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ABSTRACT
In this paper, we derive the gravitational wave stochastic background from tidal disruption events (TDEs). We focus on both
the signal emitted by main-sequence stars disrupted by supermassive black holes (SMBHs) in galaxy nuclei and on that
from disruptions of white dwarfs by intermediate-mass black holes (IMBHs) located in globular clusters. We show that the
characteristic strain hc’s dependence on frequency is shaped by the pericenter distribution of events within the tidal radius and
under standard assumptions hc ∝ f−1/2. This is because, the TDE signal is a burst of gravitational waves at the orbital frequency of
the closest approach. In addition, we compare the background characteristic strains with the sensitivity curves of the upcoming
generation of space-based gravitational wave interferometers: the Laser Interferometer Space Antenna (LISA), TianQin, ALIA,
the DECI-hertz inteferometer Gravitational wave Observatory (DECIGO), and the Big Bang Observer (BBO). We find that the
background produced by main-sequence stars might be just detected by BBO in its lowest frequency coverage, but it is too weak
for all the other instruments. On the other hand, the background signal from TDEs with white dwarfs will be within reach of
ALIA, and especially of DECIGO and BBO, while it is below the LISA and TianQin sensitive curves. This background signal
detection will not only provide evidence for the existence of IMBHs up to redshift z ∼ 3, but it will also inform us on the number
of globular clusters per galaxy and on the occupation fraction of IMBHs in these environments.
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1 IN T RO D U C T I O N

Tidal disruption events (TDEs) are transient astronomical events
that occur when a star, wandering too close to a black hole (BH),
gets disrupted by the tidal forces due to the hole, that overwhelm the
stellar self-gravity (see Rees 1988; Phinney 1989). After the phase
of disruption, about half of the star circularizes around the hole and
is expected to form an accretion disc (Hayasaki, Stone & Loeb 2013,
2016; Shiokawa et al. 2015; Bonnerot et al. 2016), while the other
half escapes on hyperbolic orbits with different energies. These
phenomena are very luminous electromagnetic sources (see, e.g.
Komossa et al. 2008; Bloom et al. 2011; Komossa 2015; Gezari,
Cenko & Arcavi 2017), with a luminosity decay that, at late times
in soft-X rays, might be expected to decline as t−5/3 (Lodato, King
& Pringle 2009; Lodato & Rossi 2011; Guillochon & Ramirez-Ruiz
2013).

During these events, we do not only expect electromagnetic emis-
sion, but also gravitational wave (GW, Einstein 1918) production. In
particular, three different processes emit GWs during TDEs. First,
there are GWs generated by the time-varying mass quadrupole of
the star-BH system. This emission has been investigated initially by
Kobayashi et al. (2004). They study the tidal disruption of a Sun-
like star by a supermassive black hole (SMBH) with M• ≈ 106 M�,
obtaining a GW strain h ≈ 10−22 if the BH is not-rotating, while h
≈ 10−21 if the SMBH is spinning. Similarly, Rosswog (2009), Haas
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et al. (2012), and Anninos et al. (2018) explore ultra-close TDEs of
white dwarfs (WDs) by intermediate-mass black holes (IMBHs), that
might have been observed (Lin et al. 2018, 2020; Peng et al. 2019). A
WD with mass ≈1 M� and radius ≈ 109 cm is expected to generate
a strain h ≈ 10−20, if disrupted by a 103 M� IMBH at ≈ 20 kpc
from us. Secondly, there are GWs produced by the variation of the
internal quadrupole moment of the star as it gets compressed and
stretched by the tidal forces when passing through the pericenter. In
particular, Guillochon et al. (2009) study this emission for a Sun-
like star disrupted by a 106 M� SMBH numerically, while Stone,
Sari & Loeb (2013) focus more on the analytical investigation of
this emission both from main-sequence (MS) stars and WDs tidally
disrupted. They both show that all being equal, this signal is in
general one order of magnitude lower than that produced by the star-
SMBH system. The two signals become comparable only if the TDEs
are highly penetrating. Lastly, emission of GWs may arise after the
circularization of debris around the BH. GWs may be produced by
an unstable accretion disc, where the Papaloizou–Pringle instability
occurs (see Papaloizou & Pringle 1984; Blaes & Glatzel 1986).
This is a global, non-axisymmetric, hydrodynamical instability that
generates a localized overdensity that orbits the BH and gradually
spreads out. This clump is the source of GWs (van Putten 2001;
Kiuchi et al. 2011; Toscani, Lodato & Nealon 2019; van Putten et al.
2019). In particular, Toscani et al. (2019) show that for a 1 M� torus
around a 106 M� non-rotating SMBH, this signal is around 10−24,
with a frequency ≈ mHz.

All these studies focus on the detection of GW emission from
single disruption events and they all show that, although these signals
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are in the Laser Interferometer Space Antenna (LISA, Amaro-Seoane
et al. 2017) frequency band, they are quite weak, so it will be unlikely
for LISA to detect them. In this paper, we explore the GW signal
produced by the entire cosmic population of TDEs (signal from
the BH-star system), that would result in a stochastic background.
We will investigate both the background associated with TDEs of
MS stars with SMBHs and the one generated by the disruption of
WDs by IMBHs. We then compare these signals with the sensitivity
curves of the next generation of GW interferometers, i.e. LISA,
TianQin (Luo et al. 2016), ALIA (Bender, Begelman & Gair 2013;
Baker et al. 2019), the DECI-hertz inteferometer Gravitational wave
Observatory (DECIGO, Sato et al. 2017), and the Big Bang Observer
(BBO, Harry et al. 2006). The detection and characterization of this
background signal would provide unique information on TDE rates
and on the hidden SMBH quiescent population, including that of the
elusive IMBHs up to redshift z ∼ 3.

