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ABSTRACT
The recognition of physical activities using sensors on mobile devices has been mainly addressed with
supervised and semi-supervised learning. The state-of-the-art methods are mainly based on the analysis of
the user’s movement patterns that emerge from inertial sensors data. While the literature on this topic is
quite mature, existing approaches are still not adequate to discriminate activities characterized by similar
physical movements. The context that surrounds the user (e.g., semantic location) could be used as additional
information to significantly extend the set of recognizable activities. Since collecting a comprehensive
training set with activities performed in every possible context condition is too costly, if possible at all,
existing works proposed knowledge-based reasoning over ontological representation of context data to
refine the predictions obtained from machine learning. A problem with this approach is the rigidity of
the underlying logic formalism that cannot capture the intrinsic uncertainty of the relationships between
activities and context. In this work, we propose a novel activity recognition method that combines semi-
supervised learning and probabilistic ontological reasoning. We model the relationships between activities
and context as a combination of soft and hard ontological axioms. For each activity, we use a probabilistic
ontology to compute its compatibility with the current context conditions. The output of probabilistic
semantic reasoning is combined with the output of a machine learning classifier based on inertial sensor
data to obtain the most likely activity performed by the user. The evaluation of our system on a dataset with
13 types of activities performed by 26 subjects shows that our probabilistic framework outperforms both a
pure machine learning approach and previous hybrid approaches based on classic ontological reasoning.

INDEX TERMS activity recognition, probabilistic reasoning, mobile computing

I. INTRODUCTION

Nowadays, mobile devices are increasingly capable of sens-
ing and reasoning. This continuous evolution enables the
development of intelligent context-aware applications also
based on the recognition of human activities [1].

In mobile computing, activity recognition has been mainly
tackled with supervised machine learning approaches on
inertial sensors data [2] and more recently with semi-
supervised learning [3]. While those data-driven approaches
generally lead to high recognition rates considering few phys-
ical activities, their effectiveness on complex and context-
dependent activities is still unclear. Moreover, discriminating

activities with similar movement patterns is still a challenge.
For instance, activities like walking and taking the stairs, or
standing and standing on a bus are easily confused between
them by purely statistical methods based on inertial sensors.

The context that surrounds the user (e.g., semantic loca-
tion, weather, traffic condition, speed, etc.) is valuable infor-
mation to mitigate these issues [4], [5]. However, especially
considering semi-supervised learning settings, it is not real-
istic to acquire a comprehensive labeled dataset that includes
the large number of possible context conditions in which
activities can be performed. Moreover, since the number of
context variables may be high and dynamic, the resulting
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machine learning model would be extremely complex.
The common-sense knowledge about the relationships be-

tween context and activities can be represented through for-
mal models (e.g., ontologies) [6]. Hence, hybrid approaches
have been proposed to refine and improve the recognition
rate of purely data-driven solutions using semantic reason-
ing on context data. [7]. Following this promising research
direction, we recently proposed CAVIAR [8], a hybrid semi-
supervised and knowledge-based activity recognition frame-
work. The main drawback of those hybrid approaches is that
they are based on knowledge-based models that use rigid
rules to model only the most common scenarios to exclude
from the final prediction activities performed in unlikely
(but still possible) context conditions. For instance, CAVIAR
assumes that the user can not perform certain activities in
certain semantic locations (e.g., running in an indoor en-
vironment). Such rigid rules inevitably lead to recognition
errors when confronted with unusual but entirely possible
real-life scenarios. Indeed, the domain of human activities
is complex and the relationships between a type of activity
and the context in which it can be performed are inherently
uncertain [9].

The above-mentioned limitations of hybrid knowledge-
based and data-driven methods highlight an open research
problem: how to include uncertainty when modeling se-
mantic relationships between activities and context? How to
use this probabilistic knowledge to significantly improve the
recognition rate obtained by state of the art machine learning
methods?

In this paper, we tackle this research problem by proposing
ProCAVIAR (Probabilistic Context-aware ActiVe and Incre-
mental Activity Recognition), a novel activity recognition
framework that combines semi-supervised learning and prob-
abilistic context-aware reasoning. An incremental machine
learning classifier is in charge of inferring from inertial sen-
sor data a candidate probability distribution over the possible
activities. A probabilistic knowledge-based reasoning engine
is then used to refine the probability distribution considering
context-data. The output is a context-refined probability dis-
tribution. ProCAVIAR also uses active learning to continu-
ously improve the semi-supervised machine learning model.

Differently from CAVIAR [8], that uses rigid ontological
reasoning for context-refinement, ProCAVIAR proposes an
original application of probabilistic ontologies, obtaining a
more realistic model of common knowledge by capturing the
probabilistic relationships between activities and the context
in which they are performed.

