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Abstract. The clinical manifestations of severe malaria are several and occur in different
anatomical sites. Both parasite- and host-related factors contribute to the pathogenicity of the
severe forms of the disease. Cytoadherence of infected red blood cells to the vascular endothelium
of different organs and rosetting are unique features of malaria parasites which are likely to
contribute to the vascular damage and the consequent excessive inflammatory/immune response of
the host. In addition to cerebral malaria or severe anaemia, which are quite common manifestation
of severe malaria, clinical evidences of thrombocytopenia, acute respiratory distress syndrome
(ARDS), liver and kidney disease, are reported. In primigravidae from endemic areas, life
threatening placental malaria may also be present.
In the following pages, some of the pathogenetic aspects will be briefly reviewed and then data on
selected and less frequent manifestation of severe malaria, such as liver or renal failure or ARDS
will be discussed.

Introduction. Malaria is a life-threatening disease
which in 2010 killed more than 600,000 individuals,
mainly children under 5 years of age, and pregnant
women.1 All the clinical symptoms of malaria are the
consequence of infection of human erythrocyte by
merozoites. Most of the fatal cases, which
predominantly occur in P. falciparum infections, are
due to severe anaemia or cerebral malaria, but different

clinical manifestations also exist and vary in severity
and outcome, depending on the parasite species, the
organ involved and the access to care.

P. falciparum differs from other human malarial
species in that infected red blood cells (IRBC) do not
remain in the circulation for the entire life cycle. After
24–32 hours, when young parasites mature from the
ring to the trophozoite stage, IRBC adhere to
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endothelial cells in the microcirculation of various
organs. This phenomenon, termed “sequestration”, is
believed to occur mainly to avoid splenic removal of
IRBC. Sequestration causes microcirculatory
obstruction, impaired tissue perfusion and
inflammatory cells activation and it is linked to the
severity of the disease.

At schizonts rupture, from 4 up to 36 daughter
merozoites, depending on the Plasmodium species, are
released into the circulation and invade fresh RBC to
perpetuate the asexual life cycle. At the same time, a
large amount of toxins and parasite products are also
released and cause the activation of the innate
immunity, the release of inflammatory mediators and
the symptoms associated with the malaria attack, such
as fever.

A combination of mechanical circulatory stress due
to sequestration and excess inflammatory response
contribute to the most severe manifestations of malaria
including, but not limited to, cerebral malaria or
anaemia. The present review will summarise some of
the pathogenetic aspects of severe malaria and then it
will report on selected and less frequent manifestation,
such as renal failure or acute respiratory distress
syndrome (ARDS).

Pathogenetic Characteristics of Severe Malaria.
Cytoadherence. Cytoadherence, the ability of parasites
to adhere to the vascular endothelium, was recognized
as early as 1892 by Marchiafava and Bignami.2 Mature
forms of parasites (asexual stage and gametocytes) can
adhere to the vascular endothelium of several organs
(lung, heart, brain, lung, liver, and kidney), the
subcutaneous adipose tissues and the placenta. This
feature of the disease in vivo has been related
exclusively to P. falciparum.3,4 However, sequestration
in vitro to some endothelial cell lines and placental
cryosections has also been seen in reticulocytes
infected with P. vivax.5

Parasite sequestration is thought to be the
pathological base of the severe manifestation of
malaria, including cerebral malaria.6 It causes blood
flow impairment leading to local hypoxia. It enhances
parasite replication and the sticking of IRBC to non-
infected red blood cells (rosetting, see below).
Moreover, when parasite sequester, the effects of
parasite toxins are more localized and also the
stimulation of the host immune response, which may
cause a focused production of inflammatory mediators
and tissue damage. As a consequence, both RBC and
IRBC become more rigid and less deformable.7

Sequestration is mostly mediated by mature parasite
forms, approximately 20 hours after RBC invasion.
The parasites produce new proteins that are exported to
the IRBC surface and increase the adhesiveness of

IRBC to the endothelium. During their 48-hour life
cycle, the parasites can remain sequestered for 24
hours in the deep microvasculature. In this manner,
they evade clearance by the spleen, and make the
diagnosis more difficult since they are not seen in the
peripheral blood.