The structure of this paper is as follows: In Section 2, we describe
the basic theory of TDEs and the derivation of the GW background in
the most general case; in Section 3, we describe in detail our method;
in Section 4, we illustrate our results, while in Sections 5 and 6, we
discuss the work done and draw our conclusions.

2 TH E O RY

2.1 Gravitational signal from TDEs

Let us consider a star of mass M∗ and radius R∗, on a parabolic orbit
around a non-spinning BH of mass Mh. The TDE takes place when
the tidal forces due to the BH overcome the stellar self-gravity. For
the purpose of this paper, it is sufficient to use the so-called impulse
approximation, which means that the star interacts with the hole only
at the pericenter rp, where it gets disrupted. Because of the varying
quadrupole moment of the BH-star system, we expect a GW burst at
pericenter (Kobayashi et al. 2004). A simple estimate of the (maxi-
mum) GW strain emitted by the source is (see, e.g. Thorne 1998)

h ≈ 1

d

4G

c2

Ekin

c2
, (1)

where d is the distance of the source from the Earth and Ekin is the
kinetic energy of the star, due to the high mass ratio between the BH
and the star, we can consider the BH at rest in the centre of mass
frame (see appendix A of Toscani et al. 2019 for a more detailed
discussion on this assumption). Assuming the star to be a point-like
particle in Keplerian motion, we write Ekin as

Ekin = M∗
GMh

rp
. (2)

Thus, the GW strain becomes

h ≈ β × rsrs∗
rtd

≈ β × 2 × 10−22

(
M∗
M�

)4/3 (
Mh

106 M�

)2/3

×
(

R∗
R�

)−1 (
d

16 Mpc

)−1

, (3)

with an associated frequency

f ≈ β3/2

2π

(
GMh

r3
t

)1/2

≈ β3/2 × 10−4 Hz ×
(

M∗
M�

)1/2 (
R∗
R�

)−3/2

, (4)

where we have introduced the Schwarzschild radius rs of the BH,
the Schwarzschild radius rs∗ of the star, and the maximum pericenter
distance for tidal disruption (a.k.a tidal radius)

rt ≈ R∗

(
Mh

M∗

)1/3

(5)

≈ 7 × 1012 cm

(
R∗
R�

)+1 (
M∗
M�

)−1/3 (
Mh

106 M�

)1/3

. (6)

In fact, rt should have also a numerical factor of a few, due to the
internal structure of the star, relativistic effects in the process of
disruption and other physical details of the system. We take this
factor to be 1 for simplicity. The penetration factor β is defined as

β
.= rt

rp
. (7)

This factor varies between a minimum value βmin = 1 (i.e. rp = rt)
and a maximum value βmax = rt/rs, when the pericenter is equal to the
BH Schwarzschild radius. Within this radius, the star is directly swal-
lowed rather than disrupted by the BH. For β = 1 and a Sun-like star
disrupted by a 106 M� static BH at ≈ 16 Mpc from us, equations (3)
and (4) give h ≈ 10−22 and f ≈ 10−4 Hz (cf. Kobayashi et al. 2004).

2.1.1 White dwarfs

In the rest of this paper, we assume that the WD mass is fixed and
equal to M∗ = 0.5 M�. Following Shapiro & Teukolsky (1983), a
WD with this mass has a radius R ≈ 10−2 R�. The upper limit on the
mass of the BH involved in the disruption is found by rt > rs to be

Mh � 2 × 105 M�. (8)

Thus, we can take 103 ≤ Mh ≤ 105 M� as a reasonable range for
the IMBH mass. Events with smaller BH masses will emit signals
at least 100 times dimmer (see equation 3) and therefore we ignore
them. We assume that these IMBHs reside in globular clusters (GCs).

Considering what is said above for the β parameter, we obtain

1 ≤ β � 29 if Mh = 103 M�,

1 ≤ β � 6 if Mh = 104 M�,

1 ≤ β � 1.4 if Mh = 105 M�, (9)

and, as a result, we have the following limits on the GW strain and
frequency, assuming an average distance of 16 Mpc (Virgo Cluster)

8 × 10−23 � h3 � 2.4 × 10−21, 7 × 10−2 � f3 � 11 Hz,

4 × 10−22 � h4 � 2.2 × 10−21, 7 × 10−2 � f4 � 1 Hz,

2 × 10−21 � h5 � 2.2 × 10−21, 7 × 10−2 � f5 � 0.1 Hz, (10)

where the index hx (fx) means that we consider Mh = 10x M�.

2.1.2 Main-sequence stars

For MS stars, we assume 1 ≤ M∗ ≤ 100 M�. Considering the
scaling relation M∗ ≈ R∗ and a star with 1 M� and 1 R�, we get

M• � 108 M�. (11)

Thus, we take 106 ≤ M• ≤ 108 M� as the BH mass range (note
that we use Mh to refer to the mass of IMBHs and M• to refer
to SMBHs). Since these BHs are supermassive, we expect them to
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reside in galactic nuclei. For a Sun-like star, we get the following
intervals for β

1 ≤ β � 23 if M• = 106 M�,

1 ≤ β � 5 if M• = 107 M�,

β ≈ 1 if M• = 108 M�, (12)

and the strain for a source at 16 Mpc and its frequency span in the
following ranges

2 × 10−22 � h6 � 5 × 10−21, 10−4 � f6 � 10−2 Hz,

9 × 10−22 � h7 � 4 × 10−21, 10−4 � f7 � 10−3 Hz,

h8 ≈ 4 × 10−21, f8 ≈ 10−4 Hz. (13)

Note that, while the expected strain is similar to that of WDs, the
typical frequency in this case is much lower, due to larger BH masses.

