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Abstract 

Rapid economic growth in Asia and especially in China, will lead to a huge increase of food waste 

(FW) production that is expected to increase by 278 - 416 million tonnes. Among various waste 

management practices, anaerobic digestion (AD) is a useful method to transform food waste, 

producing renewable energy/biofuel and bio-fertilizers. This review aims to investigate some of the 

key factors in proposing FW for anaerobic digestion, with particular reference to China and South 

East Asian countries. 
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Food waste showed variable chemical composition and high content of biodegradable material 

(carbohydrates, protein and lipid) led to consistent biogas production (as potential) that was 

reported as average for Chinese FW, of 480 ± 88 LCH4 kg-1 VS (n = 42) being this data higher than 

those for energy crops (246±36 LCH4 kg-1 VS), makes FW a good candidate to substitute energy 

crops, avoiding food-energy conflict. FW co-digestion with different substrates improved total bio-

methane production (on average), i.e. from 268 ± 199 mL g-1 VS to 406 ± 137 mL g-1 VS.  

Food waste pretreatment, also, seems to be very useful in increasing total biogas production and 

physical and thermal treatments were the best increasing biogas of +40 % and + 30 %, respectively.   

Techno economic evaluation seems to indicate the feasibility in substituting EC with FW for 

producing biogas and reducing total biomass cost. To achieve this, separate collection sources need 

to be implemented, assuring high FW quality to promote a Circular Economy approach in FW 

management.  
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AD: anaerobic digestion 



3 
 

BMP: biochemical methane potential 

CFW: canteen food waste 

CM: cattle manure 

COD: chemical oxygen demand 

CSTR: continuous stirred tank reactor 

EC: energy crop 

FOG: fat, oil and grease 

GHG: greenhouse gas 

HRT: hydraulic retention time 

KFW: kitchen food waste 

FW: food waste 

MA: microalgae 

MSW: municipal solid waste 

OFMSW: organic fraction of municipal solid waste 

OLR: organic loading rate 

RFW: restaurant food waste 

SFW: synthetic food waste 

S/I: substrate/inoculum 

SS: sewage sludge 

TS: total solids 

VFA: volatile fatty acid 

VS: volatile solids 

WAS: waste activated sludge 
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1. Introduction 

The utilization of fossil fuels creates environmentally negative effects on the planet because of 

greenhouse gas emissions (GHG) [1]. GHG increased a lot in the last century, exceeded 400 ppm in 

2006  and reached 417 ppm in May 2020, the highest values ever registered [2,3]. GHG increases 

lead to climate change, the  consequences of which have been widely scientifically discussed [4,5]. 

Reducing GHG emissions has become a priority for the world: to date 175 parties have ratified the 

Paris Agreement (Climate Summit held in Paris in 2016 - COP 21) [6]. Renewable energy and 

combustible production represent an option in reducing GHG emissions [7,8]. Several types of 

environmentally friendly and sustainable renewable energy production options such as photovoltaic, 

wind, biomass, geothermal, have recently received attention [7]. Renewable energy and combustibles 

are those produced from renewable resources. Biomasses represent a well-known and widely diffused 

renewable source. Between different available biomasses, food waste (FW) represents a resource that 

needs to be safely disposed of, otherwise, if landfilled, it can contribute extensively to GHG emissions 

[10]. The contribution of landfilled wastes to GHGs was reported to be 5% of the total GHGs emitted 

[11] and 6-18% of the total methane from anthropogenic sources [12]. Food waste (FW), is the main 

component of municipal solid waste and it has been described as “the decrease in quantity or quality 

of food”; it is part of food loss and refers to discarded or non-food use of food [13]. 

Due to rapid economic growth, FW generation in Asia is expected to increase by 278 - 416 million 

tonnes [14] contributing to 8-10% of the global anthropogenic emissions [15]. Therefore, particularly 

in China, i.e. the largest economy and country in Asia,  the FW problem is expected to  increase 

severely in the coming years [16,17]. A correct approach to FW management, i.e. source separate 

collections to guarantee high quality material, represents a priority for China (and other countries in 
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Asia) to avoid the problems connected with FW disposal and to allow the recovery of this precious 

resource in terms of both energy content and material (nutrient and organic matter contents).  

The chemical characteristics of FW, i.e. macromolecular composition (e.g. sugar, proteins etc.), total 

solid and total organic matter contents, and the presence of inorganic and/or organic pollutants, makes 

it more or less possible to convert the organic matter into biogas through anaerobic digestion (AD).  

Anaerobic digestion is a biological process conducted in the absence of oxygen, leading to organic 

matter degradation and stabilization. The overall anaerobic conversion process is described as a four-

step process: hydrolysis, acidogenesis, acetogenesis and methanogenesis [18], which may occur 

simultaneously in a single stage process or separately in a multi-stage process. A fine balance between 

the microbial communities operating these steps, as well as the nutrients provided, is necessary for a 

successful digestion process which will give the highest conversion rate of organic material to 

methane [19]. However, the challenges to obtaining high efficiency and stability in performing the 

anaerobic digestion of FW are currently being debated. In fact, many causes can negatively affect the 

biological process, e.g. high labile organic matter, salt, oil and protein content, low C/N ratio and 

micronutrients deficiency. 

Theoretically, one tonne of FW could be converted into 847 kWh of electricity and 89.78 GJ of 

heating potential [20]. To assess such matters in China, demonstration projects for FW disposal were 

initiated in 2010 and since then 100 cities have been chosen as pilot cities and more than 90% of those 

have adopted AD technology for FW disposal and energy production [21]. Among several biological 

valorisation methods, AD technology was demonstrated to be one of the most advantageous 

technologies to maximise the energy recovery from FW [22].  

Anaerobic digestion of food waste has been extensively reviewed in the past and many reviews have 

appeared in this journal (e.g. by Zhang in 2014 and by Xu in 2018) [18,23]. Very good work presented 

AD of food waste taking into consideration above all biological processes and process parameters, 

giving less importance to other topics such as pre-treatment (e.g. Zhang in 2014, and Jain in 2015) 

[18,24]. Other reviews tried to consider AD of food waste from different points of view, doing very 
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good work in terms of the logical approach used but failing on data collection with reference to food 

waste, i.e. data were mainly referring to co-digestion with other substrates (e.g. Tyagi and colleagues, 

in 2018) [25]. Again, some authors  reviews focused on the separation of AD phases to enhance 

performance [26]. Other authors focused the attention more on political, environmental and social 

aspects [27]. Many other reviews represented tentatives in considering more extensively the AD of 

food waste but with limited data reported (e.g.  Paritosh in 2017, and Xu in 2018) [23,28].   

The aim of this review is to fill the gaps by proposing to cover the state of the art of AD of food waste 

in China and Asiatic countries in a complete manner in order to give a complete and logical picture 

of the potential for recovering food waste to produce renewable energy. To do so, this review starts 

by reviewing why food waste can be a useful substrate in producing biogas in substitution for energy 

crops, i.e. chemical composition and biogas potential productivity, moving then to describe the real 

biogas productivity, taking into consideration, process parameters and the AD approach (one stage 

vs. two stage). How to enhance biogas production with co-digestion and/or by applying biomass pre-

treatments ends the review, proposing, also, a raw energetic approach. This review offers a full picture 

of the potential of biogas production from recovered food waste that can be useful not only for 

academics but, also, for decision makers to guide them in planning future waste management policies 

and the energy transition to renewable energy in a sustainable manner.  

International literature has been critically studied to provide a comprehensive understanding of the 

AD of food waste, with the awareness that this biotechnology could represent a great potential in 

safely recovering FW, reducing its environmental impact and contributing to renewable energy 

production (Figure 1). 
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Figure 1. Flow chart summarizing the structure of the work   
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2. Food waste characteristics and composition 

Globally, around 2 billion tonnes of municipal solid waste (MSW) are produced annually throughout 

the world, with 32-56% [29,30] of MSW being organic biodegradable waste. Food wastes are mainly 

collected from households and restaurants and the composition may vary depending upon the country 

[31]. Furthermore, the composition of food waste also varies depending on the time of year, cultural 

habits, region etc. as well as climate and economic level of the region/country in question [32]. 

Generally, taking into consideration that moisture plus total solids (TS) contents represents  100 % 

of wet  weight (wet basis) (wb), FW moisture content is of 70-80% wb and TS are around 20-30% 

wb, 90% of which are volatile solids (VS) [18]. FW is composed mostly of easily degradable 

carbohydrates (50-60% TS), proteins (15-25% TS) and lipids (13-30% TS) and it has a low C/N ratio 

[33]. It is also rich in macro-elements but lacks trace elements [34–36]. Moreover, FW is generally 

an acid or sub-acid substrate, which is suitable for biodegradation but sub-optimal for methanogens 

that operate at slightly higher pH (6.5-7.2) [37]. Table 1 displays the results of physical and chemical 

analysis from the literature and for different food waste sources. Moreover, characteristics of FW in 

East Asia were compared to the characteristics of FW in western countries. Statistical data underlined 

that the composition was comparable between countries, although the lack of data for carbohydrates, 

proteins and lipids did not allow a deeper analysis of the data sets. Within different FW categories, 

statistical analyses underlined similar average data for TS and VS, probably because of high 

variability in moisture content of waste leading to high standard deviations (Table 1). On the other 

hand, when VS were referred to TS content (%TS), statistical differences appeared indicating that 

organic wastes from canteens and restaurants showed higher VS content than those coming from 

domestic kitchens, but in line with those of synthetic organic wastes and with data reported for 

western countries. These results could indicate the presence in the KFW of inert substances or 

impurities lowering VS. Also interesting was the higher O content for SFW with respect other 

categories, which seems to indicate that from a chemical point of view SFW did not well represent 
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real organic wastes, although the limited number of data available do not allow us to speculate on 

these figures.    

 Several previous studies have already attempted to characterize the composition of FW [38–40]. 

However, the methods used for such classifications are very different and the data are difficult to 

compare [41]. Thus, the lack of international standardization for FW classification is currently a 

serious barrier for waste management research. In the following chapters, FW have been classified, 

taking into consideration their origin and the same classification was used throughout the review. To 

do so, canteen food waste (CW), restaurant food waste (RFW), kitchen food waste (KFW) and 

synthetic food waste (SFW) categories have been considered because composition can be different 

due to different sources.  

Chinese household FW is mostly made up of vegetables (54% wb), rice (13% wb), pork, legumes and 

fruit (13% wb), and other items such as wheat, beverages, fish and dairy products (the remaining 

20%).  

Restaurant Food Waste in China is estimated to be of 0.15 kg day-1 per capita in urban areas [42], and 

a survey in 2011 showed that 28.3% of canteen food ended in rubbish bins in Chinese campuses [43]. 

Since FW generation depends a lot on consumption, it is possible to affirm that FW depends on the 

diet, which may vary between rural and urban environments [44]. Furthermore, very few studies used 

KFW in East Asian countries (only 5 papers out of 34 in this study) (Table 1), whereas KFW was 

more commonly included in western countries (10 papers out of 15 in this study) (Table 1). However, 

RFW or CFW was much more common in East Asia (21 papers out of 34 in this study). In this paper, 

canteen food waste is considered as being part of the group of RFW.  

Studies considered showed that RFW ranges from 10% to 17% of the amount ordered by consumers 

(on a wet basis), and that lipids contained in FW from East Asia averaged 17.9 ± 5.8 % of TS. Even 

though the BMP (Biochemical Methane Potential) of lipids is twice as high as that of starch, cellulose 

and hemicellulose [45], it is possible that lipid-rich wastes will produce low methane yields, due to 

an inhibitory effect on methanogens [46,47]. Furthermore, RFW presents a higher proportion of 
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cooked and starch-rich material than other FWs, resulting in a higher hydrogen yield (+6% of 

carbohydrate removal) [48]. Lastly, a study of 2015 conducted by Fisgativa and Tremier, 

demonstrated that there were no significant statistical differences between restaurant FW and 

household FW [37]. The study further stated that the variability of FW cannot be fully explained by 

its origin. Thus, further research is needed to investigate the factors affecting FW biodegradability. 