Our contributions are threefold:

• We propose a novel framework to model context data
based on a probabilistic ontology.

• We propose a technique that combines machine learning
and probabilistic reasoning to overcome known issues
of activity recognition based on machine learning.

• We evaluate our system through extensive experiments,
showing the potential benefits of ontological probabilis-

tic reasoning in hybrid systems for sensor-based human
activity recognition.

II. RELATED WORK
Activity recognition using mobile devices has been mainly
addressed with supervised machine learning methods [1], [2],
[10]. The major drawback of those approaches is that they
require the acquisition of a large amount of labeled data to
initialize the recognition model.

For this reason, semi-supervised learning is emerging as
a powerful tool to initialize the recognition model with few
labeled data points and to continuously improve it over
time [3], [11]–[13]. Among the many semi-supervised tech-
niques (e.g., self-learning, co-training), active learning is one
of the most effective [14]–[17]. Existing semi-supervised
activity recognition methods in mobile computing mainly
recognize a restricted number of physical activities using
inertial sensors data. Moreover, discriminating activities with
similar motion patterns is still challenging.

The information about the context that surrounds the user
(e.g., semantic location, weather condition, time of the day,
etc.) can be used to significantly expand the set of considered
activities and to better discriminate activities with similar
motion patterns that are generally executed in different con-
text conditions (e.g., sitting and sitting on a bus) [8].

However, the acquisition of a comprehensive training set
where activities are performed in all the possible context
conditions is prohibitive. The abstraction ability of common-
sense knowledge can be used to generate formal models rep-
resenting the relationships between context and activities [5].
Several approaches have been proposed in the literature to
formally represent context data [9]. Ontologies have been
preferred over other formalisms mainly for their expres-
sive power and automatic reasoning capabilities [6], [18],
[19]. There are several well-known ontologies that propose
a formalism for context and activities, like SOUPA [20],
MetaQ [21], and the so called foundational ontology [22].
In our work we extend the ActivO ontology proposed in [5].

The combination of ontological context reasoning tools
and machine learning algorithms on inertial sensors data has
been explored before. Banos et al. [23], proposed the integra-
tion of machine learning, used to derive low-level activities,
with ontological reasoning, used to infer higher-level context
based on the derived activities and other context sources
(e.g., mood, semantic location). ProCAVIAR has a different
goal since it is focused on improving the predictions, but
we foresee an interesting application to that framework: our
ontological probabilistic approach could replace the rigid
rules of the standard ontology in [23], gaining the ability to
deal with uncertainty, and hence making it more flexible.

Ontological reasoning has also been used to integrate
context data derived from machine learning processes in
complex industrial IoT scenarios [24]. This is a typical appli-
cation of ontologies, particularly useful when data is gathered
by different sources and organizations. However, this type of
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combination of the two technologies differs from ours, since
its focus is not on improving the activity recognition rate.

Closer to our approach are previous works on hybrid
methods, in which the machine learning prediction is refined
by knowledge-based reasoning over context data [5], [8].
Indeed, semantic reasoning can exclude from the prediction
those activities that are highly unlikely according to the
current context (e.g., if the user is at the park, it is highly
unlikely that she is brushing teeth). The major issue of those
hybrid solutions is the rigidity of the ontological formalism
that is based on logical rules that despite offer the power of
abstraction, struggle to capture the probabilistic nature of the
relationship between context and activities.

There is a vast literature on logic formalisms that sup-
port some form of uncertainty reasoning. Some efforts also
specifically for applications in the area of pervasive comput-
ing [25]. Considering description logics as the underlying
logics of ontologies, an integration with fuzzy logic has
been proposed to express confidence values for each axiom
[26]. ProCAVIAR is not based on fuzzy reasoning but on
probabilities, since it associates to each possible activity the
probability of occurring in certain context conditions.

One of the well known formalisms that combine logic with
probability theory is Markov Logic Network (MLN) [27].
MLN can model both hard and soft constraints using weights
associated to each rule. Generally, the weights associated
to soft constraints are learned from labelled data. MLNs
have been proposed for smart-home activity recognition [28].
However, they are less suitable than ontologies to model the
complex hierarchical relationships between context data and
activities.