2.2 Gravitational wave background derivation

The goal of this derivation is to find an expression for the charac-
teristic amplitude hc of the background signal in terms of frequency.
In order to do so, following the steps illustrated by Phinney (2001)
and Sesana, Vecchio & Colacino (2008), the starting point is the
definition of the gravitational energy flux from a distant source, S(t),
written as

S(t) = c3

16πG

(
ḣ2

+ + ḣ2
×
)
, (14)

where c is the speed of light, G is the gravitational constant and h+, ×
are the two GW polarizations.1 The dot indicates the time derivative.
If we consider the Fourier Transform (FT) of the waveforms

h̃+,×(f ) =
∫ +∞

−∞
h+,× exp (−i2πf t)dt, (15)

and Parseval’s theorem∫ +∞

−∞
|h+,×(t)|2dt =

∫ +∞

−∞
|h̃+,×(f )|2df , (16)

we can write the time integral of equation (14) as∫ +∞

−∞
dtS(t) = c3π

2G

∫ +∞

0
dff 2

(|h̃+(f )|2 + |h̃×(f )|2) , (17)

where the integration domain has changed from (−∞, +∞) to [0,
+∞), thanks to the symmetry properties of the FT. If we take the
average of the energy flux over all the possible orientations of the
source, �s, we get

< S(t) >�s=
LGW(t)

4πd2
L

, (18)

where dL is the luminosity distance and LGW is the emitted GW
luminosity measured in the rest frame of the source. The time integral
of equation (18) is simply∫ +∞

−∞
dt < S(t) >�s=

(1 + z)

4πd2
L

∫ +∞

−∞
LGW(tr)dtr = (1 + z)

4πd2
L

EGW,

(19)

where EGW is the rest-frame GW energy, z is the redshift, and tr is
the time local to the event, related to the observed time, t, by

t = (1 + z)tr. (20)

1We are assuming that the Transverse Traceless gauge holds.

From the above calculations, we derive∫ +∞

−∞
dt < S(t) >�s

= c3π

2G(1 + z)

∫ +∞

0
dfrf

2 <
(|h̃+(f )|2 + |h̃×(f )|2) >�s

= 1 + z

4πd2
L

∫ +∞

0

dEGW

dfr
dfr, (21)

where fr is the rest-frame frequency that can be expressed in terms of
the observed frequency, f, as fr = (1 + z)f (this follows immediately
from equation 20). Thus, we see from equation (21) that the emitted
GW energy per bin of rest-frame frequency is

dEGW

dfr
= 2π2c3d2

G
f 2 <

(|h̃+(f )|2 + |h̃×(f )|2) >�S , (22)

where d is related to dL in the following way (if �k = 0, see Hogg
1999)

d = dL

1 + z
. (23)

Since we are averaging over the angles and since previous studies
(e.g. Kobayashi et al. 2004) have shown that h+ ∼ h× ∼ h, we
consider

h̃+(f ) ≈ h̃×(f ) ≈ h̃(f ), (24)

and so we can write

dEGW

dfr
= 4π2c3d2

G
f 2|h̃(f )|2. (25)

Until now we have considered the signal from a single source. Since
we are interested in the signal from the entire population, we proceed
in the following way. We introduce the GW present-day energy
density, EGW, given by (Phinney 1989)

EGW =
∫ +∞

0
SE(f )df , (26)

where SE is the spectral energy density of the background (Moore,
Cole & Berry 2015)

SE = πc2

4G
f h2

c, (27)

with hc characteristic strain (Maggiore 2007)

|hc(f )|2 = 4f 2|h̃(f )|2. (28)

Thus, equation (26) can be written as

EGW =
∫ +∞

0

πc2

4G
f 2h2

c(f )
df

f
. (29)

Assuming that the Universe is isotropic and homogeneous, EGW is
equal to the sum of the energy densities emitted from the single
sources at each redshift

EGW =
∫ +∞

0
dz

d#

dtdz

1

c

(∫ +∞

−∞
dt < S(t) >�s

)
, (30)

where d#/dtdz is the number of sources generating GWs in the
observed time dt, inside the redshift interval [z, z + dz]. Comparing
equations (29) and (30), and using equation (21), we finally obtain
the following formula for the characteristic strain

h2
c = G

c3π2

1

f

∫ +∞

0
dz

d#

dtdz

1

d2

(
dEGW

dfr

)
∣∣
fr=f (1+z)

. (31)
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2.3 Order of magnitude estimates of the background signal

Before developing the calculations in a more formal way, we can
give an estimate of the GW background from MS stars and WDs in
the following way. We approximate the FT of the strain as h/f (we
will justify why it is possible to do this in Section 3) and we write

d#

dtdz
≈ dN tde

dtdz
≈ Ṅ tde

gal

1 + z

dNgal

dz
, (32)

where Ntde is the number of TDEs, Ṅ tde
gal is the rate of TDEs per galaxy

and Ngal is the number of galaxies. Thus, we can write equation (31)
as

h2
c ≈ 4 × 1

f
× Ṅ tde

gal × h2 ×
∫ +∞

0
dz

dNgal

dz

1

1 + z
. (33)

If we consider a Sun-like star disrupted by a 106 M� BH, we have
that the frequency is ≈10−4 Hz (cf. Section 2.1) and the TDE rate
is Ṅ tde

gal ≈ 10−4yr−1 gal−1 (see e.g. Stone & Metzger 2016). If we
consider about 0.01 galaxies per unit of cubic Megaparsec (see e.g.
Montero-Dorta & Prada 2009), we can estimate that up to z ∼
1 (i.e. 4 × 103 Mpc) there are 0.01 gal Mpc−3 × (4 × 103 Mpc)3 ≈
108 galaxies. Inserting all this information in equation (33), we get

hc ≈
√

10h. (34)