On the other hand, it should be noted that the preparation of synthetic food waste (SFW) can be 

beneficial in order to reduce experimental bias caused by FW composition [49]. Many studies 

prepared SFW by following the FW composition (e.g. carbohydrates, protein, fat etc.) indicated in 

previous research independently of the countries concerned [50–54], while others  based SFW 

composition on FW composition analysis for the particular country considered, either using the 

National Food guide or  standard formulations. In studies from Asian countries, SFW was composed 

to be as representative of the traditional cuisine as possible. For example some based SFW on locally 

produced FW (Thailand), while others used typical ingredients from a Chinese market or from a 

typical Korean dish [9,55–57].   

As concluded by this literature review, FW and its characterization are highly variable, which makes 

comparisons between studies difficult. Such obstacles could be partially overcome by using a formula 

for Synthetic Food Waste which could be standardized for its macromolecular composition so as to 

facilitate the comparisons between different studies.  
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Table 1. Characteristics of food waste in East Asia 1 

Type 

of FW 

TS 

(% wb) 

VS 

(% wb) 

VS 

(%TS) 
pH 

C H O N C/N Carbohydrates Proteins Lipids Country Reference 

(% TS)  (%TS)   

CFW 29.32 26 88.8a N/A 50.5 N/A N/A 2.8 17.8 N/A N/A N/A China [58] 

CFW 24.13 22.6 93.6 N/A N/A N/A N/A N/A N/A N/A 21 17.5 China [59] 

CFW 25.95 24.5 94.3 N/A N/A N/A N/A N/A N/A N/A 18.7 19.1 China [59]  

CFW 23.70 23.1 97.5 6.6 44.1 N/A N/A 2.5 17.2 44.9 14 14.1 China [60] 

CFW 28.41 26.5 93.1 a 6.4 N/A N/A N/A N/A 14.7 53.4 19.9 19.9 China [61] 

CFW 25.94 24.6 94.8 a N/A 51.1 7.4 37 3.4 17.5 48 a 15.1 10.6 China [62]  

CFW 25.7 24.1 93.8 5.3 45.8 N/A N/A 2.4 18.8 46.5 13.2 17.2 China [63]  

RFW 7.63 6.1 79.7 N/A 45.5 6.9 25.24 2.1 22.1 N/A N/A N/A China [64] 

CFW 32.98 31.7 96 5.3 N/A N/A N/A N/A 21.5 N/A N/A N/A Singapore [65] 

RFW 22.1 20.4 92.2 5.9 50.8 7.2 32 1.8 28.2 41.6 15.5 31.8 China [65] 

CFW 18.4 17.5 a 95.2 N/A N/A N/A N/A N/A 16.7 N/A N/A N/A China [66] 

CFW 22.4 21.9 a 98.1 N/A N/A N/A N/A N/A 16.7 N/A N/A N/A China [66] 

CFW 7.62 7.2 94.6 a 3.6 N/A N/A N/A N/A N/A 33.4 a 14.9 a 13.5 a Japan [67] 

CFW 20.00 19.5 97.5 a N/A 49.8 N/A N/A 3.6 N/A 42.6 22.1 17.1 China [68] 

CFW 21.2 19.6 a 92.8 4.7 N/A N/A N/A 13.4 N/A N/A N/A N/A China [69] 

CFW 17.20 16.7 95.6 4.1 50.0 21.5 N/A 2.8 17.8 N/A N/A N/A China [70] 

CFW 18.5 17 91.9 5.2 46.5 N/A N/A 2.2 21.1 N/A N/A N/A China [71] 

CFW 23.1 21 90.9 a 4.2 56.3 N/A N/A 2.3 24.5 N/A N/A N/A China [72] 

CFW 18.1 17.1 94 N/A N/A N/A N/A N/A 13.2 111.7 32.9 23.3 Korea [73] 

CFW 18.1 17.1 94 6.5 46.7 6.4 36.4 3.5 13.2 61.7 a 18.2 a 12.9 a Korea [36] 

CFW 20.5 19.5 95 N/A 51.4 6.1 38.9 3.5 14.7 N/A N/A N/A Korea [74] 

RFW and 

CFW 

 Mean ± Std 

(n=21) 

21.5±6.

1a 

20.1±5.

9a 

93.5±3.

8b 
5.3±1 49±3.4a 

9.2±6

a 

33.9±5.

5a 
3.6±3° 18.5±4a 53.7±23 18.7±5.6 

17.9±

5.8 
- - 

KFW 25.7 N/A N/A N/A 47.2 7 34.8 2.3 20.5 N/A 4.5 8.3 Japan [75] 

KFW 12.5 9.6 79.4 a 5.86 41.1 N/A N/A 2.05 20 N/A N/A N/A China [76] 

KFW 26 22.7 86.3 N/A 52.9 7.9 22.5 2.6 20.3 31.6 16 35.5 China [77] 

KFW 22.6 17.9 79.1 N/A 30.2 N/A N/A 2.6 11.5 41.9 14.7 28.8 China [78] 

KFW 12.4 11 89 N/A 47.8 6.1 40.9 5.2 9.2 N/A N/A N/A Korea [79] 

KFW  

Mean ±Std 

(n=5) 

19.8±6.

9a 

15.3±6.

1a 
83.4±5a 5.8 

43.8±8.

7a 

7±0.9

a 

25±17.1

° 

3.2±1.

3° 

16.3±5.

5a 
36.7±7.2 11.7±6.3 

24.2 

±14.2 
- - 

SFW 18.3 17 92.9 3.67 46.3 4.21 38.09 3.62 12.8 65.3 16.4 11.2 China [80] 

SFW 17.1 16.9 98.6 5.87 44.9 6.17 44.06 3.01 14.9 76.6 18.2 5.2 China [58] 

SFW 10.7 10.1 94 4.18 N/A N/A N/A N/A N/A 79 a 30.4 a 12.4 a China [81] 
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SFW 14.9 a N/A 92.8 a N/A N/A N/A N/A N/A 13.9 N/A N/A N/A China [56] 

SFW 40 39.2 a 98 N/A 45.9 N/A N/A N/A N/A 74 18 10 China [82] 

SFW 14.9 14.4 96.5 5 45.2 12.3 N/A 3.8 12.1 N/A N/A N/A China [70] 

SFW 10.3 9.2 92.3 3.77 45 N/A N/A 3.2 N/A N/A N/A N/A Japan [83] 

SFW 14.3 13.1 91.6 N/A 47.4 6.6 43.7 1.9 24.9 N/A N/A N/A Japan [84] 

SFW 

 Mean ± Std 

(n=8) 

17.6±9.

5a 

17.1±10

.2a 

94.6±2.

7b 

4.5±0.

9 

45.8±0.

9a 

7.3±3.

5a 
42±3.3b 

3.1±0.

7° 

15.7±5.

2a 
73.7±6 20.7±36.5 

9.7±9.

2 
- - 

All data 

Mean ± Std  

(n=34) 

20.3±7

a 

18.9±6.

9a 

92.5±4.

9b 
5±1 47±4.9a 

8.1±4.

2a 

33±11.2

° 

3.4±2.

3° 

17.5±4.

5a 
56.8±20.7 18±6 

17.1±

8 
East Asia (all the above) 

Various 

western 

countries 

Mean ± Std 

(n=15) 

21±5.9

a 

19.3±4.

7a 

90.9 

±4.3b 

4.6±0.

5 

42.7±16

.6a 

27.8 

±28.9

ac 

20.2±20

.7a 

8.9±1

0.3b 
15.4±7a 50.2±12.4 19.1±2 

9.3±8.

4 
b  

aCalculated according to the data available in the paper.  2 

bData from:[29,73,93,85–92]. 3 

Conly two data points were available. 4 

aValues followed by the same letter are not statistically different for p<0.05:   5 

 6 
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3.  Biochemical Methane Potential 7 

Biochemical Methane Potential is used for  assessing about the potential producible biogas of a 8 

biomass performed under standardized conditions. It represents the maximum producible biogas 9 

independently of the conditions adopted in full-scale applications.  10 

Different approaches have been proposed in the past to measure BMP. Data for food waste categories 11 

reported in Table 2 for this work have been carried out by using an Automatic Methane Potential Test 12 

System II (AMPTS II) (Bioprocess Control AB, Sweden) [56,80,94], a lab test, “Anaerobic Lab Work 13 

1992 and one of the most adopted methodologies  [56,95–98]. Other data have been obtained applying 14 

the above-mentioned principles with some modifications [87]. Independently of the method adopted, 15 

all the tests are quite similar, so that the results acquired can be compared. Tests are generally 16 

performed in batch form under mesophilic conditions (35-37 °C) using an inoculum in order to avoid 17 

inhibition due to VFA accumulation and pH dropping. Hydraulic Retention Time (HRT) adopted 18 

varied ranging from 12 to 65 d. BMP data showed some variability, generally because of different 19 

food waste composition. Different potentials are obtained from a cluster of substrates (SFW). For 20 

instance, differences reported for BMP (Table 2) are due to the differences in terms of crude fat 21 

content in wastes [99]. Also, the composition in terms of carbohydrates, protein, and lipids and their 22 

relative ratios within the investigated FW was directly correlated to the ultimate BMP. Congruently 23 

to different ratios, the potential of the investigated SFW ranged between a minimum, i.e. 440 LCH4 24 

kg-1
 VS and maximum 628 LCH4 kg-1

 VS [21]. Meanwhile BMP data ranging between  435 LCH4 kg-1
 25 

VS and 684 LCH4 kg-1
 VS depended on the different origins (canteens) of the substrate [80], while the 26 

range between 116 LCH4 kg-1
 VS and 435 LCH4 kg-1

 VS reported by Kawai and colleagues in 2014 [100] 27 

was due to the effect of the labile organic fraction in food waste and to the different 28 

substrate/inoculum (S/I) applied.  29 

The potential producible biomethane of FW produced in China and South-East Asia is characterised 30 

by a wide range between the minimum and maximum values (116-684 LCH4 kg-1
 VS), while BMP 31 
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from European FW has a narrower range (425-529 LCH4 kg-1
 VS). These differences can be linked to 32 

the compositional differences reported in Table 1. 33 

Different food waste types, i.e. SFW, KFW and CFW did not show statistically different average 34 

values (Table 2), because of the very high standard deviations characterizing each waste class. Total 35 

bio-methane production ranged from 461 LCH4 kg-1 VS to 517 LCH4 kg-1 VS and so was very similar 36 

for each of the classes, with a Grand Mean of 480 ± 88 (n=42) LCH4 kg-1 VS (Table 2). These data are 37 

in line with those reported for FW coming from western countries, i.e. 479±43 LCH4 kg-1 VS (Table 38 

2). Interestingly, this value was much higher than those calculated for energy crops, i.e. 237±58 LCH4 39 

kg-1 VS.   This indication is very important in view of proposals to use food waste as a substitute for 40 

energy crops in producing biogas without reducing biogas plant productivity [101]. Energy crop (EC) 41 

substitution, in fact, is important in saving not only soils producing food but also in lowering the total 42 

costs in producing renewable energy because of crop production costs.  43 
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Table 2. Biochemical Methane Potential (BMP) data from literature for food wastes from east Asia 44 

