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ABSTRACT 11 

The main objective of the present study was to investigate possible links between sub-individual and 12 

supra-individual levels (i.e. population level) biomarkers in D. magna exposed to sublethal 13 

concentrations of the insecticide chlorpyrifos (CPF). To achieve the aim, 8d old individuals were 14 

exposed for 96 hrs to two environmentally relevant concentrations of CPF (50 and 250 ng/L). Sub-15 

individual level effects were investigated by measuring the activity of antioxidant (SOD, CAT, and 16 

GPx) and detoxifying (GST) enzymes, as well as by measuring the acetylcholinesterase (AChE) 17 

inhibition. In addition, the effects at supra-individual level were assessed by using a video-tracking 18 

system and analyzing changes in swimming capabilities (i.e. percentage of activity time, distance 19 

moved, and velocity). Our data have shown that daphnids exposed to both CPF concentrations were 20 

in a condition of stress which was highlighted by changes in both sub- and supra-individual 21 

biomarkers. Moreover, our results highlighted that the lowest tested CPF concentration did not 22 

modulate the antioxidant and detoxifying enzymes, whereas, an inhibition of AChE and a decrease 23 

of some parameters related to swimming behavior (distance moved and velocity) were noted. On the 24 

contrary, significant changes in all the sub-individual biomarkers were measured at the highest tested 25 

concentration. In addition, organisms recovered the movement capability (distance moved) and also 26 

activate a mechanism of avoidance (increased swimming velocity). On the other hand, a reduction in 27 

the percent of active time was measured and this was attributed to the energy spent by organisms to 28 

activate antioxidant and detoxifying enzymes and the mechanism of avoidance. Based on these 29 

results, our study suggests the existence of a link between sub- and supra-individual levels, as the 30 
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activation or non-activation in the antioxidant and detoxifying enzymes activities can led to different 31 

modifications of the swimming behaviour in D. magna.  32 

 33 

KEYWORDS insecticide, oxidative stress, swimming behaviour, video tracking, Daphnia magna  34 

Capsule: Effects of chlorpyrifos on biomarker responses and swimming behaviour 35 

 36 

1. INTRODUCTION 37 

The ecotoxicological effects of chemical compounds are currently evaluated by means of 38 

standardised toxicity tests which are performed on organisms considered representative of the 39 

exposed ecosystems (Hood, 2005; Stadler, 2011). For the aquatic compartment, they include tests on 40 

algae, invertebrates and fish (the three levels of the trophic chain of the aquatic ecosystems) which 41 

are mainly focused on assessing acutely lethal concentrations (e.g., median lethal concentration, 42 

LC50) and chronic sub-lethal effects on developmental or reproductive endpoints. According to 43 

Amiard-Triquet (2012), in these tests a number of biochemical and physiological processes are 44 

completely overwhelmed as they do not allow organisms to cope with contaminants as they do in the 45 

field. However, at sub-lethal concentrations (which are commonly measured in the aquatic 46 

environments) these mechanisms are functional, and many of them respond on the scale of days or 47 

weeks (Amiard-Triquet et al., 2011). The measurement of these sub-individual responses is the basis 48 

of the use of biomarkers in ecotoxicology as early warning indicators of potential risk (Forbes et al., 49 

2006). All these mechanisms that are frequently involved in tolerance towards chemical stressors 50 

(adaptive mechanism) are energetically expensive, and thus may interfere with the allocation of 51 

energy, thereby governing the success of reproduction and growth of individuals and population and, 52 

in ultimate analysis, on the relative fitness (Sokolova et al., 2012). Thus the adaptive benefit of being 53 

tolerant may have negative counterparts in the long term period. In addition, the stress induced by 54 

chemical exposure can also have consequences at the higher hierarchical levels of the bio-ecological 55 

organization, from organism, population, up to the community levels (Parolini et al., 2017).  56 

For instance, at organism level, the presence of toxicants can lead to several behavioral changes (Boyd 57 

et al., 2002) such as the increase of the average speed (i.e., escape from contamination through the so 58 

called chemical avoidance), or the decreased swimming activity (protection reaction) (Wolf et al., 59 

1998). Looking at the definition of biomarkers given by Depledge (Depledge and Fossi, 1994), 60 

behavioral changes can be included in this category (Forbes et al., 2006). In aquatic toxicology, 61 
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behavioral responses of species have been used since the 80s as a method of monitoring and to 62 

measure potential environmental stress (Cairns and Gruber, 1980; Kramer et al., 1989; Diamond et 63 

al., 1990; Gerhardt et al., 1998; Van der Schalie et al., 2001). Nevertheless, only in recent years, with 64 

the improvement of video tracking technologies offering a better quantification of behavioral patterns, 65 

these studies are receiving the due attention (Asher, 2009; Little and Brewer, 2001; Amiard-Triquet, 66 

2009; Sloman and McNeil, 2012).  67 

At higher ecological hierarchy, impaired behavior can have detrimental consequences at the 68 

population level through altered interactions with other members of the same species and at the 69 

community level through changes in competitive or predator/prey interactions. Ultimately, altered 70 

behavior can affect ecosystem structure itself (Reichmuth et al., 2009; Duquesne and Küster, 2010). 71 