So we expect the GW background from TDEs of MS stars to be
around the same order of magnitude of the the strain from the single
event. Moreover, if we compare the background from MS stars and
the one from WDs,we obtain

h2
c,MS

h2
c,WD

≈ fWD

fMS
× ṄMS

gal

ṄWD
gal

× h2
MS

h2
WD

, (35)

and considering an MS star as in the previous example and a
WD disrupted by a 105 M� BH with an estimated rate of ṄWD

gal ≈
10−4 yr−1 gal−1 (see e.g. Stone & Metzger 2016), we have

h2
c,MS ≈ h2

c,WD. (36)

So the background of Sun-like stars disrupted by a 106 M� BH
is around the same order of magnitude as the background of WDs
disrupted by a 105 M� BH and, since both the signals are not very
strong, we do not expect them to be detected (at least for LISA and
TianQin). However, if we assume that these WDs are disrupted not
in galactic nuclei but by IMBHs residing in globular clusters, with a
disruption rate around ṄWD

gc ≈ 10−3 yr−1 gc−1 (see e.g. Baumgardt,
Makino & Ebisuzaki 2004a), we get

hc,MS

hc,WD
≈

(
fWD

fMS
× ṄMS

gal

ṄWD
gc

× h2
MS

h2
WD

× 1

Ngc

)1/2

≈ (
10Ngc

)−1/2
. (37)

Thus, if we take into account WDs disrupted by IMBHs in globular
clusters, the estimated number of GCs per galaxy becomes a key
factor in the derivation of this background. Now that we have
explored the expected magnitude of the background, we move to
a full description of the physical scenario at hand.

3 ME T H O D S

To derive the GW background signal, we need to specialize two terms
in equation (31): the GW energy per unit frequency and the number
of sources per unit time per unit redshift.

3.1 Number of sources per unit time per unit redshift: white
dwarfs

We need to find the proper expression for d#/dtdz. Since we assume
a fixed stellar mass, the other possible variables that this quantity
can depend on, apart from z and t, are the mass of the IMBH in
the GC, Mh, and the number of GCs per galaxy, N

gc
gal. We assume

that the mass distribution of IMBHs is a δ function at a fixed value
of Mh, that we take as a free parameter in the range 103 ≤ Mh ≤
105 M�. So, the only variable left is N

gc
gal. It is reasonable to assume

that there is a scale relation between this quantity and the luminosity
of the galaxy that hosts the GCs. Since this luminosity can be more
conveniently expressed in terms of the mass of the SMBH in the
nucleus of the galaxy, M• (see e.g. Faber & Jackson 1976; Ferrarese
& Merritt 2000), we can write

d#

dtdz
−→

∫
dM•

d#

dtdzdM•
. (38)

In particular, equation (38) can be expressed as∫
dM•

d#

dtdzdM•
= Ṅ tde

gc

∫
dM•N

gc
gal

dn

dM•

1

1 + z

dVc

dz
, (39)

where Ṅ tde
gc is the rate of TDEs of WDs per globular cluster, N

gc
gal is

the number of globular clusters per galaxy, dn/dM• is the number
density of galaxies per unit SMBH mass, and dVc/dz is the comoving
volume per redshift slice dz. In the following paragraphs, we explicit
each term of equation (39).

3.1.1 Rate of TDEs per GC

We can compute the rate of TDEs in globular clusters following
the loss cone theory (Frank & Rees 1976). In particular, as done
by Baumgardt et al. (2004a) and Baumgardt, Makino & Ebisuzaki
(2004b) (from now on we will refer to as B04a and B04b), we
consider globular clusters where the critical radius rcr, i.e. the distance
from the BH where there is the transition from the full loss cone to
the empty loss cone regime, is lower than the influence radius of the
hole ri. With this assumption, we derive the TDE rate as the ratio
between the number of stars in the loss cone at rcr and the crossing
time Tc = r/σ (with σ stellar velocity dispersion, see Amaro-Seoane
& Spurzem 2001) at rcr

Ṅ tde
gc (rcr) = n(r)r3θ2

lc

Tc

∣∣∣∣
rcr

, (40)

where we have introduced the stellar number density, n(r), and the
opening angle of the loss cone, θ lc given by (Frank & Rees 1976)

θlc = f

(
2rt

3r

)1/2

, (41)

with f ≈ 2. In general n(r) is written as

n(r) = n0r
−η, (42)

where n0 is the cusp density and η is the power-law index. We take
η = 1.75, which is the value used by B04b for compact objects. We
use the following relations (see Frank & Rees 1976; B04a) for the
critical radius

rcr = 0.2

(
rtM

2
h

M2∗n0

)4/9

, (43)

and the influence radius

ri = 3

8π

Mh

M∗ncr2
c

, (44)
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where we have introduced the core density nc and the core radius rc,
assuming that the cusp density flattens into a constant core density
at r = 2ri (see B04a). Putting it all together, we obtain the following
expression for the rate2

Ṅ tde
gc ∼ 60Myr−1

(
RWD

R�

)4/9 (
MWD

M�

)−95/54

×
(

Mh

103M�

)61/27 (
nc

pc−3

)−7/6 (
rc

1pc

)−49/9

. (45)

Since this rate is derived at the critical radius, we can use it as a
good estimate for both the full loss cone and the empty loss cone
regime. But, there is an important difference between these two
scenarios. While in the empty loss cone regime, the stars are typically
disrupted at the tidal radius (i.e. β ≈ 1), in the full loss cone regime,
stars can cross the loss cone many times before being completely
disrupted, allowing for a larger range of β factors. In this latter
regime, we therefore need to consider the distribution of β factors in
the derivation of the TDE rate. In particular, we assume that the rate
of TDEs can be written as

dṄ

dβ
= Ṅ tde

gc

βγ
, (46)

and we take γ = 2 (following Stone & Metzger 2016) from which it
follows

Ṅ tde
gc =

∫ +∞

1
dββ−2Ṅ tde

gc , (47)

that holds since the distribution of β is normalized to 1. In the
calculations, we take rt/rs as upper limit for β.

