
Foundations of Reversible Computation

Bogdan Aman1,2, Gabriel Ciobanu1,2, Robert Glück3, Robin Kaarsgaard3,
Jarkko Kari4, Martin Kutrib5, Ivan Lanese6, Claudio Antares Mezzina7,

�Lukasz Mikulski8, Rajagopal Nagarajan9, Iain Phillips10(B),
G. Michele Pinna11, Luca Prigioniero5,12, Irek Ulidowski13,

and Germán Vidal14

1 Romanian Academy, Institute of Computer Science, Iaşi, Romania
baman@iit.tuiasi.ro

2 A.I. Cuza University, Iaşi, Romania
gabriel@info.uaic.ro

3 University of Copenhagen, Copenhagen, Denmark
{glueck,robin}@di.ku.dk

4 University of Turku, Turku, Finland
jkari@utu.fi

5 University of Giessen, Giessen, Germany
kutrib@informatik.uni-giessen.de

6 Focus Team, University of Bologna/Inria, Bologna, Italy
ivan.lanese@gmail.com

7 Università di Urbino, Urbino, Italy
claudio.mezzina@uniurb.it

8 Folco Team, Nicolaus Copernicus University, Toruń, Poland
mikulskilukasz@gmail.com

9 Middlesex University, London, England
R.Nagarajan@mdx.ac.uk

10 Imperial College London, London, England
i.phillips@imperial.ac.uk

11 Università di Cagliari, Cagliari, Italy
gmpinna@unica.it

12 Università degli Studi di Milano, Milan, Italy
prigioniero@di.unimi.it

13 University of Leicester, Leicester, England
iu3@leicester.ac.uk

14 MiST, VRAIN, Universitat Politècnica de València, Valencia, Spain
gvidal@dsic.upv.es

Abstract. Reversible computation allows computation to proceed not
only in the standard, forward direction, but also backward, recovering
past states. While reversible computation has attracted interest for its
multiple applications, covering areas as different as low-power comput-
ing, simulation, robotics and debugging, such applications need to be
supported by a clear understanding of the foundations of reversible com-
putation. We report below on many threads of research in the area of
foundations of reversible computing, giving particular emphasis to the
results obtained in the framework of the European COST Action IC1405,
entitled “Reversible Computation - Extending Horizons of Computing”,
which took place in the years 2015–2019.

c© The Author(s) 2020
I. Ulidowski et al. (Eds.): RC 2020, LNCS 12070, pp. 1–40, 2020.
https://doi.org/10.1007/978-3-030-47361-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47361-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-47361-7_1

2 B. Aman et al.

1 Introduction

Reversible computation allows computation to proceed not only in the standard,
forward direction, but also backward, recovering past states, and computing
inputs from outputs. Reversible computation has attracted interest for multiple
applications, covering areas as different as low-power computing [113], simula-
tion [37], robotics [122] and debugging [129]. However, such applications need to
be supported by a clear understanding of the foundations of reversible compu-
tation. Over the years, a number of theoretical aspects of reversible computing
have been studied, dealing with categorical foundations of reversibility, founda-
tions of programming languages and term rewriting, considering various models
of sequential (automata, Turing machines) and concurrent (cellular automata,
process calculi, Petri nets and membrane computing) computations, and tack-
ling also the challenges posed by quantum computation, which is in a large part
naturally reversible. We report below on those threads of research, giving partic-
ular emphasis to the results obtained in the framework of the European COST
Action IC1405 [78], titled “Reversible Computation - Extending Horizons of
Computing”, which took place in the years 2015–2019 and involved researchers
from 34 different countries.

The contents of this chapter are as follows. Section 2 covers category theory,
Sect. 3 reversible programming languages, Sect. 4 term rewriting, and Sect. 5
membrane computing. We then discuss process calculi (Sect. 6), Petri nets
(Sect. 7), automata (Sect. 8), and quantum verification and machine learning
(Sect. 9). The chapter ends with a brief conclusion (Sect. 10).

2 Category Theory

Category theory is a framework for the description and development of mathe-
matical structures. In category theory mathematical objects and their relation-
ships within mathematical theories are abstracted into primal notions of object
and morphism. Despite being a staple of the related field of quantum computer
science for years (see, e.g., [3,79,174]), category theory has seen comparatively
little use in modelling reversible computation, where operational methods remain
the standard. While the present section aims to give an overview of the use of
categorical models in providing categorical semantics for reversible program-
ming languages, categorical models have also been studied for other reversible
computing phenomena, notably reversible event structures [65].

2.1 Dagger Categories

One approach to categorical models of reversible computation is given by dagger
categories, i.e., categories with an abstract notion of inverse given by assigning to

each morphism X
f−→ Y an adjoint morphism Y

f†
−→ X, such that (g◦f)† = f†◦g†

and id†
X = idX (that is, composition is respected) and f†† = f for all compatible

morphisms f and g. Note that this definition says nothing about how f and f†

Foundations of Reversible Computation 3

ought to interact. As such, f† is not required to “undo” the behaviour of f in
any way, but can be any morphism with the appropriate signature, so long as
the above constraints are met.

A useful specialisation of dagger categories, in connection with reversible
computation, is dagger traced symmetric bimonoidal (or rig) categories, i.e.,
dagger categories equipped with two symmetric monoidal tensors (usually
denoted − ⊕ − and − ⊗ −), interacting through a distributor and an anni-
hilator, yielding the structure of a rig (i.e., a ring without additive inverses).
Iteration is modelled by means of a trace operator Tr (see [1,85,175]) such that
(Trf)† = Tr(f†). These categories are strongly related to the dagger compact
closed categories [3,174] that serve as the model of choice for the Oxford school
of quantum computing.

The use of dagger traced symmetric bimonoidal categories to model reversible
computations goes back at least as far as to the works by Abramsky, Haghverdi
and Scott (see, e.g., [2,4]) on (reversible) combinatory algebras, though its appli-
cations in reversible programming were perhaps best highlighted by the devel-
opment of the Π and Π0 calculi [34,83]. In addition, the reversible functional
programming language Theseus [82] exhibits a correspondence with the Π0 cal-
culus. However, dagger traced symmetric bimonoidal categories are not strictly
enough to model Π0, as such categories fail to account for the recursive data
types formed using − ⊕ −, − ⊗ −, and their units. In his recent thesis, Karvo-
nen [94] describes precisely the categorical features necessary for such a corre-
spondence, which he calls traced ω-continuous dagger rig categories.

Another notable application of this line of research is found in [167], where
a reversible Π0-like language is extended to describe quantum computations
without measurement, but with support for (necessarily terminating) primitively
recursive functions.

2.2 Inverse Categories

Another approach to model reversible computation is inverse categories [95]
(see [40] for a more modern presentation), a specialisation of dagger categories
in which morphisms are required to be partial isomorphisms. More precisely,

each morphism X
f−→ Y may be uniquely assigned a partial inverse Y

f†
−→ X

satisfying f ◦ f† ◦ f = f .
The development of inverse categories as models of reversible computation

was pioneered in the thesis of B.G. Giles [58], though a concrete correspondence
was never provided. This work, combined with the comprehensive account of
inverse categories with joins given in the thesis of Guo [67], was exploited in [86]
to give an account of reversible recursion in inverse categories with joins.

Much of this theory was then put to use in [87], where the authors managed
to show soundness, adequacy, and (under certain conditions) full abstraction for
reversible flowchart languages [185] in a class of inverse categories with joins.

4 B. Aman et al.

2.3 Monads and Arrows for Reversible Effects

The first account of monads pertaining to reversible computing was given in [71]
as dagger Frobenius monads. Though these arise naturally in quantum compu-
tation in the context of measurement, it turns out that they are exceedingly
rare in the case of classical reversible computing. A better concept for modelling
and programming with reversible effects turns out to be that of dagger and
inverse arrows [70], with examples such as reversible computation with mutable
memory, errors and error handling, and more.

3 Foundations of Reversible Programming Languages

Reversible programming languages bridge the gap between the hardware and
the specific application, and therefore play a central role in the development
of reversible computing. Reversible languages must be expressive and usable
in a variety of application domains. Their semantics must be precise and their
programs accessible to program inversion, analysis and verification. Additionally,
they must have efficient realisations on reversible devices and on standard ones.
Recent programming language studies have advanced the foundations and theory
of reversible languages in several interrelated directions.

3.1 Language Cores

Reversible languages have been reduced to their computational cores:
R-Core [63] is a structured reversible language consisting of a single command

for reversible store updates, a single control-flow operator for reversible iteration,
and data structures built from a single binary constructor and a single symbol.
Despite its extreme simplicity, the language is reversibly universal, which means
it is as computationally powerful as any reversible language can be. Its four-
line program inverter is as concise as the one for Bennett’s reversible Turing
machines. The core language and a recent extension with reversible recursion
were equipped with a denotational semantics [61,63,64].

R-While [62] adds reversible rewrite rules and pattern matching as syntactic
sugar to R-Core, which makes the family of structured reversible languages more
accessible to foundational studies and educational purposes than do reversible
Turing machines and other reversible devices. The procedural extension [64]
draws a distinction between tail-recursion by iteration and general recursion
by reversible procedures, a notoriously difficult transformation problem in pro-
gram inversion [96,151]. The linear-time self-interpretability makes the language
also suitable for foundational studies of computability and complexity from a
programming language perspective [84].

CoreFun [80] is a typed reversible functional language that seeks to reduce
reversible functional programming [184] to its essentials so that it can serve as a
foundation for modern functional language concepts. The language has a formal
semantics and a type system to statically check for reversibility of programs.

Foundations of Reversible Computation 5

3.2 Formal Semantics

Precise semantics is the foundation of every programming language, and formal-
ity is from where programming languages derive their usefulness and power.

A program is regarded as reversible if each of its meaningful subprograms is
partially invertible. Thus, reversible programs have reversible semantics [61]. A
foundation of the semantics has been established for structured reversible lan-
guages built on inverse categories [59,60]. This class of languages includes Janus,
a reversible language that was originally formalised by conventional (irreversible)
operational semantics, and the R-Core and R-While languages. For example,
predicates and assertions occurring in reversible alternatives and reversible iter-
ations are modelled by decision maps, in contrast to conventional semantics. A
benefit of the reversible semantic approach is that program inverters and equiv-
alences of reversible programs can be derived directly from the semantics.

The assumption of countable joins in inverse categories is suitable in a cat-
egorical account of reversible recursion [86], which enables modelling of proce-
dures in reversible structured and functional languages. Reversibility of Janus
was proved with a proof assistant [153].

3.3 Compilation Principles

High-level languages are more productive in most application domains, but high
levels of computational abstractions do not come for free. A clean and effective
translation to lower abstraction levels is required and sophisticated optimisations
may be necessary to generate high quality implementations.

Dynamic memory management is a central runtime mechanism to sup-
port dynamic data structures in reversible machines. Its purpose is to sup-
port reversible object-oriented languages as well as the core languages described
above. Garbage collectors that use multiple references [142] to overcome linearity
requirements and heap manager algorithms have been developed and experimen-
tally evaluated. To ease the analysis and optimisation when translating from a
high-level reversible language to the underlying reversible machine, the reversible
single static assignment (RSSA) form can be a suitable intermediate representa-
tion in optimising compilers [141]. Its aim is to allow for advanced optimisations
such as register allocation on reversible Von Neumann machines.

The recent languages Joule [173] and ROOPL [68] demonstrated that well-
known object-oriented concepts can be captured reversibly by extending a Janus-
like imperative language. Reversible data types [43], that is data structures with
all of its associated operations implemented reversibly, are enabled by dynamic
allocation of constructor terms on the heap [11]. A reversible dynamic mem-
ory management based on the Buddy Memory system [99] has been developed
and tested in a compiler targeting the assembly language of a reversible com-
puter [43].

6 B. Aman et al.

3.4 Reversibilisation Techniques

A separate approach to reversibility is reversibilisation, which turns irreversible
computations into reversible computations. This can be achieved by extending
the semantics of an irreversible language or by instrumenting an irreversible
program to continually produce information that ensures reversibility.

Some reversibilisation techniques work without user interaction, while oth-
ers require annotation of programs. Techniques have been developed in recent
years that add tracing to term rewriting systems [150] and instrument C++ pro-
grams with incremental state saving [171]. Other investigations have focused on
techniques for debugging concurrent programs [121,149] and on extending the
operational semantics of an irreversible language with tracing [72], thereby defin-
ing the inverse semantics of the language. Hybrid approaches aim to combine
reversibilisation and reversible sublanguages [172]. In general, the minimisation
of the additional computational resources required for sealing information leaks
by reversibilisation remains a central challenge.

4 Term Rewriting

Term rewriting [17,98,178] is a foundational theory of computing that under-
lies most rule-based programming languages. A term rewriting system (TRS) is
specified as a set of rewrite rules of the form l → r such that l is a nonvariable
term and r is a term whose variables appear in l. Positions are used to address
the nodes of a term viewed as a tree. A position p in a term t is represented by
a finite sequence of natural numbers, where t|p denotes the subterm of t at posi-
tion p and t[s]p the result of replacing the subterm t|p by the term s. Substitutions
are mappings from variables to terms.

Given a TRS R, we define the associated rewrite relation →R as the smallest
binary relation satisfying the following: given terms s, t, we have s →R t iff there
exist a position p in s, a rewrite rule l → r ∈ R, and a substitution σ such that
s|p = lσ and t = s[rσ]p. Given a binary relation →, we denote by →∗ its reflexive
and transitive closure, i.e., s →∗

R t means that s can be reduced to t in R in zero
or more steps. The goal of term rewriting is reducing terms to so-called normal
forms, where a term t is called irreducible or in normal form w.r.t. a TRS R if
there is no term s with t →R s. Computing normal forms can be seen as the
counterpart of computing values in functional programming.

