRM is about, respectively, 300
times and 70 times slower than our fastest heuristic. Con-
sidering the WSC measure, it results that in 11 tests out
of 27, our best heuristic has a smaller Weighted Structural
Complexity than CRM, while in one experiment, the WSC is
the same. Overall, our heuristics perform better than CRM.

b: PDCC Scenario
In the following we compare, on the real-world datasets sum-
marized in Table 1, heuristic Enforce Permission Distribution
Constraint (for short, EPDC in this paper) described in Sec-
tion 4.2 of [14] and heuristics CRM−PDCC1 and CRM−PDCC2

described in Section IV-C. According to Table 5, it re-
sults that the three heuristics often returns a role-set having
the same cardinality. Still, our heuristics are faster and, in
general, produce a state having lower Weighted Structural
Complexity. More in detail, considering our best heuristic,
we have that in 18 tests out of 27 our heuristic and EPDC
return a role-set of identical size, in 8 tests our role-set is
smaller, while just in one test (second test for the Americas
large dataset) EPDC returns a negligible smaller role-set (i.e.,
1451 vs 1455 computed roles).
Our best heuristic is faster than EPDC in 23 tests out 27;
for the remaining four tests, our best heuristic and EPDC
exhibit the same running time. Such a comparison does not
change much, even considering the slower heuristic between
CRM−PDCC1 and CRM−PDCC2. For the Apj dataset, our best
heuristic is about 20 times faster than EPDC. For the Amer-
icas large dataset, EPDC is from 34 to 54 times slower
than both CRM−PDCC1 and CRM−PDCC2. Concerning the
WSC measure, EPDC generates states with lower Weighted
Structural Complexity than the best of our heuristics in two
tests only and, in one of them (i.e., the second test on the
Healthcare dataset), our WSC is just 2.5% bigger than the
one obtained running EPDC. Hence, we can conclude that,
in general, our proposed heuristics compute an RBAC state
with better parameters than the one attained executing state
of the art heuristics.

c: UDCC Scenario
In the following, we compare the performance of four heuris-
tics for the UDCC scenario, namely heuristics BC1 and BC2

described in Section 4 of [15] and our heuristics CRM−UDCC1

VOLUME 4, 2016 11

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Constraint Heuristics
PUCC CRM ([18], Sec. 3) CRM−PUCCC, CRM−PUCCR (Sec. IV-B)
RUCC ERUC ([14], Sec. 4.1) CRM−RUCCR (Sec. IV-E)
PDCC EPDC ([14], Sec. 4.2) CRM−PDCC1, CRM−PDCC2 (Sec. IV-C)
UDCC BC1, BC2 ([15], Sec. 4) CRM−UDCC1, CRM−UDCC2 (Sec. IV-D)

TABLE 3. Heuristics considered

Role-set Size Time WSC
Dataset Heuristic 20% 50% 100% 20% 50% 100% 20% 50% 100%

Americas large
CRM−PUCCC 757 659 612 747 758 728 120369 122824 99913
CRM−PUCCR 617 509 430 433 419 347 62439 79198 107610
CRM 669 464 415 1845 2384 5166 48429 74184 92293

Americas small
CRM−PUCCC 248 216 206 192 198 196 24538 24125 23242
CRM−PUCCR 227 217 226 181 151 157 11814 15740 21650
CRM 232 209 209 288 362 378 11533 10550 10550

Apj
CRM−PUCCC 505 478 466 74 65 62 11019 10980 10683
CRM−PUCCR 492 480 475 34 32 30 5215 5747 5927
CRM 487 459 455 2175 2244 2325 5146 5065 5063

Emea
CRM−PUCCC 88 52 40 11 10 10 11820 11014 7677
CRM−PUCCR 80 45 34 11 11 9 6848 6750 7280
CRM 100 50 34 11 12 11 4900 5938 7280