Sequestration of P. falciparum has been attributed
to different class of molecules of parasite origin and
ligands present on the human endothelium. Among
those, the P. falciparum histidine-rich protein (PfHRP)
and the erythrocyte membrane protein 1 (PfEMP1),
have received significant attention. PfHRP is related to
the establishment of knobs, symmetric membrane
arrangements which appear on the surface of infected
RBC, while PfEMP1, a multimeric protein encoded by
the var (variant) gene3,4 protrudes from the knobs and
plays a major role in sequestration and thus virulence
(see BOX 1). To adhere to the endothelium, the
parasites first adhere, roll and then become firmly
attached to the endothelium adhesion molecules.
Among these molecules, ICAM-1, a major
sequestration receptor and involved in cerebral
sequestration serves as a rolling receptor. On the other
hand, CD36 gives stationary and stable adherence
under flow.8-10

Sequestration is also seen during gestational
malaria, when parasites adhere to the placenta.
PfEMP1 is again the main adhesion receptor which
adheres to the trophoblastic villous endothelium mainly
through chondroitin-4-sulfate (CSA) and other sugars
such as glycosaminoglycans and possibly hyaluronic
acid (HA). As discussed later, malaria in pregnancy
can be severe for mothers and induce fetal death
especially during the first pregnancy, when women
usually lack sufficient immunity against CSA-binding
parasites.11-14

Rosetting. Rosetting is one of the forms of
cytoadherence of late stages IRBC to non-parasitized
red blood cells and /or platelets.15 The IRBC ligand
involved in rosette formation is PfEMP1, and three are
the receptors associated with rosetting: complement
receptor 1 (CR1), heparan sulfate (HS), and the ABO
blood group.15,16 PfEMP1 has been shown to bind to
CR1, specifically at the C3b-binding site. The lectin-
like DBL-domain of PfEMP1 can make strong
adhesion with carbohydrate structures particularly A
blood group antigen, favoring rosettes formation.17 For
this reason, non-O blood groups are considered
significant risk factors for life-threatening malaria,
through the mechanism of enhanced rosette
formation.18,19

P. falciparum, P. vivax, and P. ovale are all able to
form rosettes,20,21 but only those caused by P.
falciparum have been associated with severe malaria,
and especially in African children they may enhance
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Box 1 - PfEMP1, a molecule for antigenic variation, adhesion and immune modulation

 P. falciparum erythrocyte membrane protein 1 (PfEMP1) is a multimeric protein encoded by a family of

roughly 60 variant (var) genes.4

 Each individual parasite expresses a single var gene at a time, maintaining the remaining var genes in a

transcriptionally silent state. Epigenetic factors control the exchanges in the expression of the var gene

generating antigenic variation of the IRBCs surface.4

 PfEMP1 is localized in the Maurer’s clefts, from where it traffics to the erythrocyte membrane, and on the

IRBC surface. Together with knob-associated histidine-rich proteins (HRPII), PfEMP1 forms protrusions,

known as knobs.133

 PfEMP1 is crucial for malaria virulence and pathogenesis.134

 PfEMP1 mediates the adhesion to the endothelium, so parasites avoid destruction by the immune system and

the spleen, and also their detection in the peripheral blood. The multiple adhesion domains are localized in the

extracellular portion of PfEMP1 which is recognized by host receptors. There are approximately 11 receptors

involved in adhesion of PfEMP1 to the endothelium. CD36, ICAM-1, chondroitin sulphate A (CSA) and

trombospondin are particularly important for sequestration; whereas CR1, the complement receptor is

involved in rosetting.15,135

microcirculatory obstruction.22 Rosetting has been
related with parasite multiplication rate in a model of
Saimiri sciureus.23 More recently, it has been shown
that 4-HNE, a biomembrane lipid peroxidation product
driven by haem iron of the malarial pigment can be
transferred from IRBC to normal RBC in rosettes
favouring their removal by macrophages.24 This could
partly explain the rapid loss of normal non parasitized
RBC in severe malaria anaemia.
Innate Immune Response. The immune response to the
parasite is complex and not completely understood, and
it is essentially both species and stage specific.25 The
activation of components of the innate immune system
is crucial to control parasite replication, contributing to
the subsequent elimination and resolution of the
infection.26 Neutrophils, monocytes/macrophages,
dendritic cells, natural killer (NK) cells, NKT cells,
and gamma T cells are all the cells of the innate
immune system in charge of controlling the early
progression of the disease through phagocytosis and/or
production of inflammatory mediators. Much of the
symptoms of malaria attacks such as fever, nausea,
headaches, and others are the consequences of the
inflammatory response orchestrated by the cells of the
innate immune system, stimulated by parasites or their
products at the rupture of the late stage infected
erythrocytes.25,27 An imbalance between the production
of pro- or anti-inflammatory cytokines, such as TNF-α, 
IL6, IL1β, or IL-10 or mediators, like nitric oxide, may 
contribute to the pathogenesis of the severe form of the