Substrate Reactor Vol 

(L) 
Temp 

(°C) 
HRT 

(d) 
Organic Loading Rate; 

Substrate to inoculum ratio (S/I) 
VS Removal 

(%) 
BMP 

(LCH4 kg-1VS) Country Reference 

SFW Batch 0.5 37 30 S/I = 0.5 67 a 440 China [102] 

SFW Batch 0.5 37 30 S/I = 0.5 67 a 531 China [102] 

SFW Batch 0.5 37 30 S/I = 0.5 67 a 536 China [102] 

SFW Batch 0.5 37 30 S/I = 0.5 67 a 628 China [102] 

SFW Batch 0.5 36 12 15 g VS L-1 d-1 89 a 407 China [58] 

SFW Batch 0.5 36 12 5 g VS L-1 d-1 89 a 443 China [58] 

SFW Batch 0.25 37 65 10 gVS L-1; S/I= 0.5 90 499 China [99] 

SFW Batch 0.25 37 65 10 gVS L-1; S/I= 0.5 63 508 China [99] 

SFW Batch 0.25 37 65 8 gVS L-1; S/I= 0.5 68 524 China [99] 

SFW Batch 0.25 37 65 8 gVS L-1; S/I= 0.5 91 531 China [99] 

SFW Batch 0.25 37 65 6 gVS L-1; S/I= 0.5 89 570 China [99] 

SFW Batch 0.25 37 65 6 gVS L-1; S/I= 0.5 91 580 China [99] 

SFW Batch 0.25 37 65 4 gVS L-1; S/I= 0.5 89 606 China [99] 

SFW Batch 0.25 37 65 4 gVS L-1; S/I= 0.5 92 630 China [99] 

SFW Batch 0.5 35 40 S/I = 0.2 N/A 489 Korea [103] 

SFW Batch N/A 37 25 2 gVS L-1 N/A 472 Korea [97] 

SFW Batch 2 37 45 Seeded sludge; 9.8 g VS FW N/A 116 Japan [100] 

SFW Batch 2 37 45 Seeded sludge; 9.8 g VS FW N/A 214 Japan [100] 

SFW Batch 2 37 45 Seeded sludge; 9.8 g VS FW N/A 257 Japan [100] 

SFW Batch 2 37 45 Seeded sludge; 9.8 g VS FW N/A 269 Japan [100] 

SFW Batch 2 37 45 Seeded sludge; 9.8 g VS FW N/A 435 Japan [100] 

 

Mean ± SD 
 

      

 

461.2±139.7aa 

(n=21) 

  

KFW Batch 1 37 30 3 g VS L-1; S/I =0.5 87 541 China [77] 

KFW Batch 0.25 35 N/A 150 mL inocula; S/I=1:5 88 568 China [104] 

KFW Batch 0.4 41 45 9.2 g of substrate; S/I =1:1.4  479 (TS) China [105] 

KFW Batch 1 35  10 g VS L-1 68 313 China [106] 

 

Mean ± SD 

 

      

 

474±140.1a 

(n=4) 

  

CFW Batch N/A 37 30 S/I= 0.5 N/A 684 China [58] 

CFW Batch N/A 37 30 S/I= 0.5 N/A 605 China [58] 
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CFW Batch N/A 37 30 S/I= 0.5 N/A 586 China [58] 

CFW Batch 1 35 27.5 8 g VS L-1 N/A 581 China [71] 

CFW Batch 0.5 35 20 10 g VS L-1 N/A 560 China [107] 

CFW Batch 0.25 37 16 1 g VS N/A 531 China [108] 

CFW Batch N/A 37 30 S/I= 0.5 N/A 515 China [58] 

CFW Batch 0.25 35 N/A S/I=1:4 N/A 507 China [109] 

FW Batch 0.15 35 50 20 g VS L-1, food-to-microorganism 

ratio = 1 
N/A 497 China [110] 

CFW Batch N/A 37 30 S/I= 0.5 N/A 435 China [58] 

FW Batch 0.15 35 50 20 g VS L-1, food-to-microorganism 

ratio = 1 
N/A 435 China [110] 

RFW Batch 0.5 37 30 10 g VS L-1  668 China [111] 

CFW Batch 1 35 8 600 ml sludge and 12 g VS food 

waste 
N/A 260 China [112] 

RFW Batch 1 35 N/A 500 mL of inoculum and 15 g of FW 54 268 China [99] 

CFW Batch 0.16 35 35 35 mL of anaerobic sludge, 30 mL 

culture medium and 200 mg solid FW 
N/A 610 Singapore [113] 

CFW Batch 0.12 35 40 I/S = 2.0 (VS-basis) N/A 576 Japan [114] 

RFW N/A N/A N/A N/A N/A N/A 479 Singapore [36] 

FW Batch 0.5 35 30 17.7 g L-1 N/A 410* Singapore [115] 

 

Mean ± SD 

(FW as a 

subgroup) 

 

      

 

517 ± 119a 

(n=18) 

  

Gran Mean ± SD 

(SFW, KFW, 

RFW, CFW, and 

generic FW) 

      

 

480 ± 88C 

(n=42) 

  

     FW FROM OTHER COUNTRIES     

          

FW Batch 0.4 37 N/A S/I = 0.5 N/A 529 Ireland [86] 

FW Batch 0.4 37 35 S/I=1 N/A 501 UK [91] 

FW Batch 0.4 37 30 S/I = 0.5 N/A 493 Ireland [94] 

RFW Batch 1 50 28 10.5 gVS L-1 N/A 445 USA [93] 

RFW Batch 1 50 28 6.8 gVS L-1 N/A 425 USA [93] 

 

Mean ± SD 
      

 

479 ±43C  

(n=5) 
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    BMP FROM OTHER SUBSTRATES    

          

    ENERGY CROPS and GREEN RESIDUES    

Switchgrass Batch 1 37 30 3 g VS L-1 S/I =0.5 87 246 China [77] 

Straw Batch 1 35 N/A 600 ml sludge + 12 gVS straw N/A 281 China [112] 

Corn stover Batch 1 37 30 3 g VS L-1 S/I =0.5 87 241 China [77] 

Rice straw Batch 1 37 30 3 g VS L-1 S/I =0.5 87 281 China [77] 

Wheat straw Batch 1 37 30 3 g VS L-1 S/I =0.5 87 245 China [77] 

Yard waste Batch 1 37 30 3 g VS L-1 S/I =0.5 87 183 China [77] 

          

 

Mean ± SD 

 

      

 

246±36A 

(n=6) 

  

     FOOD INDUSTRY WASTE     

          

Cheese whey Batch 0.25 35 38 S/I = 1 N/A 424 USA [116] 

Ice Cream Batch 0.25 35 30 S/I = 1 N/A 502 USA [116] 

Used vegetable oil Batch 1 37 30 3 g VS L-1 S/I =0.5 87 811 China [77] 

Used vegetable oil Batch 0.25 35 40 S/I = 1 N/A 648 USA [116] 

Fresh Dog food Batch 0.25 35 30 S/I = 1 N/A 427 USA [116] 

Dog food 

 

 

Batch 1 35 13 
Substrate+ inoculum and tap water to 

working volume 750 mL 
87 652 China [117] 

 

Mean ± SD 
      

 

577 ± 152D 

(n=6) 

  

Fruit and vegetable 

waste 
Batch 0.5 35 20 10 g VS L-1 N/A 300 China [107] 

Fruit and vegetable 

waste 
Batch 1 37 30 3 g VS L-1 ; S/I =0.5 87 342 China [77] 

Fruit and vegetable 

waste 
Batch 0.25 37 16 1 g VS N/A 443 China [108] 

 

Mean ± SD 
      

 

362 ±73b  

(n=3) 

  

     MANURE     

          

Dairy manure Batch 1 37 30 3 g VS L-1 S/I =0.5 87 51 China [77] 

Caw manure Batch 0.25 37 16 1 g VS N/A 182 China [108] 

Chicken manure Batch 1 37 30 3 g VS L-1 S/I =0.5 N/A 295 China [77] 

Pig manure Batch 0.25 37 16 1 g VS N/A 385 China [108] 
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Swine manure Batch 1 37 30 3 g VS L-1 S/I =0.5 N/A 322 China [77] 

Brown Water Batch 0.5 35 30 17.7 g L-1 N/A 280 Singapore [115] 

 

Mean ± SD 
      

 

253 ±119A 

(n=6) 

  

aValues followed by the same letter are not statistically different for p<0.05: lowercase letters indicate differences between SFW, KFW and CFW; uppercase letters indicate 45 

differences between different biomass typologies. 46 
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4. Biomethane production from food waste 47 

4.1 Single-Stage Anaerobic Digestion 48 

Single-stage AD systems have relatively simple designs; to date this process is thought to be the 49 

easiest to build and operate. About 90% of full-scale plants rely on single-stage systems for the 50 

anaerobic digestion of organic waste [118]. 51 

In the single stage process, the maximum achievable Organic Loading Rate (OLR) is highly 52 

dependent on reactor configuration [119]; the OLR of 5 g VS L-1d-1  was a typical value of plants 53 

relying on wet systems [120], for which the OLR seldom exceeded 10 g VS L-1 d-1 [17,121,122]. An 54 

upper limit for OLR seems to exist around 15 g VS L-1 d-1, but the achievable OLR can be greatly 55 

affected by the overall digestibility of the waste [119]. Operational stability and efficiency, when 56 

OLR is lower than the upper limit mentioned, are widely reported in the literature. For instance, a 57 

high methane yield of 455 L kg-1 VS, in a single wet CSTR operating at 37°C for 187 days with 92.2% 58 

of VS reduction was obtained at an OLR of 9.2 g VS (15.0 kg COD) L⁻1 day-1 by Nagao and 59 

colleagues in 2012 [83]. Congruently 7 g VS L-1 d-1 was the optimal OLR  to apply in a semi-60 

continuous CSTR fed with FW from student canteens run in a dual solid–liquid system [71].  61 

The initial loading of the process can be provided as either OLR or substrate and inoculum 62 

concentration, the resulting mean value calculated is the average of those experiments providing the 63 

specific OLR. It was found that, when FW, as a category, is anaerobically digested by a mesophilic 64 

single stage process, the OLR of 7.7 ± 6.4 g VS L-1 d-1 (n=10) corresponded to the mean methane 65 

yield of 414 ± 31 LCH4 kg-1 VS (n=10) (Table 3). Meanwhile, when the substrate is SFW and the 66 

OLR of 7.7 ± 3.5 g VS L-1 d-1 (n=5), the methane yield corresponded to 434 ± 15.8 LCH4 kg-1 VS (n=5) 67 

(Table 3), these data being very similar.  68 

HRT varies accordingly to the substrate’s composition: an HRT of 10-15 up to 30 days is considered 69 

a typical range of values for a main single wet anaerobic process [119] (Table 3). As shown in Table 70 

3, the mesophilic single stage process applied to the category FW, provided an average methane yield 71 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/full-scale-plant
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/organic-waste
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of 375±107 LCH4 kg-1VS, with the corresponding average HRT of 30 d when the treated substrate is 72 

KFW, not so far from the bio-methane data calculated, as average, for the other categories of food 73 

wastes (Table 3), i.e.  390±76 LCH4 kg-1 VS. Synthetic food wastes (SFW) showed higher data, i.e. 74 