3.1.2 Number of GCs per galaxy

Harris & Harris (2011), following-up of the work of Burkert &
Tremaine (2010), suggest this scaling relation between the number
of GCs and the SMBH mass in a galaxy

N
gc
gal = 10(−5.78±0.85)

(
M•
M�

)(1.02±0.10)

. (48)

Forcing the slope of the line to be 1, they get the following best-fitting
relation

N
gc
gal = N0

(
M•

4.07 × 105 M�

)λ

, (49)

where they have both the parameters N0 and λ equal to 1. These
relations are obtained from a study on a sample of 33 galaxies and,
in particular, they find that this scaling is appropriate for elliptical
and spiral galaxies, but not for lenticular ones, that seem not to follow
a particular trend. Still, they discover that 10 per cent of the galaxies
in their sample strongly deviate from this relation, in the sense that
their SMBH mass is ten times smaller than the one predicted by this
relation and this deviation cannot be solved within the uncertainties.
Between these problematic galaxies, there is also the Milky Way
(MW). We know that the MW has around ∼160 GCs and the mass of
its SMBH, Sgr A∗, is around ∼4 × 106 M�. To adjust a scaling such

2B04a and B04b multiply their theoretical rate by a constant kD that they get
doing a best fit from the data of their simulations. We do not take into account
this constant.

that of equation (49) to match the MW properties, we can proceed in
the following ways: (i) we can take λ = 2.2 and N0 = 1

N
gc
gal =

(
4 × 106 M�

4.07 × 105 M�

)2.2

≈ 160, (50)

or (ii) we can take λ = 1 and N0 = 16

N
gc
gal = 16

(
4 × 106 M�

4.07 × 105 M�

)
≈ 160. (51)

Thus, for the derivation of the background, we consider λ and N0 as
free parameters that can change in the following intervals: λ ∈ [1,
2.2] and N0 ∈ [1, 16].

3.1.3 Galaxy distribution

To derive dn/dM•, we start from the Schechter luminosity function
(Schechter 1975) in the R-band

dn

dLR
= φ∗

L∗

(
LR

L∗

)α

exp

(
−LR

L∗

)
, (52)

where φ∗, L∗, and α are quantities that depend on z. We parametrize
them as done by Gabasch et al. (2006) that, for 0 � z � 3, as derived
from the Fors Deep Field using the observations collected with the
Very Large Telescope (VLT), obtain

α ≈ −1.33, (53)

φ∗ ≈ 0.0037 Mpc−3(1 + z)−0.68, (54)

L∗ ≈ 5 × 1010 L�(1 + z)0.64. (55)

Using the Faber–Jackson law in the R-band (Faber & Jackson 1976)

σ ≈ 150 km s−1

(
LR

1010 L�

)1/4

, (56)

where σ is the central stellar velocity dispersion of the (elliptical)
galaxy and the M•−σ relation (Ferrarese & Merritt 2000) with the
calibrations of McConnell & Ma (2013)

M• = 108.32 M�
(

σ

200 km s−1

)5.64

, (57)

we can write the distribution of galaxies in terms of M• as

dn

dM•
= 0.0028 Mpc−3

108 M�(1 + z)0.48

(
M•

108 M�

)−1.17

× exp

(
− 0.4

(1 + z)0.7

(
M•

108 M�

)0.709
)

. (58)

3.1.4 Comoving volume per unit of redshift

This quantity is given by (see Hogg 1999)

dVc

dz
= 4π

c

H0
d2 1

E(z)
, (59)

where E(z) is the dimensionless parameter

E(z) =
√

�M(1 + z)3 + �, (60)

with �M and � dimensionless density parameters for matter and
dark energy respectively (assuming �k = 0). In this work, following
Gabasch et al. (2006), we take �M = 0.3, � = 0.7, and H0 =
70 Km (sMpc)−1.
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3.2 Number of sources per unit time per unit redshift: MS stars

For MS stars, the number of sources per unit of time per unit of
redshift will depend on the mass of the SMBH involved in the
disruption, M•, so we can write

d#

dtdz
−→

∫
dM•

d#

dtdzdM•
=

∫
dM• Ṅ tde

gal

dn

dM•

1

1 + z

dVc

dz
. (61)

For the term Ṅ tde
gal , we need to consider that this rate will depend on

both the stellar mass and the distance between the star and the BH
(see Section 3.1.1 for the considerations about full and empty loss
cone). If we assume

dṄ

dβdM∗
= Ṅ tde

gal

β2φ(M∗)
, (62)

where φ(M∗) is the Salpeter function (Salpeter 1955) normalized in
the interval [1, +∞)

φ(M∗) = 1.35 M1.35� M−2.35
∗ , (63)

we can write

Ṅ tde
gal (M•) =

∫ +∞

1
dM∗

∫ +∞

1
dβ β−2φ(M∗)Ṅ tde

gal (M•). (64)