Healthcare
CRM−PUCCC 22 19 16 2 2 2 549 636 605
CRM−PUCCR 18 15 16 1 1 1 494 383 499
CRM 86 39 14 2 2 2 858 651 351

Domino
CRM−PUCCC 29 26 23 1 1 1 1333 1414 1212
CRM−PUCCR 27 24 20 1 1 1 631 667 758
CRM 30 22 20 1 1 1 781 577 761

Customer
CRM−PUCCC 289 278 276 536 248 292 133091 134387 134367
CRM−PUCCR 664 1122 1154 246 219 216 43256 44604 45100
CRM 277 277 277 74668 80255 78917 45963 45963 45963

Firewall 1
CRM−PUCCC 84 77 75 43 43 45 7181 6696 6510
CRM−PUCCR 77 73 72 44 41 41 3161 4745 5233
CRM 74 69 68 48 50 49 3250 3192 3190

Firewall 2
CRM−PUCCC 21 14 11 47 45 47 2831 2752 2444
CRM−PUCCR 18 12 10 45 44 47 1793 1472 1365
CRM 22 14 10 45 44 47 2219 1942 1564

TABLE 4. PUCC Framework

and CRM−UDCC2 described in Section IV-D. According to
Table 4, considering the size of the computed role-set, in
9 tests out of 27, the best solution provided by heuristics
BC1 and BC2 is smaller than the best solution returned by
CRM−UDCC1 and CRM−UDCC2. Our heuristics are, in general,
faster; indeed, they are in 11 tests quicker and just in one a
bit slower. In the remaining cases, the fastest of both pairs of
heuristics have the same running time.
Concerning the WSC, our best heuristic returns in 11 tests
a lower WSC value. In 8 tests out of 15, where either BC1

or BC2 returns smaller WSC values, the solution obtained by
running our best heuristic is less than 5% apart of these WSC
values (in five of such tests the differences are less than 2%).
For the Emea and Americas small datasets, our best heuristic
always performs better, or at least the same, than the best
between BC1 and BC2. Notice that, for the Emea dataset,
the maximum number of users assigned to each role in the
optimal solution is equal to 2. Hence, in the first two tests,
we considered the constraint value t equal to one, while in
the last test, we assumed t = 2.

d: RUCC Scenario

In the following we compare, on the real-world datasets (see
Table 1), heuristic Enforce Role Usage Constraint (for short,
ERUC in this paper) proposed in [14] (it corresponds to Algo-
rithm 3 in [14]) and heuristics CRM−RUCCR and CRM−RUCCC
described in Section IV-E. According to Table 7, it results
that our best heuristic is faster than ERUC in 22 tests out
of 27, while in the remaining 5 test the heuristics exhibit
the same running time. In the last two experiments for the
datasets Americas large, Americas small, and Apj, our best
heuristic is from 10 to about 50 times faster than ERUC.
Concerning the role-set size, our best heuristic returns a
smaller role-set only in 3 tests out of 27 and in one case (i.e.,
last experiment for the Domino dataset) it returns a role-set
of the same size than ERUC. Anyway, in 11 tests out of 27,
the returned solution’s size is less than 10% apart from the
one computed by ERUC. The results are a bit more favorable
when considering the WSC measure. In this case, in 7 tests
out of 27, our best heuristic has a smaller WSC than ERUC.

12 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Role-set Size Time WSC
Dataset Heuristic 20% 50% 100% 20% 50% 100% 20% 50% 100%

Americas large
CRM−PDCC1 3055 1455 1023 2528 1814 799 103259 102023 97092
CRM−PDCC2 3127 1493 1023 3499 1912 816 108842 102093 97270
EPDC 3105 1451 1023 139026 62431 43430 123967 118641 110783

Americas small
CRM−PDCC1 207 207 207 153 159 160 10450 10450 10450
CRM−PDCC2 197 196 196 149 157 161 10248 10223 10223
EPDC 207 207 207 747 729 783 11656 11656 11656