442±21 LCH4 kg-1VS, than those measured for “real food wastes” although there was no statistical 75 

difference between the different categories (Table 3). It must be noted that the ultimate methane yield 76 

fluctuates in ranges with different widths depending on the substrate used. The widest range between 77 

the minimum and the maximum methane yield pertains to KFW, which fluctuates between 232 LCH4 78 

kg-1VS and 591 LCH4 kg-1VS, while FW’s is between 250 LCH4 kg-1VS and 551 LCH4 kg-1
 VS. SFW 79 

apparently seems to have a reduced variability, as its methane yields fluctuate in the narrowest of the 80 

ranges from 417 LCH4 kg-1VS to 477 LCH4 kg-1VS due to the origin of “ad hoc made” waste. With 81 

reference to the KFW data, it is interesting to underline that thermophilic conditions allowed higher 82 

performances than mesophilic ones, i.e. 473 ± 74 LCH4 kg-1VS (n = 5) vs. 320 ± 81 LCH4 kg-1VS (n = 83 

9), respectively (Table 3) (p <0.05). The fact that mesophilic conditions produce lower methane yield 84 

is confirmed by the average data calculated from Table 3 for RFW, CFW and CF groups under 85 

mesophilic condition, i.e. 374 ± 62 LCH4 kg-1VS (n = 18), that did not differ statistically from the data 86 

above reported from mesophilic AD of KFW. 87 

Biogas from FW is composed mainly by CH4 (60% v/v) and CO2 (40%v/v) [123,124], and it can be 88 

directly burned producing electrical energy (EE) or upgraded with no additional cost (upgrading unit 89 

cost is equal to engine cost to produce EE) to bio-methane for direct injection in the gas grid or to be 90 

used as biofuel [124]. 91 
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Table 3. Methane production from anaerobic digestion performed in single stage. 92 

Substrate Reactor 
Vol 

(L) 
T 

(°C) 
HRT 

(d) 

Initial loading and/or ORL 

 

 

VS 

Removal 

(%) 

CH4 Yield 
(LCH4 kg-

1
VSadded) 

Energy 

(MJ kg-

1
VSadded) 

Country Reference 

SFW 
Single stage Semi -Continuous 

feeding mode 
4 55 30 

1.5 L inocula 

+ 1.5 L substrate 
83 477 17.10 China [81] 

SFW 
Single stage Semi -Continuous 

feeding mode 
4 37 30 

1.5 L inocula 

+ 1.5 L substrate 
82 461 16.52 China [81] 

SFW 
Single stage Semi -Continuous 

feeding mode 
3 37* 16 9.2 gVS L-1 d-1 91.8 455 16.31 Japan [83] 

SFW 
Single stage Semi -Continuous 

feeding mode 
3 37* 16 7.4 gVS L-1 d-1 90 444 15.91 Japan [83] 

SFW 
Single stage Semi -Continuous 

feeding mode 
3 37* 16 12.9 gVS L-1 d-1 92.5 432 15.48 Japan [83] 

SFW Single stage CSTR 12 55 30 N/A N/A 430 15.41 Japan [52] 

SFW 
Single stage Semi -Continuous 

feeding mode 
3 37* 16 5.5 gVS L-1 d-1 89 421 15.09 Japan [83] 

SFW 
Single stage Semi -Continuous 

feeding mode 
3 37* 16 3.7 gVS L-1 d-1 84.4 417 14.95 Japan [83] 

 

Mean ± SD 

(n=8) 

      
 

442±21a 

 

15.85±0.75 
  

KFW (dinner) CSTR in Batch 0.4 55 29 20.12 g VS L-1 N/A 591 21.18 China [125] 

KFW (lunch) CSTR in Batch 0.4 55 29 20.12 g VS L-1 N/A 501 17.96 China [125] 

KFW (dinner) CSTR in Batch 0.4 35 29 20.12 g VS L-1 N/A 493 17.67 China [125] 

KFW (lunch) CSTR in Batch 0.4 55 29 9.54 g VS L-1 N/A 420 15.05 China [125] 

KFW 

(breakfast) 
CSTR in Batch 0.4 55 29 20.12 g VS L-1 N/A 419 15.02 China [125] 
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KFW (dinner) CSTR in Batch 0.4 55 29 9.54 g VS L-1 N/A 434 15.55 China [125] 

KFW (lunch) CSTR in Batch 0.4 35 29 20.12 g VS L-1 N/A 371 13.30 China [125] 

KFW 

(breakfast) 
CSTR in Batch 0.4 35 29 20.12 g VS L-1 N/A 370 13.26 China [125] 

KFW 
Laboratory-scale anaerobic 

batch test 
1 35 40 10 g VS L-1d-1 67.7 313 11.22 China [106] 

KFW (dinner) CSTR in Batch 0.4 35 29 9.54 g VS L-1 N/A 306 10.97 China [125] 

KFW (lunch) CSTR in Batch 0.4 35 29 9.54 g VS L-1 N/A 276 9.89 China [125] 

KFW 

(Breakfast) 
CSTR in Batch 0.4 35 29 9.54 g VS L-1 N/A 264 9.46 China [125] 

KFW Single stage CSTR N/A 35 25 1.11 g VS L-1d-1 N/A 257 9.21 China [99] 

KFW 

(breakfast) 
CSTR in Batch 0.4 55 29 9.54 g VS L-1 N/A 232 8.32 China [125] 

 

Mean ± SD 

(n=14) 

      
 

375±107a 

 

13.43±3.83 
  

CFW 
Lab scale bottle fed every 24 

hours 
0.5 55 35 1.5 g VS L-1d-1 N/A 551 19.75 China [126] 

CFW 
Lab scale bottle fed every 24 

hours 
0.5 55 35 1 g VS L-1d-1 N/A 513 18.39 China [126] 

FW 
Single stage Semi -Continuous 

feeding mode Helix type mixer 
6 35 30 6.4 g VS L-1d-1 86 465 16.67 China [69] 

RFW Single stage CSTR 6 35 30 2.4 g VS L-1d-1 73 448 16.06 Japan [67] 

FW 
Single stage Semi -Continuous 

feeding mode 
6 35 20 8.4 g VS L-1d-1 82 439 15.73 China [69] 

RFW 
Single stage Semi -Continuous 

feeding mode 
0.5 37 20 4-4.1 g VS L-1d-1 80 425 15.23 China [127] 

FW 
Single stage Semi -Continuous 

feeding mode 
6 35 16 10.8 g VS L-1d-1 79 416 14.91 China [69] 
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CFW 
Single stage Semi -Continuous 

feeding mode 
1 35 30 8 g VS L-1 N/A 410 14.69 China [72] 

CFW 
Single stage Semi -Continuous 

feeding mode 
1 35 21-28 7 g VS L-1 d-1 N/A 405 14.52 China [72] 

FW 
Single stage Semi -Continuous 

feeding mode 
6 35 12 13.6 g VS L-1d-1 77 405 14.52 China [69] 

RFW 
Single stage Semi -Continuous 

feeding mode 
0.5 37 20-40 

190 mL seed sludge and 10 mL 

substrate 
75.6 396 14.19 Korea [36] 

CFW 
Lab scale bottle fed every 24 

hours 
0.5 37 35 1.5 g VS L-1d-1 N/A 387 13.87 China [126] 

FW 
Single stage Semi -Continuous 

feeding mode 
6 35 8 21.8 g VS L-1d-1 74 377 13.51 China [69] 

CFW 
Lab scale bottle fed every 24 

hours 
0.5 37 35 1 g VS L-1d-1 N/A 370 13.26 China [126] 

CFW 
Single stage Semi -Continuous 

feeding mode 
1 35 30 8 g VS L-1 N/A 347 12.44 China [72] 

CFW Batch AD 1 35 50 35 g VS L-1 N/A 331 11.86 China [109] 

FW 
Single stage Semi -dry batch 

test 
N/A 30 60 N/A N/A 314 11.25 China [128] 

CFW 
Single stage - continuously 

shaken bottle 
1 35 N/A 5 g VS L-1 N/A 281 10.07 China [112] 

CFW Batch test 1 35 30 10 g VS L-1 N/A 277 9.93 China [72] 

CFW Batch AD 1 35 50 45 g VS L-1 N/A 250 8.96 China [109] 

 

Mean ± SD 

(n=20) 

      
 

390±76a  

 

13.99±2.74 
  

 93 
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4.2 Two-Stage Anaerobic Digestion 94 

The two-stage AD approach has been proposed, reporting benefits in terms of:  i. multiple products 95 

(H2 and CH4) production; ii. better stabilization of the AD; iii. better regulation of the methanogenic 96 

process vs. overload; iv. AD time reduction; v. increase of the total energy produced [32]. All this 97 

because the separation of the hydrolysis/fermentation phase from methanogenesis allows better 98 

process conditions, and should increase process performance in terms of total energy produced from 99 

biomass [129]. In particular, it seems that performing the first stage before anaerobic digestion 100 

under controlled acidogenic conditions producing H2, allowed benefits in enhancing the subsequent 101 

methanogenic process. 102 

From the literature, it is not very clear whether, effectively, the two-stage approach allows an increase 103 

in total energy produced. Many works demonstrated energy increases (from 20% to 60%) using two-104 

stage approaches [130–132]. Schievano and colleagues in 2014 reported that two-stage AD recovered 105 

8%–43% more energy than one-stage and never significantly less, testing this approach on different 106 

biomass types [129]. On the other hand, previous work of ours [133] performed at lab-scale did not 107 

find any differences between the one- and two-stage approaches. In this review, data from China and 108 

some East Asian countries have been collected (Table 4) and discussed for energy efficiency. To do 109 

so, the total energy produced in the processes (MJ kg-1
VSadded) was calculated from H2 and CH4 110 

produced by the two-stage approach, assuming the lower heating value of hydrogen to be equal to 50 111 

MJ kg-1 and the lower heating value of bio-methane to be equal to 119.9 MJ kg-1 [134] (Table 4). The 112 

results obtained, as averages of different literature data, were then compared to energetic data reported 113 

for single stage AD (Table 3). The results obtained indicated that restaurant/canteen wastes produced 114 

more energy than other FW groups (p>0.05). This is can be due to different composition of RFW 115 

with respect the other groups, i.e. higher lipids content (see chapter 2).  116 

More interesting was the fact that, on average, there was no significant difference (p>0.05) in total 117 

energy produced by two-stage (Table 4) vs. one-stage (Table 3).  Therefore, it can be concluded that 118 

taking into consideration data from the literature (Table 3 and 4) and making a complete energy 119 
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balance, there were no differences in total energy recovered due to performing anaerobic digestion in 120 

one vs. two stages, with the  average data being as  follows:  14.1± 4.2 MJ kg-1 VSadded (n = 23) and 121 

15.97 ± 0.7 MJ kg-1 VSadded  (n = 42), respectively.        122 
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Table 4. Bio-hydrogen and Bio-methane yield from food waste. 123 

 Bio-H2 Bio-CH4 

 

Total energy 

(H2 + CH4) 

Experiment 
Country Reference 

Type 

of FW 

Yield 

(mL g-

1VSin) 

HRT 

(d) 

Temperature 

(°C) 

Yield 

(mL g-

1VSin) 

HRT 

(d) 

Temperature 

(°C) 
(MJ kg-1

VSadded)    

KFW not measured 5 35 380a 20 35 13.6 two-stage CSTR Korea [135] 

KFW not measured 5 35 440 a 20 55 15.8 two-stage CSTR Korea [135] 

KFW not measured 5 55 370 a 20 37 13.3 two-stage CSTR Korea [135] 

KFW2 66 2 55 364 10 55 13.7 two-stage CSTR Japan [136] 

KFW3 20 2 55 329 10 55 12 two-stage CSTR Japan [136] 

KFW4 85 2 55 338 10 55 13 two-stage CSTR Japan [136] 

KFW 

Mean ± Std 

(n=6) 

- - - - - - 13.5 ± 1.2abb - - - 

CFW 125 70 55 526 70 35 20.2 two-stage CSTR China [137] 