We also consider Conditional TRSs (CTRSs) of the form l → r ⇐ s1 �
t1, . . . , sn � tn, with � interpreted as reachability (→∗

R). Roughly speaking,
s →R t iff there exist a position p in s, a rewrite rule l → r ⇐ s1 � t1, . . . , sn �
tn ∈ R, and a substitution σ such that s|p = lσ, siσ →∗

R tiσ for all i = 1, . . . , n,
and t = s[rσ]p. Consider, e.g., the following CTRS Rfn:

β1 : fn([]) → []
β2 : fn(person(n, l) :xs) → n :ys ⇐ fn(xs) � ys
β3 : fn(city(c) :xs) → ys ⇐ fn(xs) � ys

Foundations of Reversible Computation 7

where we use “ : ” and [] as list constructors. Here, β1, β2 and β3 denote labels
that uniquely identify each rewrite rule. Function fn takes a list of persons of the
form person(first name, last name) and cities of the form city(city name) and
returns a list of first names. Note that it could be specified in a typical functional
language (say, Haskell) as follows:

fn [] = []
fn ((Person n l) :xs) = n :ys where ys = fn xs
fn ((City c) :xs) = ys where ys = fn xs

4.1 Reversible Term Rewriting

In general, term rewriting is not reversible, even for injective functions; namely,
given a rewrite step t1 → t2, we do not always have a decidable method to get
t1 from t2. One of the first approaches to reversibility in term rewriting is due
to Abramsky [2], who considered reversibility in the context of pattern match-
ing automata.1 Abramsky’s approach requires a condition called biorthogonal-
ity (which, in particular, implies injectivity), so that the considered automata
are reversible. This work can be seen as a rather fundamental delineation of
the boundary between reversible and irreversible computation in logical terms.
However, biorthogonality is overly restrictive in the context of term rewriting,
since almost no term rewrite system is biorthogonal. Another example of a term
rewrite system with both forward and reverse rewrite relations is the reaction sys-
tems for bonding in [159]. It has been used to model a simple catalytic reaction,
polymer construction, by a scaffolding protein and a long-running transaction
with a compensation.

In the context of the COST action IC1405, Nishida et al. [148,150] introduced
the first generic notion of reversible rewriting, a conservative extension of term
rewriting based on a so-called Landauer embedding. In this approach, for every
rewrite step s →R t, one should store the applied rule β, the selected position p,
and a substitution σ with the values of some variables (e.g., the variables that
occur in the left-hand side of a rule but not in its right-hand side). Therefore,
reversible rewrite steps have now the form 〈s, π〉 ⇀ 〈t, β(p, σ) : π〉, where ⇀ is
a reversible (forward) rewrite relation and π is a trace that stores the sequence
of terms of the form β(p, σ). The dual, inverse relation ↽ is also introduced, so
that its union � can be used to perform both forward and backward reductions.

Moreover, [148] also introduces a scheme to compile the reversible extension
of rewriting into the system rules. Essentially, given a system R, new systems
Rf and Rb are produced, so that standard rewriting in Rf , i.e., →Rf

, coincides
with the forward reversible extension ⇀R in the original system, and analogously
→Rb

is equivalent to ↽R. Therefore, Rf can be seen as an injectivisation of R,
and Rb can be seen as the inversion of Rf .

1 Although he did not consider rewriting explicitly, pattern matching automata can
also be represented in terms of standard notions of term rewriting.

8 B. Aman et al.

For instance, the injectivisation Rfn
f of the previous CTRS Rfn is as follows:

fni([]) → 〈[], β1〉
fni(person(n, l) :xs) → 〈n :ys, β2(l, ws)〉 ⇐ fni(xs) � 〈ys, ws〉
fni(city(c) :xs) → 〈ys, β3(c, ws)〉 ⇐ fni(xs) � 〈ys, ws〉

together with the corresponding inversion Rfn
b :

fn−1([], β1) → []
fn−1(n :ys, β2(l, ws)) → person(n, l) :xs ⇐ fn−1(ys, ws) � xs
fn−1(ys, β3(c, ws)) → city(c) :xs ⇐ fn−1(ys, ws) � xs

For example, the following rewrite derivation in Rfn:

fn([person(john, smith), city(london), person(ada, lovelace)]) →∗ [john, ada]

is now as follows in Rfn
f :

fni([person(john, smith), city(london), person(ada, lovelace)])
→∗ 〈[john, ada], β2(smith, β3(london, β2(lovelace, β1)))〉

where β2(smith, β3(london, β2(lovelace, β1))) is the trace of the computation.
Besides proving some fundamental properties of reversible rewriting, Nishida
et al. [150] have developed a prototype implementation of the reversibilisa-
tion transformations (injectivisation and inversion), which is publicly available
through a web interface from http://kaz.dsic.upv.es/rev-rewriting.html.

4.2 Application to Bidirectional Transformations

The framework of bidirectional transformations considers two representations
of some data and the functions that convert one representation into the other
and vice versa (see, e.g., [75] for an overview). Typically, we have a function
called “get” that takes a source and returns a view. In turn, the function “put”
takes a possibly updated view (together with the original source) and returns the
corresponding, updated source. In this context, bidirectionalisation [128] aims at
automatically producing one of the functions, typically producing a function put
from the corresponding function get. For this purpose, a so-called complement
function is often introduced so that get becomes injective (see, e.g., [55]).

In [152], Nishida and Vidal present a bidirectionalisation technique based
on the injectivisation and inversion transformations of CTRSs from [150]. They
also prove a number of relevant properties which ensure that changes in both the
source and the view are correctly propagated and that no undesirable side-effects
are introduced.

To be precise, given a get function f , the corresponding put can be automat-
ically defined as follows:

putf(v, s) → s′ ⇐ f i(s) � 〈v′, π〉, f−1(v, π) � s′

http://kaz.dsic.upv.es/rev-rewriting.html

Foundations of Reversible Computation 9

Note that the trace of a computation, π, plays the role of a complement (following
the terminology in the literature of bidirectional transformations).

For instance, given the previous function fn, the corresponding put function
is defined as follows:

putfn(v, s) → s′ ⇐ fni(s) � 〈v′, π〉, fn−1(v, π) � s′

so that, e.g., putfn([peter, ada], β2(smith, β3(london, β2(lovelace, β1)))) reduces to
[person(peter, smith), city(london), person(ada, lovelace)]. Note that the first ele-
ment has been updated from person(john, smith) to person(peter, smith).

However, putf is only defined for “compatible” view updates. E.g., the func-
tion putfn([ada], β2(smith, β3(london, β2(lovelace, β1)))) cannot be reduced to a
value. In [152], the use of narrowing [76,176]—an extension of rewriting that
replaces matching with unification—is introduced to precisely characterise com-
patible (also called in-place) view updates.

For example, given the trace β2(smith, β3(london, β2(lovelace, β1))), narrowing
allows us to compute the view skeleton [x1, x2]. This means that any view update
that can be obtained as an instance of [x1, x2] is compatible with the trace (and,
thus, the put function is well defined).

Finally, [152] also discusses some directions for dealing with view updates
that are not compatible.

5 Membrane Computing

Natural computing is a complex field of research dealing with models and com-
putational techniques inspired by nature that helps us in understanding the bio-
chemical world in terms of information processing. Membrane computing [154]
and reaction systems [53] are two important theories of natural computing
inspired by the functioning of living cells.

Membrane computing deals with multisets of symbols processed in the com-
partments of a membrane structure according to some multiset rewriting rules;
some of the symbols (presented with their multiplicity within the regions delim-
ited by membranes) evolve in parallel according to the rules associated with their
membranes, while the others remain unchanged and can be used in the subse-
quent steps. It is also possible to send multisets of symbols in the neighbouring
membranes, the systems being organised in a tree-like fashion. The evolution
takes place in a maximal parallel manner: all the instances of the applicable
rules have to be applied in order to reach the next state.

The situation is different in reaction systems. These systems represent a
qualitative model: they deal with sets rather than multisets. Two major assump-
tions distinguish the reaction systems from the membrane systems: (i) thresh-
old assumption: reaction systems have actually an infinite multiplicity for their
resources; (ii) no permanency assumption: only entities produced at one step
will be present in the system at the next step.

The issue of reversibility in various computational paradigms has gained
interest in recent years. In one of the earliest papers on reversibility in mem-
brane systems [5], the authors (under the influence of category theory) presented

10 B. Aman et al.

reversibility as a form of duality. A full description of this kind of reversibility
in membrane systems is given by Agrigoroaiei and Ciobanu in [6].

In [7], Aman and Ciobanu investigated the reversibility of biochemical reac-
tions in parallel rewriting systems; these systems can easily represent some
classes of membrane systems and Petri nets. Formally, a parallel rewriting sys-
tem is a tuple (O,R, w0), where O is a finite alphabet of objects, R is a set of
rewriting rules and w0 is a multiset of objects over O. For each rule r ∈ R there
exist the non-empty multisets lhs(r), rhs(r) ∈ O+ standing for the left-hand
side and right-hand side of the rule, respectively, such that r : lhs(r) → rhs(r).
Given a multiset of rules F , then the left-hand side and right-hand side of it can
be defined as: lhs(F) =

∑
r∈R F (r) · lhs(r) and rhs(F) =

∑
r∈R F (r) · rhs(r).

A parallel rewriting system (O,R, w0) evolves in a maximal parallel manner.
This means that a non-empty multiset R of rules is applicable to a multiset w
of objects if lhs(R) ≤ w and there does not exist r ∈ R such that lhs(r) ≤ w −
lhs(R). By applying a multiset R of rules, a multiset w of objects is transformed
into another multiset w′ = w− lhs(R)+rhs(R) of objects. If no multiset of rules
is applicable, then the computation stops.

The new features of this approach are given by adding an external control
specified by using a special symbol ρ /∈ O that informs the system that a rollback
will be executed, and by constructing two new sets of rules

−→R = {u → v|¬ρ

∣
∣

u → v ∈ R} and
←−Rρ = {v → u|ρ

∣
∣ u → v ∈ R} ∪ ρ → λ to mark the rules that

will be applied in forward and backward steps, respectively.
Several theoretical results are obtained, including the so-called loop results

and the connections between the evolutions of these systems and their reversible
extensions. If there exist multisets of rules not competing for the same resources,
then the following results hold.

A first result presents the forward diamond property:

If w
−→R−→ w′ and w

−→R′
−−→ w′′, where

−→R and
−→R′ are two valid multisets of rules such

that lhs(
−→R) ∩ lhs(

−→R′) = ∅, then there exists a multiset w1 such that w′
−→R′
−−→ w1

and w′′
−→R−→ w1.

The second result presents the reverse diamond property:

If w
←−Rρ−−→ w′ and w

←−R′
ρ−−→ w′′, where

←−Rρ and
←−R′

ρ are two valid multisets of rules such

that lhs(
←−Rρ) ∩ lhs(

←−R′
ρ) = ∅, then there exists a multiset w1 such that w′

←−R′
ρ−−→ w1

and w′′
←−Rρ−−→ w1.

A forward step performed using the multiset
−→R of rules can be matched by a

backward step performed using the multiset
←−Rρ of rules, and vice-versa (loop):

w
−→R−→ w′ if and only if ρw′

←−Rρ−−→ w.

Foundations of Reversible Computation 11

In [8], Aman and Ciobanu investigated reversibility in reaction systems.
Reaction systems [53] deal with sets rather than multisets, assuming that each
resource is present in the system in a sufficient amount to ensure that several
reactions needing such a resource are not in conflict. Formally, a reaction sys-
tem A is a tuple (S,A), where S is a finite alphabet and A ⊆ rac(S). The set
rac(S) = {(R, I, P) | R, I, P ⊆ S,R ∩ I = ∅} is the set of all reactions over S.
Given a reaction a = (Ra, Ia, Pa), the sets Ra, Ia and Pa contain the reactants,
inhibitors and products of a, respectively. For a set C ⊆ S and a set of reactions
A ⊆ rac(S), the result of applying A on C is defined by res(A,C) =

⋃
a∈A Pa,

and the evolution can be written as C
A−→ res(A,C). The set of all reactions

from A that are enabled by C is en(A,C) = {a ∈ A | Ra ⊆ C, Ia ∩ C = ∅}.
An interactive process is a pair π = (γ, δ) such that γ = C0, . . . , Cn−1,

δ = D1, . . . , Dn with n ≥ 1, where Cj−1, Dj ⊆ S for 1 ≤ j ≤ n are the context
and result sets, respectively. The sets Dj are computed using the equalities D1 =
res(A,W0) and Di = res(A,Wi−1), where the sets W0 = C0 and Wi = Di ∪ Ci

for each 2 ≤ i ≤ n represent the states.
In order to have backward computations, we add to each state Wi a register Ti

to remember objects no longer available after step i. The reverse of a set A of
reactions is the set Ã = {(Pa, Ia, Ra) | (Ra, Ia, Pa) ∈ A}. If ρ �∈ Wi and Ei �= ∅,
then a forward computation (Wi, Ti)

Ei−→ (Wi+1, Ti+1) takes place, where Ti+1 =
inc(Ti)∪

⋃
t∈Wi\lhs(Ei)

(t, 0), inc(T) =
⋃

(t,i)∈T (t, i+1) and Wi+1 = res(Ei,Wi).

However, if ρ ∈ Wi and Ẽi �= ∅, then a backward computation (Wi+1, Ti+1)
Ẽi�

(Wi, Ti) takes place, where Ti = dec(Ti+1), dec(Td) =
⋃

(t,i)∈Td;i>0(t, i − 1)
and Wi = res(Ẽi,Wi+1) ∪ zero(Ti+1) with zero(T) =

⋃
(t,0)∈T t.

If the states satisfy some preconditions, then backward reductions are the
inverse of the forward ones, and vice-versa:

• If W = res(Ẽ,W ′) ∪ zero(T ′) and ρ ∈ W ′, then

(W,T) E−→ (W ′, T ′) implies (W ′, T ′) Ẽ� (W,T).

• If W ′ = res(E,W) and ρ �∈ W , then

(W ′, T ′) Ẽ� (W,T) implies (W,T) E−→ (W ′, T ′).

An operational correspondence between reaction systems and rewriting the-
ory is also proved. It allows a translation of the reversible reaction systems into
some rewriting systems executable in the rewriting engine Maude [39].

In [163] Pinna pursues reversibility in membrane systems from a different
perspective. The paper focuses on how to reverse steps in computations of mem-
brane systems, without adding rules to represent the reverse application of the
original rules. Just one assumption on rules is made, namely that rules are not
allowed to rewrite a multiset of objects into an empty multiset: the application
of a rule must have an effect, though this could be not observable. This require-
ment is driven by the necessity that, in order to reversely apply a rule, this one

12 B. Aman et al.

must produce something. Furthermore, as in most rewriting systems, also in the
considered membrane systems a computation step does not register the (multiset
of) rules applied. Since this information may be crucial to reversely apply the
same (multiset of) rules, one needs some strategies to solve the issue and obtain
reversibility.

A solution can be to enrich each object with the information on how the
particular object has been produced, namely each object now may carry the
name of the rule r used to produce it. Objects are then O × R ∪ {⊥} where R is
the set of rules

⋃
i Ri, with i ranging over the membranes, and ⊥ denotes that

the object is present in the initial configuration. The unique assumption is that
rule names are unique. The drawback of this solution is that once an object is
used the information on how it has been produced is lost.

To overcome this problem, the proposed solution is to add to the notion of
configuration, previously a vector of multiset of objects, with one element for
each membrane, a memory organised as a labelled partial order. Each element
of the partial order corresponds to an object and carries also the information
on which rule produced it. According to this a memory m is a triple (X,�, l)
where � is a partial order and l : X → O × R ∪ {⊥} × {1, . . . , n} is the labelling
associating the object, the name of rule that produced it and the membrane
where the object is allocated. A configuration of a membrane system with n
membranes is then the pair C = (C,m), where C = (w1, . . . , wn) is the tuple
of multisets over objects O and m = (X,�, l) is a memory such that for each
i ∈ {1, . . . , n} it holds that wi = obji(max (m)), where max gives the multiset
of maximal elements of the memory and obji forgets the information about the
rule.

The effect of applying a vector of multisets of rules R does not consist only in
updating suitably the multisets of objects forming a configuration in the classical
sense, but also in adding the information on which rule produced a specific object
in the memory. This will be denoted with (C,m){[R> (C ′,m′) where C R =⇒C ′

is the usual step in membrane systems computation and the new memory m′ is
obtained adding to m the objects produced by the rules in R and by updating the
partial order so that the produced elements are greater than the ones consumed
by these rules.

Then the reverse application of a vector of multisets of rules can be obtained
by looking in this memory for the maximal elements, which correspond to the
right-hand sides of the rules to be reversely applied. The proper configuration
is then computed from the new memory obtained by removing the maximal
elements. The reverse application of a vector of multisets of rules R is denoted
with (C,m) < R]}(C ′,m′), where the maximal elements of m′ corresponding to
the right-hand sides of rules in R are removed obtaining a memory m and a
configuration C where each element wi = obji(max (m)).

The following result has been proved:
Let Πm be a membrane system with memory, (C,m) a configuration, and R
be a vector of multisets of rules such that (C,m){[R > (C ′,m′). Then, for all
multi-rule vectors R′ such that (C ′,m′) <R]}(C,m), it holds that R′ = R.

Foundations of Reversible Computation 13

This simple implementation has the advantage of properly realising the causal
reversibility. Furthermore the memory allows also to capture the dependencies
among objects in a membrane system computation.

6 Process Calculi

Process calculi are a class of algebraic models for concurrent and distributed sys-
tems. Process calculi allow one to express the behaviour of a concurrent system
in a concise way, abstracting away from implementation details, and focusing
on the interaction patterns among the components of the system. Thus, it is
possible to express the behaviour of a system in a mathematically precise way
and verification techniques can be easily developed on top of it.

Research on reversing process calculi can be perhaps tracked back to the
Chemical Abstract Machine [30], a calculus inspired by chemical reactions whose
operational semantics defines both forward and reverse reduction relations. The
first attempts to reverse existing process calculi can be found in [44,46], where
a reversible extension of CCS [140] was presented. A main contribution of [44]
was the definition of the notion of causal-consistent reversibility: any action
can be undone, provided that its consequences, if any, are undone first. This
definition is tailored to concurrent systems, where actions may overlap in time,
hence saying “undo the last action” is not meaningful. Notably, this definition
relates reversibility to causality instead of time, thus it can be applied even in
those settings, such as some distributed systems, where no unique notion of time
exists. A survey on causal-consistent reversibility can be found in [120].

6.1 Reversing Process Calculi

Following [44], causal-consistent extensions of other and more expressive process
calculi have been defined. They can be divided into two families, one dealing with
calculi equipped with labelled transition system semantics (describing interac-
tions between the process and the outside world), and one dealing with reduction
semantics (describing the evolution of processes in isolation). The former is more
general, while the latter is normally simpler and hence more easily applicable
to expressive calculi. The first approach extended causal-consistent reversibility
from CCS to any calculus defined using a specific SOS format (a subset of the
path format [146]) [160,161], and to π-calculus [42]. In the second line of research
we find extensions of a fragment of CCS with biological relevance [35,36], of the
higher-order π-calculus [117,119], of the coordination language Klaim [56], of
a π-calculus with sessions [179], and of a CCS with broadcast communications
[133]. The instance of the framework in [160] on CCS is called CCSK. CCSK
differs from the reversible CCS in [44] in the way history is kept. Indeed, the
approach of [160] can be considered static, since the structure of processes does
not change during computation, and the minimal history information needed to
enable reversibility is kept in the processes themselves, while in [44] the pro-
cess is consumed during execution (as standard in process calculi) and larger

14 B. Aman et al.

memories are added to store history information. Nonetheless the two methods
are equivalent as hinted at by [130] and fully proved by [115], where a mapping
from an instance on CCS of [160] to the reversible CCS of [44] and vice versa is
presented.

As discussed above, causally-consistent reversibility relates reversibility with
causality. In CCS just one main notion of causality exists, and both the reversible
variants of CCS above are based on it. In the π-calculus, many relevant notions
of causality exist, which differ in the treatment of parallel extrusions of the same
name. In [131] a uniform framework to define reversible π-calculi is presented.
The framework is parametric w.r.t. a data structure that stores information
about extrusions of a name. Different data structures yield different approaches
to the parallel extrusion problem, leading to different ways of reversing a name
extrusion, thus giving rise to different reversible variants of the π-calculus.

Fig. 1. Example of causal-consistent (left) and out-of-causal order reversibility (right)

6.2 Controlled Reversibility

The line of research described above focused on uncontrolled reversibility, defin-
ing how to reverse a process execution (in particular, which history and causal
information is needed, and how to manage it), but not specifying when and
whether to prefer backward execution over forward execution or vice versa.
Uncontrolled reversibility allows one to understand how reversibility works, but
not to exploit it into applications. Indeed, different application areas need differ-
ent mechanisms to control reversibility. For instance, in biological systems the
direction of the computation depends on physical conditions such as temperature
and pressure, while in reliable systems reversibility is used to recover a consistent
state when a bad event occurs. Triggered by these needs different mechanisms for
controlling reversibility have been proposed (see the categorisation in [118]). For
instance, [45,179] introduced irreversible actions to avoid going backward after
a relevant result has been computed. Instead, [56,57,114,116,118,126] proposed
an explicit rollback operator undoing a past action inside calculi where normal
computation is forward, and a mechanism of alternatives allowing one to avoid
trying the same path again and again. As shown in [57], the rollback operator
satisfies a simple intuitive specification, namely that it is the smallest causal-
consistent sequence of backward moves undoing the target action. Also, [18] let
an energy potential drive the direction of computation while [158] introduced a
forward monitor controlling the direction of execution of a reversible monitored

Foundations of Reversible Computation 15

process. A process calculus with a prefixing operator to model locally-controlled
reversibility is introduced in [102,103]. Actions can be undone spontaneously,
as in other reversible process calculi, or as pairs of concerted actions, where
performing a weak action forces the undoing of a past action. Concerted actions
allow one to model out-of-causal order computation, where effects can be undone
before their causes, which is forbidden in most other reversible calculi. This
form of reversibility is common in biochemical reactions, e.g., in the hydration
of formaldehyde in water into methanediol. Such a feature can be disabled by
considering a reduced form of concerted actions.

Reversibility, both in causal order and out-of-causal order, can be modelled
in reversible event structures [157].

Figure 1 shows the difference between causal-consistent (left) and out-of-
causal order reversibility. In both cases, the system performs actions a, b and c
to reach state D. On the left, in order to get back to the original state, one has
to first undo (in Fig. 1 undoing is represented with squiggly arrows) c then b and
finally a. On the right, since causes do not need to be respected, the system can
undo b before c, reaching in this way a new state E which may not have been
reachable from the initial configuration by just using forward steps. From there,
a and c may or may not be undoable. In the example, only c can be undone,
leading to B′. If undoing b and undoing c do commute, then B = B′.

6.3 Analysis Techniques

Despite the proliferation of calculi for reversibility, when the COST Action
IC1405 started, analysis techniques for reversible calculi were very limited, con-
sisting essentially in some limited analysis about behavioural equivalences (in
particular, forward-reverse bisimilarity [161]) and a technique for causal com-
pression in CCS with irreversible actions [101]. Thus, the work in the COST
Action tackled analysis techniques in depth, considering behavioural equiva-
lences, contracts [77] and session types [77].

Behavioural Equivalences. Understanding which notions of behavioural
equivalences are suitable for reversible process calculi is a non-trivial, and still
open, problem.

As shown in [119], notions of weak bisimilarity that do not distinguish for-
ward actions from backward actions are very coarse, while notions of strong
bisimilarity distinguishing them, such as forward-reverse bisimilarity [161], are
very fine-grained, hence other notions are worth exploring.

In [135] Mezzina and Koutavas studied testing preorders, and in particu-
lar a safety one and a liveness one, in a reversible CCS where reductions are
totally ordered and rollbacks lead systems to past states. Liveness and safety
in this setting correspond to the should-testing [166] and inverse may-testing
preorders [50] for the underlying forward calculus, respectively. In general, one
would expect the models of these preorders to be based on both forward and
backward transitions, thus offering complex proof techniques for verification.
Instead, in [135] full abstraction of liveness and safety is based only on forward

16 B. Aman et al.

transitions and limited rollback points, giving rise to considerably simpler proof
techniques. Moreover, total reversibility allows one to make finer observations
w.r.t. liveness, but not w.r.t. safety.

Contracts. (Binary) contracts are a behavioural model [77] to study the inter-
actions between a client and a server. The first investigation of contracts in
a reversible setting appeared in [21,22]. There, both the client and the server
could rollback to a previous checkpoint at any moment. The main result was that
the compliance relation, ensuring that the client and the server can successfully
interact, and the sub-behaviour relation, are both decidable, and they remain so
also when the possibility of skipping some messages is added.

In retractable contracts [23,24] the client and the server can both get back
to previous decision points and take alternative paths only when the interaction
is stuck. The main results in [23,24] are that retractable contracts are a con-
servative extension of contracts, both compliance and the subcontract relation
are decidable in polynomial time, and the dual of a contract always exists and
has a simple syntactic characterisation. Furthermore, retractable contracts are
equivalent to a novel model of contracts featuring a speculative choice: all the
options of the choice are explored concurrently, and the computation succeeds
if at least one of the options is successful. In [20], a three-party game-theoretic
interpretation of retractable session contracts [23] has been proposed. In such an
interpretation a client is compliant with a server if and only if there exists a win-
ning strategy for a particular player in a game-theoretic model of contracts. Such
a player can be looked at as a mediator, driving the choices in the retractable
points.

Session Types. Session types [77] are one of the formalisms that have been
proposed to structure interaction and reason over communicating processes and
their behaviour. In a series of works [136–138] reversible monitored semantics for
binary [136,138] and multiparty [137] session types is investigated. The novelty
of the approach is that monitors are derived by types, and they store all the
needed information to bring the system back to previous states. This implies
that processes of the system are oblivious to reversibility, as they do not store
any information about past computations. A deeper discussion on session types
and reversibility can be found in [134].

7 Petri Nets

Petri nets [165] are a mathematical formalism for modelling and reasoning on
concurrent systems. In most of the cases, Petri nets are four-tuples containing
two finite sets, of active (actions/transitions) and static (places) elements, which
are connected by a flow function (or relation) with initial state given by tokens
scattered on places. In what follows, by Petri net we mean its most common
variant, called place-transition net.

Petri nets support both action-based and state-based approaches (via reach-
ability graphs which are equivalent to transition systems). Reversibility in Petri

Foundations of Reversible Computation 17

nets was always an important notion, however its meaning changed in time. At
first, in the seventies, the notion of reversibility referred to nets where each tran-
sition has its inverse [54]. Such a notion of local reversibility is very close to the
one currently used in other fields, like programming languages or process calculi.
This notion of reversible nets (also called symmetric nets [54]) is still occasion-
ally used to define the inverse net [33]. The time complexity of some decision
problems in bounded symmetric Petri nets is lower than in the general case of
bounded nets. The other meaning of reversibility in Petri nets, also called cyclic-
ity [33], takes a global approach and requires the initial state of the net to be
reachable from any other reachable state [147]. Petri nets are called symmetric
also in other situations than the described local notion of reversibility [41].

During the four years of the COST Action IC1045, “Reversible Computation
- Extending Horizons of Computing”, the notion of local reversibility was inves-
tigated. One can divide the proposed contributions into three main threads: two
of them consider how to reverse a single transition in a Petri net, allowing one to
use, respectively, a single reverse transition or a set of reverses. The last thread
focuses on modelling reversible semantics in specific models based on Petri nets.

An approach to invert a single transition using a single (strict) reverse was
investigated under both the sequential semantics and the true concurrent seman-
tics. The case of sequential semantics was considered in [28]. The strict reverse
is added to the net as a fresh transition with arcs copied from the original one,
but with the opposite direction. The problem of checking whether the set of
reachable markings in a net changes, when a strict reverse for a single transition
is added, was proven to be undecidable. The opposite result was shown for the
set of all coverable markings. Another important fact shown in [28] is related
to cyclicity: introducing a strict reverse in a cyclic net may change the set of
reachable markings.