In a review of Faimali and coworkers (2017), it is reported that aquatic vertebrate and invertebrate 72 

behavior such as predator-prey interactions, avoidance, and spatial movement have been impacted by 73 

toxicants at low concentrations and, for that, have a great potential as ecologically relevant end-points 74 

for contributing in ecological risk assessment mainly in the weight of evidence approach (Berninger 75 

et al., 2011; Boyd et al., 2002; Dodson and Hanazato, 1995; Gerhardt, 2007; Stanley et al., 2007; 76 

Valenti et al., 2009).   77 

On these bases, it is evident that the investigation on how the responses to chemical stress are spread 78 

through the different levels of the ecological hierarchy is one of the challenges of modern 79 

ecotoxicology (Amiard-Triquet, 2009). In fact, the knowledge of the links between responses 80 

measured at a particular hierarchical level and those measured at the adjacent ones would be very 81 

effective in the risk assessment procedures, particularly for improving the use of biomarkers as early 82 

warning indicators of risk. Indeed, results obtained from studies at biochemical, molecular, cellular 83 

and even at organism level do not automatically allow predictions of stress responses at higher levels, 84 

such as population and community. For instance, it is difficult to determine whether the biomarker 85 

response indicates that an organism has been exposed to a chemical (and is dealing with it 86 

successfully) or whether it is being impaired by such exposure (Forbes, 2006). For these reasons, in 87 

the last two decades, the integration of several biomarkers at different levels of biological 88 

organization has been discussed as a tool to assess the extent of disturbances of a biological system 89 

and to quantify its actual state (Broeg et al., 2005; McCarthy and Munkittrick, 1996; Attrill and 90 

Depledge, 1997; Allen and Moore, 2004). For instance, Hagger and coworkers (2008) proposed a 91 

biomarker response index (BRI) to grade the level of biological impact of contaminants. However, 92 

more recently, the number of studies highlighting the link between sub-individual biomarkers 93 

responses and behavioral changes is constantly increasing (Ren et al., 2007; Baatrup, 2009; 94 
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Ballesteros et al. 2009; Gravato and Guilhermino, 2009; Almeida et al., 2010, Mesquita et al, 2011; 95 

Oliveira et al., 2012; Silva et al. 2013; Van Praet et al., 2014; Sabullah et al., 2015; Goodchild et al., 96 

2016; Parolini et al., 2017).  The present study is mainly aimed at highlighting the link of stress signals 97 

across two levels of bio-ecological hierarchy due to the exposure to chlorpyrifos (CPF). CPF is an 98 

organophosphorus insecticide widely used worldwide (George et al., 2014), with specific mode of 99 

action on aquatic invertebrates and vertebrates (Kavitha et al., 2008), which is frequently present in 100 

aquatic environments at concentration ranging from 0.01 to 1.95 µg/L (Palma et al., 2009). 101 

Particularly, we focused the attention on the stress transition from the sub-individual to the supra-102 

individual levels by measuring changes in molecular and behavioral biomarkers in Daphnia magna 103 

exposed to two sublethal concentrations of this organophosphorus compound. Regarding biomarkers 104 

(sub-individual level), we measured the activity of antioxidant (SOD, CAT, and GPx) and detoxifying 105 

(GST) enzymes, as well as the acetylcholinesterase (AChE) inhibition. At supra-individual level, we 106 

analyzed the changes in swimming behavior of D. magna individuals due to CPF exposure by a video 107 

tracking approach, focusing on percentage active time, distance moved and active velocity.  108 

 109 

2. MATERIALS AND METHODS  110 

2.1 Test chemical and reagents 111 

CPF (O,O-diethyl O-3,5,6-trichloropyridin-2-yl phosphorothioate; purity >99.7%) and the reagents 112 

used for biomarker analyses were purchased from Sigma-Aldrich. All solvents (residue analysis 113 

grade; Merck Darmstadt, Germany) used for chemical analyses were checked by gas chromatography 114 

(GC) before use.  115 

 116 

2.2 Test species 117 

Daphnia magna Straus individuals were derived from a single clone obtained from the Istituto 118 

Superiore di Sanità (Roma, Italy). They were maintained (30 individuals/L) in commercial mineral 119 

water (San Benedetto® - conductivity 415 μS cm−1 at 20 °C; pH 7.42; 301 mg/L HCO3-, 48.6 mg/L 120 

Ca2+; 28.2 mg/L Mg2+). The daphnids were cultured in 400 mL beakers (40 individuals/L of San 121 

Benedetto® water) and fed ad libitum three times a week with a suspension of the unicellular green 122 

algae Raphidocelis subcapitata (8 × 106 cells ind−1 day−1 until they were 8-day old, then 16 × 106 123 

cells ind−1 day−1) and the yeast Saccharomyces cerevisiae (15 × 106 cells mL−1). The culture medium 124 

was renewed every two days. Culture medium, as well as the solutions used for the exposures, were 125 

maintained at 20.0 ± 0.5 °C under a 16h light: 8h dark photoperiod, which are conditions ensuring 126 
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continuous parthenogenetic reproduction (Frey, 1982). