
TIF-UNIMI-2020-1

On the Sudakov form factor,
and a factor of two

Stefano Forte

Tif Lab, Dipartimento di Fisica, Università di Milano and
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Abstract

I answer a question that Roman Jackiw asked me, and I draw some lessons
from the answer. The question is: why is the Sudakov form factor larger by
a factor of two, if computed for off-shell fermions, in comparison to the on-
shell case? The answer sheds some light on the interplay between infrared
and collinear singularities — and the importance of factors of two.

Contribution to the volume Roman Jackiw — 80th Birthday Festschrift

1 Master of scientific style

Much can be said about working under Roman’s supervision in the mid-
eighties: it was an absorbing, intense, at times exhilarating, at times stressful
experience. A formidable array of ideas to take in, concepts to grasp, and
good practices to learn, often delivered as a side remark, accompanied by a
grin1. Ranging from the way to write displayed equations in a paper (“it
is called an equation because it has an equal sign”), to the importance of
choosing the symbols when performing a calculation (“one should not pick
letters at random from the alphabet”). Some perks, too, such as going for
dinner at the Harvard faculty club with Steven Hawking and Sidney Coleman
— including the task of steadying the former’s wheelchair in the minivan that
took us there.

Overall, it amounted to a lesson of scientific method, and of scientific
style: delivered mostly by example. One thing I understood — the painful
way, as I am prone to algebraic mistakes — is the importance of details when

1See the contribution by Michiel Bos in this volume.
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performing a computation. Roman used to retell the story of someone who
published a perturbative computation in which he had guessed the value of
a high-order term without actually calculating it — only to be belied by the
explicit result once Roman got round to determine it.

Not so long ago, I came to think about it again. It was the Summer of
2017, I was spending some time at the Aspen center for physics, and Roman,
coincidentally also there, took me out for lunch. The conversation at some
point revolved on some then-recent work of mine [1] on QCD resummation.
Roman mentioned that he had worked on related topics around the time
of his PhD thesis [2]: he had computed perturbatively the high-momentum
transfer limit of the QED vertex function, which is double logarithmic, and
correctly guessed the exponentiation of the double logs. As our lunch was
going on, Roman then abruptly asked me whether I knew that the coefficient
of the double log is by a factor of two larger off-shell in comparison to the
on shell-result, and whether I knew a simple physical reason for that.

I didn’t know.
Continuing the discussion with Roman via email, after I got back home,

I realized that I couldn’t immediately come up with an answer. I also subse-
quently realized that this point is typically not discussed, or even mentioned
in textbooks. In fact, what is commonly known as “the Sudakov form factor”
is the on-shell result, yet the original[3] Sudakov calculation applies to the
off-shell case, and the factor two difference usually goes unnoticed. Indeed,
as Roman pointed out to me, in a recent paper from the Russian school [4]
it is incorrectly stated2 that the same result applies in the on-shell and off-
shell cases, only with a different choice of infrared regulator. I asked various
experts on QCD, where the Sudakov exponentiation plays an important role,
and none was aware of this.

Answering Roman’s question is the purpose of this note.

2 The vertex function and

the Sudakov form factor

The computation performed by Roman[2] determines to all orders the high-
energy behavior of the vertex function in Quantum Electrodynamics (QED)
(see Fig. 1). The genesis of this paper has been recounted by Roman[5]: his
advisor, Ken Wilson, suggested him as a thesis project to derive this high-
energy behavior, which had been previously obtained by Sudakov[3] in the
off-shell case, using renormalization-group (RG) methods: both as a way of

2See in particular the discussion after Eq. (34) of Ioffe’s paper. [4]
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validating the then-novel RG techniques, and also, of obtaining the on-shell
result.

The way to attack and solve this problem using RG techniques was only
found several years later [6, 7] (see also Sect. 4.3 below), but Roman did
manage to tackle it by direct computation using an eikonal approximation,
which was known to Wilson, and systematically developed by Weinberg [8]
into what is now known as light-cone field theory.3

The result found by Roman[2] is that in the high-energy limit the vertex
function is equal to

Γµ(p1, p2) = γµΓ(p2
1, p

2
2, q

2); (1)

where to one loop (Fig. 1)

Γ(1), off(p2
1, p

2
2, q

2) = − α

2π
ln

∣∣∣∣q2

p2
1

∣∣∣∣ ln ∣∣∣∣q2

p2
2

∣∣∣∣ (2)

for off-shell fermions with virtualities p2
i , while for on-shell fermions

Γ(1), on(m2,m2, q2) = − α

4π
ln2 |q|

2

µ2
(3)

where µ is an infrared regulator (i.e. a photon mass).
To all perturbative orders the one-loop result exponentiates:

Γoff(p2
1, p

2
2, q

2) = exp− α

2π
ln

∣∣∣∣q2

p2
1

∣∣∣∣ ln ∣∣∣∣q2

p2
2

∣∣∣∣ , (4)

Γon(m2,m2, q2) = exp− α

4π
ln2 |q|

2

µ2
. (5)

All these results hold to double-logarithmic accuracy, i.e. up to terms with
a lower power of ln |q|2.

The result Eq. (4) is in agreement with the previous result of Sudakov[3],
which had been subsequently reproduced by others [11], who attempted to
determine the on-shell result but did not obtain the correct answer and failed
to prove exponentiation. The results Eqs. (4-5) are also given in the volume
devoted to QED of “Landau’s” theoretical physics course[12], first published
in 1974 (after Landau’s death): for the off-shell result Sudakov[3] is cited,
while the on-shell result is written in the form

Γ̄(1), on(m2,m2, q2) = − α

4π

(
ln2

∣∣∣∣ q2

m2

∣∣∣∣+ 4 ln

∣∣∣∣ q2

m2

∣∣∣∣ ln ∣∣∣∣mµ
∣∣∣∣) , (6)

3 A textbook discussion of the eikonal approximation is e.g. given by Sterman[9],
while a presentation of light-cone field theory can be found in recent summer school
proceedings[10].
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Figure 1: The one-loop vertex function.

which of course coincides with Eq. (3) up to terms which are not logarithmic
in q2:

Γ̄(1), on(m2,m2, q2) = Γ(1), on(m2,m2, q2) +
α

4π
ln2 m

2

µ2
. (7)

It is clear that, contrary to what one might naively think (and contrary to
what sometimes stated explicitly[4]) the on-shell result is not simply obtained
by setting p2

1 = p2
2 = µ2 in the off-shell one — rather, it is twice as large.

Why?
Answering this question requires a computation of the vertex function,

starting at one loop. Rather than the vertex function itself, however, it is
more instructive to look at its real-emission counterpart. Indeed, it is the
imaginary part of the photon propagator in the diagram of Fig. 1 which leads
to the double-logarithmic behavior Eqs. (2-5)[2, 12]. This imaginary part can
be extracted using the standard cutting rule

Disc
1

k2 + iε
= −2πiδ(k2)Θ(k0). (8)

This transforms the vertex function into the interference of two real emission
diagrams (see Fig. 2). Of course, it is is this one-to-one correspondence of
virtual and real emission contributions which guarantees the cancellation of
infrared singularities for sufficiently inclusive physical observables.4

4See Chapter 13 of Weinberg’s treatise[13] for a modern discussion.
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Figure 2: The real emission diagrams corresponding to the vertex function
of Fig. 1

I will first, present in Sect. 3 a direct computation of these real-emission
contributions, viewed as contributions to the decay amplitude of a virtual
photon into a fermion-antifermion pair, in the rest frame of the virtual pho-
ton. This computation reproduces the result of Eqs. (2-3), and it gives a first
hint on its origin. For a complete clarification, however, it is useful to look at
the problem in a different frame: namely, by viewing the diagrams of Fig. 2 as
contributions to Drell-Yan-like production of a virtual photon in a fermion-
antifermion collision, in the center-of-mass frame of the colliding fermions.
In Sect. 4 I will show that the origin of the difference between on-shell and
off-shell can be traced to a different interplay of soft and collinear singulari-
ties in either case. Exponentiation then ensues from the factorized structure
of phase-space, which can be proved using an argument[1] developed in order
to combine soft and collinear resummation.

3 Computing the vertex function5

Consider the decay of an off-shell photon with momentum q. Of course, this
means that the incoming fermion of Fig. 2 now is an outgoing antifermion,
and the result in the kinematics of Fig. 2 can be recovered by crossing.
However, because the double log behavior only depends on the modulus of
the momentum transfer, the computation can be indifferently performed in
either kinematics. For simplicity we consider the case of massless fermions,

5The computation presented in this section is based on unpublished notes by Paolo
Nason[14].
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though it can be checked explicitly[14] that results are unchanged with a
finite fermion mass.

Double logs Eqs. (2-3) arise due to the soft region of integration over
the momentum k of the emitted photon. The amplitude for emission of a
soft photon is obtained multiplying the amplitude for the process without
soft photon by an eikonal factor6, so that in this limit the amplitude for the
process of Fig. 2 is given by

M = M0e

(
2pµ1

(p1 + k)2
− 2pµ2

(p2 + k)2

)
, (9)

where M0 is the amplitude without the extra photon. The square amplitude
is then

|M |2 = −|M0|2e2 8p1 · p2

(p1 + k)2(p2 + k)2
, (10)

and the desired real-emission amplitude is find integrating this over the phase
space of the emitted photon:

dΦk =
k2dkd cos θdφ

2E(2π)3
=
kdEd cos θ

8π2
, (11)

where E and k are respectively the energy and modulus of the three-momentum
of the emitted photon, and in the last step we have used dE

k
= dk

E
, and inte-

grated over the azimuth φ.
The calculation is performed in the on-shell case by assuming a small

photon mass µ as a regulator, so (pi + k)2 = 2pi · k + µ2, and in the off-shell
case by assuming p2

i > 0 so (pi + k)2 = 2pi · k + p2
i .

3.1 On-shell fermions

In the rest frame of the decaying photon the square amplitude is

|M |2 = −|M0|2e2 4s

[E
√
s(1− β cos θ) + µ2] [E

√
s(1 + β cos θ) + µ2]

(12)

= −|M0|2e2 4

E2
[
(1− β cos θ) + µ2

E
√
s

] [
(1 + β cos θ) + µ2

E
√
s

] , (13)

where E = k0 is the emitted photon’s energy,
√
s =

√
(p1 + p2)2 = 2p0

i =√
|q2| is the energy of the fermion-antifermion system, and

β =

√
1− µ2

E2
= 1− µ2

2E2

(
1 +O(µ2/E2)

)
. (14)

6See Chapter 13 of Weinberg’s treatise[13].
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Integrating over the emitted photon’s phase space Eq. (11) we get∫
dΦk|M |2

= −|M0|2
e2

2π2

∫
EdEd cos θ

E2
[
(1− cos θ + cos θ µ2

2E2 + µ2

E
√
s
)
] [

(1 + cos θ − cos θ µ2

2E2 + µ2

E
√
s
)
]

(15)

This leads to logarithmic behavior either when θ → 1 or θ → −1, corre-
sponding to the region in which the emitted photon is respectively collinear
to p1 or p2. These two collinear and anti-collinear contributions are the same,
and we get ∫

dΦk|M |2 = −2|M0|2
e2

4π2

∫
dEd cos θ

E (1− cos θ)
+ non log, (16)

where we have for definiteness written the collinear contribution, while in-
troducing a factor of two in order to account for the anticollinear one, and
we have retained the leading term in an expansion in cos θ about cos θ = 1,
as well as in an expansion of µ2 about m2 = 0, so the second square bracket
in the denominator of Eq. (15) just reduces to a factor of two.

Performing the angular integral we immediately get∫
dΦk|M |2 = −2|M0|2

α

π

∫
1

2

dE2

E2
ln

[(
µ2

2E2
+

µ2

E
√
s

)−1
]
, (17)

where we have introduced the fine-structure constant α = e2

4π
. The double

integral comes from the infrared region of integration over the energy E of
the emitted fermion, hence we can neglect the second term in the argument
of the log, and we get, keeping only double logarithmic terms,∫

dΦk|M |2 = −|M0|2
α

2π
ln2 |q|2

µ2
, (18)

where the upper limit of integration over energy is of course just
√
s/2;

indeed, the argument of the log is fixed by dimensional analysis.
The real emission contribution should be compared to the square of the

virtual one, which leads to an extra factor of two in the real emission case, so
this result exactly matches Roman’s result[2] for the on-shell vertex function
Eq. (3).
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3.2 Off-shell fermions

If the fermions are off-shell, it is now the fermion virtuality which regulates
the collinear singularity, so that no massive photon regulator is needed. The
square amplitude is then

|M |2 = −|M0|2e2 4s

[E
√
s(1− β cos θ) + p2

1] [E
√
s(1 + β cos θ) + p2

2]

[
1 +O(p2

i /s)
]

(19)

where now the equalities 2p0
i ≈

√
|q2| ≈

√
s all hold up to terms of order

p2
i /s, and

βi =

√
1− p2

i

(p0
i )

2
= 1− 2p2

i

s

[
1 +O(p2

i /s)
]
. (20)

Integrating over the photon’s phase space we have again a pair of collinear
and anticollinear singularities:∫

dΦk|M |2

= −|M0|2
e2

2π2

∫
EdEd cos θ[

E(1− cos θ) + cos θE
2p21
s

+
p21√
s

] [
E(1 + cos θ)− cos θE

2p22
s

+
p22√
s

] .
(21)

However, there are two differences: the form of the collinear cutoff, which
now depends on the virtuality, p2

i rather than the photon mass µ2 and also,
the form of the energy denominator — the second square bracket in the
denominator of Eq. (21) — which is now also cut off. Indeed, focusing as
before on the collinear contribution (with a factor of two accounting for the
anti-collinear one) we get∫
dΦk|M |2 = −2|M0|2

e2

4π2

∫
EdEd cos θ

E
[
(1− cos θ) +

2p21
s

+
p21
E
√
s

] [
E +

2p22
2
√
s

] + non log,

(22)

where again we have kept the leading terms as cos θ → 1.
Performing the angular integral we now get∫

dΦk|M |2 = −2|M0|2
α

π

∫
dE

E +
p22√
s

ln

[(
2p2

1

s
+

p2
1

E
√
s

)−1
]
, (23)
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so it is apparent that the logarithmic integration over E is cut off by
p22√
s
.

It is now the first term in the argument of the log which is subleading, and
performing the integral over the energy gives∫

dΦk|M |2 = −|M0|2
α

π
ln

s

p2
1

ln
s

p2
2

= −|M0|2
α

π
ln
|q|2

p2
1

ln
|q|2

p2
2

(24)

up to single logarithmic terms. This is indeed twice as big as the on-shell
result Eq. (18), and thus it exactly matches Roman’s result[2].

4 Infrared and collinear singularities

Having reproduced the result of Eqs. (2, 3), and in particular the factor two
difference between on- and off-shell, we would now like to understand the ori-
gin of this difference. Comparing Eqs. (15-22), it is clear that in both cases
the double log stems from a collinear and an infrared singularity, respectively
coming from the integral over the angle and the energy of the emitted pho-
ton. The difference resides in the way the singularities are regulated by the
photon mass, or by the virtuality: however, the factor two appears somewhat
haphazard, as it looks like the reason why Eqs. (3) is twice as large is that
the integration variable is the energy E, rather than E2, with the remaining√
s dependence contained in the cutoff.

However, a more transparent physical interpretation appears if we con-
sider the same computation, but in a different frame. Namely, we view the
amplitude of Fig. 2 as the production of an off-shell photon in the annihila-
tion of a fermion-antifermion pair, in the center-of-mass reference frame of
the incoming fermions. The physics is then similar to the familiar one of
Drell-Yan production in QCD (in which the fermions are quarks).

4.1 The Sudakov parametrization

It is then convenient to introduce a Sudakov-like parametrization of the mo-
mentum k of the emitted photon (which, in the QCD analogy, would be an
emitted gluon):

k = (1− x)
p1 + p2

2
+ y

p1 − p2

2
+ kT, (25)

= x1p1 + x2p2 + kT (26)
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where kT · p1 = kT · p2 = 0 is a space-like transverse momentum vector, such
that k2

T = −|kT |2, and of course

x1 =
1

2
[(1− x) + y] , (27)

x2 =
1

2
[(1− x)− y] , (28)

so that either (x1, x2) or (x, y) can be used according to convenience.
In the center-of-mass frame of the incoming fermion-antifermion pair the

energy of the emitted photon is

E = (1− x)

√
s

2
(29)

while its longitudinal momentum component

kz ≡ y
p1 − p2

2
(30)

is entirely fixed by the on-shell condition

|kz| =
√
E2 − |kT|2 = y

√
|p1 − p2|2

2
(31)

where in the general off-shell case |p1 − p2|2 = s − 2(p2
1 + p2

2). Of course in
the off-shell case kz Eq. (31) is the longitudinal momentum only up to terms
proportional to the difference of the two virtualities. Solving for y we get

y = ±
√

(1− x)2 − 4|kT|2
s

(
1 +O(p2

i /s)
)
. (32)

The advantage of this choice of parametrization is seen by writing the
phase-space of the emitted photon, which now takes the form

dΦk =
|kT|d|kT|dφdkz

2E(2π)3
=

d|kT|2dE
4|kz|(4π2)

, (33)

instead of the previous Eq. (11). Using Eqs. (29,31) we get

dΦk =
1

4(4π2)

dxd|kT|2√
(1− x)2 − 4|kT|2

s

(
1 +O(p2

i /s)
)
. (34)

This last form exposes the phase-space origin[7, 1] of the soft and collinear
singularity: if the squared amplitude behaves as |M |2 ∼

|kT|→0

1
|kT|

, the kT
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integration is logarithmic; but then as |kT| → 0 the square root factor in the
denominator reduces to 1−x and the x integration also becomes logarithmic,
in the x → 1 limit in which the energy of the emitted photon Eq. (29)
vanishes.

This can be exposed by rewriting, in the limit as |kT|2 → 0

dΦk =
1

4(4π2)
dxd|kT|2

1√
(1− x)2 − 4|kT|2

s

=
1

4(4π2)
dxd|kT|2

[
1

(1− x)+

− 1

2
δ(1− x) ln

4|kT|2

s

]
+O(|kT|2), (35)

where we have introduced the standard plus distribution, implicitly defined
by the distributional identity∫ 1

0

dx
1

(1− x)+

f(x) =

∫ 1

0

dx
f(x)− f(1)

1− x
. (36)

Note that because |kT|2 ≤ s/4 the sign of the log in Eq. (35) is such that the
contribution proportional to the delta is always positive. If, as mentioned,
the squared amplitude behaves as |M |2 ∼ 1

|kT|2
, when integrating over the

phase space Eq. (35), the kT integration leads to a double log, which is now
clearly seen to arise when both |kT|2 but also x→ 1, because of the delta.

We now show this explicitly. The amplitude has the form of Eq. (10),
but with k → −k because the fermions are in the final state, so with the
Sudakov parametrization Eq. (25)

|M |2 = −|M0|2e2 8p1 · p2

(p2
1 − 2k · p1)(p2

2 − 2k · p2)
, (37)

with

k · p1 =
1

2
[(1− x)− y] p1 · p2 +

1

2
[(1− x) + y] p2

1 = x2p1 · p2 + x1p
2
1

k · p2 =
1

2
[(1− x) + y]

(
p1 · p2 + p2

2

)
= x1p1 · p2 + x2p

2
1. (38)

In the |kT| → 0 limit, using Eq. (32) we get

x1 =
1

2
[(1− x) + y] = (1− x) +O(|kT|2/s) (39)

x2 =
1

2
[(1− x)− y] =

|kT|2

(1− x)s
(1 +O(|kT|2/s)), (40)

11



where we have assumed for definiteness y > 0, and the opposite sign would
simply amount to interchanging x1 and x2 (i.e. the collinear ad anticollinear
limits). Equations (39-40) show that x2 → 0 corresponds to the collinear
limit, while x1 → 0 to the soft limit, with the two limits interchanged in the
anticollinear case in which the negative y solution is chosen.

4.2 On-shell and off-shell

For on-shell fermions, 2p1 · p2 = s and p2
i = 0, so that the matrix element is

then given by

|M |2 = −2|M0|2e2 16

s[(1− x)2 − y2]

= −2|M0|2e2 4

|kT|2
, (41)

where we have used Eq. (32) and we have provided a factor of 2 in order
to account for the two solutions for y, which correspond respectively to the
collinear or anticollinear regions when |kT| → 0.

Hence, integrating over x with the phase space Eq. (35) we get∫
dΦk|M |2 = −|M0|2

e2

4(4π2)

∫
dxd|kT|2

[
1

(1− x)+

− 1

2
δ(1− x) ln

4|kT|2

s

]
8

|kT|2
(42)

= −|M0|2
α

2π
ln2 s

µ2
, (43)

where the first equality holds up to non-logarithmic terms, and the second
equality, which holds to double-logarithmic accuracy, is found cutting off the
logarithmic integration over |kT|2 with an infrared regulator (photon mass)
µ2; note that the sign follows from the fact that it is the lower limit of
integration which provides the µ2 dependence.

We thus get the same double-log result as Eq. (18). The advantage of this
choice of frame is that origin of the double log can be traced to the behavior
of the phase space Eq. (35) in the simultaneous infrared x→ 1 and collinear
|kT| → 0 limit.

Let us now turn to the off-shell case. The denominator of the amplitude
is now given by

D = (p2
1 − 2k · p1)(p2

2 − 2k · p2)

= s[(1− x)2 − y2]

[(s
2

+ p2
1

)
− p2

1

x2

] [(s
2

+ p2
2

)
− p2

2

x1

] (
1 +O(p2

i /s)
)
.

(44)
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This immediately implies that when integrating with the phase space Eq. (35)
the term proportional to the delta does not contribute: x1 vanishes in the
x→ 1 limit, so limx→1D =∞ because of the second factor in square brackets
in Eq. (44). Indeed, there is no longer an infrared singularity when x → 1,
because the off-shellness regulates it.

It is then convenient to write the denominator as

D =
(
x2
s

2
− p2

1

)(
x1
s

2
− p2

2

) (
1 +O(p2

i /s)
)

=
1

1− x
[
|kT|2 − p2

1(1− x)
]
s

[
(1− x)− p2

2

s

] (
1 +O(p2

i /s) +O(|kT|2/s)
)
,

(45)

where in the second step we have used Eqs. (39-40), in the small |kT| limit.
The integrated square amplitude is thus given by∫
dΦk|M |2 = −|M0|2

e2

4(4π2)

∫
dxd|kT|2

1

(1− x)+

4s

D
(46)

= −2|M0|2
α

π

∫
dxd|kT|2

1

[|kT|2 − p2
1(1− x)]

[
(1− x)− p22

s

] + non log, ,

(47)

where again we have provided a factor of 2 in order to account for the two
(collinear and anticollinear) solutions for y. Note that the plus prescription
in the first line of Eq. (46) has no effect because the integrand vanishes at
x = 1, as it is clear from Eq. (45).

The integral over |kT|2 in Eq. (46) is logarithmic about |kT|2 ∼ p2
1(1−x),

where the first factor in square brackets in the denominator D Eq. (45)
vanishes, thus leading to∫

dΦk|M |2 = −2|M0|2
α

π

∫
dx ln

(
s

2p2
1(1− x)

)
1

(1− x)− p22
s

. (48)

The integral over x has an infrared singularity regulated by p2
2 when (1−x) ∼

p22
s

. The integral over x is thus again double-logarithmic, leading to∫
dΦk|M |2 = −|M0|2

α

π
ln

s

p2
1

ln
s

p2
2

= −|M0|2
α

π
ln
|q|2

p2
1

ln
|q|2

p2
2

(49)

as in Eq. (24).
It is now clear that the factor two difference between the on-shell result

Eq. (42) and the off-shell result Eq. (49) reveals a different underlying physics.
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In the on-shell case, the double log stems from the soft-collinear region,
corresponding to the last term in the expression Eq. (35) of the phase space.
This is a genuine double log, in that it is due to the square-root factor in the
phase space being singular when both the transverse momentum |kT| → 0 and
the energy of the emitted photon E → 0 [i.e. x → 1, recalling Eq. (29)]. In
the off-shell case instead the double log is really coming from the interference
of two logarithmic integration regions when the two propagators go on shell,
with the phase space now playing no role. These two integration regions
correspond to an integral over energy (or x) Eqs. (33-34) and transverse
momentum |kT|, but they are now decoupled.

4.3 Exponentiation

The argument presented in this Section so far concerns only the one-loop
or single-emission contributions of Figs. 1-2, so one may wonder whether
they apply to all orders, and if so why. Clearly, multiple eikonal emission
does exponentiate, as textbook arguments show, but the nontrivial question
is what happens to the phase space structure. However, it was recently[1]
shown that the phase space for n-gluon (and thus also photon) emission in
the small |kT| has a factorized form which reproduces iteratively the structure
Eq. (35).

Specifically, the momenta of the emitted photons can be parametrized as

ki = αi
p1 + p2

2
+ yi

p1 − p2

2
+ kiT, (50)

so that of course

yi = ±
√
α2
i −

4|kit|2
ŝ

. (51)

Introducing new variables zi through

α1 = 1− z1; αi = z1 . . . zi−1(1− zi), i ≥ 2 (52)

it can then be shown[1] that

n∏
i=1

dαi√
α2
i − 4 |kT|

2

s

=
n∏
i=1

dzi√
(1− zi)2 − 4|kT|2

z21 ...z
2
i−1s

, (53)
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and that the phase space can be written as

dΦn+1 (p1, p2; q, k1, . . . , kn) =
8π3

[4(2π)2]n+1

dq2
t

s

∫
db2 J0 (b|qt|)

J0

(
b|k1

T|
)
d|k1

T|2dz1

[
1

(1− z1)+

− δ (1− z1)
1

2
ln
|k1

T|2

s

]
. . .

J0 (b|knT|) d|knT|2dzn
[

1

(1− zn)+

− δ (1− zn)
1

2
ln
|knT|2

s

]
δ (τ − z1 . . . zn) +O

(
1

b

)
, (54)

where τ = |q2|
s

. The Fourier transform with respect to transverse momentum
is necessary in order to factorize the delta function which ensures transverse
momentum conservation, but it is clear that the structure of Sect. 4 is then
preserved and simply iterated, thereby leading to exponentiation through
arguments that are now textbook[15] matter.