The above problem of checking whether the set of reachable markings in a
net changes by adding a strict reverse for a single transition becomes decidable
for the bounded nets. Therefore, one can ask a more general question - is it
possible to reverse the specified transition while only requiring the resulting net
and the given one to have isomorphic behaviour (i.e., isomorphic reachability
graph), but allowing one to change the structure of the net? The question has
been answered by using well-known techniques from region theory [19]. There are
transition systems which are reachability graphs of a bounded Petri net where
transitions cannot be inverted by strict reverses, but one can easily combine
separate solutions for different transitions to solve the problem [26]. Even in the
special case of linear transition systems over binary sets of actions the transitions
cannot be always inverted by strict reverses. In such systems, the time complexity
of the problem of checking whether the set of reachable markings changes by
adding a strict reverse for a single transition is linear [48]. Another special case
of bounded nets are occurrence nets, that is 1-safe and acyclic nets without
backward conflicts, where one can always use strict reverses. This property of
occurrence nets and their infinite extensions was used as an intermediate step
in [132], described later on.

18 B. Aman et al.

Another line of research on strict reverses considers systems under concurrent
semantics of action execution. In such systems one can execute more than one
action at the same time, including the situation when a single action is executed
multiple times (auto-concurrence). Reversing atomic transitions in such systems
is discussed in [49]. In simple cases, where auto-concurrence is excluded, one can
reduce reversing under the concurrent semantics to the sequential case. However,
in the case of true multisets of actions executed simultaneously, one needs to
allow mixed reverses (i.e., steps where both forward and backward actions are
present) and true concurrent reversing can be reduced to coping with all spikes
(i.e., multisets of actions with singleton support).

In a more general setting, in order to invert a single transition, one can allow
to define a set of reverses with the opposite effect, called effect reverses [26]. In
such a case, the problem of finding a bounded Petri net where each transition can
be reversed and with isomorphic behaviour becomes always solvable [26]. Hence,
some systems where inverting transitions using strict reverses was impossible
become reversible in this setting. Moreover, the price to make any bounded
net ready for inverting by the sets of effect reverses is not high - one needs to
transform the original net into its complementary version, which doubles the size
of the set of places [26].

A similar attempt for unbounded nets is presented in [139]. There are
unbounded nets which cannot be inverted even using infinite sets of effect
reverses for their transitions. However, if it is possible, then finite sets are enough.
The problem of finding a possibly totally different net with isomorphic behaviour
that can be reversed was reduced to extending the existing one by new places
which do not disable any transitions in any reachable state and checking whether
there exists a pair of problematic states. Those pairs of problematic states are
strongly structured, with a natural partial order. The set of all minimal pairs of
problematic states for a given system is finite, however, the problem of check-
ing whether two given states form a problematic pair is not elementary, while
the problem of checking whether there exists at least one such pair is undecid-
able [139].

A different line of research considers extensions of Petri nets with causal-
consistent local reversibility [132]. Such an extension can be obtained for any
place transition net by unfolding it into occurrence nets and folding them back
to a coloured Petri net with an infinite number of colours. Those colours are
used to encode the content of a stack used to reverse the computation. The price
to be paid is that coloured Petri nets with infinitely many colours are in general
Turing complete.

Another approach to investigate causal-consistent local reversibility, but also
out-of-order local reversibility, is the biologically inspired model of reversing
Petri nets [155]. There tokens are persistent bases connected by bonds which
are relocated by transitions of the net. The greatest limitation of the approach
is the requirement of finiteness and acyclicity of the net modelled in this way.
On the other hand, one can encode reversing Petri nets into coloured Petri
nets with a finite number of colours [27], hence also into classical bounded

Foundations of Reversible Computation 19

place-transition systems. Moreover, reversing Petri nets were successfully applied
to the distributed antenna selection problem [156].

Petri net theory has been deeply studied. Cyclic and symmetric systems play
quite an important role, however the issue of equipping concurrent systems with
reversing mechanisms was not explored. The research conducted as a part of
the COST Action IC1405 “Reversible Computation - Extending Horizons of
Computing” enriched the theory of Petri nets by exploring some approaches to
reverse transitions in existing systems. Although the effect of adding reverses of
the actions to the existing system is in general difficult to evaluate (the problem
of behaviour preservation is undecidable for place-transition nets), the problem
can be solved if one allows unbounded stacks (coloured Petri nets approach) or
restricts oneself to bounded models.

8 Automata

Automata theory studies abstract machines, or automata, as mathematical mod-
els of computation. They help in understanding limits of computation and the
role of various resources – such as time and space – on the computational power.
Examples of widely studied classes of automata include finite automata (bounded
memory), pushdown automata (infinite memory organised as a stack), counter
machine (infinite memory organised as counters), Turing machines (infinite mem-
ory tape) and cellular automata (massively parallel regular network of finite
automata). These come in several flavours and variations, e.g., with respect to
determinism. An automaton is reversible if it preserves information so that its
computation can be retraced back in time. All the automata classes above can
support reversibility. See [105,143] for details on computation by various models
of reversible automata.

8.1 Finite Automata

Reversibility in finite automata has been widely investigated, e.g., [9,162]. The
class of languages having a reversible one-way automaton is a proper subclass
of the regular one. However, different models have been considered, depending
on whether automata are required to have only one initial state and/or only one
final state. Languages not having any reversible classical automaton have been
characterised in terms of a forbidden pattern in the minimum automaton [73]. In
the same paper, an NL-complete method to decide whether the language accepted
by a given deterministic finite automaton can also be accepted by some reversible
deterministic finite automaton has been derived.

In case the language accepted by a deterministic finite automaton is
reversible, the size of the smallest reversible automaton may be exponential with
respect to the size of the minimal irreversible one [73]. Recently analyses about
the descriptional complexity of reversible deterministic finite automata provided
some techniques to simulate these devices in an efficient way [123,125]. Indeed,
though converting a deterministic automaton into a reversible one may require

20 B. Aman et al.

an exponential increase in size, the proposed representation allows to limit this
cost by concisely representing the reversible automaton rather than explicitly
writing down its description.

Based on the forbidden pattern approach, the degree of irreversibility for a
regular language has been studied [13]. The degree is defined to be the minimal
number of such forbidden patterns necessary in any deterministic finite automa-
ton accepting the language. It is shown that the degree induces a strict infi-
nite hierarchy of language families. The behaviour of the degree of irreversibility
under the usual language operations union, intersection, complement, concatena-
tion, and Kleene star, has been studied, showing tight bounds (some asymptotic)
on the degree.

Because of the narrowness of the power of reversible finite automata with
respect to the irreversible ones, the definition of reversibility has been relaxed,
by considering finite automata whose computations can be reversed, at any point,
by accessing the last k symbols read from the input, for a fixed k. These devices
are said to be “weakly irreversible”. Characterisations of languages accepted by
weakly irreversible automata and languages not having any weakly irreversible
automaton (“strongly irreversible” languages) have been given [124].

Another treatment of a relaxed definition of reversibility concerns nondeter-
minism. It turned out that reversible nondeterministic finite automata are more
powerful compared to their reversible deterministic counterparts, but still can-
not accept all regular languages [74]. The two notions of relaxed reversibility
have been compared and closure properties of the language family induced by
these devices have been derived.

8.2 Pushdown Automata

Reversible classical pushdown automata have been introduced in [107]. Their
computational capacity turned out to lie properly in between the regular and
deterministic context-free languages. In the same paper, it is shown that a deter-
ministic context-free language cannot be accepted reversibly if more than real-
time is necessary for acceptance. Closure properties as well as decidability ques-
tions for reversible pushdown automata are studied and it is shown that the
problem to decide whether a given nondeterministic or deterministic pushdown
automaton is reversible is P-complete, whereas it is undecidable whether the lan-
guage accepted by a given nondeterministic pushdown automaton is reversible.

One extension of finite automata in order to enlarge the underlying language
class as well as to preserve many positive closure properties and decidable ques-
tions is represented by input-driven pushdown automata. Such automata share
many desirable properties with finite automata, but still are powerful enough to
describe important non-regular behaviour. Basically, for such devices the opera-
tions on the pushdown store are determined by the input symbols. With respect
to reversibility they have been studied in [110]. So, the sub-family of the context-
free languages that share the two important properties of being accepted by an
input-driven pushdown automaton as well as of being accepted by a reversible
pushdown automaton are considered. This intersection can be defined on the

Foundations of Reversible Computation 21

underlying language families or on the underlying machine classes. It turned
out that the latter class is properly included in the former. The relationships
between the language families obtained in this way and to reversible context-
free languages as well as to input-driven languages are studied. In general, a
hierarchical inclusion structure within the real-time deterministic context-free
languages is obtained. Finally, the closure properties of these families under the
standard operations are investigated and it turned out that all language fam-
ilies introduced are anti-AFLs (that is, they are not closed under any of the
operations required to be an Abstract Family of Languages).

Since reversible finite automata do not accept all regular languages and
reversible pushdown automata do not accept all deterministic context-free lan-
guages, it is of significant interest both from a practical and theoretical point of
view to close these gaps. Therefore these reversible models have been extended
by a preprocessing unit which is basically a reversible injective and length-
preserving sequential transducer [16]. It turned out that preprocessing the input
using such weak devices increases the computational power of reversible deter-
ministic finite automata to the acceptance of all regular languages. On the other
hand, for reversible pushdown automata the accepted family of languages lies
strictly in between the reversible deterministic context-free languages and the
real-time deterministic context-free languages. Moreover, it has been derived that
the computational power of both types of machines is not changed by allowing
the preprocessing sequential transducer to work irreversibly.

Two-pushdown automata where the input is placed in one pushdown and
that perform computations by inspecting and rewriting words at the top of the
pushdowns are of particular interest as the deterministic variant is known to
characterise the class of Church-Rosser languages when the rewriting is length-
reducing. Such reversible two-pushdown automata are studied in [14]. A sepa-
ration of the deterministic and reversible variants are obtained as well as the
incomparability with the (deterministic) context-free languages. However, their
properties of emptiness, (in)finiteness, universality, inclusion, equivalence, regu-
larity, and context-freeness are not even semi-decidable.

8.3 Finite State and Pushdown Transducers

Computational models are not only interesting from the viewpoint of accepting
some input, but also from the more applied perspective of transforming some
input into some output. Transductions that are computed by different variants
of transducers are studied in detail in the book of Berstel [31].

Reversibility in transducing devices has been investigated recently in [47,111]
for deterministic finite state transducers. In [111], the families of transductions
computed are classified with regard to three types of length-preserving trans-
ductions as well as to the property of working reversibly. It is possible to settle
all inclusion relations between these families of transductions even with injec-
tive witness transductions. Furthermore, the standard closure properties and
decidability questions have been investigated. It turned out that the non-closure
under almost all operations can be shown, whereas all decidability questions

22 B. Aman et al.

can be answered in polynomial time. Finally, the strict concept of reversibil-
ity is relaxed and an infinite and dense hierarchy with respect to the grade of
reversibility is obtained.

Deterministic pushdown transducers have also been introduced, and analysed
with respect to their ability to compute reversible transductions [66]. Now, the
families of transductions computed are classified with regard to four types of
length-preserving transductions as well as to the property of working reversibly.
It turns out that accurate to one case separating witness transductions can
be provided. For the remaining case it is possible to establish the equivalence
of both families by proving that stationary moves can always be removed in
length-preserving reversible pushdown transductions.

8.4 Queue Automata and Limited Automata

A further natural and well-studied extension of finite automata are queue
automata, where the extension is by a storage media of type queue. Their
reversible variant has been studied in [109]. In contrast to, for example, finite
or pushdown automata, it has been shown that any queue automaton can be
simulated by a reversible one. So, reversible queue automata are as powerful as
Turing machines. Therefore it is of interest to impose time restrictions on queue
automata. Quasi real-time and real-time computations have been considered. It
has been shown that every reversible quasi real-time queue automaton can be
sped up to real-time. On the other hand, under real-time conditions reversible
queue automata are less powerful than general queue automata. Furthermore, a
lower bound of Ω

(
n2

log(n)

)
time steps for real-time queue automata witness lan-

guages to be accepted by any equivalent reversible queue automaton has been
exhibited. The closure properties of reversible real-time queue automata are sim-
ilar as for reversible deterministic pushdown automata. Moreover, all commonly
studied decidability questions such as emptiness, finiteness, or equivalence are
not semi-decidable for reversible real-time queue automata. Furthermore, it is
not semi-decidable whether an arbitrary given real-time queue automaton is
reversible.

A k-limited automaton is a linear bounded automaton that may rewrite each
tape square only in the first k visits, where k ≥ 0 is a fixed constant. It is
known that these automata accept context-free languages only. The determinis-
tic k-limited automata have been investigated towards their ability to perform
reversible computations [112]. It turned out that, for all k ≥ 0, sweeping k-
limited automata accept regular languages only. In contrast to reversible finite
automata, all regular languages are accepted by sweeping 0-limited automata.
Then the computational power gained in the number k of possible rewrite opera-
tions has been studied. It has been shown that the reversible 2-limited automata
accept regular languages only and, thus, are strictly weaker than general 2-
limited automata. Furthermore, a proper inclusion between reversible 3-limited
and 4-limited automata languages has been obtained. The next levels of the
hierarchy are separated between every k and k + 3 rewrite operations. Finally,

Foundations of Reversible Computation 23

it turned out that all k-limited automata accept Church-Rosser languages only,
that is, the intersection between context-free and Church-Rosser languages con-
tains an infinite hierarchy of language families beyond the deterministic context-
free languages.

8.5 Cellular Automata

A cellular automaton (CA) is a dynamical system on an infinite grid of cells
defined by a local update rule that is applied simultaneously at all cells. More
precisely, in the usual rectilinear d-dimensional setting the cells are the elements
of Z

d and each cell stores an element of a finite state set A. The dynamics is
specified by a finite neighbourhood D ⊆ Z

d that gives the relative offsets to
neighbours of cells, and a local rule f : AD −→ A that gives the new state
of a cell based on the previous states in its neighbourhood. A configuration
c : Zd −→ A, specifying the global state of the system, changes in a single time
unit to become the new configuration c′ with c′(�n) = f(σ�n(c)|D) for every cell
�n ∈ Z

d, where σ�n denotes the shift map that translates the configurations so
that cell �n moves to the origin.