CFW 104.5 5 55 512 30 35 19.5 two-stage CSTR China [138] 

RFW 34.7 N/A 35 387.9 N/A 35 14.3 two-stage batch China [64] 

RFW5 Undetected 6 55 690 24 35 24.7 two-stage CSTR Japan [67] 

RFW 121.1 N/A 37 321 N/A 37 12.8 batch China [139] 

CFW 147.3 2.87 55 383.0 14.4 35 15.3 two-stage CSTR Japan [140] 

RFW 114 1.9 55 450.6 7.7 55 17.3 
batch, then semi-

continuous 
Japan [141] 

CFW 205 1.3 55 464 5 35 18.8 two-stage CSTR Japan [142] 

RFW and 

CFW Mean ± 

Std 

(n=8) 

- - - - - - 17.8 ± 3.5b - - - 

SFW not measured - - 477 30 55 17 two-stage CSTR China [81] 

SFW 69 N/A N/A 269.7 N/A N/A 10.4 batch China [82] 

SFW 292.7 0.5 N/A 391.6 1 N/A 17.2 CSTR Thailand [9] 

SFW not measured - - 290 16 35 10.4 batch China [143] 

SFW not measured - - 270 17 35 9.7 batch China [144] 

SFW 55.1 N/A 37 94.8 N/A 37 4 batch Thailand [55] 

SFW not measured - - 180 17 35 6.5 batch Hong Kong [145] 

SFW 

Mean ± Std 

(n=7) 

- - - - - - 10.7 ± 5a - - - 
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 asuch values were calculated according to the data available in the paper; 1, Organic Fraction of Municipal Solid Waste was considered as KFW; 2, garbage was considered kitchen FW; 3, okara 124 

was considered kitchen FW; 4, potato was considered kitchen FW; 5, oily food waste was considered restaurant FW. Numbers followed by the same letter do not show statistically significant 125 

differences per α=0.05. 126 

bvalues followed by the same letter are not statistically different for p<0.05.  127 
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4.3 Anaerobic Co-digestion of food waste with different substrates.  128 

The performance of AD is significantly affected by the C/N ratio: an appropriate balance between 129 

carbon and nitrogen is required for effective digestion [146]. Therefore, an adjustment of the C/N 130 

ratio is needed for stable AD in long-term operations. Such an adjustment could be considered as a 131 

pre-treatment itself [147]. Tanimu and colleagues found that the activity of methanogens was 132 

enhanced during the anaerobic digestion of FW for C/N=30, followed by C/N=26 and lastly C/N=17, 133 

with the average biogas yields obtained equal to 1,002, 620 and 479 L kg-1 VS, respectively [148]. 134 

Hence, it is possible to improve biogas production from FW by co-digesting it with additional 135 

substrates [149], which can optimize the C/N ratio, usually by raising the relative C content. For 136 

example, Zhang in a work published in 2013 [71] found the optimal C/N ratio to be 15.8 when co-137 

digesting FW with cattle manure (CM). Li and colleagues in 2009 noticed an improvement of 138 

methane yield by around 44% when co-digesting FW with CM compared to mono-digestion of FW 139 

[150]. In addition, Banks found in 2011 [151] a decrease of greenhouse gas emissions when co-140 

digesting FW with cattle slurry.  141 

Furthermore, the occasional addition of a third component to co-digestion (FW+CM+oil or 142 

FW+CM+fat) may enhance the methane yield [152]. Similar findings were reported by Amha and 143 

colleagues in 2017 [153], in which the addition of fat, oil and grease (FOG) positively impacted 144 

methane production. 145 

Several other substrates have been found to be favourable to the anaerobic co-digestion (AcoD) of 146 

FW. For example, Kim and Oh in 2011 [154] mixed FW and livestock waste to reduce VS and 147 

improve the yield. Yong and colleagues in 2015 co-digested FW with straw and found the optimal 148 

ratio to be FW:straw of 5:1 [112]. The findings of this study were also validated in 2014 by Zhan-149 

jiang,  who found the highest methane yield in the mass ratio of FW: rice straw of 3:1 [155]. Volatile 150 

solids reduction was also obtained by adding green waste, which influences the C/N ratio [156]. 151 

Furthermore, mixing yard waste (green waste) with FW relieves VFA accumulation, thus improving 152 

methane yield [86]. It was also found that adding the sludge of wastewater treatment plants to FW 153 
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could reduce the negative effects of Na+ [69]. Optimal ratios of food waste and tall fescue were 154 

observed to be 1.52/1 and 1/1  by Chen and colleagues in 2016 [157]. Biogas production enhancement 155 

was also observed by adding distiller’s grain and piggery wastewater into FW [36,158]. 156 

A recent study  used food waste in co-digestion with microalgae (MA), trying several substrate ratios 157 

[114]. It was found that increasing the amount of FW can enhance the AD performance, with 158 

maximum methane yield obtained with the ratio MA:FW of 0.2:0.8, achieving the value of 640 L kg-159 

1VSadded, almost 5 times more than microalgae alone. Jang and colleagues in 2015 [159] analysed the 160 

co-digestion of food wastewater and waste activated sludge (WAS) and found that co-digestion 161 

provided higher gas production than WAS alone. In 2016 Abudi and colleagues [160] set up a batch 162 

experiment using OFMSW, thickened WAS and rice straw. The three substrates were compared at 163 

three different ratios: 1:1.5:1.5, 1:0.5:0.5 and 3:0.5:0.5, respectively. The ratio 3:0.5:0.5, which was 164 

characterized by a high fraction of OFMSW, achieved the greatest biogas production, of 558 L kg-165 

1VS. An overview of substrates used in co-digestion with food waste is shown in Table 5 and Table 166 

6. The tables underlined the percentages of increase/decrease in methane yield from FW alone to FW 167 

co-digested. The values of increases in yield were found to be extremely variable amongst different 168 

studies. Furthermore, not all values were positive numbers, indicating that in some cases the co-169 

digestion of FW with other substrates resulted in a decrease of yield (e.g. a study of 2014, where the 170 

decrease was of 16%) [161]. However, not all cases presenting such characteristics resulted in an 171 

absolute decrease of yield. For example, Zhang and colleagues in 2013 [71] found that the methane 172 

yield of mono-digested FW (mL CH4 g
-1VS) was higher than that of FW + cattle manure, but on the 173 

contrary, the total methane (mL) was higher in co-digestion rather than in mono-digestion. 174 

However, the anaerobic co-digestion (AcoD) of FW with sewage sludge (SS) (Table 6) gives the 175 

opportunity of fixing such obstacles by adjusting C/N ratio, mediating hydrolysis and diluting harmful 176 

substances [100,162]. It is possible to improve the performance of FW, which is characterized by 177 

high solids concentration and high C/N ratio varying from 13.2 to 24.5 [163], with the addition of 178 

sludge (SS), which is known to be characterized by a lower C/N ratio (from 6 to 9). Anaerobic co-179 



30 
 

digestion of FW with SS appeared to be a very promising technology, as it can produce higher 180 

methane yields. Indeed, in a work of 2016, Prabhu and Muturi found methane increases in biogas of 181 

60% and 73%  with the addition of SS to FW; while in 2015 Koch and colleagues found accelerated 182 

methane production rates [164,165]. Moreover, AcoD of FW with SS is beneficial to process stability, 183 

particularly in thermophilic conditions [138]. Anaerobic co-digestion of FW with SS appeared to be 184 

an advantageous way of managing sewage sludge, especially in China [166] and in South Korea [30] 185 

where such matters raise a lot of concern. Given the many benefits of the co-digestion of FW with 186 

SS, it is still a matter for investigation to define what the ratio FW:SS should be. A work of 2003 by 187 

Kim and colleagues for example [167] found optimal ratios in thermophilic (39.3% FW) and 188 

mesophilic (50.1% FW) conditions respectively. Furthermore, in 2004 Kim and colleagues 189 

demonstrated that adding SS (13-19%) to FW  can enhance potential hydrogen production [74]. 190 

Again, in 2014 Kuo-Dahab and colleagues found that by adding 50% of SS to FW total solids, biogas 191 

production and stability increased, while VS decreased [168]. Other research also recommended  192 

setting the blend ratio of FW:SS to 1:1 for high-solids anaerobic co-digestion, since it showed good 193 

synergistic effects and increased biogas production [66]. Silvestre and colleagues in 2015 [169] 194 

accounted for an increase of 200% methane production rate and 59% methane yield with the addition 195 

of 54% FW to the FW+SS mixture.  Prabhu and Mutnuri in 2016 indicated that a 1:2 mixture of 196 

FW:SS was optimal to produce biogas with a methane content of 60% (v/v) [164]. However, as shown 197 

in Table 6, this does not necessarily translate into a higher amount of methane: there was in fact a 198 

21% reduction in methane yield from FW to FW + SS (1:2 mixing ratio). In a work of 2016, Zahan 199 

and colleagues also suggested that the presence in the mix of at least 47-48% of FW improved 200 

methane yield of SS [170]. However, another work in 2013 found a biogas and VS linear decrease 201 

with the increase in the presence of  FW in the mix during co-digestion [69]. In 2003, Heo and 202 

colleagues [57] also reported decreasing methane yield by 85% to 50% when increasing FW from 203 

10% to 50%. Such different conclusions on the matter of the mixture ratio can be attributed to the 204 

different C/N ratios of FW and SS used in the research cited [66]. Table 6 reports research on the 205 
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matter of co-digestion of FW with SS in different experimental conditions and relative biogas yields, 206 

with particular focus on mixture ratios. Statistical analysis showed that there were no differences for 207 

bio-methane production by adding SS in co-digestion with FW but that the very high standard 208 

deviations in the work reported did not permit any conclusions to be reached at this stage.  209 
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Table 5. Performance of anaerobic co-digestion of FW with different co-substrates as available in recent literature 210 

Co-substrates 
Mixing 

ratio 

CH4 yield 

before co-digestion 

(mL g-1VSin) 

CH4 yield 

after co-digestion 

(mL g-1VSin) 

 

Yield increase  

(%) 

Temperature 

(°C) 
Experiment Country Reference 

FW+cow manure N/A 54 247 357 55°C Batch Malaysia [171] 

FW+microalgae 0.8:0.2 575.7 639.8 11.1 35°C Batch Japan [114] 

FW+waste activated sludge 70:30 N/A 254 N/A 35°C Batch China [172] 

FW+raw straw 5:1 281 392 39.5 35°C Batch China [112] 

FW+green waste 40:60 326.4 272.1 -16.6 mesophilic 24.5 days HRT China [161] 

FW+pulp and paper sludge 1:1 229.7 432.3 88.2 thermophilic Batch China [173] 

FW+cattle manure 2:1 410 388 -5.4 35°C Batch China [71] 

FW+rice straw 3.88:1 N/A 559 N/A 35°C CSTR China [157] 

FW+landfill leachate N/A 1.1 466 42,264 35°C Batch China [174] 

Mean ± Std - 268 ± 199aa (n=8) 406 ± 137b (n=9) - - -  - 

 avalues followed by the same letter are not statistically different for p<0.05. 211 

  212 
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Table 6. Anaerobic co-digestion of FW with SS: focus on mixture ratio 213 

FW: SS 

Methane yield of FW 

before co-digestion 

mL g-1VSin 

Methane yield 

after co-digestion 

mL g-1VSin 

Increase 

of yield (%) 
Temperature HRT/days Country Reference 

3:1 N/A 336 N/A 30°C 90 India [175] 

50:50 N/A 107 N/A 35°C N/A Pakistan [176] 

3:1 N/A 407 N/A Thermophilic 30-3 China [102] 