More recently, probabilistic ontologies have been pro-
posed. Examples of such ontologies are PR-OWL [29], [30],
DISPONTE [31], [32] and Log-linear Description Logics
[33]. Such tools combine the expressiveness of description
logics with probabilistic reasoning, and hence they are po-
tentially suitable for ProCAVIAR. PR-OWL relies on OWL2
as a high-level overlay for multi-entity Bayesian networks.
Its major drawback is that extending an existing ontology
into a PR-OWL one requires significant engineering efforts,
since it requires to map ontological concepts to probabilstic
entities in the underlying bayesian network. Since re-using
and extending existing ontologies is desirable in our domain,
PR-OWL is not suitable. DISPONTE extends description
logics with probabilistic reasoning using Binary Decision Di-
agrams (BDDs) to compute the probability of a query based
on the explanations generated by the reasoner. However,
DISPONTE is based on the closed-world assumption and it
considers axioms as independent and identically distributed
random variables, which is unrealistic in our domain. Log-
linear description logics integrate description logics with
probabilistic log-linear models to compute a probability dis-
tribution over coherent and consistent worlds. ProCAVIAR
relies on log-linear description logics, since it is the most
suitable probabilistic modeling tool for our target domain.

To the best of our knowledge, the only application of prob-

abilistic ontologies to activity recognition has been to smart-
home activities [34]. In this work, we consider different types
of sensors and activities. Moreover, the way ProCAVIAR
represents knowledge and exploits the reasoning capabilities
of the ontology is also very different.

III. OVERALL ARCHITECTURE OF PROCAVIAR
In this section, we describe the overall architecture of Pro-
CAVIAR, as depicted in Figure 1.

FIGURE 1: Overall architecture of our system

Inertial sensors data (e.g., accelerometer, gyroscope, and
magnetometer) coming from multiple mobile devices are
processed by the Incremental Statistical Model that relies on
an incremental semi-supervised classifier to produce a candi-
date probability distribution over the possible activities. The
mobile devices also dynamically acquire context data both
exploiting built-in sensors (e.g., GPS, luminosity sensor) and
by querying publicly available Web services (e.g., Google
APIs to obtain the user’s semantic location). Note that, in the
literature, “context” is a very broad term used to define a sit-
uation at different levels of abstractions [35]. For the sake of
this work, with context data we denote the information about
the environment that surrounds the user (e.g., user’s semantic
location, temperature, the time of the day) while the user is
interacting with the system. Context data are analyzed by
the Ontological Probabilistic Model. This module generates
confidence values on the possible activities given the current
context. These confidence values are then used to refine
the statistical prediction. Finally, the Prediction Confidence
Evaluation module adopts an active learning strategy based
on a dynamic threshold. When the confidence on the refined
prediction is lower than this threshold, a query is triggered to
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the user in order to obtain the ground truth. Upon receiving
usable feedback, the module sends a new labeled sample to
the incremental statistical model.

More details about the Incremental Statistical Model and
the Prediction Confidence Evaluation module can be found
in [8]. In the following, we focus on the Ontological Proba-
bilistic Model.

IV. ONTOLOGICAL PROBABILISTIC MODEL
The core of ProCAVIAR is the Ontological Probabilistic
Model, implemented through a probabilistic ontology which
models relationships between activities and context data.
Differently from a standard ontology, it takes into account the
intrinsic uncertainty that characterizes these relationships.
Context data obtained from the mobile devices are auto-
matically translated into ontological facts, which are then
added to the ontology as a description of the current context
condition. Then, probabilistic reasoning is in charge of in-
ferring, given the current context situation C, a confidence
value conf(C,Ai) for each activity Ai ∈ A. Intuitively,
conf(C,Ai) estimates the “semantic compatibility” of Ai

being performed by the user whose current context is C.
Finally, these confidence values are used to refine the proba-
bility distribution h(fv) derived from inertial sensors data.

The context-refined probability distribution is then for-
warded to the Prediction Confidence Evaluation module.

1) Probabilistic ontology modeling

Our framework combines soft and hard constraints to model
the relationships between activities and context. Hard con-
straints capture context conditions that should always be
satisfied to consider a given activity as possible. For instance,
Walking is an activity that requires the user to have a
positive speed. On the other hand, soft constraints are useful
to capture context conditions that are likely to occur when
an activity is performed, but not necessarily they have to
be verified; this can be captured by associating a certain
degree of confidence to the axiom. Intuitively, the highest
the confidence and the more value will have the presence of
that context for the likelihood of the corresponding activity
to occur. For instance, it is more likely that the activity
Running is carried out in a sunny day rather than in a
stormy day. Hence, the confidence value associated with
the soft constraint “running can be performed on a sunny
day” should be high, while the one associated with the soft
constraint “running can be performed on a stormy day”
should be lower.

In ProCAVIAR, we modified the publicly available OWL2
ActivO ontology [5] into a probabilistic ontology based on
log-linear description logic [36]. A log-linear description
logic is characterized by a CBox (i.e., Constraint Box) de-
fined as C = (CD, CU ), where CD is a set of hard axioms
and CU = {(c1, wc1), (c2, wc2), ..., (cn, wcn)} is a set of soft
axioms. Each soft axiom ci is associated with a real-valued
weight wci .