By carefully choosing the update rule f , the global dynamics c �→ c′ can be
made information preserving. In this case, an inverse cellular automaton retraces
the computation back in time, and the cellular automaton is called reversible
(RCA). See [90] for a recent survey on reversible cellular automata. Cellular
automata have an important role as providing simple models in microscopic
physics, and because of time-reversibility of microscopic dynamics the cellular
automata models are also typically reversible [181]. Reversible cellular automata
are able to carry out universal computation [180], even in the one-dimensional
setting [144].

In the symbolic dynamics nomenclature reversible cellular automata are
called automorphisms of the (full) shift. By Hedlund’s theorem [69] cellular
automata are precisely the transformations AZ

d −→ AZ
d

of the configuration
space that commute with shifts σ�n and that are continuous under the compact
prodiscrete topology on AZ

d

. Reversibility then just means that the transforma-
tion is a bijection, i.e., a homeomorphism. Automorphisms form a group under
composition, and the structure of the automorphism group of the full shift (as
well as of its subshifts) is a topic of active research [168]. For example, it is
not known if the groups of one-dimensional RCA over two states and over three
states are isomorphic with each other.

Decision Problems. Decision problems concerning reversibility and related
properties have been extensively studied. There are efficient algorithms to test
one-dimensional cellular automata for reversibility [177] while in higher dimen-
sional cases reversibility is undecidable [88]. It is also undecidable, even in the
one-dimensional case, whether a given RCA is periodic [92], that is, whether
some iteration of the CA amounts to the identity function. Periodicity among
one-sided RCA is not known to be decidable or undecidable at this time, where

24 B. Aman et al.

one-sidedness refers to the property that the neighbours to the left of a cell have
no influence on its next state, nor on the previous state given by the inverse
automaton. Periodicity in the one-sided case remains an active research topic due
to its link to the finiteness problem of groups generated by Mealy automata [51].

Two dynamical systems are called conjugate if there is a homeomorphism
between them that maps orbits to orbits. Conjugate systems are essentially iden-
tical. It is undecidable if two given cellular automata are conjugate [81]. This is
true even for one-dimensional cellular automata, but if the considered CA are
reversible then the undecidability is known in the two- and higher dimensional
cases only.

Physical Universality and Glider Automorphisms. A cellular automaton
is called physically universal if it can implement any transformation of pat-
terns on any finite domain of cells by suitably choosing the initial states outside
the domain. There are reversible cellular automata that are physically univer-
sal [170], even in the one-dimensional setting [169]. These automata (reversibly)
break the input pattern into fleets of gliders that scatter out of the finite domain.
Symmetrically, the inverse automaton breaks the desired output pattern into
fleets of inverse gliders. The task of the surrounding gadget is to change the first
fleet into the second fleet to implement the desired transformation.

Glider automorphisms that decompose finite configurations into fleets of glid-
ers have been studied in more general subshifts, and they have found applications
in understanding the structure of the automorphism groups [100].

Reversible Cellular Automata and Mahler’s Problem in Number The-
ory. If real numbers are written in base pq for some co-primes p and q then there
is no carry propagation when numbers are multiplied by constant p. This means
that multiplying by p is a local operation, that is, a reversible cellular automa-
ton. Composing such reversible cellular automata yields, for example, an RCA
for multiplying numbers in base 6 by constant 3/2.

Mahler’s problem asks whether there exists some positive real number ξ such
that the fractional part of ξ

(
3
2

)n is less than 0.5 for all positive integers n [127].
So the fractional part of the number should remain below one half no matter how
many times the number is multiplied by 3/2. The problem is still unsolved. The
problem has a very simple interpretation in terms of the RCA that multiplies by
3/2 in base six [89], and using this link it has been proved that for arbitrarily
small ε > 0 there is a number ξ > 0 and a finite union U ⊆ [0, 1) of intervals
of total length ε such that the fractional parts of all ξ

(
3
2

)n are in U [91]. The
dynamical property of expansivity of the associated reversible cellular automaton
plays a central role in the proof. Conversely, there is also a finite union V ⊆ [0, 1)
of intervals of total length 1 − ε that does not contain the fractional parts of all
ξ
(
3
2

)n for any ξ > 0.

Foundations of Reversible Computation 25

Asynchronous Updating. In an asynchronous cellular automaton (ACA) only
some cells are updated simultaneously. In the one-dimensional setting, one pos-
sibility is that states are updated sequentially during a left-to-right (or right-to-
left) sweep across the entire infinite line of cells. Such a setup is studied in [93]
where the update performed once in each position is given by a reversible block
rule An −→ An on n consecutive cells. The authors give a precise characteri-
sation of the one-dimensional cellular automata that can be realised by such a
sweep. It turns out that not all reversible CA can be realised, while also some
non-reversible ones can be obtained. It is decidable whether a CA can be realised
that way or not.

Self-Timed Cellular Automata. Self-Timed Cellular Automata (STCA) are
a form of Asynchronous Cellular Automata where transitions of cells can take
place if they are triggered by transitions of the neighbouring cells. Delay-
Insensitive (DI) circuits are asynchronous circuits which make no assumption
about delays within modules or wires of circuits, and where there is no global
clock [97]. As a result, logical gates such as NAND and XOR are not Turing-
complete when operated in a DI environment. A lot of research went into finding
universal sets of DI modules and [145] contributes a solution for reversible DI
circuits in terms of STCAs. Serial and parallel DI circuits are simulated with
new STCAs that contain rules for signal movement, right and left turn, memory
toggle, merge, fork and join, and parallel crossing of signals. In addition to a
number of reversibility and determinism properties, including local determinism
and local reversibility, the STCAs exhibit direction-reversibility, where reversing
the direction of a signal and running a circuit forwards is equivalent to running
the circuit in reverse. Benefits of direction-reversibility are discussed, including
garbage-less implementation of reversible functions.

Cellular Automata as Language Acceptors. From the perspective of lan-
guage recognition, real-time bounded cellular automata which are reversible on
the core of computation, that is, from initial configuration to the configura-
tion given by the time complexity, have been studied in [106]. The question
whether for a given real-time CA working on finite configurations with fixed
boundary conditions there exists a reverse real-time CA with the same neigh-
bourhood has been addressed. It has been shown that real-time reversibility is
undecidable, which contrasts the general case, where reversibility is decidable
for one-dimensional devices. Moreover, the undecidability of emptiness, finite-
ness, infiniteness, inclusion, equivalence, regularity, and context-freedom has
been proved. First steps towards the exploration of the computational capac-
ity have been done and closure under Boolean operations have been shown.

Similar investigations for real-time one-way cellular automata have been done
in [108]. In this case, it turned out that the standard model with fixed boundary
conditions is quite weak in terms of reversible information processing, since it
accepts exactly the regular languages reversibly. The extension that allows the
information to flow circularly from the leftmost cell into the rightmost cell does

26 B. Aman et al.

not increase the computational power in the general case, but does increase it
for reversible computations. On the other hand, the model is less powerful than
real-time reversible two-way cellular automata. Additionally, it has been derived
that the corresponding language class is closed under Boolean operations, and
the undecidability of several decidability questions has been proved. Finally,
it turned out that the reversibility of an arbitrary real-time circular one-way
cellular automaton is undecidable as well.

8.6 Turing Machines

Turing machines (TM) are a classical model of computation where a finite state
control unit, the head, moves along a bi-infinite tape of cells, each containing a
tape symbol. The head reads and writes symbols on the tape, changes its internal
state, and moves to neighbouring cells at discrete time steps as instructed by a
fixed transition rule, the program of the TM. A suitable choice of the program
makes the machine reversible (RTM). Turing machines are traditionally viewed
as language acceptors, but one can also incorporate outputs in the model so that
the machine becomes a transducer that computes a (partial) function. In [12] the
authors investigate RTM under the strict function semantics that requires that
at the end of the computation only the output remains on the tape, and they
develop a rigorous foundational theory of reversible computation of functions in
this semantics, including the appropriate concept of universality and a design of
a universal machine.

Turing machines with bi-infinite tape contents are also discrete dynamical
systems (on a compact space) under two possible viewpoints [104]: in the mov-
ing tape view (TMT) the position of the head is fixed but the entire tape shifts
left or right depending on the current instruction, while in the usual moving
head view (TMH) one needs to allow configurations without a head to make the
configuration space compact. In [38] the authors present a reversible TMT with
the rather surprising property that it has no halting or temporally periodic con-
figurations, thus answering positively a conjecture made in [92]. The machine,
dubbed “SMART”, is small (4 internal states, 3 tape symbols) and nicely sym-
metric in both time and space. It possesses the good dynamical properties of
transitivity and minimality. The machine is further applied to settle another
conjecture made in [92]: it is undecidable whether a given complete reversible
Turing machine has a periodic orbit.

The class of RTM dynamical systems becomes more robust if the head is
allowed to view and modify locally blocks of several tape symbols at once. In
particular, compositions of machines and inverse machines are now in the same
class so that reversible Turing machines with any fixed states and tape symbols
form a group under composition. The structure of this group and algorithmic
questions concerning the group are studied in [25]. The paper also introduces
a number of natural subgroups. The model includes multidimensional Turing
machines where the tape cells are indexed by Z

d for dimension d, and both the
moving head and the moving tape viewpoints can be taken.

Foundations of Reversible Computation 27

Finally, reversible Turing machines with a working tape and a one-way or
two-way read-only input tape are considered as language recognisers [15]. In
particular, the classes of languages acceptable by such devices with small time
bounds in the range between real time and linear time, that is, with time bounds
of the form n+r(n) where r ∈ o(n) is a sublinear function, have been considered.
It has been shown that there exist infinite time hierarchies of separated com-
plexity classes in that range. The question of whether reversible Turing machines
in the range of interest are weaker than general ones or not is answered posi-
tively by proving that there are languages accepted by irreversible one-way Tur-
ing machines in real time that cannot be accepted by any reversible one-way
machine in less than linear time.

9 Quantum Formal Verification and Quantum Machine
Learning

Large-scale, fault-tolerant quantum computers are still under development and,
despite a recent major push for “quantum supremacy” by companies like IBM,
Google and Intel, it is not clear when they will become a reality. On the other
hand there is much recent interest in using Noisy Intermediate Scale Quantum
(NISQ) computers to provide a “quantum advantage”. This involves the use
of existing or near-term quantum computers to solve valuable problems, faster,
cheaper, or more efficiently than any available classical solution. Potential appli-
cation areas include simulation of many-body physics, quantum chemistry, opti-
misation and quantum machine learning. Airbus has issued its Quantum Com-
puting Challenge to tackle aerospace flight physics problems using quantum com-
puters. Many companies such as IBM, Microsoft, D-Wave, Rigetti and Xanadu
are developing full-stack solutions for implementing quantum algorithms. This
typically starts from a high-level programming language and a compiler, down to
an assembly language and quantum hardware. These resources are usually acces-
sible via the cloud. Much of these developments will need guarantees regarding
security and correctness. Formal verification, which has been used successfully
in classical computing for a number of years, could be extremely valuable in
increasing confidence in quantum systems.

Quantum cryptography aims to overcome the limitations of classical cryp-
tography by providing unconditional security, which is not dependent on the
difficulty of inverting a particular computation. Quantum Key Distribution pro-
tocols have been implemented in commercial products by Id Quantique, MagiQ,
NEC and Toshiba, amongst others, and have been used in practical applica-
tions, e.g. the Geneva election ballot count. Various QKD networks have been
built, including the DARPA Quantum Network in Boston, the SeCoQC net-
work around Vienna and the Tokyo QKD Network. China has launched a ded-
icated satellite “Micius” for quantum communication. On the theoretical side,
quantum key distribution protocols such as BB84 [29] have been proved to be
unconditionally secure. It is important to understand, however, that this is an

28 B. Aman et al.

information-theoretic proof, which does not necessarily guarantee that imple-
mented systems are unconditionally secure. This area is also where approaches
such as those based on formal methods could be useful in analysing behaviour
of implemented systems.

The paper [32] presents a novel framework for modelling and verifying quan-
tum protocols and their implementations using the proof assistant Coq. It pro-
vides a Coq library for quantum bits (qubits), quantum gates, and quantum
measurement. As a step towards verifying practical quantum communication
and security protocols such as Quantum Key Distribution, it supports multi-
ple qubits, communication and entanglement. These concepts are illustrated by
modelling the Quantum Teleportation Protocol, which communicates the state
of an unknown quantum bit using only a classical channel. In more recent work,
a Quantum IO monad has been implemented in Coq for the specification of the
protocols. In addition to quantum operations and measurement, the monad gives
us a lightweight process calculus which supports sequencing of operations and
keeping of state. This monad has the necessary properties. The process simu-
lation function that gives the QIO monad its semantics has also been written.
Current work concerns proving properties of simple quantum protocols.

In [10], the authors present CCSq, a concurrent language for describing
quantum systems, and develop verification techniques for checking equivalence
between CCSq processes. CCSq has well-defined operational and superoperator
semantics for protocols that are functional, in the sense of computing a determin-
istic input-output relation for all interleavings arising from concurrency in the
system. They have implemented QEC (Quantum Equivalence Checker), a tool
that takes the specification and implementation of quantum protocols, described
in CCSq, and automatically checks their equivalence. QEC is the first fully auto-
matic equivalence checking tool for concurrent quantum systems. For efficiency
purposes, the approach is restricted to Clifford operators in the stabiliser for-
malism, but it is able to verify protocols over all input states. A collection of
interesting and practical quantum protocols, ranging from quantum communica-
tion and quantum cryptography to quantum error correction, have been specified
and verified.

In other recent work, a version of the quantum process calculus CQP has been
implemented. The implementation, which has the working title qtpi and is avail-
able from github.com/mdxtoc/qtpi, uses symbolic rather than numeric prob-
ability calculation. Programs are checked statically, before they run, to ensure
that they obey real-world restrictions on the use of qbits (e.g. no cloning, no
sharing). Qtpi has been used to simulate some simple protocols such as tele-
portation, and some more involved ones including QKD. It is early days in the
development of the tool, but it can already simulate well over 1M qbit transfers
per minute.