disease. Elevated levels of TNF-α are found in the 
serum of severe patients and have been correlated with
cerebral malaria (CM).28 In vitro, it has been found that
TNF-α enhances the expression of ICAM-1,29 which is
also augmented in brain vessels of CM patients.9

Evolutionarily conserved receptors, termed “pathogen
recognition receptors” (PRRs), are present on the cells
of native immunity and trigger the response upon the
recognition of specific parasite molecules called
“pathogen associated molecular patterns” (PAMPs).30

Malaria PAMPs include the protein anchor, glycosyl-
phosphatidyl inositol (GPI), or hemozoin (malaria
pigment). PRRs related to malaria are the membrane
bound Toll-like receptors (TLRs), the cytosolic
receptors (such as NALP3, inflammasomes), and
soluble receptors such as MBL.31-34 For example, GPI
released by IRBC at shizonts rupture stimulates the
production of pro-infiammatory TNF-α by 
macrophages via the recognition of TLR2 and partly of
TLR4 in a MyD88 dependent way.31

Specific Immune Response. Malaria is an important
cause of morbidity, but not everyone infected with the
malaria parasite becomes seriously ill or dies. In areas
of stable endemicity, repeated exposure to the parasite
leads to the acquisition of specific immunity, which
restricts serious problems to young children; malaria in
older subjects causes a relatively mild febrile illness.
However, individuals with no previous experience of
malaria become ill on their first exposure to the
plasmodium parasite. They develop a febrile illness
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which may become severe and in a proportion of cases
may lead to death.35,36

Immunity to malaria is provided by innate
mechanisms, as we summarized above, and
subsequently by the development of acquired
immunity. Following repeated infections, people living
in malaria endemic areas gradually acquire
mechanisms, which helps limiting the inflammatory
response to the parasite that causes the acute febrile
symptoms. Sterilizing immunity is never achieved.
Parasites have evolved to maintain a balanced
relationship with their human hosts. In this sense they
can partially escape from the host effector mechanisms,
while hosts are able to develop partial immunity
against the parasite. This type of immunity requires
repeated infections, takes years to develop and usually
lasts shortly. Natural acquired immunity is called
premunition since low parasite burden often persists in
the presence of circulating antibodies to the various
stages, in the absence of clinical disease. In children
whithout circulating antibodies to the parasite,
premunition is lower. The poor and slowly developing
immune response to malaria is partly due to parasite
immune evasion strategies: antigenic polymorphism,
shedding of parts of parasite proteins, cross-reactive
antigen epitopes of developmental stages, prolonged
exposure to endemic malaria and limited
immunogenicity of antigens. In stable endemic areas, a
heavy burden of morbidity and mortality falls on young
children. Children born to immune mothers appear to
be relatively immune to malaria for a period.26,37 This
is conferred by the prenatal or postnatal transfer of
protective antibodies from mother to child. The
acquired immunity is mediated by specific antibodies
to several conserved and polymorphic proteins, and to
the highly variable protein PfEMP1 expressed by the
parasite at the trophozoites and schizonts stages and
exported on the surface of infected erythrocytes.38

Specific Complications of Severe Malaria Infection.
Anaemia. Anaemia is one of the most common causes
of morbidity and mortality in malaria infection
particularly in pregnant women and in children.39

Pathogenesis of malarial anaemia has been intensively
studied, even if it is not completely understood; hereby
we summarise some of the pathogenetic aspects.
Malarial anaemia could be acute or chronic; in holo-
endemic areas chronic malarial anaemia is more
common. Acute malarial anaemia could occur after
massive erythrocytes lysis due to elevate parasitemia or
to drug-induced or immune haemolysis.40