The inclusion of an axiom in CD and CU is mutually
exclusive. CD is also assumed to be coherent and consistent
(i.e., it is not possible to derive inconsistencies). A log-linear
description logic relies on a log-linear probability distribution
over the coherent and consistent subsets of the CBox. Each
subset of the CBox represents a world that, if coherent and
consistent, is associated with a probability computed using
the weights of its soft axioms. Incoherent and/or inconsistent
subsets of the CBox are considered as impossible. More de-
tails about log-linear description logics can be found in [36].

In our probabilistic ontology, activities are explicitly
grouped according to context conditions. Examples of these
groups could be “activities that can be performed indoor” or
“activities that can be performed at a positive speed”. We
refer to these groups as activity characterizations. Clearly,
an activity may belong to more than one characterization.
Characterizations provide an abstraction layer that improves
the ontology readability. Moreover, characterizations can be
used to define mutually exclusive sets of activities. This
approach also makes it possible to easily add new context
conditions by creating a new characterization and binding it
with the desired activities. Figure 2 and Figure 3 show how
characterizations are represented in our ontology.

FIGURE 2: A subset of the characterizations in our ontology

FIGURE 3: Examples of descriptions of characterizations in
our ontology

Each characterization is modeled as an equivalence axiom
which describes a specific context condition that an activity
should satisfy. Therefore, each activity can be modeled in
terms of set membership to specific context conditions by
using subsumption or disjunction axioms with the character-
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ization classes.

In order to understand how activities are modeled in our
ontology, consider Running. It is clear that a person has to
move with a positive speed in order to perform this activity.
However, other context conditions related to Running should
be modeled considering soft constraints:

• outdoor/indoor: even if it is more likely that a person
is running outside, it is also possible to run inside a
building;

• speed: a person may run with different speed rates and
each rate has its own probability. Intuitively, a normal
running speed rate is the most likely one for this activity,
slow running (e.g., jogging) is slightly less probable,
while running fast is the least likely one;

• height variation rate: a person may run on a flat or
inclined road. Hence, users may run at varying height
variations. The most likely scenario is probably running
on flat roads.

Due to these considerations, a possible probabilistic model-
ing of Running is depicted in Figure 4, using subsumption
and disjunction relationships with the corresponding charac-
terizations. The hard rules are recognizable by the absence
of the yellow OWLAnnotation marker, which is enabled
on the soft rules. Indeed, the specific log-linear logic that we
adopted in our system associates a weight to each soft axiom
by using an OWL2 annotation called confidence.

FIGURE 4: Description of Running using hard and soft
axioms. The soft axioms are the ones associated with the
yellow OWLAnnotation marker. Clicking on that marker
it is possible to obtain the weight value.

Weighted subsumption axioms are used to describe uncer-
tainty about the different values that a context condition can
have. As we show in this example, our ontology includes a
weighted subsumption for each possible speed rate related to
Running.

Note that, for instance, the soft constraint of Figure 4
related to low speed can be formalized as follows:

Running v Act_Performed_With_SPEED_LOW : w1

where w1 ∈ R is the weight associated with this axiom. Later
in this section we will discuss how these weights are actually
computed. The weight influences the veracity of other axioms
related to the same context property (e.g. Running can
be performed at medium/high speed rates). Therefore, when
modelling weighted axioms, we need to pay attention to
how a specific weighted axiom influences the others in the
reasoning process.

In our model, weighted disjunctions are used to represent
uncertainty about context conditions considered both in hard
rules and soft rules. For instance, if we model using a
weighted subsumption axiom that Running may be per-
formed indoor, then Running and other outdoor activities
would be associated with different output probability values
given the same context conditions. This would happen be-
cause of the semantics of log-linear DL, which would take
into account also the indoor subsumption axioms during the
reasoning process of the current user’s context, that may
specify that the user is outdoor. On the other hand, weighted
disjunctions express a degree of incompatibility between an
activity and specific context information. In this case, the
axiom would be taken into account during the reasoning
process only if the current context contains that information.
In this example, the weighted disjunction can be formalized
as follows:

Running u Act_Performed_With_LOCATION_Indoor v ⊥: w2

where w2 ∈ R is the weight associated with the disjunction.

2) Axioms’ Weights

In log-linear description logics, the weight associated with a
soft axiom takes values in R. In the literature, those weights
are generally learned from labeled data. In our domain,
the acquisition of a comprehensive annotated dataset that
includes activities performed in a wide variety of context
conditions is prohibitive. In this work, we associate with each
axiom a probability value p ∈ [0, 1] based on common-sense
knowledge on context and activities. This knowledge should
not necessarily come from the knowledge engineer and do-
main experts but it may be extracted semi-automatically in
several ways, including:

• Proposing a survey to a large number of users;
• Scraping information about context and activities from

the Web.