Quantum machine learning is the aspect of quantum computing concerned
with the design of algorithms capable of generalised learning from labelled train-
ing data by effectively exploiting quantum effects. The undertaken work makes
various contributions to this emerging area; in particular it has pursued the

Foundations of Reversible Computation 29

issue of classification error within a standard quantum computational setting,
and explored the congruence of Kernel Methods with the topological quantum
computational setting (a congruence that will be developed further in future
work).

Specifically, the following have been achieved:
In [52] the authors present a novel approach to computing Hamming distance

and its kernelisation within Topological Quantum Computation. This approach
is based on an encoding of two binary strings into a topological Hilbert space,
whose inner product yields a natural Hamming distance kernel on the two strings.
Kernelisation forges a link with the field of Machine Learning, particularly in
relation to binary classifiers such as the Support Vector Machine (SVM). This
makes our approach of potentially wide interest to the quantum machine learning
community.

In [183], the authors set out a strategy for quantising attribute bootstrap
aggregation to enable variance-resilient quantum machine learning. To do so,
they utilise the linear decomposability of decision boundary parameters in the
Rebentrost et al. Support Vector Machine [164] to guarantee that stochastic
measurement of the output quantum state will give rise to an ensemble decision
without destroying the superposition over projective feature subsets induced
within the chosen SVM implementation. It achieves a linear performance advan-
tage, O(d), in addition to the existing O(log(n)) advantages of quantisation as
applied to Support Vector Machines. The approach extends to any form of quan-
tum learning giving rise to linear decision boundaries.

Error-correcting output codes (ECOC) are a standard setting in machine
learning for efficiently rendering the collective outputs of a binary classifier, such
as the support vector machine, as a multi-class decision procedure. Appropriate
choice of error-correcting codes further enables incorrect individual classification
decisions to be effectively corrected in the composite output. In [182], the authors
propose an appropriate quantisation of the ECOC process, based on the quantum
support vector machine. They show that, in addition to the usual benefits of
quantising machine learning, this technique leads to an exponential reduction in
the number of logic gates required for effective correction of classification error.

10 Conclusion

We gave in the previous sections an overview of the status and recent develop-
ments of different research threads on the foundations of reversible computation.
While many interesting results have been found, we notice that the field is still
very heterogeneous. For instance, while process calculi, Petri nets and cellular
automata are all models of concurrent systems, they come equipped with dif-
ferent notions of reversibility. Cellular automata are considered reversible if the
global dynamics is bijective (similarly to what is done in sequential reversible
models), Petri nets if reverse transitions can be added without changing the
behaviour of the net, while process calculi are mainly based on the notion of
causal-consistent reversibility. Some initial cross-fertilisation results came thanks

30 B. Aman et al.

to the COST Action, e.g. there have been works applying causal-consistent
reversibility to Petri nets [132] and related models [27,155]. We also remark
that some of the developments described in this chapter have been instrumental
to better understand reversibility in programming languages and to advance on
a number of application areas, as discussed in the rest of the book.

References

1. Abramsky, S.: Retracing some paths in process algebra. In: Montanari, U., Sas-
sone, V. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 1–17. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61604-7 44

2. Abramsky, S.: A structural approach to reversible computation. Theoret. Comput.
Sci. 347(3), 441–464 (2005)

3. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Logic
in Computer Science, LICS 2004, pp. 415–425. IEEE (2004)

4. Abramsky, S., Haghverdi, E., Scott, P.: Geometry of interaction and linear com-
binatory algebras. Math. Struct. Comput. Sci. 12(5), 625–665 (2002)

5. Agrigoroaiei, O., Ciobanu, G.: Dual P systems. In: Corne, D.W., Frisco, P., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 95–107.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-95885-7 7

6. Agrigoroaiei, O., Ciobanu, G.: Reversing computation in membrane systems. J.
Logic Algebraic Program. 79(3–5), 278–288 (2010)

7. Aman, B., Ciobanu, G.: Reversibility in parallel rewriting systems. J. Univers.
Comput. Sci. 23(7), 692–703 (2017)

8. Aman, B., Ciobanu, G.: Controlled reversibility in reaction systems. In: Gheorghe,
M., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2017. LNCS, vol. 10725,
pp. 40–53. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73359-3 3

9. Angluin, D.: Inference of reversible languages. J. ACM 29(3), 741–765 (1982)
10. Ardeshir-Larijani, E., Gay, S.J., Nagarajan, R.: Automated equivalence checking

of concurrent quantum systems. ACM Trans. Comput. Logic 19(4), 28:1–28:32
(2018)

11. Axelsen, H.B., Glück, R.: Reversible representation and manipulation of con-
structor terms in the heap. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS,
vol. 7948, pp. 96–109. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38986-3 9

12. Axelsen, H.B., Glück, R.: On reversible turing machines and their function uni-
versality. Acta Inf. 53(5), 509–543 (2016)

13. Axelsen, H.B., Holzer, M., Kutrib, M.: The degree of irreversibility in determin-
istic finite automata. Int. J. Found. Comput. Sci. 28, 503–522 (2017)

14. Axelsen, H.B., Holzer, M., Kutrib, M., Malcher, A.: Reversible shrinking two-
pushdown automata. In: Dediu, A.-H., Janoušek, J., Mart́ın-Vide, C., Truthe, B.
(eds.) LATA 2016. LNCS, vol. 9618, pp. 579–591. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-30000-9 44

15. Axelsen, H.B., Jakobi, S., Kutrib, M., Malcher, A.: A hierarchy of fast reversible
turing machines. In: Krivine, J., Stefani, J.-B. (eds.) RC 2015. LNCS, vol. 9138,
pp. 29–44. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20860-2 2

16. Axelsen, H.B., Kutrib, M., Malcher, A., Wendlandt, M.: Boosting reversible push-
down machines by preprocessing. In: Devitt, S., Lanese, I. (eds.) RC 2016. LNCS,
vol. 9720, pp. 89–104. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40578-0 6

https://doi.org/10.1007/3-540-61604-7_44
https://doi.org/10.1007/978-3-540-95885-7_7
https://doi.org/10.1007/978-3-319-73359-3_3
https://doi.org/10.1007/978-3-642-38986-3_9
https://doi.org/10.1007/978-3-642-38986-3_9
https://doi.org/10.1007/978-3-319-30000-9_44
https://doi.org/10.1007/978-3-319-30000-9_44
https://doi.org/10.1007/978-3-319-20860-2_2
https://doi.org/10.1007/978-3-319-40578-0_6
https://doi.org/10.1007/978-3-319-40578-0_6

Foundations of Reversible Computation 31

17. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press, Cambridge (1998)

18. Bacci, G., Danos, V., Kammar, O.: On the statistical thermodynamics of
reversible communicating processes. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.)
CALCO 2011. LNCS, vol. 6859, pp. 1–18. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22944-2 1

19. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. TTCSAES.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47967-4

20. Barbanera, F., de’Liguoro, U.: A game interpretation of retractable contracts. In:
Lluch Lafuente, A., Proença, J. (eds.) COORDINATION 2016. LNCS, vol. 9686,
pp. 18–34. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39519-7 2

21. Barbanera, F., Dezani-Ciancaglini, M., de’Liguoro, U.: Compliance for reversible
client/server interactions. In: Workshop on Behavioural Types, BEAT 2014.
EPTCS, vol. 162, pp. 35–42 (2014)

22. Barbanera, F., Dezani-Ciancaglini, M., de’Liguoro, U.: Reversible client/server
interactions. Formal Asp. Comput. 28(4), 697–722 (2016)

23. Barbanera, F., Dezani-Ciancaglini, M., Lanese, I., de’Liguoro, U.: Retractable
contracts. In: Workshop on Programming Language Approaches to Concurrency-
and Communication-cEntric Software, PLACES 2015. EPTCS, vol. 203, pp. 61–
72 (2015)

24. Barbanera, F., Lanese, I., de’Liguoro, U.: Retractable and speculative contracts.
In: Jacquet, J.-M., Massink, M. (eds.) COORDINATION 2017. LNCS, vol. 10319,
pp. 119–137. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59746-
1 7

25. Barbieri, S., Kari, J., Salo, V.: The group of reversible turing machines. In: Cook,
M., Neary, T. (eds.) AUTOMATA 2016. LNCS, vol. 9664, pp. 49–62. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-39300-1 5

26. Barylska, K., Erofeev, E., Koutny, M., Mikulski, �L., Pi ↪atkowski, M.: Reversing
transitions in bounded Petri nets. Fund. Inf. 157(4), 341–357 (2018)

27. Barylska, K., Gogolińska, A., Mikulski, �L., Philippou, A., Pi ↪atkowski, M., Psara,
K.: Reversing computations modelled by coloured Petri nets. In: Workshop on
Algorithms & Theories for the Analysis of Event Data. CEUR Workshop Pro-
ceedings, vol. 2115, pp. 91–111. CEUR-WS.org (2018)

28. Barylska, K., Koutny, M., Mikulski, �L., Pi ↪atkowski, M.: Reversible computation
vs. reversibility in Petri nets. Sci. Comput. Program. 151, 48–60 (2018)

29. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and
coin tossing. In: Conference on Computers, Systems & Signal Processing, CSSP
1984, pp. 175–179 (1984)

30. Berry, G., Boudol, G.: The chemical abstract machine. Theor. Comput. Sci. 96(1),
217–248 (1992)

31. Berstel, J.: Transductions and Context-Free Languages. Teubner, Stuttgart (1979)
32. Boender, J., Kammüller, F., Nagarajan, R.: Formalization of quantum protocols

using Coq. In: Workshop on Quantum Physics and Logic, QPL 2015, pp. 71–83
(2015)

33. Bouziane, Z., Finkel, A.: Cyclic Petri net reachability sets are semi-linear effec-
tively constructible. In: Workshop on Verification of Infinite State Systems,
INFINITY 1997, ENTCS, pp. 15–24. Elsevier (1997)

34. Bowman, W.J., James, R.P., Sabry, A.: Dagger traced symmetric monoidal cat-
egories and reversible programming. In: Reversible Computation, RC 2011, pp.
51–56. Ghent University (2011)

https://doi.org/10.1007/978-3-642-22944-2_1
https://doi.org/10.1007/978-3-642-22944-2_1
https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1007/978-3-319-39519-7_2
https://doi.org/10.1007/978-3-319-59746-1_7
https://doi.org/10.1007/978-3-319-59746-1_7
https://doi.org/10.1007/978-3-319-39300-1_5

32 B. Aman et al.

35. Cardelli, L., Laneve, C.: Reversibility in massive concurrent systems. Sci. Ann.
Comp. Sci. 21(2), 175–198 (2011)

36. Cardelli, L., Laneve, C.: Reversible structures. In: Computational Methods in
Systems Biology, CMSB 2011, pp. 131–140. ACM (2011)

37. Carothers, C.D., Perumalla, K.S., Fujimoto, R.: Efficient optimistic parallel sim-
ulations using reverse computation. ACM Trans. Model. Comput. Simul. 9(3),
224–253 (1999)

38. Cassaigne, J., Ollinger, N., Torres-Avilés, R.: A small minimal aperiodic reversible
Turing machine. J. Comput. Syst. Sci. 84, 288–301 (2017)

39. Clavel, M., et al.: Maude: specification and programming in rewriting logic. Theor.
Comput. Sci. 285(2), 187–243 (2002)

40. Cockett, J.R.B., Lack, S.: Restriction categories I: categories of partial maps.
Theoret. Comput. Sci. 270(1–2), 223–259 (2002)

41. Colange, M., Baarir, S., Kordon, F., Thierry-Mieg, Y.: Crocodile: a sym-
bolic/symbolic tool for the analysis of symmetric nets with bag. In: Kristensen,
L.M., Petrucci, L. (eds.) PETRI NETS 2011. LNCS, vol. 6709, pp. 338–347.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21834-7 20

42. Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible
π-calculus. In: Logic in Computer Science, LICS 2013, pp. 388–397. IEEE Com-
puter Society (2013)

43. Cservenka, M.H., Glück, R., Haulund, T., Mogensen, T.Æ.: Data structures and
dynamic memory management in reversible languages. In: Kari, J., Ulidowski, I.
(eds.) RC 2018. LNCS, vol. 11106, pp. 269–285. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99498-7 19

44. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28644-8 19

45. Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005).
https://doi.org/10.1007/11539452 31

46. Danos, V., Krivine, J.: Formal molecular biology done in CCS-R. In: Workshop
on Concurrent Models in Molecular Biology, BioConcur 2003, vol. 180(3) (2003).
Electr. Notes Theor. Comput. Sci., 31–49. Elsevier (2007)

47. Dartois, L., Fournier, P., Jecker, I., Lhote, N.: On reversible transducers. In:
International Colloquium on Automata, Languages, and Programming, ICALP
2017. LIPIcs, vol. 80, pp. 113:1–113:12. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2017)

48. de Frutos Escrig, D., Koutny, M., Mikulski, �L.: An efficient characterization of
Petri net solvable binary words. In: Khomenko, V., Roux, O.H. (eds.) PETRI
NETS 2018. LNCS, vol. 10877, pp. 207–226. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-91268-4 11

49. de Frutos Escrig, D., Koutny, M., Mikulski, �L.: Reversing steps in Petri nets. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 171–191.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2 11

50. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83–133 (1984)

51. Delacourt, M., Ollinger, N.: Permutive one-way cellular automata and the finite-
ness problem for automaton groups. In: Kari, J., Manea, F., Petre, I. (eds.) CiE
2017. LNCS, vol. 10307, pp. 234–245. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58741-7 23

https://doi.org/10.1007/978-3-642-21834-7_20
https://doi.org/10.1007/978-3-319-99498-7_19
https://doi.org/10.1007/978-3-319-99498-7_19
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/11539452_31
https://doi.org/10.1007/978-3-319-91268-4_11
https://doi.org/10.1007/978-3-319-91268-4_11
https://doi.org/10.1007/978-3-030-21571-2_11
https://doi.org/10.1007/978-3-319-58741-7_23
https://doi.org/10.1007/978-3-319-58741-7_23

Foundations of Reversible Computation 33

52. Di Pierro, A., Mengoni, R., Nagarajan, R., Windridge, D.: Hamming distance
kernelisation via topological quantum computation. In: Mart́ın-Vide, C., Neruda,
R., Vega-Rodŕıguez, M.A. (eds.) TPNC 2017. LNCS, vol. 10687, pp. 269–280.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71069-3 21

53. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fund. Inf. 75(1), 263–280
(2007)

54. Esparza, J., Nielsen, M.: Decidability issues for Petri nets. BRICS Rep. Ser. 1(8)
(1994)

55. Foster, N., Matsuda, K., Voigtländer, J.: Three complementary approaches to
bidirectional programming. In: Gibbons, J. (ed.) Generic and Indexed Program-
ming. LNCS, vol. 7470, pp. 1–46. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32202-0 1

56. Giachino, E., Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent reversibility
in a tuple-based language. In: Parallel, Distributed, and Network-Based Process-
ing, PDP 2015, pp. 467–475. IEEE Computer Society (2015)

57. Giachino, E., Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent rollback in
a tuple-based language. J. Log. Algebr. Meth. Program. 88, 99–120 (2017)

58. Giles, B.G.: An investigation of some theoretical aspects of reversible computing.
Ph.D. thesis, University of Calgary (2014)

59. Glück, R., Kaarsgaard, R.: A categorical foundation for structured reversible
flowchart languages. In: Mathematical Foundations of Programming Semantics,
MFPS 2018. Electronic Notes in Theoretical Computer Science, vol. 341, pp.
155–171. Elsevier (2018)

60. Glück, R., Kaarsgaard, R.: A categorical foundation for structured reversible
flowchart languages: soundness and adequacy. Logical Methods Comput. Sci.
14(3) (2018)

61. Glück, R., Kaarsgaard, R., Yokoyama, T.: Reversible programs have reversible
semantics. In: Reversibility in Programming, Languages, and Automata, RPLA
2019. Lecture Notes in Computer Science. Springer (2019, to appear)

62. Glück, R., Yokoyama, T.: A linear-time self-interpreter of a reversible imperative
language. Comput. Soft. 33(3), 108–128 (2016)

63. Glück, R., Yokoyama, T.: A minimalist’s reversible while language. IEICE Trans.
Inf. Syst. E100–D(5), 1026–1034 (2017)

64. Glück, R., Yokoyama, T.: Constructing a binary tree from its traversals by
reversible recursion and iteration. Inf. Process. Lett. 147, 32–37 (2019)

65. Graversen, E., Phillips, I., Yoshida, N.: Towards a categorical representation of
reversible event structures. J. Logical Algebraic Methods Program. 104, 16–59
(2019)

66. Guillon, B., Kutrib, M., Malcher, A., Prigioniero, L.: Reversible pushdown trans-
ducers. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp. 354–365.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98654-8 29

67. Guo, X.: Products, joins, meets, and ranges in restriction categories. Ph.D. thesis,
University of Calgary (2012)

68. Haulund, T., Mogensen, T.Æ., Glück, R.: Implementing reversible object-oriented
language features on reversible machines. In: Phillips, I., Rahaman, H. (eds.) RC
2017. LNCS, vol. 10301, pp. 66–73. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-59936-6 5

69. Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical sys-
tems. Mathe. Syst. Theor. 3(4), 320–375 (1969)

https://doi.org/10.1007/978-3-319-71069-3_21
https://doi.org/10.1007/978-3-642-32202-0_1
https://doi.org/10.1007/978-3-642-32202-0_1
https://doi.org/10.1007/978-3-319-98654-8_29
https://doi.org/10.1007/978-3-319-59936-6_5
https://doi.org/10.1007/978-3-319-59936-6_5

34 B. Aman et al.

70. Heunen, C., Kaarsgaard, R., Karvonen, M.: Reversible effects as inverse arrows.
In: Mathematical Foundations of Programming Semantics, MFPS XXXIV. Elec-
tronic Notes in Theoretical Computer Science, vol. 341, pp. 179–199. Elsevier
(2018)

71. Heunen, C., Karvonen, M.: Monads on dagger categories. Theor. Appl. Categories
31, 1016–1043 (2016)

72. Hoey, J., Ulidowski, I., Yuen, S.: Reversing parallel programs with blocks and
procedures. In: Expressiveness in Concurrency/Structural Operational Seman-
tics. Electronic Proceedings in Theoretical Computer Science, vol. 276, pp. 69–86
(2018)

73. Holzer, M., Jakobi, S., Kutrib, M.: Minimal reversible deterministic finite
automata. Int. J. Found. Comput. Sci. 29(2), 251–270 (2018)

74. Holzer, M., Kutrib, M.: Reversible nondeterministic finite automata. In: Phillips,
I., Rahaman, H. (eds.) RC 2017. LNCS, vol. 10301, pp. 35–51. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59936-6 3

75. Hu, Z., Schürr, A., Stevens, P., Terwilliger, J.F.: Bidirectional transformation
“bx” (Dagstuhl Seminar 11031). Dagstuhl Reports 1(1), 42–67 (2011). http://
drops.dagstuhl.de/volltexte/2011/3144/

76. Hullot, J.-M.: Canonical forms and unification. In: Bibel, W., Kowalski, R. (eds.)
CADE 1980. LNCS, vol. 87, pp. 318–334. Springer, Heidelberg (1980). https://
doi.org/10.1007/3-540-10009-1 25

77. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 3:1–3:36 (2016)

78. European COST Action IC1405 on “Reversible Computation - Extending Hori-
zons of Computing”. http://www.revcomp.eu/

79. Jacobs, B.: New directions in categorical logic, for classical, probabilistic and
quantum logic. Logical Methods Comput. Sci. 11(3), 1–76 (2015)

80. Jacobsen, P.A.H., Kaarsgaard, R., Thomsen, M.K.: CoreFun: a typed functional
reversible core language. In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol.
11106, pp. 304–321. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99498-7 21

81. Jalonen, J., Kari, J.: Conjugacy of one-dimensional one-sided cellular automata
is undecidable. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wieder-
mann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 227–238. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-73117-9 16

82. James, R.P., Sabry, A.: Theseus: a high level language for reversible computing.
In: Work-in-Progress Report Presented at RC 2014. http://www.cs.indiana.edu/
∼sabry/papers/theseus.pdf

83. James, R.P., Sabry, A.: Information effects. ACM SIGPLAN Not. 47(1), 73–84
(2012)

84. Jones, N.D.: Computability and Complexity: From a Programming Language
Perspective. Foundations of Computing. MIT Press, Cambridge (1997)

85. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. Cam-
bridge Philos. Soc. 119(3), 447–468 (1996)

86. Kaarsgaard, R., Axelsen, H.B., Glück, R.: Join inverse categories and reversible
recursion. J. Logical Algebraic Methods Program. 87, 33–50 (2017)

87. Kaarsgaard, R., Glück, R.: A categorical foundation for structured reversible
flowchart languages: soundness and adequacy. Logical Methods Comput. Sci.
14(3), 1–38 (2018)

88. Kari, J.: Reversibility of 2D cellular automata is undecidable. Physica D 45(1),
379–385 (1990)

https://doi.org/10.1007/978-3-319-59936-6_3
http://drops.dagstuhl.de/volltexte/2011/3144/
http://drops.dagstuhl.de/volltexte/2011/3144/
https://doi.org/10.1007/3-540-10009-1_25
https://doi.org/10.1007/3-540-10009-1_25
http://www.revcomp.eu/
https://doi.org/10.1007/978-3-319-99498-7_21
https://doi.org/10.1007/978-3-319-99498-7_21
https://doi.org/10.1007/978-3-319-73117-9_16
http://www.cs.indiana.edu/~sabry/papers/theseus.pdf
http://www.cs.indiana.edu/~sabry/papers/theseus.pdf

Foundations of Reversible Computation 35

89. Kari, J.: Universal pattern generation by cellular automata. Theoret. Comput.
Sci. 429, 180–184 (2012)

90. Kari, J.: Reversible cellular automata: from fundamental classical results to recent
developments. New Generation Comput. 36(3), 145–172 (2018)

91. Kari, J., Kopra, J.: Cellular automata and powers of p/q. RAIRO - Theor. Inf.
Applic. 51(4), 191–204 (2017)

92. Kari, J., Ollinger, N.: Periodicity and immortality in reversible computing. In:
Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 419–430.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85238-4 34

93. Kari, J., Salo, V., Worsch, T.: Sequentializing cellular automata. In: Baetens,
J.M., Kutrib, M. (eds.) AUTOMATA 2018. LNCS, vol. 10875, pp. 72–87. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-92675-9 6

94. Karvonen, M.: The way of the dagger. Ph.D. thesis, School of Informatics, Uni-
versity of Edinburgh (2019)

95. Kastl, J.: Inverse categories. In: Algebraische Modelle, Kategorien und Gruppoide.
Studien zur Algebra und ihre Anwendungen, vol. 7, pp. 51–60. Akademie-Verlag
(1979)

96. Kawabe, M., Glück, R.: The program inverter LRinv and its structure. In:
Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2005. LNCS, vol. 3350, pp. 219–234.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30557-6 17

97. Keller, R.: Towards a theory of universal speed-independent modules. IEEE Trans.
Comput. 23(1), 21–33 (1974)

98. Klop, J.W.: Term rewriting systems. In: Abramsky, S., Gabbay, D.M., Maibaum,
T.S.E. (eds.) Handbook of Logic in Computer Science, vol. I, pp. 1–112. Oxford
University Press (1992)

99. Knowlton, K.C.: A fast storage allocator. Commun. ACM 8(10), 623–625 (1965)
100. Kopra, J.: Glider automorphisms on some shifts of finite type and a finitary

Ryan’s theorem. In: Baetens, J.M., Kutrib, M. (eds.) AUTOMATA 2018. LNCS,
vol. 10875, pp. 88–99. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
92675-9 7

101. Krivine, J.: A verification technique for reversible process algebra. In: Glück, R.,
Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 204–217. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36315-3 17

102. Kuhn, S., Ulidowski, I.: A calculus for local reversibility. In: Devitt, S., Lanese,
I. (eds.) RC 2016. LNCS, vol. 9720, pp. 20–35. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40578-0 2

103. Kuhn, S., Ulidowski, I.: Local reversibility in a calculus of covalent bonding. Sci.
Comput. Program. 151, 18–47 (2018)

104. Kurka, P.: On topological dynamics of Turing machines. Theor. Comput. Sci.
174(1–2), 203–216 (1997)

105. Kutrib, M.: Reversible and irreversible computations of deterministic finite-state
devices. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015.
LNCS, vol. 9234, pp. 38–52. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48057-1 3

106. Kutrib, M., Malcher, A.: Fast reversible language recognition using cellular
automata. Inf. Comput. 206, 1142–1151 (2008)

107. Kutrib, M., Malcher, A.: Reversible pushdown automata. J. Comput. Syst. Sci.
78, 1814–1827 (2012)

https://doi.org/10.1007/978-3-540-85238-4_34
https://doi.org/10.1007/978-3-319-92675-9_6
https://doi.org/10.1007/978-3-540-30557-6_17
https://doi.org/10.1007/978-3-319-92675-9_7
https://doi.org/10.1007/978-3-319-92675-9_7
https://doi.org/10.1007/978-3-642-36315-3_17
https://doi.org/10.1007/978-3-319-40578-0_2
https://doi.org/10.1007/978-3-319-40578-0_2
https://doi.org/10.1007/978-3-662-48057-1_3
https://doi.org/10.1007/978-3-662-48057-1_3

36 B. Aman et al.

108. Kutrib, M., Malcher, A., Wendlandt, M.: Real-time reversible one-way cellular
automata. In: Isokawa, T., Imai, K., Matsui, N., Peper, F., Umeo, H. (eds.)
AUTOMATA 2014. LNCS, vol. 8996, pp. 56–69. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-18812-6 5

109. Kutrib, M., Malcher, A., Wendlandt, M.: Reversible queue automata. Fund. Inf.
148, 341–368 (2016)

110. Kutrib, M., Malcher, A., Wendlandt, M.: When input-driven pushdown automata
meet reversiblity. RAIRO - Theor. Inf. Applic. 50, 313–330 (2016)

111. Kutrib, M., Malcher, A., Wendlandt, M.: Transducing reversibly with finite state
machines. Theor. Comput. Sci. 787, 111–126 (2019)

112. Kutrib, M., Wendlandt, M.: Reversible limited automata. Fund. Inf. 155, 31–58
(2017)

113. Landauer, R.: Irreversibility and heat generated in the computing process. IBM
J. Res. Dev. 5, 183–191 (1961)

114. Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Concurrent
flexible reversibility. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol.
7792, pp. 370–390. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37036-6 21

115. Lanese, I., Medic, D., Mezzina, C.A.: Static versus dynamic reversibility in CCS.
Acta Informatica (2019)

116. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling reversibility in
higher-order Pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol.
6901, pp. 297–311. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23217-6 20

117. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing higher-order Pi. In: Gastin,
P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 33

118. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Controlled reversibility and compensa-
tions. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 233–240.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36315-3 19

119. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversibility in the higher-order π-
calculus. Theor. Comput. Sci. 625, 25–84 (2016)

120. Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent reversibility. Bull. EATCS
114 (2014)

121. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: CauDEr: a causal-consistent
reversible debugger for Erlang. In: Gallagher, J.P., Sulzmann, M. (eds.) FLOPS
2018. LNCS, vol. 10818, pp. 247–263. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-90686-7 16

122. Laursen, J.S., Schultz, U.P., Ellekilde, L.: Automatic error recovery in robot
assembly operations using reverse execution. In: Intelligent Robots and Systems,
IROS 2015, pp. 1785–1792. IEEE (2015)

123. Lavado, G.J., Pighizzini, G., Prigioniero, L.: Minimal and reduced reversible
automata. J. Automata, Lang. Comb. 22(1–3), 145–168 (2017)

124. Lavado, G.J., Pighizzini, G., Prigioniero, L.: Weakly and strongly irreversible
regular languages. In: Automata and Formal Languages, AFL 2017. EPTCS, vol.
252, pp. 143–156 (2017)

