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The damping or attenuation coefficient of sound waves in solids due to impurities scales with the
wavevector to the fourth power, also known as Rayleigh scattering. In amorphous solids, Rayleigh
scattering may be enhanced by a logarithmic factor although computer simulations offer conflicting
conclusions regarding this enhancement and its microscopic origin. We present a tensorial replica
field-theoretic derivation based on heterogeneous or fluctuating elasticity (HE), which shows that
long-range (power-law) spatial correlations of the elastic constants, is the origin of the logarithmic
enhancement to Rayleigh scattering of phonons in amorphous solids. We also consider the case
of zero spatial fluctuations in the elastic constants, and of power-law decaying fluctuations in the
internal stresses. Also in this case the logarithmic enhancement to the Rayleigh scattering law can
be derived from the proposed tensorial HE framework.

1 Introduction
Amorphous solids exhibit anomalous thermal and vibrational
properties at low temperature. Thanks to improved scattering
experiments, as well as numerical simulations, recent years have
witnessed important achievements in our understanding of glassy
materials. One interesting property, as reported in1, is that long-
wavelength phonons are more strongly attenuated in glasses than
in ordinary crystalline solids, with an attenuation coefficient that
scales with wavenumber k as ∼ −kd+1 lnk (in dimension d), thus
with a logarithmic enhancement compared with the well known
Rayleigh scattering law ∼ kd+1, whose validity has never been
questioned in the last fifty years of studies of sound attenuation
in amorphous materials2.

To be more specific, a compilation of many experiments with
X-ray and light scattering demonstrates that the wavenumber de-
pendence of the longitudinal sound attenuation coefficient, ΓL(k)
is in general divided into three regimes3–11: (1) ΓL(k) ∼ k2 for
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low k; (2) ΓL(k) ∼ k4 for an intermediate k regime; and (3)
ΓL(k)∼ k2 for large k. It has been proven that the k2 to k4 transi-
tion for sound attenuation in a large frequency regime is mainly
harmonic. In contrast, the k2 dependence in the low-frequency
regime was already clearly related to viscous attenuation caused
by anharmonicity. Most computer studies address the sound at-
tenuation problem at zero temperature in order to remove anhar-
monic effects and thus isolate the effect of disorder. In particu-
lar, regardless of system size, a recent numerical study of 2D sys-
tems reveals that the logarithmic correction to the cubic scaling,
Γλ (k)∼−k3 lnk (λ = L,T stands for longitudinal and transverse)
emerges in the boson peak (BP) regime, while it disappears as the
wavenumber approaches the continuum limit, where Γλ (k) ∼ k3

is recovered12. Authors in1 even revisited data in experimental
systems to confirm the attenuation coefficient indeed corresponds
to the enhanced −kd+1 lnk law.

To rationalise the observed logarithmic correction to the
Rayleigh law, one interpretation is to invoke the existence of cor-
related inhomogeneities of the elastic constants within the frame-
work of fluctuating or heterogeneous elasticity (HE), yet neither
quantitative nor qualitative arguments have been presented13–18.
Also, the possible relation between the logarithmic correction to
the Rayleigh law and the long-range nature of elastic modulus has
been questioned in12,19. In particular, in19 simulations results in-
dicate that the log enhancement to Rayleigh scattering does not
correlate with fluctuations in the elastic constants, but appears,
instead, to be strongly correlated with spatially heterogeneous
internal stresses. Finally, a recent analysis in Ref.20 argues that
HE is unable to predict the logarithmic enhancement.
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In this paper, by developing a fully tensorial replica field theory
for athermal amorphous systems with power-law decay in elas-
tic constant correlations (or in stress fields), we reveal the origin
of the enhanced phonon attenuation, especially where the loga-
rithmic enhancement is prompted. The analytical theory shows
that the logarithmic enhancement is either due to the long-range
power-law correlations of elastic constants21,22 or (as shown in
the Appendix B) to long-range power-law correlations of the in-
ternal stresses (with no fluctuations in the elastic constants)23,24,
which is the key ingredient in our framework leading to the pre-
diction of the logarithmic enhancement. Some previous works
dealing with mean-field theory confirm the Rayleigh scattering
law without the logarithmic factor. In those works, there is
no power-law decay in correlations of elasticity25–29. We will
mainly consider systems with similar elastic properties as in1, in
an athermal regime where scattering is purely harmonic (no vis-
cous/anharmonic dissipation involved). However, such systems
usually have coupled internal longitudinal and transverse prop-
agators: the explicit form of damping is thus not as clearly de-
fined30. Hence, the present work demonstrates that, contrary to
claims of Ref.20, heterogeneous elasticity (HE) in the fully tenso-
rial formulation developed here for the first time is indeed able
to recover the anomalous Rayleigh scattering observed in simula-
tions. In our analysis we will work essentially within the linear
acoustic dispersion relation regime.

2 Formalism

Throughout this paper, we focus on 2D systems. All results can be
generalized to 3D case, by letting α,β ,κ,χ = x,y,z go through full
Cartesian components and specifying bond orientation through
the pair of angles φ ,θ : ni j = (cosφi j sinθi j,sinφi j sinθi j,cosθi j). In
elastic media, deformations of a generic material point (or a par-
ticle) are expressed in terms of microscopic displacements u, de-
fined as the current position of the particle at time t, r(r̊, t) minus
its initially position located at r̊, i.e. u = r(r̊, t)− r̊. In the absence
of body forces and assuming spatially uniform density ρ, the La-
grangian form of the elastic wave equation can be written as1

ρ
∂ 2uα (r̊)

∂ t2 =
∂

∂ r̊β

[
Sαβκχ (r̊)

∂uκ (r̊)
∂ r̊χ

]
(1)

with
Sαβκχ (r̊) =Cαβκχ (r̊)+δ

ακ
σ

β χ (r̊) (2)

where Cαβκχ and σβ χ are the elastic constants and the Cauchy
stress in the reference configuration, respectively. Greek sub-
scripts refer to Cartesian coordinates and δ ακ denotes the Kro-
necker delta. We note that, with the pair interaction Vi j, Cαβκχ

i j =

hi jnα
i jn

β

i jn
κ
i jn

χ

i j where ri j is the interatomic distance, ni j is the unit
vector pointing from i to j and hi j = V ′′i j(ri j)r2

i j −V ′i j(ri j)ri j
31.