For example, suppose that, according to the common-
knowledge, the activity Running is not very likely when
performed in indoor environments. Hence, according to
common-sense knowledge, our system associates the prob-
ability value 0.3 to the soft axiom “running can be performed
indoor”, while 0.7 to the soft axiom “running can be per-
formed outdoor”.

Note that directly using probability values as weights
associated with soft axioms is not a good choice given
the underlying log-linear probability distribution. Hence, as
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proposed in other works [37], [38], we use the logit function
to map each probability value p to a real number as follows:

logit (p) = log (p)− log (1− p) = log

(
p

1− p

)
The advantage of using logit is that it can approximate
probability values for a log-linear model. Note that logit
is not defined at 0 and at 1. When p = 1 or p = 0
we consider the axiom as a hard constraint. In the former
case, it is a context condition that is always required for
the corresponding activity; in the latter case, it is a context
condition that should never occur.

3) Probabilistic reasoning
ProCAVIAR uses the previously described probabilistic on-
tology to compute, given the current context data, a confi-
dence value for each activity. First, context data is translated
into ontological facts: class instances and relationships that
populate the assertional part of the ontology. Once the on-
tology has been extended with facts about the current con-
text conditions, it is processed by the probabilistic reasoner
ELOG [36]. ELOG is in charge of computing marginal infer-
ence to obtain, for each activity Ai, a confidence value. Each
confidence value conf(Ai, C) estimates the compatibility of
Ai with the current context condition C.

The marginal inference algorithm implemented in ELOG,
called MisSampler (Minimal Inconsistent Subset Sampler),
analyzes the entire ontology to generate a posterior proba-
bility value for each soft axiom according to the log-linear
description logic semantics. In order to compute a posterior
probability value for each activity possibly performed by
the user, our ontology includes dedicated soft axioms. In
particular, there is an additional soft axiom for each activity.
Each one of these axioms is declared as subclass of the
corresponding activity entity with 0 as default confidence
value. According to the log-linear DLs semantics, the pos-
terior probability of these axioms is 0.5 if they do not conflict
with other axioms. Indeed, without conflicts, the posterior
probability of an axiom c with weight wc is defined by
alogit(wc) where alogit(R) → (0, 1) is the logit inverse
function. Figures 5 and 6 show those additional soft axioms
and their relationships with the rest of the ontology.

FIGURE 5: Probabilistic terminological overlay

FIGURE 6: CandidateActivity and Prob-Running classes

The output of the marginal inference algorithm is a vector
of confidence values:

confidences(C) = 〈c1, c2, . . . , cn〉

where C is the input context data and ci ∈ R+ is the
confidence value conf(Ai, C) associated to the activity Ai ∈
A. Note that conf(C) is not a probability distribution over
the activities. Each ci is a posterior probability value com-
puted by the underlying log-linear probability distribution
over coherent and consistent ontologies. Hence, these values
should be considered as confidence values associated with
the activities given the current context condition. Since we
use the default value 0 for the probabilistic axioms in the
ontology, the value of each ci is in the range [0, 0.5] (due
to alogit as we previously discussed).

Given a confidence value ci:

• ci = 0.5 reveals that the context satisfies the hard rules
related to Ai without the involvement of probabilistic
axioms;

• 0 < ci < 0.5 reveals that the context satisfies the hard
rules of Ai but some soft axioms were used in the in-
ference process, thus decreasing the output confidence.
The more soft axioms are involved, the lower the output
confidence;

• ci = 0 reveals that the context does not satisfy at
least one hard constraint for Ai. Therefore, according to
our ontology, the activity is impossible in that specific
scenario.

4) Refined activity prediction
The confidence values inferred by ELOG are used to re-
fine the probability distribution obtained from the Incre-
mental Statistical Model on inertial sensor data. In partic-
ular, given the probability distribution 〈p1, p2, . . . , pn〉 and
confidences(C) = 〈c1, c2, . . . , cn〉 such that Ai is an activity
label, pi is the probability associated to Ai by the statistical
model and ci is the ontological confidence value of Ai given
the current context condition, we compute the following
vector:

v = 〈p1 ∗ c1, p2 ∗ c2, . . . , pn ∗ cn〉

Hence, confidence values are used as weights associated to
the probability values. Finally, the vector v is normalized in
order to obtain a probability distribution over the possible
activities:

predictions = 〈P1, P2, . . . , Pn〉
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such that
∑n

i=1 Pi = 1 and Pi ∈ [0, 1]. This probability dis-
tribution is the output of the Ontological Probabilistic Model
and is forwarded to the Prediction Confidence Evaluation
module.