The potential mechanisms contributing to malarial
anaemia can be divided into two categories: increased
destruction of parasitized and un-parasitized
erythrocytes (immune-mediated lysis, phagocytosis,

splenic sequestration) and decrease of RBC production
(dyserythropoiesis and bone marrow suppression,
inadequate reticulocyte production, effects of
inflammatory cytokines, effects of parasite factors).
Co-infection with bacteremia, HIV-1 and hookworm,
malnutrition and repeated malarial infections in holo-
endemic countries may also contribute to decrease
haemoglobin levels.39,41-43

Parasitized red cells rupture caused by plasmodium
cycles and clearance of deformed parasitized and un-
parasitized erythrocytes are the principal causes of
malarial anaemia. Phospholipid asymmetry, membrane
rigidity and reduced deformability are the mechanisms
involved in the premature removal of un-parasitized
red cell.7,41,44 Phagocytosis and complement activation
are the principal mechanisms of non-specific immune
mediated clearance of erythrocytes in malaria
infection.45 Moreover, uninfected red cells membrane
proteins may be altered by reactive oxygen species
(ROS) and other factors, becoming target for auto-
antibodies.4 It has been suggested that the spleen may
play a double role in malaria infection: on the one hand
it could contribute to severe anaemia, by excess
removal of IRBC and uninfected RBC; on the other
hand it may protect from severe cerebral malaria.46

Dyserythropoiesis plays an important role in the
pathogenesis of anaemia; examination of bone marrow
from children with severe anaemia showed
hypercellularity, mild to normal erythroid hyperplasia
and abnormal features of late erythroid progenitors.
Hemozoin and its phagocytosis by bone marrow
macrophages has been proposed to cause dys-
erythropoiesis either through direct accumulation in the
bone marrow and generation of reactive toxic species
or activation of the innate immune response.42

The immune response is central in the pathogenesis
of malarial anaemia; parasitized red cells, hemozoin
and malarial antigens activate monocyte and
lymphocyte response. Pro-inflammatory and anti-
inflammatory mediators, including TNF-α, IFN-γ, IL-
23 and IL-1, chemokines and growth factor are
produced and contribute to anaemia. On the contrary,
IL-12 and IL-10 seems to be protective cytokines since
low levels are found in severe malarial anaemia.40, 43

Macrophage migration inhibiting factor (MIF) is
associated with severe anaemia and bone marrow
suppression.47 Nitric oxide is an inhibitor of
erythropoiesis.40,48

Erythropoietin (EPO) levels are increased during
malaria anaemia, but erythroid progenitors response is
not adequate, particularly during chronic malaria
infection, resulting in low reticulocytosis.43 It has been
shown in a rodent model that exogenous EPO could
stimulate splenic erythroblasts. However, their
maturation is impaired due to altered iron metabolism
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and haemoglobin production.49 Ineffective
erythropoiesis, erythrophagocytosis and iron
delocalisation are the most important causes of
reticulopenia.

Pro-inflammatory cytokines play an important role
also in iron delocalisation pathway of malarial
anaemia. TNFα induces re-localisation of ferroportin, 
an important protein abundant in the reticulo-
endothelial system that mediates macrophage iron
release and intestinal iron absorption. Relocalisation of
ferroportin induces decrease of iron absorption and
release from macrophage cells;45 hepcidin, a protein
released during chronic disease, also induces reduction
of ferroportin and its levels are increased during severe
malaria anaemia.50

STAT6, a member of signal transducer and
activator of transcription family proteins, seems also to
be involved in malarial anaemia through the activation
of the regulatory cytokines, in particular IL-4 and IFN-
γ, resulting in erythropoietic suppression during blood 
stage malaria.51,52 A recent review found an interesting
correlation between malarial anaemia and
micronutrient malnutrition: vitamin A and E, iron, zinc,
riboflavin and folate deficiency may play a role in
worsening the anaemia mediated by alteration of
immunity, dyserythropoiesis and iron metabolism 39.
It has also been suggested that high catecholamine
concentration could alter the functions of the
erythrocyte membrane, providing an additional
erythrocyte clearance mechanism.53