Prime denotes the derivative with respect to distance. The sec-
ond term on RHS in Eq. (2) involves the pair contributions to
the internal stress field and hence carries long-range spatial cor-
relations due to stress. Following the assumptions of Ref.1, we
ignore the contribution of spatial correlations in stress tensors.
The influence of long-range fluctuations in stress tensor on elastic
waves will be studied and discussed in Appendices A & B for the
case where, instead, no fluctuations in the elastic moduli exist.

Writing ni j = (cosθi j,sinθi j), the elastic constants appear to be

ofthe form Cαβκχ

i j = hi j cosn θi j sin4−n
θi j,n = 0, ...,4. There are,

hence, five local constants for each pair, they are1

C1
i j = hi j; C2

i j = hi j cos(2θi j),

C3
i j = hi j sin(2θi j); C4

i j = hi j cos(4θi j),

C5
i j = hi j sin(4θi j). (3)

Contributions of each pair to the Lamé constants are µi j =

(1/8)(C1
i j−C4

i j) and λi j = (1/8)(C1
i j +C4

i j). We are able to express

effective elastic constants Sαβκχ ≈ Cαβκχ in terms of these five
local constants:
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Then, Eq. (1) becomes
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2.1 Toy model with vanishing C1,C2,C4,C5 and long-range
correlation in C3

To probe the simplest possible scenario of long-range correlations
in the elastic constants, we assume C1(r),C2(r),C4(r),C5(r) = 0
while C3(r) ≡ C(r) = ρC0 + ρC̃(r) is expressed in terms of its
mean value plus a random part, i.e. C̃(r) = 0 and C̃(r′)C̃(r′+ r) =
B(r) = γ cos(4θ)/(r2 +a2)≡ cos(4θ)B(r) for some constants γ and

a, where the final form is in polar coordinates. In principle, a
might also depend on r as long as it decays faster than ∼ r2 when
r→ ∞. Here, we just let it be a constant. In other words, only the
effect of non-vanishing C3 is considered, whose spatial autocorre-
lation scales as 1/r2. The power-law decay in the self-correlation
of elasticity, B(r), has been numerically investigated in simula-
tions in1. Similar behaviour in the spatial correlation of mass
was analysed in detail within a scalar model of wave propagation
in22.

Equation (5) then reduces to

ρ
∂ 2ux(r̊)

∂ t2 =
1
4

[
∂C(r̊)

∂ r̊x
∂ux

∂ r̊y +
∂C(r̊)

∂ r̊y
∂ux

∂ r̊x +2C(r̊)
∂ 2ux

∂ r̊x∂ r̊y +
∂C(r̊)

∂ r̊x
∂uy

∂ r̊x +
∂C(r̊)

∂ r̊y
∂uy
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(

∂ 2uy
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)]

=
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α 6=β

[
∇α (C∇β )

]
ux +

1
4 ∑

α

[∇α (C∇α )]uy

ρ
∂ 2uy(r̊)

∂ t2 =
1
4

[
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∂ r̊x
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)]

=
1
4 ∑

α

[∇α (C∇α )]ux +
1
4 ∑

α 6=β

[
∇α (C∇β )

]
uy. (6)

In frequency space, upon letting z2 = ω2 + i0, the equation of
motion of the frequency-dependent displacement vector u(r,z) is
(we have dropped the ring)

A(z)u(r,z) = 0,

with Axx = Ayy =−ρz2− 1
4 ∑

α 6=β

[
∇α (C∇β )

]
,

Axy = Ayx =
1
4 ∑

α

[∇α (C∇α )] . (7)

The spatial correlation of C(r) may be implemented by the prob-
ability distribution for its fluctuating part,

P[C̃(r)] = P0 exp
[
−1

2

∫
d2rd2r′C̃(r)B−1(r− r′)C̃(r′)

]
(8)

where B−1 is the inverse of B(r− r′) such that∫
d2 pB(r− p)B−1(p−q) = δ (r−q), (9)

while P0 is a normalization factor. The La-
grangian is expressed as (rescaled by ρ),
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1
2
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1
2

∫
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]
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4 ∑
α

uy [∇α (C∇α ux)]}

=
1
2
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4 ∑
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[
∇α [uxC∇β ux]− (∇α ux)C(∇β ux)

]
− 1

4 ∑
α

[∇α [uxC∇α uy]−C(∇α ux)(∇α uy)]− x←→ y}

=
1
2

∫
d2r{−z2u ·u− 1

4
∇x[uxC∇yux +uyC∇yuy +uxC∇xuy +uyC∇xux]− 1

4
∇y[x←→ y]

+
1
2

C[(∇xux)(∇yux)+(∇xuy)(∇yuy)+(∇xux)(∇xuy)+(∇yux)(∇yuy)]}

=
1
2

∫
d2r{−z2u ·u− 1

4
∇x[...]−

1
4

∇y[...]+
1
2

C(∇ ·u)(∇xuy +∇yux)}

=
1
2

∫
d2r{−z2u ·u+ 1

2
C(∇ ·u)(∇xuy +∇yux)} (10)
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where the object [...] vanishes on the boundary. Using the
replica-field representation, the generating functional for

calculating the averaged Green’s function takes the form

〈Z(0)〉 ≡ lim
n→0

∫
D [ua(r)]D [C̃(r)]P0

× exp

[
−1

2

n

∑
a=1

∫
d2r{−z2ua(r)

2 +
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2
(∇ ·ua(r))(∇xuy

a +∇yux
a)}−

1
2
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]
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n→0

∫
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2 +
1
2

C0(∇ ·ua(r))(∇xuy
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a +∇yux
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2
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]
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n→0
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∑
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{
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1
2
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}

+
1

32

n

∑
a,b=1

∫
d2rd2r′(∇ ·ua(r))(∇xuy

a(r)+∇yux
a(r))B(r− r′)(∇ ·ub(r

′))(∇xuy
b(r
′)+∇yux

b(r
′))

]
(11)

where a = 1, ...,n is a replica index (same as b), and the
n → 0 limit eliminates the determinant factor. By means of a
Hubbard-Stratonovich transformation, we introduce the effective

matrix fields Λ
αβκχ

ab (r,r′,z) to replace the C̃(r) in the harmonic
part of the effective equation of motion. Then 〈Z(0)〉 becomes