1:7 N/A 710 N/A 35°C 20 Hong-Kong [177] 

3:1 271 264 -2.5 35°C 7 China [178] 

1:2 625 490 -21.6 Mesophilic 20 India [164] 

1:1 70.7 297 319.6 37°C 37 China [162] 

3:2 70.7 316 347.2 37°C 37 China [162] 

1:0.4 N/A 352 N/A 35°C 30-8 China [69] 

85:15 322 353 9.8 37°C N/A China [139] 

50:50 N/A 321 N/A 35°C 13 Korea [103] 

Mean ± Std 272 ± 228aa (n=5) 359 ± 149a (n=11) - - -  - 
avalues followed by the same letter are not statistically different for p<0.05 214 

 215 
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5. Pre-treatments of food waste to increase methane yield.   216 

Pre-treatment is fundamental to improve biodegradability of the substrates. For example, Song and 217 

Zhang, in a work of 2015, demonstrated that pre-treating co-substrates using wet-state H2O2 can 218 

improve biodegradability and methane yield [179]. The pre-treatment with 3% H2O2 (w/w) allowed 219 

an increase in methane yield by 50.3%. With this method, VFAs concentration may also decrease. 220 

An alkaline solution of H2O2 can also be used to improve biomass delignification [180]. Lipids 221 

removal from food waste can be beneficial to the AD process by giving it more stability, as found by 222 

Algapani and colleagues in 2017 [138]. Biological co-treatment (biological solubility pre-treatment) 223 

could improve the hydrolysis performance of FW and SS, since alkalis generated by sludge can buffer 224 

VFAs and maintain optimum pH for hydrolysis [181]. According to Zhang and colleagues, the 225 

increase in biological co-treatment time can improve hydrolysis and acidogenesis, with optimum pre-226 

treatment time of 24h [65]. With such treatment, it is possible that the digestibility of the substrates 227 

is improved. With this co-pre-treatment, the methane yield of the AD process increased by 24.6% 228 

and the VS reduction increased by 10.1%. Microwave pre-treatment at maximum power and 229 

temperature of 1000 W and 100°C was also found to be favourable to methane production by co-230 

digestion of FW with sludge, with the optimized ratio of 3:2= FW: SS [162]. In this case, methane 231 

production increased by 6.9% compared with the untreated substrates. Other pre-treatment methods 232 

that solve the problem of sludge solubility include ultrasound [182], heat and free nitrous acid 233 

combined [183] as well as other mechanical, thermal, chemical and biological pre-treatments [184]. 234 

Such a variety of methods can also be applied to FW [49].  235 

Table 7 reports data referring to the effects of pre-treatment on bio-methane production by using 236 

different approaches. A representation of different pre-treatments with a brief explanation for each 237 

one was also reported by Parthiba Karthikeyan and colleagues in 2018 [32]. In brief, pre-treatment 238 

can be classified as i. physical treatment, able to modify the surface area available for biological 239 

reaction; ii. thermal treatments that allow solubilizing macromolecules, the disintegration of cell 240 

membranes, the hydrolysis of macromolecules enhancing mass homogenization; iii. chemical 241 



35 
 

treatments able to hydrolyse macromolecules destroying 3D structure of organic matter so that 242 

subsequent hydrolysis becomes easier; iv. biological treatments that acted like chemical treatments 243 

but worked more slowly [32].  244 

Pre-treatments showed a general positive effect, enhancing biogas/biomethane production (Table 7). 245 

The positive effects varied a lot and depended upon the method and conditions adopted. It is 246 

impossible to give any unique indication about what is the best pre-treatment. Based on the data 247 

collected in this review, it seems that physical, thermal, chemical and physical-chemical treatments 248 

and pre-treatments plus co-digestion gave good results in terms of biomethane produced in 249 

comparison with untreated biomass, i.e. on an average: physical + 40±9 % (n = 3), thermal: + 27±22% 250 

(n = 3), chemical + chemical/physical: + 42±31% (n = 5), and combined pre-treatment: +34 ±21% (n 251 

= 18). On the other hand, biochemical treatments gave lower effect: + 12.5 ±12 % (n = 6) and 252 

“Process”: + 15 ±13% (n =5) (Table 7).   253 

Pre-treatment allows the production of more bio-methane, increasing the total energy produced, but 254 

it requires energy to be performed, which should be lower than the energy gained. Previous reviews 255 

and work on the topic did not report specifically on the energetic balance, or reported only a 256 

qualitative approach regarding the effect of the pre-treatment (bio-methane production increase). 257 

Therefore, in this review a first attempt has been made to perform an energy balance, although the 258 

lack of information on pre-treatment energy requirements with particular reference to the organic 259 

wastes made it very difficult. 260 

From the literature, it was possible to extract data regarding energy consumption for performing pre-261 

treatments, referring to the total solid unit (MJ ton-1 TS). Therefore, taking into consideration the bio-262 

methane added because of the pre-treatment (% of total bio-methane produced without pre-treatment) 263 

(Table 7), the average bio-methane production for the organic wastes (395 ± 84 L kgVS-1; n=42) 264 

(Table 3), the average total solid and volatile solid contents of organic wastes (20.3 ± 7 % wet weight 265 

and 92.5 ± 4.9 % TS; n = 34) (Table 1), and lower calorific power of methane (119.9 MJ kg-1), the 266 

total energy gained (MJ ton-1 TS) has been calculated for some of the pre-treatments listed in the 267 
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Table 7. The results obtained (on average for each pre-treatment category) were then discussed taking 268 

into consideration the energy (MJ ton-1 TS) necessary for the pre-treatment, obtaining the net energy 269 

produced (on average). 270 

Physical pre-treatments increased, on average, the amount of CH4 produced by 40 ± 10% (n=3) (Table 271 

7) that considering the energy necessary for the pre-treatment i.e. 40 - 162 MJ ton-1 TS (n=11) [185–272 

187], gave, on average, a net energy gain of 5,000 MJ ton-1 TS. Again, heat pre-treatments require 273 

144-709 MJ ton-1 TS (n=6) [187,188], that taking into consideration an increase of CH4 produced by 274 

30 ± 16% (n=4) gave a net energy gain of 3,500 MJ ton-1 TS. Chemical pre-treatments instead gave 275 

a bio-methane gain of 22 ± 14 % (n=2) requiring an amount of energy of 2,500-4,260 MJ ton-1 TS (n 276 

= 2) [189], which means a net energy gain of -500 MJ ton-1 TS, i.e. in this case pre-treatments were 277 

not energy-efficient [189].278 
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Table 7. Pretreatments to enhance methane production during anaerobic digestion of food wastes. 279 

Pre-treatment Country Treatment description 

and substrate specifications 

 Reactor  

 Design 

Temperature 

 (°C) 

Results on process factors Biogas / H2 / CH4 production Increment 

(%) 

Reference 

Before 

Process 

After 

Process 

  

 

PHYSICAL 

Shredding  Japan FW standard. Size reduction by beads mill 

to mean particle size of 0.718 mm 

(control 0.888 mm) 

 

Batch  Mesophilic 40% higher COD solubilisation 375 mL g-1 

total COD−1 

cumulative 

biogas 

503 mL g1 

total COD−1 

cumulative 

biogas 

+34% [190] 

High voltage 

pulse discharge 

China Canteen FW. Optimized discharge 

conditions: the pulse voltage of 40 kV, the 

electrode distance of 5 mm, the pulse 

frequency of 400 Hz, and the pre-

treatment time of 30 min. 

 

Batch 35 Higher concentration of SCOD, 

soluble protein, and soluble 

sugars than the control, i.e. 

107.3%, 171% and 24.8% 

respectively,  

240 mLCH4 

g-1 

CODremoved 

315 mL CH4 

g-1 

CODremoved 

+35% 

 

[191] 

Ultrasonic  Korea Ultrasonic homogenizer used for 30 min 

at 360 kJL-1 energy intensity. 

Batch 35 Additional reduction: 

+11.1%COD; + 6.5 VSS; +3.7 

%TSS 

 

108 mL 

cumulative 

CH4 

163mL 

cumulative 

CH4 

+51% [192] 

 

THERMAL/HEAT 

 

Thermal 

 

China KW; fluid circulating process at constant 

temperature of 120 °C for 50 min 

Two stage 35 Solubility rate of 26.63% on TS 

basis and of 49.21% on VS 

basis; 74.92% (v/v) CH4 

concentration in biogas 

 

911 mL g-

1VS 

total biogas 

(KFW 

without pre-

treatment) 

1,200 mL g-

1VS 

total biogas 

(KFW with 

pre-

treatment) 

+31.7% [193] 

Thermal  Korea FW; heated in an autoclave at 120 °C for 

60 min. 

Batch 35 +9.9 % COD removal; +7.2 

VSS reduction; +5.2% TSS 

reduction 

108 mL 

cumulative 

CH4 

160 mL 

cumulative 

CH4 

+48% [192] 
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Hydrothermal China Air-dried rice chopped, immersed in the 

distilled water for 12 h, heated in reactor 

to 180 °C, with heating rate of 10 °C min-

1 for 15 min. 

 

Batch 35 Iintensified hydrolysis of water-

insoluble fractions, cumulative 

methane yield, + 9.5%, higher 

at 180°C 

160 mL g-1 

TS 

cumulative 

CH4 

176 mL g-1 

TS 

cumulative 

CH4 

+10% [194] 

Hydrothermal China FW; Stirring speed of 500 rpm at 140°C 

up to 30 min 

 

II dark 

fermentation 

+ AD 

 

35 The COD solubilization yield 

increased from 54.32% to 

70.38% 

388 mL g-

1VS 

CH4 yield 

512 mL g-1 

VS CH4 yield 

+32% [64] 

 

CHEMICAL 

 

Alkali treatment 

 

Korea FW and the WAS; Addition of 0.4 mole 

L-1 NaOH to batch reactor: pH 12.7 after 

treatment. 

 

 

Batch 35 +3 %TSS reduction; +0.8 % 

VSS reduction, +3.4% COD 

reduction 

108 mL 

cumulative 

CH4 

121 mL  

cumulative 

CH4. 

+12% [192] 

Alkali treatment China Addition of NaOH. Batch 35 Enhanced buffering capacity of 

KFW 

313.4 mL g-1 

VS  

cumulative 

CH4 

458.4 mL g-1 

VS  

cumulative 

CH4 

+32% [150] 

 

PHYSICAL+CHEMICAL 

 

Alkali-thermal 

 

N/A + NaOH 0.2 mole L-1; heat up 170 °C for 

60 min (autoclave). 

 

 

N/A N/A COD removal for FW of 49.8% 

and 51.9% for FW + Waste 

Activated Sludge 

82 mL g-1VS 164 mL g-1 

VS. 

+100% [195] 

Alkali Thermal 

treatment 

Korea NaOH added to the reactor. The feeds 

were heated up in an autoclave at 120° C 

for 30 min. 

Batch 35 +10.7% COD removal 

+3% VSS reduction; TSS 

reduction +5.6 %TSS removal 

 

108 ml 

cumulative 

CH4 

159.9 mL 

cumulative 

CH4 

+48% [192] 

Micro-aeration China Between −17 and −67 mV throughout the 

4-day micro-aeration pretreatment where 

the majority of the waste came from 

Chinese, Indian, Indonesian and Malay 

food stalls. 

Batch 35 10% more VS degradation 385 Lbiogas 

kg-1 VS 

cumulative 

biogas  

456 Lbiogas 

kg-1 VS 

cumulative 

biogas 

+18.4% [196] 

 

BIO-CHEMICAL ON FOOD WASTE COMPOSITION 
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Lipid extraction China Lipids from food waste extracted using 

methanol and chloroform. 