Apj
CRM−PDCC1 492 457 455 43 46 49 5178 5050 5044
CRM−PDCC2 494 456 454 39 41 43 5159 5045 5039
EPDC 492 457 455 887 747 780 5341 5121 5115

Emea
CRM−PDCC1 290 74 37 48 10 11 7792 7360 7286
CRM−PDCC2 290 74 37 20 10 8 7792 7360 7286
EPDC 290 74 37 89 15 13 8517 7365 7286

Healthcare
CRM−PDCC1 46 23 14 3 2 2 1578 399 352
CRM−PDCC2 46 23 14 3 3 2 1578 415 368
EPDC 46 23 14 4 2 2 1578 389 369

Domino
CRM−PDCC1 231 123 20 31 2 1 1192 967 967
CRM−PDCC2 231 125 20 3 2 1 1192 953 953
EPDC 231 123 20 5 3 1 1192 1030 761

Customer
CRM−PDCC1 276 276 276 471 193 174 45978 45978 45978
CRM−PDCC2 279 279 279 259 155 145 45944 45944 45944
EPDC 276 276 276 869 768 825 45978 45978 45978

Firewall 1
CRM−PDCC1 71 68 68 38 37 61 3228 3194 3194
CRM−PDCC2 125 65 65 42 48 38 3411 3223 3223
EPDC 71 68 68 58 76 53 3302 3273 3273

Firewall 2
CRM−PDCC1 590 11 10 954 65 48 37608 1578 1564
CRM−PDCC2 590 38 10 1006 50 40 37608 1682 1494
EPDC 590 11 10 954 58 78 37608 1578 1564

TABLE 5. PDCC Framework

VI. CONCLUSION
Constrained RBAC has been the object of several research
works, having the goal to define a resulting set of roles di-
rectly usable for the organization of the structure under exam-
ination. In this paper, we focused on cardinality constraints,
rigorously defining the theoretical aspects and computational
complexity of the associated role mining problems, and
providing a set of heuristics that is practically applicable
in different contexts. We also reported a complete set of
experiments obtained after the application of the heuristics
to benchmark datasets and comparisons with the available
results from previous literature. An open problem is how
to efficiently measure the distance of the resulting configu-
rations from the optimal constrained RBAC states, that has
been recently addressed in [8] for the case of unconstrained
RBAC. The extension of that approach to the constrained
RBAC scenario could offer another metric to evaluate the
quality of the proposed heuristics effectively.

REFERENCES
[1] Carlo Blundo and Stelvio Cimato. A simple role mining algorithm. In

Proceedings of the 2010 ACM Symposium on Applied Computing, SAC
’10, pages 1958–1962, New York, NY, USA, 2010. ACM.

[2] Carlo Blundo and Stelvio Cimato. Constrained role mining. In STM 2012,
8th International Workshop on Security and Trust Management, Revised
Selected Papers, volume 7783 of Lecture Notes in Computer Science,
pages 289–304. Springer, 2013.

[3] Carlo Blundo, Stelvio Cimato, and Luisa Siniscalchi. PRUCC-RM:
permission-role-usage cardinality constrained role mining. In 41st IEEE
Annual Computer Software and Applications Conference, COMPSAC
2017, Turin, Italy, July 4-8, 2017. Volume 2, pages 149–154, 2017.

[4] Carlo Blundo, Stelvio Cimato, and Luisa Siniscalchi. Postprocessing in
constrained role mining. In Hujun Yin, David Camacho, Paulo Novais,
and Antonio J. Tallón-Ballesteros, editors, Intelligent Data Engineering
and Automated Learning - IDEAL 2018 - 19th International Conference,
Madrid, Spain, November 21-23, 2018, Proceedings, Part I, volume 11314
of Lecture Notes in Computer Science, pages 204–214. Springer, 2018.