〈Z(0)〉 ≈ lim
n→0

∫
D [ua(r)]D [Λ

αβκχ

ab (r,r′,z)]Λ0

× exp

{
−1

2

n

∑
a=1

∫
d2r
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−z2ua(r)
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4
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a∇α ∇β ux
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a∇α ∇β uy
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a +uy
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)]
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n
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Λ
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κ ′χ ′

Λ
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ab (r,r′,z)− 1
4

uα
a (r)∇κ Λ

αβκχ

ab (r,r′,z)∇χ uβ

b (r
′)

]}
(12)

where Λ
αβκχ

ab = 0 if α = β ,κ = χ or α 6= β ,κ 6= χ. The way Λ
αβκχ

ab
is introduced is to make Eq. (12) consistent with Eq. (7). We will
see in the following calculations that the way to index Λαβκχ will

be fulfilled by εαβκχ . The normalization constant is represented
as Λ0. The generating function including source Jαβ

ab (r,r′) is

〈Z(J)〉= lim
n→0

∫
D [ua(r)]D [Λ

αβκχ

ab (r,r′,z)]Λ0

× exp

{
−1

2

n

∑
a=1

∫
d2r

[
−z2ua(r)
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4

(
∑

α 6=β
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a∇α ∇β ux

a +uy
a∇α ∇β uy

a)+∑
α
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a∇α ∇α uy

a +uy
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a)

)]
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2

n

∑
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∑
ακχβ=x,y

∫
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κ ′χ ′
Λ

ακχβ

ab B−1(r− r′)Λακ ′χ ′β
ab − 1

4
uα

a (r)∇κ Λ
αβκχ

ab ∇χ uβ

b (r
′)+2Jαβ

ab Λ
αβκχ

ab

}

= lim
n→0

∫
D [ua(r)]D [Λ
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× exp

{
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2

n

∑
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∑
ακχβ=x,y

∫
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[
ua(r)Aab(Λ

ακχβ

ab )ub(r
′)+ ∑

κ ′χ ′
Λ
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ab +2Jαβ

ab Λ
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where

Aab(Λ)≡ δ (r− r′)δ ab

(
−z2− C0

4 ∑α 6=β ∇α ∇β −C0
4 ∑α ∇α ∇α

−C0
4 ∑α ∇α ∇α −z2− C0

4 ∑α 6=α ∇α ∇α

)

− 1
4 ∑

κχ

(
∇κ Λ

xxκχ

ab (r,r′,z)∇χ ∇κ Λ
xyκχ

ab (r,r′,z)∇χ

∇κ Λ
yxκχ

ab (r,r′,z)∇χ ∇κ Λ
yyκχ

ab (r,r′,z)∇χ

)
. (13b)

By evaluating derivatives of 〈Z(J)〉 with respect to Jαβ

ab

at Jαβ

ab = 0, we are able to find the averaged Green’s

function of Λ
αβκχ

ab . Integrating ua out in Eq. (12),
we obtain a field theory involving only the Λ field:

〈Z(0)〉 ≈ lim
n→0

∫
D [Λ]exp

{
−1

2

n

∑
a,b=1

∑
α,β ,κ,χ

(
lndetA(Λαβκχ

ab )+ ∑
κ ′χ ′

∫
d2rd2r′Λαβκχ B−1(r− r′)Λαβκ ′χ ′

)}
. (14)

We seek a saddle-point such that the exponential in Eq. (14)
is stationary, which corresponds to the mean-field theory of spa-
tially correlated disorder of the coherent-potential approximation
(CPA) for the one-particle Green’s function. A saddle point Λ′ of
the Λ field is a point such that the exponential in Eq. (14) con-
tains no terms linear in a small fluctuation Λ̂ ≡ Λ−Λ′. On the
other hand, if we expand the Lagrangian about Λ′, keeping only
quadratic displacements in Λ̂, then the saddle-point value of Λ

determines the averaged one-particle Green’s function:

Λ
′ = 〈Λ〉 (15)

Expanding in Λ̂, Aab(Λ) is written as

Aab(Λ) = Aab(Λ
′)

− 1
4 ∑

κχ

(
∇κ Λ̂

xxκχ

ab (r,r′,z)∇χ ∇κ Λ̂
xyκχ

ab (r,r′,z)∇χ

∇κ Λ̂
yxκχ

ab (r,r′,z)∇χ ∇κ Λ̂
yyκχ

ab (r,r′,z)∇χ

)

≡ Aab(Λ
′)+ Âab(Λ̂). (16)

Making use of the identity

lndet(A(Λ′)+ Â(Λ̂)) = lndet(A(Λ′))

+
∞

∑
n

(−1)n+1

n
Tr(A−1Â...A−1Â︸ ︷︷ ︸

2n

), (17)

the corresponding saddle-point equations can be solved with a
replica-diagonal field Λ

αβκχ

ab (r,r′,z) = Σαβ (r,r′,z)δ ab, which is rel-
evant to the evaluation of the averaged one-particle Green’s func-
tion. Non-diagonal saddle points need only be taken into ac-
count at the stage of renormalization32. Then we have lndet(A) =
Tr ln(A). The self-energy 〈Σαβ 〉measuring the average response of
the αth component of the displacement field at r to an impulse in

the β th component at r′, can be determined by taking

δ

δΣαβ

(
Tr lnA(Σαβ )+

∫
d2rd2r′Σαβ B−1(r− r′)Σαβ

)
= 0 (18)

at Σ
αβ

0 , which yields

〈Σαβ

0 〉=
1
8 ∑

κχ

∇κ B(r− r′)∇χ 〈G0(rα ,r′β ,z)〉εαβκχ (19a)

G0(rx,r′x,z) =
[
−z2−

(C0 +Σxx
0 )

4
(∇x∇y +∇y∇x)

]−1

(19b)

G0(ry,r′y,z) =
[
−z2−

(C0 +Σ
yy
0 )

4
(∇x∇y +∇y∇x)

]−1

(19c)

G0(rx,r′y) =
[
−
(C0 +Σ

xy
0 )

4
(∇x∇x +∇y∇y)

]−1

(19d)

G0(ry,r′x) =
[
−
(C0 +Σ

yx
0 )

4
(∇x∇x +∇y∇y)

]−1

(19e)

where εαβκχ = 0 if α = β ,κ = χ or α 6= β ,κ 6= χ. Translational
invariance holds after taking the ensemble average, hence the
CPA Green’s function G0 depends only on the difference between
two points in space.