In the calculations, we take M∗ = 100 M� and β = rt/rs as upper
limits for M∗ and β, respectively. For the rate, we take the one
calculated by Stone & Metzger (2016)

Ṅ tde
gal = 2.9 × 10−5 yr−1

(
M•

108 M�

)−0.404

. (65)

3.3 Gravitational energy per bin of rest-frame frequency

We need to specialize equation (25) for TDEs, which means that
we have to find the expression for h̃(f ). In Section 2.1, we have
explained that it is suitable to approximate this GW signal from
TDEs with a burst. Thus, we are in practice considering the strain
like a constant function over the interval [-τ /2,τ /2] (where τ is the
duration of the signal) and zero outside. For these reasons, we can
write the FT of the signal as

h̃(f ) ≈ h

∫ τ/2

−τ/2
exp (−i2πf t)dt ≈ hτ

sin(πf τ )

πf τ
≈ hτ ≈ h

f
, (66)

so that equation (22) can be expressed as

dEGW

dfr
= 4π2c3

G
d2h2, (67)

where we have considered that the strain does not depend on the
orientation of the source for our problem. Thus, equation (67)
becomes

dEGW

dfr
= 4π2c3

G

(
βrsrs∗

rt

)2

∝ f 4/3
r (68)

(in the last step, we consider β ∝ f2/3, cf. Section 2).

4 R ESULTS

4.1 Background for white dwarfs

Considering all the steps illustrated in the previous sections, the final
formula for the background is

hc = AWD

(
f

10−2 Hz

)−1/2

, (69)

Table 1. Values of the constant AWD for different values of Mh, λ, and N0.
Empty loss cone scenario.

Mh AWD AWD AWD

λ = 1, N0 = 1 λ = 2.2, N0 = 1 λ = 1, N0 = 16

103 M� 5 × 10−26 9 × 10−25 2 × 10−25

104 M� 3 × 10−24 5 × 10−23 1 × 10−23

105 M� 2 × 10−22 3 × 10−21 8 × 10−22

Table 2. Values of the constant AWD for different values of Mh, λ, and N0.
Full loss cone scenario.

Mh AWD AWD AWD

λ = 1, N0 = 1 λ = 2.2, N0 = 1 λ = 1, N0 = 16

103 M� 3 × 10−25 5 × 10−24 1 × 10−24

104 M� 7 × 10−24 1 × 10−22 2 × 10−23

105 M� 1 × 10−22 2 × 10−21 5 × 10−22

where AWD is a model dependent constant given by

A2
WD ≈ 10−53 × N0 × (250)λ ×

(
Mh

103M�

)3.59

× [βmax − 1]

×
∫ +∞

0
I(z)dz, (70)

with

I(z) =
∫ 1

10−2
dMM−1.17+λ exp

(
− 0.4

(1 + z)0.7
M0.709

)

× (1 + z)−1.48

E(z)
. (71)

In the calculation, we have taken a GC core density nc ≈ 105 pc−3

and core radius rc ≈ 0.5 pc. The mass dimensionless variable M =
M•/108 M� ranges in the interval 10−2 ≤ M ≤ 1, spanning the
mass range 106−108M�. The term in square brackets results from
the integral over the parameter β, so we have this term only when
considering the full loss cone scenario. We report, in Tables 1 and 2,
the typical values of AWD for different choices of the parameters, in
the empty and full loss cone, respectively.

Let us estimate the frequency range we expect the signal to cover.
The observed frequency is related to the rest-frame frequency by f
= fr/(1 + z). So, when the redshift is zero, the observed frequency
coincides with the frequency of the source, meanwhile for higher
redshifts f decreases, approaching 0 for z → ∞. However, although
in the above integral we consider 0 ≤ z < ∞, from a physical point
of view, we expect most of the signal to be collected from within
a finite redshift zmax that we derive by inspecting I(z) in equation
(71). This function is plotted in Fig. 1 for two extreme values of the
parameter λ, i.e. λ = 1 and 2.2, setting fr = 0.07 Hz. The function
vanishes for z ≥ 3, thus the lowest frequency at which we observe
the signal is f ≈ 0.07/4 = 0.02 Hz. We therefore expect the frequency
interval of the background signal in the empty loss cone regime to be
[0.02, 0.07 Hz]. In the full loss cone scenario β is not fixed to 1, so in
order to derive the observed frequency interval, we need to consider
both zmax and the maximum value of β (see paragraph 2). The result
is the following

f ∈ [0.02, 11 Hz] for Mh = 103 M�, (72)

f ∈ [0.02, 1Hz] for Mh = 104 M�, (73)
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Gravitational wave background from TDEs 513

Figure 1. I(z), i.e. the function under integral (70) integrated only in M,
plotted with respect to z and f. We see that, independently from the value of
λ, this function goes to zero for zmax ≈ 3, i.e. f ≈ 0.02 Hz.

Figure 2. Sensitivity curves of LISA (purple), TianQin (light violet), ALIA
(red), DECIGO (pink), and BBO (grey).

f ∈ [0.02, 0.1Hz] for Mh = 105 M�. (74)

Note that for Mh = 105 M�, the range of frequency is almost the
same as for the empty loss cone since the allowed β range is small
and around β ≈ 1. Indeed, Mh = 105 M� is a limit situation for
the full loss cone scenario, but we have decided to include also this
case for completeness. It follows that the natural frequency range
for this physical system goes from the decihertz to a few hertz. For
this reason, we compare our results with the sensitivity curves of the
following (future) space interferometers: LISA (Amaro-Seoane et al.
2017), TianQin (Luo et al. 2016), ALIA (Bender et al. 2013; Baker
et al. 2019), DECIGO (Sato et al. 2017), and the BBO (Harry et al.
2006), that are all shown in Fig. 2.