125. Lavado, G.J., Prigioniero, L.: Concise representations of reversible automata. Int.
J. Found. Comput. Sci. 30(6–7), 1157–1175 (2019)

https://doi.org/10.1007/978-3-319-18812-6_5
https://doi.org/10.1007/978-3-319-18812-6_5
https://doi.org/10.1007/978-3-642-37036-6_21
https://doi.org/10.1007/978-3-642-37036-6_21
https://doi.org/10.1007/978-3-642-23217-6_20
https://doi.org/10.1007/978-3-642-23217-6_20
https://doi.org/10.1007/978-3-642-15375-4_33
https://doi.org/10.1007/978-3-642-36315-3_19
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1007/978-3-319-90686-7_16

Foundations of Reversible Computation 37

126. Lienhardt, M., Lanese, I., Mezzina, C.A., Stefani, J.-B.: A reversible abstract
machine and its space overhead. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE
-2012. LNCS, vol. 7273, pp. 1–17. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-30793-5 1

127. Mahler, K.: An unsolved problem on the powers of 3/2. J. Australian Math. Soc.
8(2), 313–321 (1968)

128. Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalization
transformation based on automatic derivation of view complement functions. In:
International Conference on Functional Programming, ICFP 2007, pp. 47–58.
ACM (2007)

129. McNellis, J., Mola, J., Sykes, K.: Time travel debugging: root causing bugs in com-
mercial scale software. CppCon talk (2017). https://www.youtube.com/watch?
v=l1YJTg A914

130. Medić, D., Mezzina, C.A.: Static VS dynamic reversibility in CCS. In: Devitt, S.,
Lanese, I. (eds.) RC 2016. LNCS, vol. 9720, pp. 36–51. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-40578-0 3

131. Medic, D., Mezzina, C.A., Phillips, I., Yoshida, N.: A parametric framework for
reversible pi-calculi. In: Workshop on Expressiveness in Concurrency and Work-
shop on Structural Operational Semantics, EXPRESS/SOS 2018. EPTCS, vol.
276, pp. 87–103 (2018)

132. Melgratti, H., Mezzina, C.A., Ulidowski, I.: Reversing P/T Nets. In: Riis Niel-
son, H., Tuosto, E. (eds.) COORDINATION 2019. LNCS, vol. 11533, pp. 19–36.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22397-7 2

133. Mezzina, C.A.: On reversibility and broadcast. In: Kari, J., Ulidowski, I. (eds.)
RC 2018. LNCS, vol. 11106, pp. 67–83. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-99498-7 5

134. Mezzina, C.A., et al.: Software and reversible systems: a survey of recent activities.
In: Ulidowski, I., et al. (eds.) Reversible Computation. LNCS 12070, pp. 41–59.
Springer, Cham (2020)

135. Mezzina, C.A., Koutavas, V.: A safety and liveness theory for total reversibil-
ity. In: Theoretical Aspects of Software Engineering, TASE 2017, pp. 1–8. IEEE
Computer Society (2017)

136. Mezzina, C.A., Pérez, J.A.: Reversible sessions using monitors. In: Workshop
on Programming Language Approaches to Concurrency- and Communication-
cEntric Software, PLACES 2016. EPTCS, vol. 211, pp. 56–64 (2016)

137. Mezzina, C.A., Pérez, J.A.: Causally consistent reversible choreographies: a
monitors-as-memories approach. In: Principles and Practice of Declarative Pro-
gramming, PPDP 2017, pp. 127–138. ACM (2017)

138. Mezzina, C.A., Pérez, J.A.: Reversibility in session-based concurrency: a fresh
look. J. Log. Algebr. Meth. Program. 90, 2–30 (2017)

139. Mikulski, �L., Lanese, I.: Reversing unbounded Petri nets. In: Donatelli, S., Haar,
S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 213–233. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-21571-2 13

140. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980). https://doi.org/10.1007/3-540-10235-3

141. Mogensen, T.Æ.: RSSA: a reversible SSA form. In: Mazzara, M., Voronkov, A.
(eds.) PSI 2015. LNCS, vol. 9609, pp. 203–217. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41579-6 16

142. Mogensen, T.Æ.: Reversible garbage collection for reversible functional languages.
New Gener. Compu. 36(3), 203–232 (2018)

https://doi.org/10.1007/978-3-642-30793-5_1
https://doi.org/10.1007/978-3-642-30793-5_1
https://www.youtube.com/watch?v=l1YJTg_A914
https://www.youtube.com/watch?v=l1YJTg_A914
https://doi.org/10.1007/978-3-319-40578-0_3
https://doi.org/10.1007/978-3-030-22397-7_2
https://doi.org/10.1007/978-3-319-99498-7_5
https://doi.org/10.1007/978-3-319-99498-7_5
https://doi.org/10.1007/978-3-030-21571-2_13
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-3-319-41579-6_16
https://doi.org/10.1007/978-3-319-41579-6_16

38 B. Aman et al.

143. Morita, K.: Theory of Reversible Computing. Monographs in Theoretical Com-
puter Science. An EATCS Series. Springer, Tokyo (2017). https://doi.org/10.
1007/978-4-431-56606-9

144. Morita, K., Harao, M.: Computation universality of one-dimensional reversible
(injective) cellular automata. IEICE Trans. E72(6), 758–762 (1989)

145. Morrison, D., Ulidowski, I.: Direction-reversible self-timed cellular automata for
delay-insensitive circuits. J. Cellular Automata 12(1–2), 101–120 (2016)

146. Mousavi, M.R., Reniers, M.A., Groote, J.F.: SOS formats and meta-theory: 20
years after. Theor. Comput. Sci. 373(3), 238–272 (2007)

147. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

148. Nishida, N., Palacios, A., Vidal, G.: Reversible term rewriting. In: Formal Struc-
tures for Computation and Deduction, FSCD 2016. LIPIcs, vol. 52. pp. 28:1–28:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

149. Nishida, N., Palacios, A., Vidal, G.: A reversible semantics for Erlang. In:
Hermenegildo, M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184,
pp. 259–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63139-
4 15

150. Nishida, N., Palacios, A., Vidal, G.: Reversible computation in term rewriting. J.
Log. Algebr. Meth. Program. 94, 128–149 (2018)

151. Nishida, N., Vidal, G.: Program inversion for tail recursive functions. In: Rewrit-
ing Techniques and Applications, RTA 2011. LIPIcs, vol. 10, pp. 283–298. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2011)

152. Nishida, N., Vidal, G.: Characterizing compatible view updates in syntactic bidi-
rectionalization. In: Thomsen, M.K., Soeken, M. (eds.) RC 2019. LNCS, vol.
11497, pp. 67–83. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
21500-2 5

153. Paolini, L., Piccolo, M., Roversi, L.: A certified study of a reversible programming
language. In: Types for Proofs and Programs, TYPES 2018. LIPIcs, vol. 69, pp.
7:1–7:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

154. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143
(2000)

155. Philippou, A., Psara, K.: Reversible computation in Petri nets. In: Kari, J., Uli-
dowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 84–101. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99498-7 6

156. Philippou, A., Psara, K., Siljak, H.: Controlling reversibility in reversing Petri
nets with application to wireless communications. In: Thomsen, M.K., Soeken, M.
(eds.) RC 2019. LNCS, vol. 11497, pp. 238–245. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-21500-2 15

157. Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in event struc-
tures. J. Log. Algebr. Meth. Program. 84(6), 781–805 (2015)

158. Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling
of the ERK signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012.
LNCS, vol. 7581, pp. 218–232. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36315-3 18

159. Phillips, I., Ulidowski, I., Yuen, S.: Modelling of bonding with processes and
events. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 141–
154. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38986-3 12

160. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. In: Aceto, L.,
Ingólfsdóttir, A. (eds.) FoSSaCS 2006. LNCS, vol. 3921, pp. 246–260. Springer,
Heidelberg (2006). https://doi.org/10.1007/11690634 17

https://doi.org/10.1007/978-4-431-56606-9
https://doi.org/10.1007/978-4-431-56606-9
https://doi.org/10.1007/978-3-319-63139-4_15
https://doi.org/10.1007/978-3-319-63139-4_15
https://doi.org/10.1007/978-3-030-21500-2_5
https://doi.org/10.1007/978-3-030-21500-2_5
https://doi.org/10.1007/978-3-319-99498-7_6
https://doi.org/10.1007/978-3-030-21500-2_15
https://doi.org/10.1007/978-3-030-21500-2_15
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/978-3-642-38986-3_12
https://doi.org/10.1007/11690634_17

Foundations of Reversible Computation 39

161. Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebr.
Program. 73(1–2), 70–96 (2007)

162. Pin, J.-E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS,
vol. 583, pp. 401–416. Springer, Heidelberg (1992). https://doi.org/10.1007/
BFb0023844

163. Pinna, G.M.: Reversing steps in membrane systems computations. In: Gheorghe,
M., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2017. LNCS, vol. 10725,
pp. 245–261. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73359-
3 16

164. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big
data classification. Phys. Rev. Lett. 113, 130503 (2014)

165. Reisig, W.: Petri Nets: An Introduction. EATCS Monographs on Theoretical
Computer Science, vol. 4. Springer, Heidelberg (1985). https://doi.org/10.1007/
978-3-642-69968-9

166. Rensink, A., Vogler, W.: Fair testing. Inf. Comput. 205(2), 125–198 (2007)
167. Sabry, A., Valiron, B., Vizzotto, J.K.: From symmetric pattern-matching to quan-

tum control. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803,
pp. 348–364. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89366-
2 19

168. Salo, V.: Groups and monoids of cellular automata. In: Kari, J. (ed.) AUTOMATA
2015. LNCS, vol. 9099, pp. 17–45. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-47221-7 3

169. Salo, V., Törmä, I.: A one-dimensional physically universal cellular automaton.
In: Kari, J., Manea, F., Petre, I. (eds.) CiE 2017. LNCS, vol. 10307, pp. 375–386.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58741-7 35

170. Schaeffer, L.: A physically universal cellular automaton. In: Innovations in The-
oretical Computer Science, ITCS 2015, pp. 237–246. ACM (2015)

171. Schordan, M., Oppelstrup, T., Jefferson, D., Barnes Jr., P.D.: Generation of
reversible C++ code for optimistic parallel discrete event simulation. New Gener.
Comput. 36(3), 257–280 (2018)

172. Schordan, M., Oppelstrup, T., Thomsen, M.K., Glück, R.: Reversible languages
and incremental state saving in optimistic parallel discrete event simulation. In:
Ulidowski, I., et al. (eds.) Reversible Computation. LNCS 12070, pp. 187–207.
Springer, Cham (2020)

173. Schultz, U.P., Axelsen, H.B.: Elements of a reversible object-oriented language.
In: Devitt, S., Lanese, I. (eds.) RC 2016. LNCS, vol. 9720, pp. 153–159. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40578-0 10

174. Selinger, P.: Dagger compact closed categories and completely positive maps. In:
Workshop on Quantum Programming Languages, QPL 2005. Electronic Notes in
Theoretical Computer Science, vol. 170, pp. 139–163 (2005)

175. Selinger, P.: A survey of graphical languages for monoidal categories. New Struc-
tures for Physics. Lecture Notes in Physics, vol. 813, pp. 289–355. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-12821-9 4

176. Slagle, J.R.: Automated theorem-proving for theories with simplifiers, commuta-
tivity and associativity. J. ACM 21(4), 622–642 (1974)

177. Sutner, K.: De Bruijn graphs and linear cellular automata. Complex Syst. 5(1),
19–30 (1991)

178. Terese: Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press (2003)

179. Tiezzi, F., Yoshida, N.: Reversible session-based pi-calculus. J. Log. Algebr. Meth.
Program. 84(5), 684–707 (2015)

https://doi.org/10.1007/BFb0023844
https://doi.org/10.1007/BFb0023844
https://doi.org/10.1007/978-3-319-73359-3_16
https://doi.org/10.1007/978-3-319-73359-3_16
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-319-89366-2_19
https://doi.org/10.1007/978-3-319-89366-2_19
https://doi.org/10.1007/978-3-662-47221-7_3
https://doi.org/10.1007/978-3-662-47221-7_3
https://doi.org/10.1007/978-3-319-58741-7_35
https://doi.org/10.1007/978-3-319-40578-0_10
https://doi.org/10.1007/978-3-642-12821-9_4

40 B. Aman et al.

180. Toffoli, T.: Computation and construction universality of reversible cellular
automata. J. Comput. Syst. Sci. 15(2), 213–231 (1977)

181. Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for
Modeling. MIT Press, Cambridge (1987)

182. Windridge, D., Mengoni, R., Nagarajan, R.: Quantum error-correcting output
codes. Int. J. Quantum Inf. 16(8), 1840003 (2018)

183. Windridge, D., Nagarajan, R.: Quantum bootstrap aggregation. In: de Barros,
J.A., Coecke, B., Pothos, E. (eds.) QI 2016. LNCS, vol. 10106, pp. 115–121.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52289-0 9

184. Yokoyama, T., Axelsen, H.B., Glück, R.: Towards a reversible functional language.
In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 14–29. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29517-1 2

185. Yokoyama, T., Axelsen, H.B., Glück, R.: Fundamentals of reversible flowchart
languages. Theoret. Comput. Sci. 611, 87–115 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-52289-0_9
https://doi.org/10.1007/978-3-642-29517-1_2
http://creativecommons.org/licenses/by/4.0/

	Foundations of Reversible Computation
	1 Introduction
	2 Category Theory
	2.1 Dagger Categories
	2.2 Inverse Categories
	2.3 Monads and Arrows for Reversible Effects

	3 Foundations of Reversible Programming Languages
	3.1 Language Cores
	3.2 Formal Semantics
	3.3 Compilation Principles
	3.4 Reversibilisation Techniques

	4 Term Rewriting
	4.1 Reversible Term Rewriting
	4.2 Application to Bidirectional Transformations

	5 Membrane Computing
	6 Process Calculi
	6.1 Reversing Process Calculi
	6.2 Controlled Reversibility
	6.3 Analysis Techniques

	7 Petri Nets
	8 Automata
	8.1 Finite Automata
	8.2 Pushdown Automata
	8.3 Finite State and Pushdown Transducers
	8.4 Queue Automata and Limited Automata
	8.5 Cellular Automata
	8.6 Turing Machines

	9 Quantum Formal Verification and Quantum Machine Learning
	10 Conclusion
	References