2.2 Theory with non-zero C1,C2,C4,C5 and long-range corre-
lations in C3

We weaken our condition on the other elastic constants by letting
C1,C2,C4 and C5 be all non-zero constants. The propagator A in
A(z)u(r,z) = 0 takes the form (scaled with ρ)

Aαβ =−z2
δ

αβ −∑
κχ

C αβκχ
∇κ ∇χ −

1
4 ∑

κχ

[∇κ (C̃∇χ )]ε
αβκχ (20)
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where C αβκχ corresponds to the r-independent part of elastic
constants Ci, i = 1,2,3,4,5. The explicit form is not important and

we do not provide it here. The Lagrangian becomes

L =
1
2

∫
d2r{−z2u2 +

1
2

C̃(∇ ·u)(∇xuy +∇yux)

− ∑
αβκχ

uαC αβκχ
∇κ ∇χ uβ )} (21)

and 〈Z(J)〉 is
〈Z(J)〉= lim

n→0

∫
D [ua(r)]D [Λ

αβκχ

ab (r,r′,z)]Λ0

× exp

{
−1

2

n

∑
a,b=1

∑
αβκχ=x,y

∫
d2rd2r′

[
uα

a (r)Aab(Λ
αβκχ

ab )uβ

b (r
′)+ ∑

κ ′χ ′
Λ

αβκχ

ab B−1(r− r′)Λαβκ ′χ ′

ab +2Jαβ

ab Λ
αβκχ

ab

]}
(22a)

with

Aαβκχ

ab (Λ)≡ δ (r− r′)δ ab

(
−z2

δ
αβ −∑

κχ

C αβκχ
∇κ ∇χ

)
− 1

4 ∑
κχ

∇κ Λ
αβκχ

ab (r,r′,z)∇χ (22b)

Again, letting Λ
αβκχ

ab = Σαβ δ ab and finding the saddle point
of Tr lnA(Σαβ ) +

∫
d2rd2r′Σαβ B(r − r′)Σαβ , we obtain the self-

consistent equations for the self-energy and the Green’s function:

〈Σαβ

0 〉=
1
8 ∑

κχ

∇κ B(r− r′)∇χ 〈G0(rα ,r′β ,z)〉εαβκχ (23a)

G0(rx,r′x,z) =
[
−z2−

(
C4

8
+

C2

2
+

3C1

8

)
∇x∇x−

(
C1

8
− C4

8

)
∇y∇y−

(
C5

8
+

(C0 +Σxx
0 )

4

)(
∇x∇y +∇y∇x

)]−1

(23b)

G0(ry,r′y,z) =
[
−z2−

(
C4

8
− C2

2
+

3C1

8

)
∇y∇y−

(
C1

8
− C4

8

)
∇x∇x−

(
−C5

8
+

(C0 +Σ
yy
0 )

4

)(
∇x∇y +∇y∇x

)]−1

(23c)

G0(rx,r′y) =
[
−
(

C1

8
− C4

8

)
(∇x∇y +∇y∇x)−

(C0 +Σ
xy
0 )

4
(∇x∇x +∇y∇y)−

C5

8
(∇x∇x−∇y∇y)

]−1

(23d)

G0(ry,r′x) =
[
−
(

C1

8
− C4

8

)
(∇x∇y +∇y∇x)−

(C0 +Σ
yx
0 )

4
(∇x∇x +∇y∇y)−

C5

8
(∇x∇x−∇y∇y)

]−1

. (23e)

Defining the Fourier transform as

Σ(k,z)≡
∫

d2(r− r′)eik(r−r′)
Σ(r− r′,z), (24)

the condition on the one-particle CPA Green’s func-
tion may be rewritten in momentum space:

〈Σαβ

0 〉=−
1
4 ∑

κχ

ε
αβκχ kκ kχ

∫
d2qB̃(k−q)〈G0(q)〉; B̃(k)≡

∫
d2reik·rB(r) (25a)

G0(kx,kx,z) =
[
−z2 +

(
C4

8
+

C2

2
+

3C1

8

)
kxkx +

(
C1

8
− C4

8

)
kyky +

(
C5

4
+

C0 +Σxx
0

2

)
kxky

]−1

(25b)

G0(ky,ky,z) =
[
−z2 +

(
C4

8
− C2

2
+

3C1

8

)
kyky +

(
C1

8
− C4

8

)
kxkx +

(
−C5

4
+

C0 +Σ
yy
0

2

)
kxky

]−1

(25c)

G0(kx,ky) =

[(
C1

4
− C4

4

)
kxky +

(C0 +Σ
xy
0 )

4
k2 +

C5

8
(kxkx− kyky)

]−1

; G0(ky,kx) =

[(
C1

4
− C4

4

)
kxky +

(C0 +Σ
yx
0 )

4
k2 +

C5

8
(kxkx− kyky)

]−1

(25d)
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F(k,ω=k)

Fig. 1 Fitting of F(k,ω) (i.e. the numerical integral in Eq. (26)) (sym-
bols) with logarithmic function −p0 ln(p1k) (solid line). Parameters are
a = 10,c = 1, p0 = 0.008 and p1 = 0.07.

which must be solved self-consistently since the self-energy of
the Green’s function involves the full propagator itself (this self-
consistency has been ignored in Ref.20). In the weak scatter-
ing limit, approximate solutions are possible because ImΣ(k,z) is
small compared with C0 and also the imaginary part of the propa-
gator takes the form of a δ -function, Im〈G0(q)〉∝ δ (ω2−q2) upon
averaging over all possible directions of dummy variable q and
upon re-scaling redundant constants. Upon taking the imaginary
part, the correlation function in Eq.(25a) can be evaluated using
the δ -function and we calculate the self-energy to be

〈Σαβ

0 〉 ∝ ∑
κχ

ε
αβκχ kκ kχ

∫
∞

0

rJ4(kr)J0(ωr)
r2 +a2 dr, (26)

where J0 and J4 are (modified) Bessel functions. The detailed
derivation is outlined in Appendix C. Making use of a linear dis-
persion relation with constant speed of sound, numerical compu-
tation reveals that the integral F(k,ω) =