V. EXPERIMENTAL EVALUATION
A. DATASET
In order to evaluate the effectiveness of ProCAVIAR, we used
the dataset collected in [8]. To the best of our knowledge,
there is no other dataset with rich contextual information that
can be exploited by ProCAVIAR. The considered activities
are the following: walking, running, standing still, lying,
sitting still, stairs up, stairs down, elevator up, elevator down,
cycling, moving by car, sitting on transport, standing on
transport and brushing teeth. Those activities were executed
by 26 volunteers in different context conditions, including
working at the office, going around in the city (Milan),
driving, using public transportation, cycling, and staying at
home. For each user, the dataset includes inertial sensor data
and context data collected from a smartphone in the front
pocket and a smartwatch on the wrist. Overall, the dataset
includes 9 hours of recorded activity data (∼ 350 activity
instances). More details about this dataset can be found in [8].

B. SIMULATING UNUSUAL SCENARIOS
The dataset that we use to evaluate our system does not
include activities executed in context conditions that are un-
likely but not impossible in realistic scenarios. For instance,
the Running activity was never executed in indoor environ-
ments and/or with lower speed rates (e.g., jogging). Another
example is the Stairs up and Stairs Down activi-
ties, that were never executed outdoor despite it is entirely
possible to find stairs outside. Consider a rigid knowledge-
based approach to model context data, like the one proposed
in [8], where most of the uncommon context conditions
for an activity are considered as impossible. Using such a
rigid approach in realistic scenarios would negatively impact
on the recognition rate. Since we want to quantitatively
show that our probabilistic reasoning framework overcomes
these drawbacks, we slightly modified the dataset in order
to incorporate unusual context scenarios. To the best of our
knowledge, there is no public dataset where activities are
performed in a wide variety of usual and unusual context
conditions.

We implemented a probabilistic simulator for context data
which is based on the considered dataset. Hence, we replaced
the original context data with simulated context data. For
each activity class in the dataset, our simulator considers:

• context information which characterizes the activity re-
gardless of the scenario (i.e., context data needed to
satisfy the hard constraints of the ontology);

• a probability distribution over the context data that may
be relevant for estimating the probability for the activity
(i.e., context data captured by soft constraints in the
ontology).

Our simulator relies on a probabilistic representation of
the common knowledge of the activity domain to generate
possible scenarios for each activity class. For each activity
instance in the dataset, the simulator generates, based on
the label, a scenario that includes context data related to
hard constraints and some of the context data related to
soft constraints. The latter are sampled from a probability
distribution.

For instance, consider the activity Walking. Based on
common-sense, our simulator incorporates the following
probabilistic knowledge:

1) it is very common that users walk slowly (80% of
probability), while they sometimes walk faster (20%
of probability);

2) in the majority of the cases, users walk on flat surfaces,
hence with no height variation (70% of probability),
while they can walk ascending/descending paths with
a lower probability (30% of probability);

3) Walking can be performed indoor or outdoor with equal
probability.

For each activity instance, our simulator generates context
data by sampling from these probability distributions. Con-
tinuing the example of Walking, a wide variety of context
scenarios can be generated, like the following ones:

• Scenario A: {low speed, no height variation, indoor
location}

• Scenario B: {low speed, positive small height variation,
outdoor location}

• Scenario C: {medium speed, no height variation, in-
door location}

• Scenario D: {medium speed, negative small height
variation, outdoor location }

Intuitively, scenario A is the most common one for Walking
and it would be frequently generated by our simulator. The
other examples of scenarios are least common, so they would
be rarely generated by the simulator.

C. RESULTS
In the following, we present the results of ProCAVIAR eval-
uated on the dataset presented in Section V-A with context
data simulated as described in Section V-B. The probability
values associated to soft axioms in the ontology used for the
experiments have been chosen as a result of an internal small
survey. In order to evaluate the effectiveness of our technique
with respect to alternative approaches, we considered two
additional methods. The former does not rely on any kind of
semantic refinement procedure and it is called Data-driven
approach: it combines the incremental activity recognition
module and the prediction confidence evaluation module
without applying context-refinement. Note that Data-driven
approach can be considered as a solid baseline, since it is the
standard approach in the literature for activity recognition on
mobile devices [1]. The latter is the CAVIAR method [8], that
uses a state-of-the-art context-refinement procedure based on
standard (deterministic) ontologies. This approach does not
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take into account the intrinsic uncertainty and incompleteness
of common knowledge, and it excludes from the prediction
based on inertial sensors those activities that are very un-
likely when considering the current context conditions. To
the best of our knowledge, there are no other works in the
literature that use context data to achieve the same goal. In
order to guarantee a fair comparison, in our evaluation we
consistently used the same hyper-parameters and classifier
proposed in [8].

We performed leave-one-subject-out cross validation to
evaluate the recognition rate of our system and the ones of
the baselines. Table 1 shows the results in terms of overall F1
score).