Thrombocytopenia. Thrombocytopenia is very
common in malaria, usually during the early stage of P.
falciparum and P. vivax infections. Incidence is high
both in children and in adults.54-56 Thrombocytopenia
in pregnant women is not well documented, but a
recent study performed in Thailand showed that
platelet counts were lower in pregnant than in non-
pregnant women.57 The pathogenesis of malaria
thrombocytopenia is complex and may be related to
coagulation disturbances, splenomegaly and platelet
destruction by macrophages, bone marrow alterations,
antibody-mediated platelet destruction, oxidative stress
and platelets aggregation. These processes are well
described in a recent review.58 A study performed in
Indonesia showed that patients with P. falciparum and
P. vivax malaria had lower platelet count, higher von
Willebrand factor (VWF) concentration, lower
ADAMTS13 activity and ADAMTS13 antigen
concentrations.59 Higher VWF seems to correlate with
platelet binding, leading to thrombocytopenia. In
contrast, another study demonstrated that sGP1b, the
external domain of platelet receptor for VWF,
increased early in the blood of malaria patients thus
preventing excessive platelet adhesion.60 Despite
thrombocytopenia is very common, hemorrhagic

events are rare and usually are associated with severe
thrombocytopenia or disseminated intravascular
coagulation (DIC).61-63 Further study are needed to
understand the relationship between malaria, platelet
counts and hemorrhagic events.
ARDS. Deep breathing, respiratory distress and
pulmonary oedema are some of the clinical feature
defining severe malaria according with WHO
classification.64 In adults and pregnant women, rather
than children, acute lung injury (ALI) and acute
respiratory distress syndrome (ARDS) are the most
common clinical presentation burdened by an elevated
mortality rate as shown in a recent study performed in
India where severe P. falciparum malaria mortality rate
was 35,4% and mortality was principally due to shock,
acute renal failure, seizure and ARDS.65 Despite ARDS
is mostly observed as a complication of P. falciparum
infection, case reports due to P. vivax,66-69 P. ovale70

and P. knowlesi71,72 were also published. Malaria
associated ARDS due to P. vivax caused three maternal
deaths in a cohort of 221 patient in India during one
year of observation.66 ARDS can occur before or after
specific treatment.67 P. knowlesi, the fifth plasmodium
species infecting humans, mostly in Southeast Asia,
may cause life threatening diseases, as well.73 A
prospective study conducted in Malaysia demonstrated
that the most frequent complication of P. knowlesi
infection was respiratory distress.72 Malaria is presently
considered one of the most common risk factor of
ARDS and acute lung injury (ALI) in the tropics74 and
the second cause of ARDS after sepsis.75

Little is known about the pathogenesis of malaria
associated ALI/ARDS. Inflammatory mediators and
increased endothelial permeability may play an
important role, while parasite sequestration may take a
minor role. Pulmonary manifestations of
uncomplicated malaria were analysed by Anstey et al.
showing that patients frequently have subclinical
impairment of lung function, such as small airways
obstruction, impaired alveolar ventilation, reduced gas
exchange and increased pulmonary phagocytic
activity.76 All these features underline the activation of
inflammatory pathways and could explain part of the
pathogenetic mechanisms of respiratory distress
occurring during severe malaria. Studies with rodent
malaria models were performed to understand the
pathogenetic mechanisms of ALI/ARDS. Epiphanio et
al. in DBA/2 mice infected by P. berghei ANKA 77
observed that 60% of mice had dyspnea, airways
obstruction and hypoxemia; pleural effusion,
pulmonary hemorrhagies and oedema were also found
as pathological findings, demonstrating the role of
inflammation in ALI development. Moreover, high
levels of vascular endothelial growth factor (VEGF)
were found in mice with ALI, supporting the
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importance of increased vascular permeability in
malaria respiratory failure. Another study78 which
utilized DBA/2 mice infected with P. berghei K173,
showed that proteins and inflammatory cells mainly
CD4+ and CD8+ lymphocytes, neutrophils and
monocytes accumulate in the lungs of infected mice.
These results were confirmed by P.E. Van den Steen et
al.,79 who also measured the cytokines and chemokines
associated with ARDS, showing an increased
expression in the lungs of TNF-α, IL-10, IFN γ, 
CXCL10 and CXCL11, as well as monocyte and
neutrophil chemo-attractant chemokines (CCL2, KC).
IRBC were are also observed in the lung vessels, but at
a lower extent compared with the massive
sequestration in the brain.80 Infected mice lungs had an
increased water content, demonstrating the
development of oedema;78,79 this could be related to the
decreased expression of epithelial sodium channel,
ENaC, due to hypoxia, resulting from malaria
associated anaemia, or to TNFα mediated down-
regulation.78 In a rodent model malaria associated
ARDS, dexamethasone inhibited the infiltration of
macrophages and CD8 T cells into the lungs,
suggesting that adjunct therapy with anti-inflammatory
drugs could also be useful in the clinical setting.79