∫
∞

0 [rJ4(kr)J0(ωr)/(r2 +

a2)]dr∼− lnk across a broad range, from low to intermediate val-
ues, of k. Figure 1 shows one typical plot for such fitting. In other
words, the logarithmic dependence is caused by the integral of
r/(r2+a2), while the Bessel functions in the integrand are respon-
sible for bending the overall shape of F(k,ω) away from the log
asymptote, and thus for restricing the logarithmic dependence to
an intermediate range of k. This consideration is a further demon-
stration that the logarithmic correction stems from the power-law
decay of correlations encoded in the integrand factor r/(r2 +a2).
Thus, we obtain the averaged self-energy (susceptibility), in an
intermediate range of k, as:

Im〈Σαβ

0 (k)〉 ∼ −k2 lnk. (27)

where the linear dispersion relation k ∝ ω is assumed. A similar
result was obtained by John and Stephen22 in a different context
of Anderson localization of electromagnetic waves where a scalar
model with power-law correlation in the spatially varying mass
parameter was considered. To our knowledge, the one presented
here is the first derivation of this effect in the context of phonon
propagation in elastic media, thus accounting for the full tensorial
nature of the problem.

We note that there are no purely longitudinal and transverse
waves with respect to the direction of k. This is different from
the cases considered in21,22,25. However, cross terms (25d) es-
sentially contribute nothing to the density of states. One might
define a more general relation between damping and self-energy
over different directions. Hence Eq. (27) demonstrates that the
self-energy of the phonon Green’s function, which is closely re-
lated to the phonon attenuation coefficient, does indeed exhibit a
logarithmic enhancement correction to the Rayleigh law as a re-
sult of power-law spatial correlations in, at least, the elastic con-
stant C3. Hence, this result holds for materials that are described
within the heterogeneous elasticity framework.

2.3 Theory with non-zero C1,C4,C5 and long-range correla-
tions in C2 and C3

In addition to letting C3(r) ≡ ρC3 + ρC̃3(r), we further require
C2(r) ≡ ρC2 + ρC̃2(r) with C̃2,3(r) = 0 and C̃2,3(r′)C̃2,3(r′+ r) =
B2,3(r) = γ2,3 cos(4θ)/(r2 + a2) for parameters γ2,3, and parame-
ter a. In this case, the configurational average is due to spatial
fluctuations of both C2 and C3 and is given by

P[C̃(r)] ∝ exp

[
−1

2 ∑
i=2,3

∫
d2rd2r′C̃i(r)B−1

i (r− r′)C̃i(r′)

]
. (28)

To implement the same formalism as above, we now introduce
two effective fields to get the CPA for the one-particle Green’s
function. The matrix operators (with effective fields) become
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Aαβ =−z2
δ

αβ −∑
κχ

C αβκχ
∇κ ∇χ −

1
4 ∑

κχ

[∇κ (C̃3∇χ )]ε
αβκχ +

1
2

∇αC̃2∇β δ
αβ

η
αβ (29)

Aακχβ

ab (Λ2,Λ3)≡ δ (r− r′)

(
−z2

δ
αβ −∑

κχ

C αβκχ
∇κ ∇χ

)
− 1

4 ∑
κχ

∇κ Λ
αβκχ

ab,3 (r,r′,z)∇χ ε
αβκχ +

1
2

∇α Λ
αβ

ab,2∇β δ
αβ

η
αβ (30)

where ηxx = 1, ηyy = −1. Repeating similar steps, the self-consistent equations take the following form

〈Σαβ

0,2 〉=
1
4

∇α B2(r− r′)∇β 〈G0(rα ,r′β ,z)〉ηαβ ; 〈Σαβ

0,3 〉=
1
8 ∑

κχ

∇κ B3(r− r′)∇χ 〈G0(rα ,r′β ,z)〉εαβκχ (31a)

G0(rx,r′x,z) =

[
−z2−

(
C4

8
+

C2 +Σxx
0,2

2
+

3C1

8

)
∇x∇x−

(
C1

8
− C4

8

)
∇y∇y−

(
C5

8
+

(C3 +Σxx
0,3)

4

)(
∇x∇y +∇y∇x

)]−1

(31b)

G0(ry,r′y,z) =

[
−z2−

(
C4

8
−

C2−Σ
yy
0,2

2
+

3C1

8

)
∇y∇y−

(
C1

8
− C4

8

)
∇x∇x−

(
−C5

8
+

(C3 +Σ
yy
0,3)

4

)(
∇x∇y +∇y∇x

)]−1

(31c)

G0(rx,r′y,z) =

[
−
(

C1

8
− C4

8

)
(∇x∇y +∇y∇x)−

(C3 +Σ
xy
0,3)

4
(∇x∇x +∇y∇y)−

C5

8
(∇x∇x−∇y∇y)

]−1

(31d)

G0(ry,r′x,z) =

[
−
(

C1

8
− C4

8

)
(∇x∇y +∇y∇x)−

(C3 +Σ
yx
0,3)

4
(∇x∇x +∇y∇y)−

C5

8
(∇x∇x−∇y∇y)

]−1

. (31e)

We note that, even if B2 + B3 has no long-range tail, the net
effect of the imaginary part of 〈Σαβ

0,2 〉+ 〈Σ
αβ

0,3 〉 still exhibits log-
enhancement. To see this more clearly, we write down Σxx

0,2 and
Σxx

0,3,

〈Σxx
0,2〉=

1
4

∇xB2(r− r′)∇x〈G0(rx,r′x,z)〉

〈Σxx
0,3〉=

1
8

∇xB3(r− r′)∇y〈G0(rx,r′x,z)〉

+
1
8

∇yB3(r− r′)∇x〈G0(rx,r′x,z)〉 (32)

Using the same arguments as in the last section, namely trans-
forming to k space, we can easily verify that Im〈Σ0,2〉 ∼ −k2 lnk
and Im〈Σ0,3〉 ∼ −k2 lnk. Hence, we also have that Im[〈Σxx

0,2〉+
〈Σxx

0,3〉] ∼ −k2 lnk even if B2 = −B3. Since this works the same
for all components α,β , we can conclude that

Im[〈Σαβ

0,2 〉+ 〈Σ
αβ

0,3 〉]∼−k2 lnk, (33)

which holds for of all components α,β of the self energy.