[5] Liang Chen and Jason Crampton. Set covering problems in role-based
access control. In ESORICS 2009, Proceedings of 14th European Sympo-
sium on Research in Computer Security, volume 5789 of Lecture Notes in
Computer Science, pages 689–704. Springer-Verlag, 2009.

[6] Edward J. Coyne. Role engineering. In Charles E. Youman, Ravi S.
Sandhu, and Edward J. Coyne, editors, Proceedings of the First ACM
Workshop on Role-Based Access Control, RBAC 1995, Gaithersburg,
MD, USA, November 30 - December 2, 1995. ACM, 1995.

[7] Irit Dinur and Samuel Safra. On the hardness of approximating minimum
vertex cover. Annals of Mathematics, 162:2005, 2004.

[8] L. Dong, K. Wu, and G. Tang. A data-centric approach to quality
estimation of role mining results. IEEE Transactions on Information
Forensics and Security, 11(12):2678–2692, Dec 2016.

[9] Alina Ene, William G. Horne, Nikola Milosavljevic, Prasad Rao, Robert
Schreiber, and Robert Endre Tarjan. Fast exact and heuristic methods for
role minimization problems. In Indrakshi Ray and Ninghui Li, editors,
13th ACM Symposium on Access Control Models and Technologies,
SACMAT 2008, Estes Park, CO, USA, June 11-13, 2008, Proceedings,
pages 1–10. ACM, 2008.

[10] E. B. Fernandez and J. C. Hawkins. Determining role rights from use
cases. In Proceedings of the Second ACM Workshop on Role-Based
Access Control, RBAC âĂŹ97, page 121âĂŞ125, New York, NY, USA,
1997. Association for Computing Machinery.

[11] David F. Ferraiolo, Ravi S. Sandhu, Serban I. Gavrila, D. Richard Kuhn,
and Ramaswamy Chandramouli. Proposed NIST standard for role-
based access control. ACM Transaction on Information System Security,
4(3):224–274, 2001.

[12] Mario Frank, David A. Basin, and Joachim M. Buhmann. A class
of probabilistic models for role engineering. In ACM Conference on
Computer and Communications Security, pages 299–310. ACM, 2008.

[13] Michael R. Garey and David S. Johnson. Computers and Intractability, A

VOLUME 4, 2016 13

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Role-set Size Time WSC
Dataset Heuristic 20% 50% 100% 20% 50% 100% 20% 50% 100%

Americas large

BC1 420 417 416 456 489 462 93409 93340 93317
BC2 427 424 423 52541 51761 49883 106772 106703 106680
CRM−UDCC1 435 432 431 491 469 462 107725 107656 107633
CRM−UDCC2 420 417 416 514 476 468 93452 93263 93200

Americas small

BC1 217 214 213 152 176 164 10977 10908 10885
BC2 225 216 213 3307 3036 3033 24493 24418 24393
CRM−UDCC1 231 227 226 158 156 164 22123 22027 22003
CRM−UDCC2 212 209 208 152 161 175 10885 10624 10537

Apj

BC1 466 458 456 42 46 44 5148 5062 5058
BC2 473 458 456 2886 2996 3010 6739 6301 6209
CRM−UDCC1 596 492 476 42 45 43 6808 6061 5952
CRM−UDCC2 531 458 456 49 48 46 8972 5253 5057

Emea

BC1 35 35 34 10 10 11 7290 7290 7280
BC2 35 35 34 17 16 17 7325 7325 7315
CRM−UDCC1 34 34 34 10 12 9 7280 7280 7280
CRM−UDCC2 34 34 34 9 9 9 7280 7280 7280

Healthcare

BC1 31 22 16 2 3 2 495 328 254
BC2 21 21 15 2 2 2 670 646 512
CRM−UDCC1 30 26 18 2 2 2 909 782 574
CRM−UDCC2 39 26 17 2 2 2 588 392 346