Our results are illustrated in Figs 3–5. We explore how the
background varies if we change the parameters Mh, λ, and N0. In

Fig. 3, we illustrate the results for the (pessimistic) case λ = 1 and
N0 = 1, that is the scenario where we assume the same linear relation
between the number of globular clusters in a galaxy and the mass
of the supermassive BH in its core as in Burkert & Tremaine (2010)
and in Harris & Harris (2011). Then, we show the results also for the
more optimistic case where λ and N0 satisfying the conditions for
the MW, in particular, λ = 2.2 and N0 = 1 in Fig. 4, while λ = 1 and
N0 = 16 in Fig. 5, since these are the two cases where, for a fixed
M•, we have the highest number of GCs. In each figure in the left-
hand plot, we show the empty loss cone scenario, while the full loss
cone is illustrated in the right-hand plot. The blue, orange, and black
lines represent the GW background, if we assume that all the IMBHs
have same mass equal to 103, 104, and 105 M�, respectively. The
green area represents the cases with an IMBH mass in between these
values. So the actual background of these events will be inside this
green area. In all the cases illustrated, the GW background may be
detected by DECIGO and it is always above BBO sensitivity curve.
It may also be visible to ALIA for the cases λ = 2.2, N0 = 1 and
λ = 1, N0 = 16, if we consider high BH masses. Moreover, in the
most optimistic scenario (λ = 2.2, N0 = 1), the signal even grazes
TianQin sensitivity curve.

These results suggest that the TDE background signal from WDs
could be indeed detected by both DECIGO and BBO, maybe even
by ALIA and surely by any interferometers that will work in the
decihertz band with a higher sensitivity than the planned ones.

4.2 Background for MS stars

In the case of MS stars, the final formula of the background is

hc ≈ AMS

(
f

10−3Hz
,

)−1/2

(75)

where AMS is a constant model dependent

A2
MS ≈ 10−44 M17/25

�
∫ +∞

0
IMS(z)dz, (76)

with

IMS =
∫ 1

0.01
dM

∫ 100M�
1M�

dM∗M−0.24 exp

(
− 0.4

(1 + z)0.7
M0.709

)

× (1 + z)−1.48

E(z)
M−1.68

∗ [βmax(M∗,M) − 1]. (77)

Similarly to the WD case, the term in square brackets derives from
the integral over β, so we have this term only in the full loss cone
scenario. Here, βmax is a function of the mass of the SMBH and of
the stellar mass, unlike in the previous case where it was a fixed
parameter.

To determine the frequency range of the signal, we proceed in a
similar way as for IMBH-WD background. First, we inspect IMS: it
vanishes for zmax ≈ 3. Thus, for the empty loss cone (β ≈ 1), we
have that the largest interval possible for the rest-frame frequency is
10−6 ≤ fr ≤ 10−4 Hz (see equation 4), which means that the largest
window for the observed frequency is 2.5 × 10−7 ≤ f ≤ 10−4 Hz.
This frequency band is lower than that covered by any planned detec-
tor, while it partially overlaps with that covered by the International
Pulsar Timing Array (IPTA). However, the background signal lies
orders of magnitude below the IPTA sensitivity curve, therefore
overall there are currently no prospects for detection. For the full
loss cone scenario, the largest interval for the rest-frame frequency
is 10−6 Hz ≤ fr ≤ 9mHz and so the observed frequency interval
where we investigate the signal becomes 10−4 Hz ≤ f ≤ 9 mHz.
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514 M. Toscani, E. M. Rossi and G. Lodato

Figure 3. GW background, hc, plotted with respect to the observed frequency, f. We consider the GC number that scales linearly with the mass of the SMBHs
as in Burkert & Tremaine (2010) and in Harris & Harris (2011) (i.e. λ = 1 and N0 = 1). On the left-hand side, we show the empty loss cone scenario, on
the right-hand side, the full loss cone scenario. The blue, orange, and black lines represent the background from WDs tidally disrupted by IMBHs of mass
Mh = 103, 104, and 105 M�, respectively. The green area between them stands for all the IMBH masses in between these values. The background is compared
with the sensitivity curves of LISA, TianQin, ALIA, DECIGO, and BBO. The dark green solid line in the plot on the right-hand side is the background from MS
stars.

Figure 4. GW background, hc, plotted with respect to the observed frequency, f. We consider λ = 2.2 and N0 = 1. On the left-hand side, we show the empty
loss cone scenario, on the right-hand side the full loss cone scenario. The blue, orange, and black lines represent the background from WDs tidally disrupted
by IMBHs of mass Mh = 103, 104, and 105 M�, respectively. The green area between them stands for all the IMBH masses in between these values. The
background is compared with the sensitivity curves of LISA, TianQin, ALIA, DECIGO, and BBO. The dark green dashed line in the plot on the right-hand side
is the background from MS stars.

Thus, gathering all these considerations, the final formula for the
background is

hc ≈ 10−21

(
f

10−3 Hz

)−1/2

(78)

We plot this background signal in Fig. 3 (solid dark green line in the
right-hand panel) and then also in Figs 4 and 5 (dashed green line) as
a reference. The background generated by MS stars partly overlaps
with the frequency band of BBO, that could detect the high frequency
part of this signal. DECIGO may see the highest frequency part of
this background too, if its sensitivity curve will be at least one order
of magnitude more sensitive.

In Fig. 3, note that the background generated by MS stars is
comparable with the one produced by WDs (if we consider the most
massive IMBHs). In the other two scenarios, where we increase the

number of GCs, the WD signal becomes stronger up to one order of
magnitude as seen in Fig. 4.