Hence, the logarithmic enhancement to Rayleigh scattering law
remains confirmed also in the case of power-law spatial correla-
tions in two elastic constants, C2 and C3.

This is the main result of this paper, which rigorously proves
that power-law correlations lead to the logarithmic enhance-

ment of Rayleigh scattering in amorphous solids, under the same
conditions studied in numerical simulations in1, where this ef-
fect was observed. We note that, in Ref.20, it is reported that
Rayleigh law without the logarithmic dependence is retrieved in
the frame of fluctuating elasticity. The authors attribute this be-
havior to cancellation of the elastic correlations between spatial
auto-correlations of non-diagonal part of local elastic coefficients.
We emphasise that the imaginary part of self-energy obtained
here in Eq. (33) does not split into purely transverse and longitu-
dinal contributions, whereas that from Ref.20’s method vanishes
because those authors assume fully isotropic elasticity splitting
into uncoupled longitudinal and transverse contributions (see e.g.
Eq. (34) in the Supplementary Information of Ref.20), which does
not correspond to the physical system in1, nor to other simulated
systems where the effect was observed.

3 Conclusion
We have developed a fully tensorial replica field theory of hetero-
geneous elasticity which, in two dimensions, predicts that long-
range elastic correlations cause a logarithmic enhancement to
Rayleigh scattering of phonons in amorphous systems where in-
ternal stresses are absent. A similar calculation (reported in Ap-
pendix A and Appendix B) predicts the anomalous logarithmic
correction to arise in the absence of fluctuations in the elastic
constants, but in presence of power-law fluctuations in the inter-
nal stresses that have been recently discovered experimentally23.
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The mean-field method, which generally applies in infinite dimen-
sions, might predict somewhat different results when it is com-
pared to numerical results in finite dimension26. In future work
it may be worth studying how the logarithmic correction is af-
fected by non-mean-field effects within our framework of the HE,
and possibly in synergy with numerical methods26.

Recent work12 on jammed harmonic sphere packings showed
that the Rayleigh scattering law without the logarithmic correc-
tion is observed in the low wavevector limit in those systems,
however the authors showed that in the systems they studied
there were no long-range correlations in the elastic moduli. In
19, the anomalous scattering was found to correlate with spatially
fluctuating internal stresses in the absence of fluctuations of elas-
tic constants. Our analytical theory (in its formulation based on
correlations in internal stresses), is able to provide a theoretical
prediction for those observations.

We note that many numerical simulations addressing this prob-
lem so far only extract affine elastic constants, while the non-
affine contribution to elasticity14,31,33,34 might be important in
some systems and should be examined in detail in future work,
although nonaffinity does not appear to be a necessary ingre-
dient for the appearance of the anomalous logarithmic correc-
tion. Moreover, Ref.19 argued on the basis of numerical data
of computer glasses that Rayleigh scaling is expected at low
wavenumbers, where soft quasilocalized modes are scarce, while
the logarithmically enhanced Rayleigh scaling of the form Γ(k)∼
−kd+1 lnk arises at higher k. We are aware that, in that case, the
way to extract phononic and nonphononic excitations is different
from12, which might result in the different features of enhanced
logarithmic dependence. We also note that the enhanced loga-
rithmic Rayleigh scattering contributed by power-law elastic or
stress correlations in our theory arises in a broad intermediate
range of k. However, the discussion about this issue is beyond the
scope of this paper, and will be studied in detail in future work.

Furthermore, our analysis is restricted to the athermal limit.
At finite temperature, elastic correlators would receive additional
effects from anharmonicity35,36 and other thermal effects. We
expect this problem to be important also for plasticity and
yielding, which could be the object of future work.
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A Equations of motion with stress correlations
Here we instead assume that elastic constants Cαβκχ have no fluc-
tuations, while fluctuations exist in the internal stresses, a situa-
tion encountered in glasses24 and granular materials23. Writing
pi j =−(1/2)V ′i j(ri j)ri j, the local stress tensor can be decomposed
at the pair level as:

σ
1
i j = pi j; σ

2
i j =−pi j cos(2θi j), ; σ

3
i j =−pi j sin(2θi j) (34)

In this representation, σ1
i j is the pair-level pressure, while σ2

i j and
σ3

i j = σ
xy
i j represent two shear stresses. We are able to express

effective elastic constants Sαβκχ in this new representation. Given
σ1,σ2,σ3 and using Eq. (2) in the main text, we are able to obtain

Sxxxx(r) =Cxxxx +σ
2(r)−σ

1(r); Sxxxy(r) =Cxxxy +σ
3(r)

Sxxyx(r) =Cxxyx; Sxxyy(r) =Cxxyy

Sxyxx(r) =Cxyxx +σ
3(r); Sxyxy(r) =Cxyxy−σ

1(r)−σ
2(r)

Sxyyx(r) =Cxyyx Sxyyy(r) =Cxyyy

Syxxx(r) =Cyxxx Syxxy(r) =Cyxxy

Syxyx(r) =Cyxyx +σ
2(r)−σ

1(r) Syxyy(r) =Cyxyy +σ
3(r)

Syyxx(r) =Cyyxx Syyxy(r) =Cyyxy

Syyyx(r) =Cyxyy +σ
3(r) Syyyy(r) =Cyyyy−σ

1(r)−σ
2(r). (35)

Substituting Eq. (35) back to Eq. (1)
gives (we drop the ring on r):

ρ
∂ 2ux

∂ t2 =
∂

∂ rx

[(
Cxxxx +σ

2(r)−σ
1(r)

)
∂ux

∂ rx +
(

Cxxxy +σ
3(r)

)
∂ux

∂ ry +Cxxyx ∂uy

∂ rx +Cxxyy ∂uy

∂ ry

]

+
∂

∂ ry

[(
Cxyxx +σ

3(r)
)

∂ux

∂ rx +
(

Cxyxy−σ
1(r)−σ

2(r)
)

∂ux

∂ ry +Cxyyx ∂uy

∂ rx +Cxyyy ∂uy

∂ ry

]