Domino

BC1 31 22 21 1 1 1 783 765 763
BC2 39 22 21 3 2 2 956 836 827
CRM−UDCC1 50 22 21 1 1 1 825 767 765
CRM−UDCC2 39 22 21 1 1 1 903 779 770

Customer

BC1 296 281 276 486 184 185 46018 45986 45978
BC2 296 281 276 3967 4006 3593 46101 46021 45978
CRM−UDCC1 1698 1168 1154 309 236 215 153920 54745 45100
CRM−UDCC2 296 281 276 241 184 185 46101 46021 45978

Firewall 1

BC1 92 79 72 44 44 44 3521 3291 3174
BC2 115 99 75 135 120 100 7760 8851 7019
CRM−UDCC1 115 92 82 43 44 43 9116 6708 5732
CRM−UDCC2 101 88 82 43 42 43 3668 3500 3676

Firewall 2

BC1 19 12 11 46 50 50 1753 1823 1805
BC2 55 12 11 72 52 54 6990 1974 1957
CRM−UDCC1 78 12 11 49 50 50 5097 1590 1572
CRM−UDCC2 76 12 11 46 50 50 4982 1647 1630

TABLE 6. UDCC Framework

Guide to the Theory of NP-Completeness. W.H. Freeman and Company,
New York, 1979.

[14] Pullamsetty Harika, Marreddy Nagajyothi, John C. John, Shamik Sural,
Jaideep Vaidya, and Vijayalakshmi Atluri. Meeting cardinality constraints
in role mining. IEEE Trans. Dependable Sec. Comput., 12(1):71–84, 2015.

[15] M. Hingankar and S. Sural. Towards role mining with restricted user-role
assignment. In Wireless Communication, Vehicular Technology, Infor-
mation Theory and Aerospace Electronic Systems Technology (Wireless
VITAE), 2011 2nd International Conference on, pages 1–5, 2011.

[16] John C. John, Shamik Sural, Vijayalakshmi Atluri, and Jaideep S. Vaidya.
Role mining under role-usage cardinality constraint. In Dimitris Gritzalis,
Steven Furnell, and Marianthi Theoharidou, editors, Information Security
and Privacy Research, volume 376 of IFIP Advances in Information and
Communication Technology, pages 150–161. Springer Berlin Heidelberg,
2012.

[17] Martin Kuhlmann, Dalia Shohat, and Gerhard Schimpf. Role mining
- revealing business roles for security administration using data mining
technology. In Elena Ferrari and David F. Ferraiolo, editors, 8th ACM
Symposium on Access Control Models and Technologies, SACMAT 2003,
Villa Gallia, Como, Italy, June 2-3, 2003, Proceedings, pages 179–186.
ACM, 2003.

[18] Ravi Kumar, Shamik Sural, and Arobinda Gupta. Mining RBAC roles
under cardinality constraint. In Proceedings of the 6th international
conference on Information systems security, ICISS’10, pages 171–185,
Berlin, Heidelberg, 2010. Springer-Verlag.

[19] Ninghui Li, Ian Molloy, Qihua Wang, Elisa Bertino, Seraphin Calo, and
Jorge Lobo. Role mining for engineering and optimizing role based access
control systems. Technical report, Purdue University, 11 2007.

[20] Ninghui Li, Mahesh V. Tripunitara, and Ziad Bizri. On mutually exclusive
roles and separation-of-duty. ACM Trans. Inf. Syst. Secur., 10(2), May
2007.

[21] Ruixuan Li, Huaqing Li, Xiwu Gu, Yuhua Li, Wei Ye, and Xiaopu Ma.

Role mining based on cardinality constraints. Concurr. Comput. : Pract.
Exper., 27(12):3126–3144, August 2015.

[22] Haibing Lu, Jaideep Vaidya, and Vijayalakshmi Atluri. Optimal boolean
matrix decomposition: Application to role engineering. In Proceedings of
the 24th International Conference on Data Engineering, ICDE 2008, April
7-12, 2008, Cancún, México, pages 297–306, 2008.