5 D ISCUSSION

5.1 The spectral shape of the GW background by TDEs

In the previous sections, we have seen that both for MS stars and
WDs, the characteristic strain scales as hc ∝ f−1/2. This dependence
is a consequence of two factors: (1) the choice γ = 2 in the β

distribution (equation 46) and (2) the impulsive nature of TDE
signals, that leads to h̃ ∼ h/f (equation 66). Thus, the derivative of
the GW energy with respect to the rest-frame frequency in equation
(68) is proportional to f4/3 (since the only term related to frequency
that appears in this equation is β2, cf. Section 2).
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Figure 5. GW background, hc, plotted with respect to the observed frequency, f. We consider λ = 1 and N0 = 16. On the left-hand side, we show the empty
loss cone scenario, on the right-hand side, the full loss cone scenario. The blue, orange, and black lines represent the background from WDs tidally disrupted
by IMBHs of mass Mh = 103, 104, and 105 M�, respectively. The green area between them stands for all the IMBH masses in between these values. The
background is compared with the sensitivity curves of LISA, TianQin, ALIA, DECIGO, and BBO. The dark green dashed line in the plot on the right-hand side
is the background from MS stars.

The combination of these two assumptions gives us a result that the
integrand in equation (31) is independent on β, so the characteristic
strain ∝f−1/2. While the second assumption is related to the very
nature of TDEs, the first one depends on the assumed distribution of
pericenter distances, dṄ/dβ ∝ β−γ , with γ = 2. For a generic γ ,
the spectral shape is

hc ∝ f (−4γ+5)/6. (79)

5.2 Detectability

We discuss here two assumptions that affect our results on the
detectability of the IMBH-WD background signal. First, we assume
that all the GCs have an IMBH, i.e. the occupation fraction is 1.
Since the background scales with the square root of the occupation
fraction, the background signal is lower by a factor of 1.4 (3) if the
occupation fraction is 50 per cent (10 per cent). On the other hand,
we neglected the BH spin in the computation of the signal and it
has been shown that it may grow by one order of magnitude (see
Kobayashi et al. 2004), which implies an increment by a factor 10 in
our curves.

5.2.1 Comparison with other sources

In the same frequency interval investigated in this work, also other
sources produce their GW background like galactic WD binaries
and low-mass SMBH binaries. The signals from these sources
may overlap our signal, but they are, in general, stronger and
detectable by LISA. The TDE signal will become important when
moving to higher sensitivities and in that case it will be essential to
disentangle the various contribution to the background, for example,
by combining the response obtained with interferometers operating
at different wavelengths and with different sensitivities. However,
we have noticed a distinctive feature of the TDE background in
its characteristic spectral shape ∝f−1/2, which is unique given the
impulsive nature of such events. This makes the signal from TDEs
easily distinguishable from the signals produced by other sources
which have a different slope.

5.3 Doppler shift

An interesting phenomenon that we have not taken into account in our
calculations is the BH wandering (see e.g. Lin & Tremaine 1980) and
how this may affect the GW emission from globular TDEs. We do not
expect the BH to emit a significant GW signal due to this movement,
but it can cause a Doppler shift in the signal from the tidal disruption.
To investigate this, we calculate the shift in frequency as the ratio
between the velocity of the hole, σ h, and the speed of light,

�f

fr
= σh

c
. (80)

To derive σ h, we need first of all to consider that in our scenario rcr

< ri, so we consider only stars bound to the hole, i.e. the stars of the
cusp. The number of stars in the cusp, Ncusp, can be estimated as (see
Young 1977; Bahcall & Wolf 1977)

Ncusp ≈ 70

(
Mh

103M�

)3 (10 km s−1

σ

)4 (
0.5 pc

rc

)2

, (81)

where σ is the velocity dispersion of stars with respect to the centre
of mass of the system, which means that we have

Ncusp ≈ 10 for Mh = 103 M�,

Ncusp ≈ 500 for Mh = 104 M�,

Ncusp ≈ 105 for Mh = 105 M�. (82)

Since the mass of the cusp, Mcusp, is given by Mcusp = M∗Ncusp,
where the average stellar mass for us is M∗ = 0.5 M�, we see that
the relation Mcusp � Mh holds. Thus, using the equipartition theorem
between the kinetic energy of the hole and the kinetic energy of the
stars, we get

〈
σ 2

h

〉1/2 ∼ N1/2
cusp

(
M∗
Mh

)〈
σ 2

〉1/2
. (83)

If we compute the ratio between the velocity of the hole given in
equation (83) and c, we get a number much smaller than 1 (since
we expect σ ≈ 10 km, so σ h ≈ 10−6c) and so we can conclude that
the Doppler shift of our signal due to the wandering of the IMBH is
negligible.
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6 C O N C L U S I O N S

In this paper, we have explored the GW background generated by
TDEs. We have focused both on MS stars disrupted by SMBHs
and on WDs disrupted by IMBHs residing in globular clusters.
Then, we have compared these signals with the sensitivity curves
of LISA, TianQin, ALIA, DECIGO, and BBO. We have found that
the background from MS stars is too low to be detected by these
instruments with their current design, apart from BBO that may
reveal the high-frequency background. This could be detected also by
DECIGO, if its sensitivity curve was one order of magnitude lower.
The detection of this signal will give us unique information about the
population of quiescent SMBHs. By contrast, the GW background
from WDs is a promising source for DECIGO and BBO and, in part,
for ALIA. The detection of this background will provide important
clues on the existence of IMBHs, information on their population,
on their occupation fraction in GCs, and also on the number of GCs
per galaxy.
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