ρ
∂ 2uy

∂ t2 =
∂

∂ rx

[
Cyxxx ∂ux

∂ rx +Cyxxy ∂ux

∂ ry +
(

Cyxyx +σ
2(r)−σ

1(r)
)

∂uy

∂ rx +
(

Cyxyy +σ
3(r)

)
∂uy

∂ ry

]

+
∂

∂ ry

[
Cyyxx ∂ux

∂ rx +Cyyxy ∂ux

∂ ry +
(

Cyxyy +σ
3(r)

)
∂uy

∂ rx +
(

Cyyyy−σ
1(r)−σ

2(r)
)

∂uy

∂ ry

]
. (36)
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B Prediction of logarithmic scattering with long-
range decay in internal stress σ3

We assume that only σ3 exhibits long-range behavior, i.e. σ3(r) =
ρσ0+ρσ̃(r) is expressed in terms of its mean value plus a random
part, i.e. σ̃(r) = 0 and σ̃(r′)σ̃(r′+ r) = B(r) = γ cos(4θ)/(r2+a2)≡
cos(4θ)B(r) for some constants γ and a again. All other elastic
constants like Cαβκχ or σ1,σ2 are short-ranged and hence can be
regarded as constant when r is large. The long-range decay in
shear stress correlations has been derived using generalized hy-
drodynamic theory in24. Then the elastic wave equation becomes

ρ
∂ 2ux(r)

∂ t2 = S xβκχ ∂ 2uκ

∂ rβ ∂ rχ
+

∂ σ̃(r)
∂ rx

∂ux

∂ ry +
∂ σ̃(r)

∂ ry
∂ux

∂ rx

ρ
∂ 2uy(r)

∂ t2 = S yβκχ ∂ 2uκ

∂ rβ ∂ rχ
+

∂ σ̃(r)
∂ rx

∂uy

∂ ry +
∂ σ̃(r)

∂ ry
∂uy

∂ rx (37)

where S αβκχ corresponds to the r-independent part of elastic or
stress tensors. Letting z2 = ω2 + i0, the equation of motion of the
frequency-dependent displacement vector u(r,z) is

A(z)u(r,z) = 0 with (38)

Aαβ =−z2
δ

αβ −∑
κχ

S αβκχ
∇κ ∇χ − ∑

κ 6=χ

(∇κ [σ̃∇χ ])δ
αβ . (39)

The fluctuation of σ(r) is implemented by the probability distri-
bution for its fluctuating part,

P[σ̃(r)] = P0 exp
[
−1

2

∫
d2rd2r′σ̃(r)B−1(r− r′)σ̃(r′)

]
. (40)

The Lagrangian is expressed as (scaled by ρ),

L =
1
2

∫
d2ruT Au = ux(Axxux +Axyuy)+uy(Ayxux +Ayyuy)

=
1
2

∫
d2r

{
−z2u ·u− ∑

αβκχ

uαS αβκχ
∇κ ∇χ uβ −ux

∇x(σ̃∇yux)−ux
∇y(σ̃∇xux)−uy

∇x(σ̃∇yuy)−uy
∇y(σ̃∇xuy)

}

=
1
2

∫
d2r

{
−z2u ·u− ∑

αβκχ

uαS αβκχ
∇κ ∇χ uβ − [∇x(ux

σ̃∇yux)+∇y(ux
σ̃∇xux)−2σ̃(∇yux)(∇xux)]− [x↔ y]

}

=
1
2

∫
d2r

{
−z2u ·u− ∑

αβκχ

uαS αβκχ
∇κ ∇χ uβ +2σ̃ [(∇yuy)(∇xuy)+(∇xux)(∇yux)]

}
(41)

where the last equality holds because objects like ∇x(uxσ̃∇yux)

vanish on the boundary. Using the replica-field rep-
resentation, the generating functional takes the form

〈Z(0)〉 ≡ lim
n→0

∫
D [ua(r)]D [σ̃(r)]P0 exp

[
−1

2

n

∑
a=1

∫
d2r{−z2ua(r)2 +2σ̃ [(∇yuy)(∇xuy)+(∇xux)(∇yux)]}

− ∑
αβκχ

uαS αβκχ
∇κ ∇χ uβ − 1

2

∫
d2rd2r′σ̃(r)B−1(r− r′)σ̃(r′)

]
≈ lim

n→0

∫
D [ua(r)]exp

[
−1

2

n

∑
a=1

∫
d2r

{
−z2ua(r)2− ∑

αβκχ

uαS αβκχ
∇κ ∇χ uβ

}

+
1
2

n

∑
a,b=1

∫
d2rd2r′[(∇yuy

a(r))(∇xuy
a(r))+(∇xux

a(r))(∇yux
a(r))]B(r− r′)[(∇yuy

b(r
′))(∇xuy

b(r
′))+(∇xux

b(r
′))(∇yux

b(r
′))]

]
(42)

where again a,b = 1, ...,n. We introduce effective ma-
trix fields Λ

αβκχ

ab (r,r′,z) to replace the σ̃(r) in the
harmonic part of the effective equation of motion:

〈Z(0)〉 ≈ lim
n→0

∫
D [ua(r)]D [Λ

αβκχ

ab (r,r′,z)]Λ0 · exp

{
−1

2

n

∑
a=1

∫
d2r

[
−z2ua(r)2− ∑

αβκχ

uαS αβκχ
∇κ ∇χ uβ

]

−1
2

n

∑
a,b=1

∑
αβ ,κ 6=χ

∫
d2rd2r′

[
Λ

αβκχ

ab (r,r′,z)B−1(r− r′) ∑
κ ′ 6=χ ′

Λ
αβκ ′χ ′

ab (r,r′,z)−uα
a (r)∇κ Λ

αβκχ

ab (r,r′,z)∇χ uβ

b (r
′)δ αβ

]}
. (43)

10 | 1–13Journal Name, [year], [vol.],



The way Λ
ακχβ

ab is introduced is to make Eq. (48) con-
sistent with Eq. (42). Λ0 is a normalization constant.