 

Batch 55 Decreased in lipid content in 

FW from 37 g L−1 to 26 g L−1 

426 mL g-1 

VSadded 

CH4 yield 

531 mL g-1 

VSadded  

CH4 yield 

+25%  [138] 

Lipid extraction China Lipids from food waste extracted using 

methanol and chloroform. 

 

Batch 35 Decreased in lipid content in 

FW from 37 g L−1 to 26 g L−1 

400 mL g-1 

VSadded 

CH4 yield 

418 mL g-1 

VSadded. 

CH4 yield 

  

+5%  

[138] 

Lypase addition  

 

China FW; lypase addition Batch  37 TS and VS reductions 36.6–

48.6% and 24.6–29.1% higher 

498 mL g-

1VS 

CH4 yield 

500 mL g-1 

VS 

CH4 yield 

+0.4%  [110] 

 

Biological co-

pretreatment 

China FW; 500 g FW + 500 g Waste Activated 

Sludge added into the biological co-pre-

treatment reactor, purged with pure 

nitrogen gas for 30 min. After seeding 

with 300 ml of inoculum, the reactor was 

operated at 35°C, for 24 hours. 

Batch 35 Acceleration of the 

solubilization of particulate 

organic matter and 

improvement of the hydrolysis 

rate of FW and Waste Activated 

Sludge prior to AD 

230 mL g-

1VS 

294 mL g-1 

VS. 

+28% [65] 

          

Saccharification  Japan FW + 50 mL of distilled water; pH 

adjusted to 5.0 with 5 M HCl; 

saccharification (Amyloglucosidase) at 60 

°C for 6 h; separation of  the saccharified 

liquid from residue. 

Single stage  

Continuous 

feeding 

mode 

Mesophilic Prevention of acidification due 

to the labile organic fraction of 

the FW and reduction of the 

volume and operating cost of 

the AD reactors 

252.6 mL g-

1VS 

cumulative 

CH4 

 

248.4 mL g-

1VS 

cumulative 

CH4 

 

-1.7% [67] 

Thermophilic 

digestion 

China Co-digestions mixing ratio of food, 

wastewater and waste activated Sludge at 

75:25. 

Single stage  

Continuous 

feeding 

mode 

Mesophilic High methane content (68.24% 

v/v) in thermophilic digestion 

and (65.21% v/v) in mesophilic 

digestion 

 

1,233 L CH4 

L-1d-1 

1,423 L CH4 

L-1d-1 

+15% [197] 

 

PROCESS 

 

Recirculation China FW; recirculation rate at 0.3. Temperature 

Phased AD 

with 

digestate 

Recirculation 

55-35 Stable hydrogen and methane 

production 70% VS reduction 

125  

H2 yield 

135  

H2 yield 

+8% [198] 
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Recirculation Japan Raw FW + cardinal elements; effluent 

from stage II of the TPAD-R was recycled 

to stage I with the same flow rate as the 

influent of the whole system. 

 

Temperature 

Phased AD 

with 

digestate 

Recirculation 

55-35 Same methane production as 

single stage; in addition to 

methane, hydrogen was also 

produced in stage I of the 

TPAD-R 

0 mL H2 g-1 

VSadded 

 

50 mLH2 g-1 

VSadded 

Total [67] 

Recirculation Japan Raw FW + cardinal elements; effluent 

from stage II of the TPAD-R was recycled 

to stage I with the same flow rate as the 

influent of the whole system. 

 

Temperature 

Phased AD 

with 

digestate 

Recirculation 

55-35 Relief of toxic effect of Long 

Chain Fatty Acids, higher 

biogas yield Temperature 

Phased AD with digestate 

recirculation system compared 

to the same process without 

recirculation  

0.69 L g-1 

VSadded 

Biogas yield    

0.74 L g-1 

VSadded. 

Biogas yield 

+7% [67] 

Recirculation + 

heat bacterial 

inactivation 

Japan Raw FW; methanogenic sludge from a 

methane reactor inactivated in oven at 

100°C for an hour; recirculation ratio 

approximately 2.9. 

Two stage 55-55 Smallest butyrate conversion 

compared to other phases were 

at the same level 

 

115 L g-1VS 

added  

Hydrogen 

yield 

147 L g-1VS 

added 

Hydrogen 

yield 

+28% [140] 

Solid /Liquid 

separation  

China FW; solid and liquid fractions firstly 

separated by a sieve with 2:  2 mm lattice. 

Single stage 

in Semi-

Continuous 

feeding 

mode 

35 Solid fraction provided higher 

methane yield compared to the 

entire original food waste 

 

405 mL g-1 

VS 

540 mL g-1 

VS 

 

+33% [72] 

Solid /Liquid 

separation  

China FW; solid and liquid fractions firstly 

separated by a sieve with 2:  2 mm lattice. 

Single stage 

Semi -

Continuous 

feeding 

mode 

35 Liquid fraction provided low 

methane yield compared to the 

entire original food waste 

 

405 mL g-1 

VS 

390 mL g-1 

VS 

-4% [72] 

 

COMBINED PRETREATMENT 

 

Three stage AD  

+ co- digestion  

China FW and horse manure (wet mass ratio 

1:1); first hydrolysis in chamber level 1; 

acidogenesis in chamber 2; methanogens 

of hydrolized and acidified mix in 

chamber 3. 

 

III stage 35 Increased VFAs production; 

enhanced methanogenic activity 

subsequent to separated 

hydrolysis and acidogenesis; 

enhanced solubilization of the 

mix 

300L CH4 g-

1 VS 

(One stage) 

370 L CH4 g-

1 VS 

(Three 

stages) 

+23% [65] 

Three stage AD 

+ co- digestion  

China FW and horse manure (wet mass ratio 

1:1); first hydrolysis in chamber level 1; 

acidogenesis in chamber 2; 

III stage 35 Increased VFAs production; 

enhanced methanogenic activity 

subsequent to separated 

340 L CH4 g-

1 VS 

(Two stage) 

370L CH4 g-1 

VS 

(Three 

+9% [65] 
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methanogenesis of hydrolized and 

acidified mix in chamber 3. 

 

hydrolysis and acidogenesis; 

enhanced solubilization of the 

mix 

stages) 

TPAD + 

Recirculation +  

co-digestion  

Japan FW+ de-oiled grease trap waste. Temperature 

Phased AD 

with 

digestate 

Recirculation 

55-35 

 

Biogas of 940 L kg-1VS 

64.5% v/v (CH4), 1.7% v/v (H2) 

and 33.4% v/v (CO2) 

 

620 L kg-

1VS biogas 

yield (single 

stage 35°C) 

600 L kg-

1VS biogas 

yield 

-3% [66] 

Autoclave 

thermal + co-

digestion  

India FW from hostel mess, co-digestion with 

30% of poultry manure. Autoclave with 

fixed temperature of 120°C and pressure 

at 10 bar for 30 min. 

 

Batch 50 TS removal of 59.27 % (non-

treated of 57.94%); VS removal 

of 62%, (non-treated 59%) 

8,921 mL 

maximum 

cumulative 

biogas 

9462 mL 

maximum 

cumulative 

biogas 

+6% [199] 

Microwave 

irradiation + co-

digestion  

India FW from hostel mess, co-digestion with 

30% of poultry manure; household 

microwave oven: 1,460 W, 2,450 MHz, 

with wavelength 12.24 cm. 

 

Batch 50 TS removal of 58.83% (non-

treated of 57.94%) VS removal 

by 61% (non-treated of 59%) 

8,921 

mL 

maximum 

cumulative 

biogas 

9,287 

mL 

maximum 

cumulative 

biogas 

+ 4%   [199] 

Ultrasonic + co-

digestion  

India FW from hostel mess, co-digestion with 

30% of poultry manure; ultrasonication at 

20 kHz and power output of 130W. 

 

Batch 50 TS removal of 61.83%, (non-

treated of 57.94%); VS removal 

of 65%, (non-treated of 59%) 

8921mL 

maximum as 

cumulative 

biogas 

9.926 mL 

maximum as 

cumulative 

biogas 

+11% [199] 

Biological pre-

treatments + co-

digestion  

Singapore FW + activated sludge; after seeding with 

300 ml of inoculum, the reactor was 

operated at 35 °C, for 24 hours. 

Single stage 

Semi -

Continuous 

feeding 

mode 

35 Higher methane yield at higher 

OLR; accelerated solubilization 

of particulate organic matter 

and improved hydrolysis prior 

to AD 

 

230 mL g-1 

VS 

294 mL g-1 

VS 

+28% [65] 

Fungal mash rich 

in hydrolytic 

enzymes 

Singapore Fungal mash rich in hydrolytic enzymes 

produced in-situ with cake waste 

autoclaved, inoculated with Aspergillus 

awamori hen directly used to hydrolyze 

the mixture of sludge, and food waste. 

Batch 35 Eliminate the drawbacks of 

high energy consumption, and 

the use of hash chemicals of 

other pre-treatments 

412.5 

mLCH4 g-

1VS 

(No pre-

treated 

mixed waste) 

600.5 mL 

CH4 g-1VS 

(Pretreated 

mixed waste) 

+45.6% [113] 

Fungal mash rich 

in hydrolytic 

Singapore Fungal mash rich in hydrolytic enzymes Batch 35 Eliminate the drawbacks of 610.3 mL 

CH4 g-1VS. 

817 mLCH4 

g-1 VS. 

+33.9% [113] 
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enzymes produced in-situ with cake waste 

autoclaved, inoculated with Aspergillus 

awamori hen directly used to hydrolyze 

the mixture of sludge, and food waste. 

high energy consumption, and 

the use of hash chemicals of 

other pre-treatments 

No pre-

treated FW 

Pretreated 

mixed waste 

Fungal mash rich 

in hydrolytic 

enzymes 

Singapore Fungal mash rich in hydrolytic enzymes 

produced in-situ with cake waste 

autoclaved, inoculated with Aspergillus 

awamori hen directly used to hydrolyze 

the mixture of sludge, and food waste. 

Batch 35 Eliminate the drawbacks of 

high energy consumption, and 

the use of hash chemicals of 

other pre-treatments 

817 

mL CH4 g-1 

VS. (Pre-

treated FW) 

600.5 mL 

CH4 g-1VS. 

(Pretreated 

mixed waste) 

-26.5 % [113] 

Thermophilic + 

co-digestion  

China FW + waste activated sludge; lab-scale 

CSTRs working at controlled 

temperatures (35 and 55 °C). 

 

Single stage 

Semi -

Continuous 

feeding 

mode 

55 Enhanced methane yield 260 

L CH4 g-1 

VSadded. 

400 

L CH4 g-1 

VSadded. 

+54% [200] 

Ultrasonic + co-

digestion  

Korea FW + waste activated sludge; ultrasonic 

homogenizer used for 30 min at 360 kJ L-

1 energy intensity. 

 

Batch 35 Additional reduction: 

+12%COD; +4.7 VSS; +3.9 

%TSS 

 

108 mL as 

cumulative 

CH4 

197 mL 

cumulative 

CH4 

+82% [192] 

Thermal + co-

digestion 

Korea co-digestion of FW and waste activated 

sludge; autoclave at 120 °C for 60 min. 

Batch 35 Additional reduction: +12% 

COD; +7 VSS; +1.7 %TSS 

 

108 mL as 

cumulative 

CH4 

193mL as 

cumulative 

CH4 

+78% [192] 

Microaeration + 

co-digestion 

China FW + brown water; introduction of small 

amounts of O2; aeration intensity 0.0375 

L O2 L-1
reactor d-1. 