Most of the studies with P. falciparum are based on
in vitro models or post mortem observations. It was
shown in vitro that P. falciparum merozoite proteins
could increase endothelial permeability, while P.
falciparum IRBC did not show the same properties
suggesting that the effects of the parasite on the
pulmonary endothelium are probably mediated by the
activity of Src-family kinases.81 Morphologic changes
were noted in the proteins of the tight junctions and
adherent junction in association with increased
endothelial permeability and development of
pulmonary oedema.81 A post mortem study performed
in children with cerebral malaria demonstrated that
sequestration of P. falciparum -IRBC occurs in the
lungs, even if to a lesser extent than in the brain, skin
or intestine.80

Different pathological presentations of ARDS were
observed among the different species of human
malaria: the greatest severity and frequency of cases
are due to P. falciparum and could be partially
attributed to the sequestration and rosetting of infected
RBC in the pulmonary microcirculation;67 heavy
parasitaemia and WBC agglutinates were associated to
ARDS in P. vivax malaria.66 L. Price et al. suggested
that the pathogenesis of lung injury by P. falciparum
include cytokine-induced damage or direct effects of
sequestration of parasitized erythrocytes, while ARDS
caused by P. vivax may be due principally to
dysregulation of cytokines production.69 Elevated
parasitemia in ARDS in P. knowlesi infection suggests

parasite-specific effects that increase pulmonary
capillary permeability,71 but hypoxemia and metabolic
acidosis may also contribute.72

Liver involvement. According to the World Health
Organization liver dysfunction is an uncommon
occurrence in malaria, while jaundice is not unusual.
The incidence of jaundice and liver dysfunction in P.
falciparum malaria varied from 5.3% to 62% and from
2.5% to 21%, respectively, in different reports,82-84

while malarial hepatitis is rare in P. vivax infection.85

Case-fatality rate in malaria-related hepatic failure is
elevated, up to 40%84-86 when high parasite density is
associated with jaundice and liver dysfunction.87 Liver
is involved in malaria at two stages: during the pre-
erythrocytic cycle and the erythrocytic phase. The first
step is linked to the binding of the merozoite
circumsporozoite protein CSP-A and TRAP protein to
the hepatocytes via the heparan sulphate
glycosylaminoglycans GAG88 and promotes minimal
liver damage. In the erythrocytic phase, jaundice is a
common remark and it is directly caused by the
infection (malarial hepatitis, intravascular hemolysis of
parasitized RBC, septicemic hepatitis), or by indirect
causes (microangiopathic hemolysis associated with
DIC, G6PD-related hemolysis, antimalarial drug
induced-hemolysis) or completely unrelated
(coexisting acute viral hepatitis, underlying chronic
hepatitis).88 Intravascular hemolysis of parasitized and
non parasitized RBC causes an increase of
unconjugated bilirubinemia with mild to moderate
jaundice;89 conjugated hyperbilirubinemia indicates
hepatocyte dysfunction. The pathogenesis of hepatic
dysfunction is not completely known; reduction in
portal venous flow as a consequence of microocclusion
of portal venous branches by parasitized erythrocytes,
intrahepatic cholestasis due to reticuloendothelial
blockage and hepatic microvilli dysfunction,
suppression of bilirubin excretion due to effect of
parasitemia or endotoxemia or metabolic acidosis,
apoptosis and oxidative stress are all mechanisms
involved in hepatic damage.88,90 Histopathological
findings reported in literature are: congestion of
hepatocytes, swollen hepatocytes, centrizonal necrosis,
Kupffer cell hyperplasia, deposition of brown malarial
pigment, portal infiltration with lymphocytes, steatosis,
parasitized RBC, cholestasis, spotty and submassive
necrosis.88-91 These evidences demonstrate
inflammatory as well as direct plasmodial effects in the
damage to hepatocytes.
Kidney involvement. Kidneys in malaria are involved in
two different manners: acute and chronic diseases.
Acute renal failure (ARF) is one of the most
challenging diseases in tropical countries and malaria
plays an important epidemiological role.92-95 The
mortality due to malaria ARF is high.96 A study
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performed in Yemen showed that malaria was the first
cause of death in patient with ARF.97 Malaria acute
renal failure (MARF) is more common in non-immune
adults and in older children.98 MARF is mostly
associated to P. falciparum infection and is more
frequent in low transmission areas;98-101 nevertheless
MARF could be caused also by P. vivax.100,102 P.
malariae causes chronic and progressive
glomerulopathy, known as quartan malaria
nephropathy (QMN); only few cases of MARF caused
by P. malariae has been published.103