The generating function including source Jαβ

ab (r,r′) is then:

〈Z(J)〉= lim
n→0

∫
D [ua(r)]D [Λ

αβκχ

ab (r,r′,z)]Λ0

· exp

{
−1

2

n

∑
a,b=1

∑
αβ ,κ 6=χ

∫
d2rd2r′

[
ua(r)Aab(Λ

αβκχ

ab )ub(r
′)+ ∑

κ ′ 6=χ ′
Λ

αβκχ

ab B−1(r− r′)Λαβκ ′χ ′

ab +2Jαβ

ab Λ
αβκχ

ab

]}
(44a)

where

Aab(Λ
αβκχ

ab )≡ δ
ab

δ (r− r′)(−z2
δ

αβ − ∑
αβκχ

S αβκχ
∇κ ∇χ )− ∑

κ 6=χ

∇κ Λ
αβκχ

ab ∇χ δ
αβ (44b)

By evaluating derivatives of 〈Z(J)〉 with respect to Jαβ

ab

at Jαβ

ab = 0, we are able to find the disorder-averaged

Green’s function of Λ
αβκχ

ab . Integrating ua out in Eq.
(48), we obtain a field theory involving only the Λ field:

〈Z(0)〉 ∝ lim
n→0

∫
D [Λ]exp

{
−1

2

n

∑
ab=1

∑
αβ ,κ 6=χ

(
lndetA(Λαβκχ

ab )+ ∑
κ ′ 6=χ ′

∫
d2rd2r′Λακχβ B−1(r− r′)Λαβκ ′χ ′

)}
(45)

Solving saddle-point problem, we take

δ

δΣαβ

(
Tr lnA(Σαβ )+

∫
d2rd2r′Σαβ B−1(r− r′)Σαβ

)
= 0 (46)

at Σ
αβ

0 , yielding

〈Σαβ

0 〉=
1
2 ∑

κ 6=χ

∇κ B(r− r′)∇χ 〈G0(rα ,r′β ,z)〉δ αβ (47a)

G0(rx,r′x,z) =
[
−z2− (Cxxxx +σ

2−σ
1)∇x∇x− (Cxxxy +Σ

xx
0 )∇x∇y− (Cxyxx +Σ

xx
0 )∇y∇x− (Cxyxy−σ

1−σ
2)∇y∇y

]−1
(47b)

G0(ry,r′y,z) =
[
−z2− (Cyxyy +Σ

yy
0 )∇x∇y− (Cyxyy +Σ

yy
0 )∇y∇x− (Cyxyx +σ

2−σ
1)∇x∇x− (Cyyyy−σ

1−σ
2)∇y∇y

]−1
(47c)

G0(rx,r′y) =
[
−Cxxyx

∇x∇x−Cxxyy
∇x∇y−Cxyyx

∇y∇x−Cxyyy
∇y∇y

]−1 (47d)

G0(ry,r′x) =
[
−Cyxxx

∇x∇x−Cyxxy
∇x∇y−Cyyxx

∇y∇x−Cyyxy
∇y∇y

]−1 (47e)

In k space, the condition on the one-particle
CPA Green’s function may be rewritten as:

〈Σαβ

0 〉=−
1
2 ∑

κ 6=χ

δ
αβ kκ kχ

∫
d2qB̃(k−q)〈G0(q)〉; B̃(k)≡

∫
d2reik·rB(r) (48a)

G0(kx,kx,z) =
[
−z2 +(Cxxxx +σ

2−σ
1)kxkx +(Cxxxy +Σ

xx
0 )kxky +(Cxyxx +Σ

xx
0 )kykx +(Cxyxy−σ

1−σ
2)kyky

]−1
(48b)

G0(ky,ky,z) =
[
−z2 +(Cyxyy +Σ

yy
0 )kxky− (Cyxyy +Σ

yy
0 )kykx +(Cyxyx +σ

2−σ
1)kxkx +(Cyyyy−σ

1−σ
2)kyky

]−1
(48c)

G0(kx,ky) =
[
Cxxyxkxkx +Cxxyykxky +Cxyyxkykx +Cxyyykyky

]−1 (48d)

G0(ky,kx) =
[
Cyxxxkxkx +Cyxxykxky +Cyyxxkykx +Cyyxykyky

]−1 (48e)
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Applying similar manipulations as for disorder in elastic con-
stants (see Section III), we find that the self-energy scales as

Im〈Σαβ

0 (k)〉 ∼ −k2 lnk. (49)

C Steps in the derivation of Eq. (26)
The Bessel function of the first kind in integral representation is
defined as

Jn(x) =
1
π

∫
π

0
cos(nθ − xsinθ)dθ . (50)

When n = 0, we have

J0(x) =
1
π

∫
π

0
cos(xsinθ)dθ =

1
2π

∫ 2π

0
cos(xsinθ)dθ

=
1

2π

∫ 2π

0
eixsinθ dθ =

1
2π

∫ 2π

0
eixcosθ dθ . (51)

We want to calculate∫
d2qB̃(k−q)〈G0(q,z)〉 ∝

∫
ei(k−q)·r cos(4θ)

r2 +a2 〈G0(q,z)〉d2qd2r

=−
∫

eikr cos(θ)−iqr cos(φ−θ) r cos(4θ)

r2 +a2 qδ (ω2−q2)drdqdθdφ

∝−
∫

eikr cos(θ)−iωr cos(φ−θ) r cos(4θ)

r2 +a2 drdqdθdφ (52)

where k̂ is aligned with the x-axis, forming an angle φ and an
angle θ with q̂ and with r, respectively. On the second line, we
have replaced 〈G0(q,z)〉 with δ -function and to obtain the last
equality, we used the property of δ -function that δ (ω2 − q2) =

(δ (ω−q)+δ (ω +q))/(2ω). We thus can write∫
π

−π

∫
π

−π

cos(4θ)eir(k cosθ−ω cos(φ−θ))dθdφ

=
∫

π

θ=−π

∫
τ=−(θ−π)

τ=−(θ+π)
cos(4θ)eir(k cosθ−ω cosτ)dθdτ

=
∫

π

θ=−π

∫
π

τ=−π

cos(4θ)eir(k cosθ−ω cosτ)dθdτ

=
∫

π

θ=−π

cos(4θ)eikr cosθ dθ

∫
π

τ=−π

e−iωr cosτ dτ

=
∫

π

θ=−π

cos(4θ)eikr cosθ dθ

∫
π

τ=−π

eiωr cosτ dτ

∝J4(kr)J0(ωr) (53)

where we have used the periodicity of trigonometric functions.
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