Clearly, once the problem is viewed in this way, the exponentiation is
seen to have the same origin, both on-shell and off-shell: even though the
different origin of the double log is manifested by the factor two difference
that we discussed.

As for the RG argument that Wilson asked Roman to construct, it was
eventually presented thirty years later[6], as a consequence of the factoriza-
tion of the integrated amplitude in terms of a factor which contains the soft
emissions, and the rest. The underlying physical reason is[7] that in the soft
limit the amplitude depends on the variables |kT|2, x and s only through the

combination 4|kT|2
s(1−x)2

, essentially because |k2
T|max = s(1−x)2

4
is the upper limit of

the logarithmic transverse momentum integration. The fact that the square
amplitude only depends on one variable then allows for RG improvement
with respect to it.

5 Conclusion

In summary, Roman’s computation amounted to what in modern language
would be called the determination of the high-energy behavior of the Drell-
Yan process using reverse unitarity: [16] the inclusive production of a gauge
boson in fermion-antifermion annihilation, computed using the cutting rule
Eq. (8) to express real radiation phase-space integrals in terms of loops.

What I have done here instead is to compute the real emission contri-
butions directly. With this, I have answered the question that Roman had
asked me: the factor two difference between the coefficient of the double
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logarithm in on-shell and off-shell vertex functions (which then to all orders
exponentiates) does have a simple physical interpretation. Namely, in the
on-shell case the double log is a soft-collinear log, coming from the behavior
of phase-space in the region in which the energy and momentum of the emit-
ted photon simultaneously go to zero; while in the off-shell case the double
log is the interference of two independent logarithmic integrations, over the
emitted photon energy and transverse momentum, coming from the region
where two propagator denominators vanish. It is only in the on-shell case
that there exists a genuinely infrared and collinear region.

Added notes

After publication on the arXiv of the first version of this paper, John Collins
pointed out to me that the factor of two disscussed in the present note is also
discussed in his QCD treatise [17], and it was surely known in the early days
of perturbative QCD: indeed, it is mentioned (in passing) in the introduction
of the seminal paper by Mueller [18] in which the Sudakov form factor is
computed in QED on-shell, for massive fermions (and photons), beyond the
double logarithmic approximation, to all logarithmic orders. This paper was
at the origin of subsequent generalizations to QCD by Collins himself [19],
which are at the basis of the celebrated Collins-Soper-Sterman early results
on QCD factorization [20, 21]. Interestingly, Mueller’s paper does altready
introduce and exploit renormalization group methods.

The discussion in the QCD book [17] presents a computation of the loop
diagram, similar to that performed by Roman [2] and presented in “Lan-
dau” [12]; the origin of the factor of two is explained in terms of regions
which contribute to the loop integral in the on-shell vs. off-shell case (see
in particular Sect. 10.5.3 of the book [17]). In this sense the computation
presented here provides a complementary, possibly more “physical” inter-
pretation, to the extent that real emission is physically more intuitive than
virtual corrections.

Also, it was recently found that a curious difference of a factor two in
Sudakov form factors appears when comparing initial and final state radia-
tion [22].

Interestingly, Mueller [18] does not cite Roman’s result. We will leave it to
the reader to draw a lesson from this sequence of oblivions and re-discoveries
— including my own.

Note added in proof: A few months after submission of this contribution,
I was looking into an old review paper that I should know quite well, by my
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late mentor Guido Altarelli [23]. I realized that it contains a section called
“The Sudakov form factor of partons”, something that I had completely
forgotten. I also realized that in this section Eqs. (4) and (5) are both to be
found, accompanied by the following sentence: “It is well known that for an
off shell quark the exponent differs by a factor of 2”. No reference is given,
presumably because this fact is so well known.

Acknowledgments

I am grateful to Giancarlo Ferrera and Paolo Nason for several discussions
on the content of this paper, and also for a critical reading of the
manuscript. In particular, Giancarlo pointed out to me the discussion of
the Sudakov form factor in Landau’s treatise [12], while the computation
presented in Sect. 2 is due to Paolo, whom I also thank for providing me
with detailed notes. I am very grateful to John Collins for correspondence
on the subject of this note and for calling my attention to Refs. [18, 19] and
especially to the discussion in his book [17]. I also thank Giampiero
Passarino for interesting comments and for spotting some typos, Jeffrey
Forshaw for pointing out his recent work [22], and Phil Ratcliffe for
spotting a typo in an equation and for interesting comments on possible
related work by Landshoff and Stirling.
I acknowledge financial support from the European Research Council under
the European Union’s Horizon 2020 research and innovation Programme
(grant agreement n. 740006).