Quartan malaria nephropathy (QMN) is frequently
seen in African children and it is clinically associated
with oedema and hypertension; urine analysis shows
often proteinuria and microhematuria.101,104

Pathogenesis of QMN is linked to subendothelial
deposits of immune complexes containing IgG, IgM,
C3 and in the 25-33% of cases also malaria
antigens.101,104 It is thought to be the consequence of
the activation of TH2 type T lymphocytes. The
pathogenesis may also include genetic and acquired
factors, such as autoimmunity, co-infection with
Epstein-Barr virus and malnutrition.104 Immune
complexes deposition provokes glomerular damage,
resulting in proliferative glomerulonephritis; the
pathology, initially focal, becomes diffuse and
progressive, reaching sclerosis. Different
histopatological patterns revealed by renal biopsy
induced some authors to conclude that the association
between P. malariae infection and renal involvement
was only coincidental.101 P. falciparum acute renal
failure is more common in adults; its pathogenesis is
complex and it includes mechanical and immunologic
factors, volume depletion, hypoxia, hyperparasitemia
and other factors.98,101,105 High parasite density was
associated to acute renal failure.101,87 Parasitized
erythrocyte sequestration was found in kidneys of
adults who died from severe P. falciparum malaria;106

sequestration of parasitized erythrocytes is lower in the
kidney than in the brain.98,106 A study performed in
Mali, showed that rosetting is present in all severe
malaria clinical forms, including acute renal failure.22

Hemolysis, causing endothelial activation and
hemodynamic alteration, can lead to acute tubular
necrosis and acute interstitial nephritis.104

Hypoperfusion, due to the loss of liquids and to the
absence of volume restoration, leads to renal
ischemia.98 TNFα, reactive oxygen species and 
inducible nitric oxide also play an important role in
determining the haemodynamic alteration.104

Mononuclear cell infiltration was reported in
glomerular and in peritubular capillaries of adults with
ARF, while immune complexes were not reported.106 It
was hypothesized that the release of malaria antigens
activates monocyte cells, to release proinflammatory

cytokines and activate TH1 cell mediated response,
causing acute interstitial nephritis.104 The role of
cytokines such us INFγ, IL-1α, IL-6, GM-CSF was 
studied in murine malaria infection and an association
of nephritis with up-regulation of pro-inflammatory
and dysregulation of anti-inflammatory cytokines was
found.107

Rarely, acute renal failure has been associated to
rhabdomyolysis in P. falciparum and P.vivax
infections, probably due to the sequestration of
parasitized red cells in the skeletal capillaries and
consequent vessels occlusion.108 In the pathogenesis of
ARF related to rhabdomyolysis, the myoglobin
nephrotoxic effect play the principal role;
hypovolemia, hypotension, fever, acidosis and the use
of non-steroidal anti-inflammatory drugs may
worsened the renal function.109,110

Black water fever (BWF), a rare but severe
complication of severe malaria, is characterized by
fever, intravascular haemolysis with haemoglobinuria,
dark urines and often acute renal failure.111-113

Haemoglobin release during massive haemolysis
causes renal impairment. Drugs as quinine,
halophantrine and mefloquine, and G6PD deficiency,
have been suggested to be the trigger of BWF.
Placenta involvement. Malaria during pregnancy is
associated to high morbidity and mortality both for the
mother and the child.114-117 Mother could develop
severe malaria and severe anemia, and is much
exposed to obstetric adverse events.115,117-119 Placental
malaria has been associated with elevated risk of
miscarriage, preterm delivery, intrauterine growth
retardation, low birth weight, fetal anemia, congenital
malaria and perinatal mortality.114,116,120,121 Placental
malaria is quite common during P. falciparum
infection, less common in P. vivax malaria; P.
falciparum and P. vivax placental mixed-infection can
occur.122 P. vivax placental malaria may lead to the
same adverse events as P. falciparum infection, even if
with milder consequences.121-124