Data-driven CAVIAR Pro
Activity approach [8] CAVIAR

Elevator up 0.0 0.95 0.95
Elevator down 0.27 0.94 0.94
Moving by car 0.78 0.81 0.81
Brushing teeth 0.77 0.77 0.82

Running 0.98 0.80 0.98
Sitting still 0.94 0.98 0.99

Going upstairs 0.50 0.63 0.86
Going downstairs 0.51 0.67 0.83

Cycling 0.95 0.95 0.97
Standing still 0.84 0.95 0.97

Walking 0.76 0.84 0.94
Sitting transport 0.31 0.86 0.90

Standing transport 0.48 0.94 0.97
Avg F1 0.63 0.86 0.92

TABLE 1: Recognition rate (F1 score) of ProCAVIAR com-
pared with alternative approaches

Our results confirm that context data has a significant
impact on the overall recognition rate. Most importantly, the
probabilistic context refinement implemented in ProCAVIAR
significantly outperforms the baseline methods reaching an
overall F1 score of 0.92. Thanks to its probabilistic per-
spective, our method can recognize activities performed in
unusual scenarios, considered as impossible by the determin-
istic reasoning approach. Looking closely at the results, some
of the activities related to the highest improvements are Go-
ing downstairs, Going upstairs, Walking, SittingTransport,
StandingTransport and BrushingTeeth. For these activities,
our simulator generated a wide range of unusual scenarios,
thanks to a higher number of combinations of context data
with respect to other activities. Thus, the dataset contains
more "unusual samples" for those activities respect to the
others, which are characterized by a smaller range of possible
scenarios.

Considering the solution based on deterministic reason-
ing, it is possible to observe a significant decrease in the
recognition rate of Running. Indeed, while this activity
can be reliably recognized only by analyzing inertial sensors
data, the deterministic semantic refinement often considers it
inconsistent considering unusual scenarios. For instance, the
deterministic ontology in [8] considers as impossible the fact
that Running can be carried out indoor, since it is unlikely.

Our method can overcome these problems thanks to soft
axioms.

Besides the recognition rate, a crucial evaluation parameter
is the number of questions triggered by the system, since it
has a significant impact on usability. Figure 7 shows how
both ProCAVIAR and Deterministic reasoning generates a
significantly lower number of questions (respectively 6% and
8%) compared to No context (22%).

FIGURE 7: Percentage of triggered queries of ProCAVIAR
compared with alternative approaches

ProCAVIAR slightly decreases the number of user ques-
tions with respect to Deterministic reasoning. Hence, on
average, our probabilistic context refinement method further
reduces the uncertainty on the output probability distributions
compared to the deterministic solution.

In order to evaluate how the recognition rate and the
number of triggered questions evolve over time, we use the
evaluation method proposed in [39]. We classify each data
sample of the dataset (considering all 26 subjects) with the
current model and, depending on the prediction’s confidence,
we update the recognition model. The classification’s output
(i.e., the most likely activity), and the corresponding ground
truth are collected in sliding windows of 800 samples with an
overlap of 75% to periodically compute the overall F-1 score
and the percentage of triggered questions. Samples coming
from different users are randomly interleaved. Figure 8 shows
the evolution of the F-1 score and the number of questions
of ProCAVIAR with respect to the baselines. Compared to
No Context, both Deterministic Reasoning and ProCAVIAR
quickly reach high recognition rates and a significantly lower
number of questions. ProCAVIAR significantly outperforms
Deterministic Reasoning, showing a faster learning curve.
On the other hand, the number of questions generated by
ProCAVIAR is only slightly lower than the ones generated
by the deterministic approach, thus reflecting the results
presented in Figure 7.

As we mentioned in Section V-A, to the best of our knowl-
edge there are no other datasets with rich context data that
can be used to directly evaluate our context-aware method.
Nonetheless, we decided to perform additional experiments
on a well known public benchmark for activity recognition:
the PAMAP2 dataset [40]. This dataset only includes inertial
sensors data gathered from multiple mobile devices. The set
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(a) F1 score

(b) percentage of questions

FIGURE 8: Evolution of the recognition model over time.
Considered activities: Running, Sitting, Cycling, Standing,
Walking, Elevator up, Elevator down, Going Upstairs, Going
Downstairs, Brushing Teeth, Moving by car, Sitting trans-
port, Standing transport

of target activities is quite rich and includes the following: ly-
ing still, sitting still, standing still, walking, running, cycling,
nordic walking, going upstairs, going downstairs, vacuum
cleaning, ironing, rope jumping. From the experimental point
of view, we compared the Data-driven component of Pro-
CAVIAR with a state-of-the-art method based on deep learn-
ing [41]. Simlarly to our previous experiments, we performed
a leave-one-subject-out cross-validation. Table 2 shows that
the machine learning module of ProCAVIAR outperforms
the baseline confirming that we build our refinement on
competitive machine learning techniques.