[23] Haibing Lu, Jaideep Vaidya, Vijayalakshmi Atluri, and Yuan Hong.
Constraint-aware role mining via extended boolean matrix decomposition.
IEEE Trans. Dependable Secur. Comput., 9(5):655–669, September 2012.

[24] Xiaopu Ma, Ruixuan Li, Hongwei Wang, and Huaqing Li. Role mining
based on permission cardinality constraint and user cardinality constraint.
Sec. and Commun. Netw., 8(13):2317–2328, September 2015.

[25] Barsha Mitra, Shamik Sural, Jaideep Vaidya, and Vijayalakshmi Atluri. A
survey of role mining. ACM Comput. Surv., 48(4):50:1–50:37, February
2016.

[26] Ian Molloy, Hong Chen, Tiancheng Li, Qihua Wang, Ninghui Li, Elisa
Bertino, Seraphin B. Calo, and Jorge Lobo. Mining roles with semantic
meanings. In Indrakshi Ray and Ninghui Li, editors, 13th ACM Sympo-
sium on Access Control Models and Technologies, SACMAT 2008, Estes
Park, CO, USA, June 11-13, 2008, Proceedings, pages 21–30. ACM, 2008.

[27] Ian Molloy, Ninghui Li, Tiancheng Li, Ziqing Mao, Qihua Wang, and
Jorge Lobo. Evaluating role mining algorithms. In Barbara Carminati
and James Joshi, editors, 14th ACM Symposium on Access Control
Models and Technologies, SACMAT 2009, Stresa, Italy, June 3-5, 2009,
Proceedings, pages 95–104. ACM, 2009.

[28] Haio Roeckle, Gerhard Schimpf, and Rupert Weidinger. Process-oriented
approach for role-finding to implement role-based security administration
in a large industrial organization. In Proceedings of the Fifth ACM
Workshop on Role-based Access Control, RBAC ’00, pages 103–110, New
York, NY, USA, 2000. ACM.

[29] Arindam Roy, Shamik Sural, Arun Kumar Majumdar, Jaideep Vaidya, and
Vijayalakshmi Atluri. On optimal employee assignment in constrained

14 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Role-set Size Time WSC
Dataset Heuristic 20% 50% 100% 20% 50% 100% 20% 50% 100%

Americas large
CRM−RUCCR 3485 432 432 697 451 550 192264 107585 107585
CRM−RUCCC 3485 548 453 431 31316 34025 192264 99599 106561
ERUC 432 429 415 479 23700 27749 107585 98323 94095

Americas small
CRM−RUCCR 259 259 259 151 150 155 25488 25488 25488
CRM−RUCCC 417 353 249 1650 2266 2306 25930 21849 17827
ERUC 258 244 224 429 1592 1612 22723 18532 13984

Apj
CRM−RUCCR 2044 564 564 92 49 46 10929 6129 6129
CRM−RUCCC 2044 486 456 33 2094 1778 10929 5299 5223
ERUC 564 470 457 75 1431 1535 6129 5372 5160

Emea
CRM−RUCCR 35 35 35 9 8 9 7290 7290 7290
CRM−RUCCC 35 35 35 43 9 10 7290 7290 7290
ERUC 34 34 34 11 10 9 7280 7280 7280

Healthcare
CRM−RUCCR 46 18 18 1 2 2 1578 563 563
CRM−RUCCC 46 35 35 2 1 1 1578 503 521
ERUC 18 15 15 2 1 1 563 263 298

Domino
CRM−RUCCR 79 23 23 1 1 1 888 739 739
CRM−RUCCC 79 21 20 2 1 1 888 757 755
ERUC 23 20 20 2 1 1 739 762 761

Customer
CRM−RUCCR 5655 5655 5655 1890 1464 1440 49761 49761 49761
CRM−RUCCC 8984 4403 956 3345 3405 3143 62456 53557 46692
ERUC 5027 2495 657 3156 5186 2609 51138 48928 46674