 

Batch 35 Increased solubilization and 

acidification efficiencies, 

enhanced breakdown short-

chain fatty acids to acetic acid 

431 L kg-1 

VSfed. 

cumulative 

biogas 

530 L kg-1 

VSfed 

cumulative 

biogas 

+23% 

 

[196] 

Alkali-thermal+ 

co-digestion 

Korea FW + waste and waste activated sludge + 

NaOH added to the reactor; autoclave at 

120° C for 30 min. 

 

Batch 35 Additional reduction: +13% 

COD; +4.9 VSS; +4.3%TSS 

+5% 

108 mL 

cumulative 

CH4 

177 mL 

cumulative 

CH4 

+63% [192] 

Fungal mash rich 

in hydrolytic 

enzymes (Crude 

enzymes 

cocktail) 

Singapore FW; pre-treatment with fungal mash Batch 35 Significantly improved solid 

hydrolysis 

610.3 

mL CH4 g-1 

VS. 

Experimenta

l yield 

 

817 

mL CH4 g-1 

VS. 

Experimental 

yield 

+34% [113] 
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Fungal mash rich 

in hydrolytic 

enzymes (Crude 

enzymes 

cocktail) 

Singapore FW; fungal mash rich in hydrolytic 

enzymes + untreated activated sludge at 

1:1 ratio. 

Batch 35 Food waste C/N ratios from 

24.9 to and 16.5 after 24 h 

hydrolysis; co-digestion with 

activated sludge make up the 

C/N ratio to the optimum range 

412 

mL CH4 g-1 

VS. 

Experimenta

l yield 

600.5 

mL CH4 g-1 

VS. 

Experimental 

yield 

+46% [113] 

Lipid extraction+ 

co-digestion 

China FW from canteen + Sewage sludge; using 

methanol and chloroform. 

 

Batch 55 Significantly faster reactions 

than those in mesophilic 

conditions 

426 

mLCH4 g-

1VSadded. 

483 

mLCH4 g-

1VSadded 

+13% [138] 

Lipid extraction+ 

co-digestion 

China FW from canteen + Sewage sludge; using 

methanol and chloroform. 

 

Batch 35 Possible reduction of VFA 

accumulation, preventing media 

acidification 

400 

mL CH4 g-

1VSadded. 

467 

mL CH4 g-

1VSadded 

+16% [138] 

 280 
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6. Trends and Perspectives. 281 

 282 

6.1 Techno-economic analysis 283 

FWs need to be economically and safely disposed of. High moisture content discourages FW 284 

incineration, landfilling has high cost and leads to environmental issues such as the production of 285 

GHG and leachate [201–203]. Another option is represented by composting, which has high energy 286 

consumption contributing to GHG emission and does not produce renewable energy. It has been 287 

reported that 260.79, 82.21, and −86.21 thousand tons of GHG emissions are emitted from food waste 288 

landfill, composting, and AD, respectively [204].  289 

Data reported in previous chapters highlighted that FW has a chemical composition that allows a 290 

valuable biogas production, contributing to renewable energy production and to GHG reduction, 291 

fighting climate change. Previous chapters also indicated that FW can be proposed to substitute EC 292 

that were economically and environmentally unsustainable in producing biogas [205]. Therefore, FW 293 

could become a useful feedstock in producing renewable energy by AD, allowing, also, its safe 294 

disposal and lowering total costs for biomass [94].  295 

Food wastes have been reported successfully substituting energy crops at full scale AD plants. A feed 296 

mix with an energy crop has been substituted introducing 58% (w/w) of kitchen food waste from 297 

source-separated collection, with no modification in total biogas production [101], confirming the 298 

technical feasibility.  299 

Economic evaluation indicated for the EU context (e.g. Italy), that energy crops largely used in EU 300 

producing biogas, contributed by 47.6-63.7% to total energy production cost, depending on the crop 301 

used, since the value was null for food waste [129]. In addition, feed-in tariffs, credits for carbon 302 

reduction, and tax exemptions have been adopted by different countries to sustain waste management, 303 

reducing AD costs [27]. For example, in the Italian context an in-feed tariff of 70 € Mg-1 FW further 304 

reduces costs for FW-AD [206]. Comparing three full scale AD plants using different feeding mixes, 305 

i.e. i. FW + recirculated digestate (60 % + 40 % w/w), ii. swine manure + energy crops + agro-306 
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industrial wastes (63 % + 15 % + 22 % w/w) and iii. swine + manure + maize silage + agro-industrial 307 

by-products (48 % + 10 % + 10 % + 32% w/w), the net profit (electricity benefit of 280 €MWhe-1) 308 

was of 0.397 € kW h-1 EE for plant i, 0.160 € kWe h-1 for plant ii and 0.111 € kWe h-1 for plant iii, 309 

indicating the net improvement of economic balance in using food waste as feedstock. In a Chinese 310 

context, a recent cost-benefit analysis (build–operate–transfer financed modality) reported an 311 

attractive net profit margin and an internal rate of return (IRR) of 31% and 12%, respectively, for an 312 

AD plant, underlying, again, the attractiveness of FW-AD [27].  313 

 314 

6.1 Policy analysis 315 

Food waste can be used to produce bioenergy via biogas production. This approach represents, also, 316 

a solution for FW disposal, if it is designed in a sustainable way, i.e. lowering or nulling 317 

environmental impacts and reducing GHG emission [207]. On the other hand, the residue of biogas 318 

production, i.e. digestate, need to be safely disposed of or used as it represents by itself a problem. 319 

Digestate contains organic matter (OM) and nutrients (e.g. N, P, K etc.) that could be recovered in 320 

producing biofertilizers and promoting a Circular Economy approach [202]. There are numerous  321 

examples of using digestate and digestate-derived fertilizers in agriculture, closing OM and nutrient 322 

loops [208,209]. To do so, high quality FW needs to be collected, avoiding the presence of inorganic 323 

and organic pollutants. Municipal solid waste management (MSW) in China is characterized above 324 

all by MSW landfilling (60.16 %), followed by incineration (29.84 %), untreated discharge (8.21 %) 325 

and other treatments (1.79 %) [203], with these figures recently confirmed [27,202]. Anaerobic 326 

digestion is used only for a tiny part of total waste treated in China, although the trend is positive, i.e. 327 

from <3 % of total waste in 2005 to 3% of total waste in 2020. In addition, global perspectives are 328 

very good as the size of the global market for biogas was reported to be likely to increase by 43 % in 329 

2026 in comparison with 2018, i.e. from 20,853 US$ Million to 29,954  US$ Million [210].  330 
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Chinese MSW contains about 62% of organic matter, which is much higher than the data reported 331 

for OECD countries, i.e. 27% [203] but unfortunately it is mixed with other waste so that only a 332 

very low-quality FW not suitable for AD production in a Circular Economy frame, is available.   333 

FW quality improvement can be successfully achieved by implementing “source separate” FW 334 

collection, above all if door-to-door systems are used, allowing the effective reduction of the presence 335 

of plastics and heavy metals, and resulting in FW becoming more suitable for AD purposes [211]. 336 

Introducing compostable material allows the further increasing of FW quality [212].  337 

Today’s MSW collection system in China is only a mixed collection system that does not allow high 338 

quality FW collection, although some cities have started pilot projects in separate collection. 339 

However, in the 13th Five-Year Plan (2016–2020) of the Chinese government it is reported that all 340 

municipalities, cities and provincial capitals have to plan for safe solid waste disposal at a rate of 341 

100% in solid waste  in urban areas, and 80% in rural areas in 2016 [27]. In particular the Chinese 342 

government reported indications to safely dispose of urban solid waste by developing the use of waste 343 

to provide energy for the anaerobic digestion industry [27]. 344 

The encouragement of source separated collection is strongly recommended, because it will allow 345 

the obtaining of a high-quality FW, that can be exploited to produce biogas and recover nutrients. 346 

This in turn promotes the Circular Economy and environmental sustainability in terms of both GHG 347 

reduction (renewable energy production) and FW safe disposal (biofertilizers). In the Chinese 348 

context it has been reported that about 23 % GHG emissions can be decreased by source-separated 349 

collection compared with the base scenario [204]. 350 

Separate collection of food waste has been proved possible to be done in highly densely inhabited 351 

areas, that are typical of China. For example, Milan (northern Italy), that is characterized by a density 352 

of 2,063 inhabitants per km-2 similar to that of Beijing municipality (China), i.e. 1,458.59 km-², started 353 

FW separate collection in 2012, reaching 100% of FW collection on 2019, and pushing the total 354 

source separate MSW collection at the regional level to 70 % of total MSW.  Door to door collection 355 

permitted high FW quality with less than 5 % of impurities, of which 3% was constituted by plastic. 356 
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The ban on non-biodegradable shoppers in Italy in 2011, is further reducing this amount in favor of 357 

the presence of compostable material, making FW suitable to be used for AD purposes and recycling 358 

OM as a nutrient, adopting Circular Economy approaches (Figure 2).     359 

  360 

  361 
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 362 

Figure 2. Circular economy model proposed in this paper. The model uses food waste instead of 363 

energy crops as a substrate for anaerobic digestion.   364 
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6.3 Practical implications of this study 365 

 366 

This work highlights the great potential of food waste for its conversion into methane by anaerobic 367 

digestion, as suggested by data collected for China and South East Asia. In particular, results reported 368 

indicated the high potential of food waste in producing bio-methane, so that it can be considered a 369 

good candidate to substitute for energy crops that are less sustainable and conflict with food 370 

production. Decoupling AD process in a two-stage approach did not seem to lead to any advantage 371 

in terms of total energy produced so that a simpler one stage approach would seem preferable. On the 372 

other hand, a two stage process could be considered in producing different products, i.e. H2 and CH4.  373 

Furthermore, biogas yield can be enhanced by co-digestion of FW with other organic wastes or by 374 

adopting physical, thermal, chemical and physical-chemical FW pre-treatments that showed positive 375 

energy balance. Data collected indicated the AD of FW to be economically sustainable in a Chinese 376 

context, taking into consideration feed-in tariffs, credits for carbon reduction and/or tax exemption 377 

tools.  378 

To promote food waste-AD in a Circular Economy frame, avoiding waste production, FW 379 

management should be redesigned in order to get high quality food waste (low impurity presence), 380 

that can be used to produce both renewable energy but also biofertilizers. High quality source separate 381 

collection (e.g. door to door) seems to be a viable road, also, for highly densely populated area. The 382 

introduction of using biodegradable shoppers and in the future the implementation in using single-383 

use biodegradable plastics is, also, strongly recommended. 384 

 385 

6. Final remarks and Conclusions 386 

In general, some useful conclusions about the use of food waste in anaerobic digestion can be 387 

summarized as follows: 388 
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1. Potential bio-methane production is high, i.e. 480±88 LCH4 kg-1 VS (n=42), when compared to that 389 

of energy crops, 246±36 LCH4 kg-1 VS (n = 6). So that FW uses should be encouraged through high 390 

quality separate collection to assure high quality biomass to substitute EC. 391 

2. Anaerobic digestion allowed the production of about 81% (395 ± 84 L kgVS-1) of the potential 392 

producible bio-methane, so that AD is considered to be a well-consolidated bioprocess. Both co-393 

digestion and FW pretreatment improve total biogas yield.  394 

3. Data collected did not seem to indicate differences in total energy production using two-stage vs. 395 

one stage AD process. However, two-stage AD allowed the production of H2 and CH4 instead of 396 

only CH4.    397 

4. Energy balance indicated that pre-treatments gave a valuable net energy increase with respect to 398 

untreated biomass, except for chemical pre-treatments that resulted in a negative balance.   399 

5. Source separate collection of FW should be implemented assuring high quality feedstock for AD 400 

purpose in a Circular Economy frame.   401 
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