References

[1] C. Muselli, S. Forte, and G. Ridolfi, Combined threshold and transverse
momentum resummation for inclusive observables, JHEP 03 (2017)
106, [arXiv:1701.01464].

[2] R. Jackiw, Dynamics at high momentum and the vertex function of
spinor electrodynamics, Annals Phys. 48 (1968) 292–321.

[3] V. V. Sudakov, Vertex parts at very high-energies in quantum
electrodynamics, Sov. Phys. JETP 3 (1956) 65–71. [Zh. Eksp. Teor.
Fiz.30,87(1956)].

[4] B. L. Ioffe, The first dozen years of the history of ITEP Theoretical
Physics Laboratory, Eur. Phys. J. H38 (2013) 83–135,
[arXiv:1208.1386].

17

http://xxx.lanl.gov/abs/1701.01464
http://xxx.lanl.gov/abs/1208.1386


[5] R. Jackiw, Ken Wilson – The Early Years, Int. J. Mod. Phys. A29
(2014) 1430008, [arXiv:1312.6634].

[6] H. Contopanagos, E. Laenen, and G. F. Sterman, Sudakov
factorization and resummation, Nucl. Phys. B484 (1997) 303–330,
[hep-ph/9604313].

[7] S. Forte and G. Ridolfi, Renormalization group approach to soft gluon
resummation, Nucl. Phys. B650 (2003) 229–270, [hep-ph/0209154].

[8] S. Weinberg, Dynamics at infinite momentum, Phys. Rev. 150 (1966)
1313–1318.

[9] G. F. Sterman, An Introduction to quantum field theory. Cambridge
University Press, 1993.

[10] R. Venugopalan, Introduction to light cone field theory and high-energy
scattering, Lect. Notes Phys. 516 (1999) 89, [nucl-th/9808023].
[,89(1998)].

[11] M. Cassandro and M. Cini, Asymptotic limit of vertex functions in
perturbation theory, Nuovo Cim. 34 (1964) 1719.

[12] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, QUANTUM
ELECTRODYNAMICS, vol. 4 of Course of Theoretical Physics.
Pergamon Press, Oxford, 1982.

[13] S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations.
Cambridge University Press, 2005.

[14] P. Nason, Sudakov wih photon mass or off-shell fermion cutoff, .

[15] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field
theory. Addison-Wesley, Reading, USA, 1995.

[16] C. Anastasiou, K. Melnikov, and F. Petriello, A new method for real
radiation at NNLO, Phys. Rev. D69 (2004) 076010, [hep-ph/0311311].

[17] J. Collins, Foundations of perturbative QCD, Camb. Monogr. Part.
Phys. Nucl. Phys. Cosmol. 32 (2011) 1–624.

[18] A. H. Mueller, On the Asymptotic Behavior of the Sudakov
Form-factor, Phys. Rev. D20 (1979) 2037.

[19] J. C. Collins, Algorithm to Compute Corrections to the Sudakov
Form-factor, Phys. Rev. D22 (1980) 1478.

18

http://xxx.lanl.gov/abs/1312.6634
http://xxx.lanl.gov/abs/hep-ph/9604313
http://xxx.lanl.gov/abs/hep-ph/0209154
http://xxx.lanl.gov/abs/nucl-th/9808023
http://xxx.lanl.gov/abs/hep-ph/0311311


[20] J. C. Collins and D. E. Soper, Back-To-Back Jets in QCD, Nucl. Phys.
B193 (1981) 381. [Erratum: Nucl. Phys.B213,545(1983)].

[21] J. C. Collins, D. E. Soper, and G. F. Sterman, Does the Drell-Yan
Cross-section Factorize?, Phys. Lett. 109B (1982) 388–392.

[22] J. R. Forshaw, J. Holguin, and S. Plätzer, Parton branching at
amplitude level, arXiv:1905.08686. [JHEP08,145(2019)].

[23] G. Altarelli, Partons in Quantum Chromodynamics, Phys. Rept. 81
(1982) 1.

19

http://xxx.lanl.gov/abs/1905.08686

	1 Master of scientific style
	2 The vertex function and the Sudakov form factor
	3 Computing the vertex functionThe computation presented in this section is based on unpublished notes by Paolo Nasonnason. 
	3.1 On-shell fermions
	3.2 Off-shell fermions

	4 Infrared and collinear singularities
	4.1 The Sudakov parametrization
	4.2 On-shell and off-shell
	4.3 Exponentiation

	5 Conclusion