Firewall 1
CRM−RUCCR 365 90 90 39 37 37 32681 7190 7190
CRM−RUCCC 365 90 65 72 88 83 32681 5807 4426
ERUC 90 85 71 47 77 75 7190 7207 4646

Firewall 2
CRM−RUCCR 325 325 11 41 40 39 37078 37078 1510
CRM−RUCCC 325 325 10 77 47 48 37078 37078 1466
ERUC 11 11 11 48 46 48 1510 1510 1548

TABLE 7. RUCC Framework

role-based access control systems. ACM Trans. Manage. Inf. Syst.,
7(4):10:1–10:24, December 2016.

[30] Ravi Sandhu, David Ferraiolo, and Richard Kuhn. The nist model for role-
based access control: Towards a unified standard. In Proceedings of the
Fifth ACM Workshop on Role-based Access Control, RBAC ’00, pages
47–63, New York, NY, USA, 2000. ACM.

[31] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E.
Youman. Role-based access control models. Computer, 29(2):38–47,
February 1996.

[32] Jürgen Schlegelmilch and Ulrike Steffens. Role mining with ORCA.
In Elena Ferrari and Gail-Joon Ahn, editors, 10th ACM Symposium on
Access Control Models and Technologies, SACMAT 2005, Stockholm,
Sweden, June 1-3, 2005, Proceedings, pages 168–176. ACM, 2005.

[33] L. J. Stockmeyer. The minimal set basis problem is NP-complete.
Technical Report RC 5431, IBM Research, May 1975.

[34] Jaideep Vaidya, Vijayalakshmi Atluri, and Qi Guo. The role mining
problem: finding a minimal descriptive set of roles. In Volkmar Lotz and
Bhavani M. Thuraisingham, editors, 12th ACM Symposium on Access
Control Models and Technologies, SACMAT 2007, Sophia Antipolis,
France, June 20-22, 2007, Proceedings, pages 175–184. ACM, 2007.

[35] Jaideep Vaidya, Vijayalakshmi Atluri, and Qi Guo. The role mining
problem: A formal perspective. ACM Trans. Inf. Syst. Secur., 13(3), 2010.

[36] Dana Zhang, Kotagiri Ramamohanarao, and Tim Ebringer. Role engi-
neering using graph optimisation. In Volkmar Lotz and Bhavani M.
Thuraisingham, editors, 12th ACM Symposium on Access Control Models
and Technologies, SACMAT 2007, Sophia Antipolis, France, June 20-22,
2007, Proceedings, pages 139–144. ACM, 2007.

CARLO BLUNDO obtained in 1995 his Ph.D.
from the Università di Napoli, Italy. He is currently
Full Professor of Computer Science at the Dipar-
timento di Scienze Aziendali - Management & In-
novation Systems of Universitd̀i Salerno, Italy. His
main research interests are Cryptography and Data
Security. He has co-authored over 100 scientific
publications.

STELVIO CIMATO is an Associate Professor at
the Computer Science Department of the Univer-
sità degli Studi di Milano. He got his Ph.D in
Computer Science at University of Bologna, Italy
in 1999. His main research interests are in the
area of cryptography, network security, and Web
applications. He has published several papers in
the field and is active in the community, serving
as member of the program committee of several
international conferences in the area of cryptogra-

phy and data security. He is Senior Member of IEEE since 2017.

LUISA SINISCALCHI is a Postdoctoral Re-
searcher at the Aarhus University before she was
a postdoctoral researcher at the University of
Salerno. Luisa completed the Ph.D. at the Uni-
versity of Salerno in March 2018. Her research
is focused on various aspects of cryptography and
data security.

VOLUME 4, 2016 15