While we could not quantitatively evaluate the effective-
ness of the refinement obtainable by the Ontological Proba-
bilistic Model on the PAMAP2 dataset for the lack of context
data, in the following we explain how additional context
information could be used by ProCAVIAR to further improve
the recognition rate. We first analyzed the confusion matrix of
our Data-driven approach on the PAMAP2 dataset depicted
in Figure 9.

A first observation concerns the activities Going Upstairs
and Going Downstairs that have a lower recognition rate

than others, and are confused among themselves. Since these
activities are also part of our dataset, the reader can see in
Table 1 the improvement that could be achieved by proba-
bilistic ontological reasoning. By looking at the confusion
matrix, we also note that the activities Sitting still and Lying
still are often confused by the classifier. Since Lying still
is mostly performed in those indoor environments that have
beds or sofas (e.g., home environment, hotel rooms, etc.), by
considering this knowledge and the semantic location of the
user, an ontology-based refinement would be able to improve
the recognition rate by excluding that activity as incompatible
when the semantic location is some outdoor space. However,
even if much less likely, this activity can also be performed
in other scenarios, for instance in a park or on the beach
on a sunny day (i.e., a weather condition that favors leisure
time outside). Hence, ProCAVIAR would be more flexible,
defining probabilistic knowledge about semantic locations,
time (e.g., it is more likely to lie during the night while
sleeping) and weather conditions (e.g., it is less likely to be
lying in the park during a rainy day). Similarly, this type
of probabilistic reasoning can be applied to other activities
that appear to be confused from the matrix, like Running
and Rope jumping; Ironing and Standing still. There are clear
limitations to this approach when activities can be performed
in very similar context conditions, like it may be the case for
Standing still and Sitting still.

Our data-driven LSTM ensembles
Activity approach [41]

Lying still 0.89 0.97
Sitting still 0.83 0.92

Standing still 0.86 0.4
Walking 0.97 0.97
Running 0.95 0.97
Cycling 0.96 0.99

Nordic walking 0.98 0.97
Going upstairs 0.84 0.83

Going downstairs 0.86 0.81
Vacuum cleaning 0.92 0.76

Ironing 0.93 0.89
Rope jumping 0.87 0.76
Avg F1 Score 0.90 0.85

TABLE 2: The results of our Data-driven approach on the
PAMAP2 dataset compared to a state-of-the-art approach
based on deep learning

VI. CONCLUSION AND FUTURE WORK
In this paper we presented ProCAVIAR, a hybrid real-time
activity recognition framework based on semi-supervised
learning and probabilistic knowledge-based reasoning. Our
method applies machine learning algorithms on inertial sen-
sors data to obtain a candidate probability distribution over
the activities possibly carried out by the users. Then, a
probabilistic ontology that captures probabilistic relation-
ships between context data and activities is in charge of
refining the candidate prediction using available context data
(e.g., the semantic location of the user, its speed, weather
conditions, etc.). Thanks to active learning, ProCAVIAR can
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FIGURE 9: The confusion matrix obtained by our Data-
driven approach on the PAMAP2 dataset.

continuously improve the semi-supervised classifier, which
is initialized only with a limited set of labeled examples.

Differently from existing solutions based on a rigid formal-
ism, ProCAVIAR takes advantage from probabilistic reason-
ing to capture the intrinsic uncertainty of context modeling.
A preliminary evaluation shows that ProCAVIAR actually
mitigates the problems of hybrid ontology based solutions
while increasing the advantage of hybrid solutions over
purely statistical approaches.

This work only represents a preliminary investigation of
the effectiveness of using probabilistic logics in context-
aware and hybrid activity recognition systems. We foresee
several promising research directions.

First, a critical aspect is the setting of weights for the soft
axioms determining the influence of context on activities. We
plan to investigate how to populate the probabilistic ontology
in a semi-automatic fashion, by extracting knowledge about
context and activities from external sources. For instance,
some works proposed to extract information from textual
description [42] and images [43] of activities from the Web.
Those works were mainly focused on building models for
smart-home activity recognition.

Beside uncertainty on the association of context with ac-
tivities, a probabilistic ontology may also capture the fact
that context data may have an associated confidence value.
Indeed, it is not always advisable to completely trust input
context data (e.g., geographical positioning, as well as se-
mantic place identification, can have different levels of ap-
proximation and reliability). Including uncertainty on input
data has the potential of making our system more robust with
respect to inaccurate information.

Finally, we aim to study personalization aspects. Each user
may have her personal habits, and hence personal context
situations. Incrementally adapting the probabilistic ontology
to each user would allow our system to learn personalized

contexts and hence improving the accuracy and scalability of
our approach.
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