In high endemic areas, while adults are less
susceptible, pregnant women are commonly
susceptible to malaria infection because pregnancy
causes a transient depression of cell mediated
immunity. Age under 25 years and primiparity are both
risk factors for developing placental malaria;115,120

moreover the risk increases in the first and second
trimester of pregnancy. A meta-analysis carried out in
four sub-Saharan African countries demonstrated a
reduction of placental malaria in multi-gravidae
women with blood group 0; however, statistically
significance were demonstrated in only two of these
studies.125

Alterations of materno-fetal blood exchange are the
basis of placental malaria. During infection, parasitized
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red cells both from P. falciparum and P. vivax are
sequestered within the placenta and they accumulate in
intervillous spaces; trophozoite and schizont forms also
accumulate in the placenta.13 The presence of IRBC
activates mononuclear cells which release chemokines
to recruit additional phagocytic cells in the intervillous
spaces. Elevated TNF α and IL-10 levels were also 
described and were associated with poor pregnancy
outcomes.13 IRBC, leukocyte infiltration, fibrin and
hemozoin depositions contribute to increase the
thickness of the trophoblast basement membrane and to
alter the intervillous and perivillous spaces, causing
reduction of oxygen and nutrient transport to the
fetus.13,126

P. falciparum parasitized erythrocytes adhere to
chondroitin sulphate A expressed in placenta; thus,
placenta selects for strains of P. falciparum with a
CSA-binding phenotype. Primigravidae who have not
been exposed to P. falciparum CSA-binding phenotype
are still susceptible to placental infection, while
multigravidae have developed antibodies during the
first successful pregnancies.115 P. vivax parasitized
erythrocytes can also cytoadhere to the placenta but
their mechanism is not clarified, yet.5,124

Molecular studies demonstrate that IRBC binding to
chondroitin sulphate A (CSA), expressed on the apical
membrane of the placental syncytiotrophoblast
epithelium, is mediated by VAR2CSA antigen, a
variant of the PfEMP1 family proteins. There are
multiple genes encoding for different VAR2CSA
antigens; a study performed in Cameroon shows that
the parasites infecting pregnant women living in high
transmission areas have an increased copy number of
var2csa genes compared to non-pregnant women. The
multiplicity of var2csa-type genes confers to P.
falciparum parasites a greater capacity for antigenic
variation and evasion of immune response.127 A recent
study describes a new flow cytometry-based adhesion
assay that use apical epithelial plasma membrane
vesicles and IRBC isolated from patients.128 Data from
this study showed that the vesicles prepared from
various placental regions could adhere to IRBC in
different percentage but with the same adhesion
intensity; moreover, parasite molecules, other than

VAR2CSA, can also mediate placental adhesion,
suggesting that a different molecular pathway can
occur. These findings were confirmed by another study
that showed that transcripts from var genes, different
from var2csa, were found in 67% of placental isolates,
revealing the importance of other adhesion molecules
during pregnancy.129

Complement activation may play an important
pathogenetic role during placental malaria. C5a, a
factor derived from the complement cascade, is
increased in peripheral blood and placental blood of
pregnant women with malaria compared with pregnant
women without malaria infection.130 Factors derived
from the activation of the complement cascade are
likely to have a role in inflammation during placental
malaria, in particular they could stimulate the release
of pro-inflammatory cytokines and chemokines by
monocytes and neutrophils.130,131 Moreover, C5a could
play an important role in dysregulation of angiogenesis
since it seems to stimulate monocyte production of the
anti-angiogenic factor sFlt-1, a soluble variant of
VEGFR-1. The sFlt-1 binds to and sequesters placental
growth factor and VEGF, leading to vascular and
placental alteration.130,131 Muehlenbachs et al.
performed a study in Tanzanian women showing that
the FLT1 genotype was associated to pregnancy loss,
low birth weight, placental inflammatory gene
expression and high Flt1 levels.132

Conclusions. The pathogenicity of severe malaria
infection is complex and it is regulated by both parasite
and host factors. Cytoadherence of IRBC to the
vascular endothelium and rosetting are unique features
of malaria parasites which are likely to contribute
substantially to the vascular damage and the
consequent excessive inflammatory/immune response
of the host. This can occur in many different organs, a
feature that can partly explain the complexity of the
clinical manifestations occurring in severe malaria. In
this context, adequate clinical management of malaria
patients requires first an accurate diagnosis, then
appropriate antimalarial treatment, associated with
adjunct supportive therapies which need to be adapted
to the different clinical presentation of the disease.
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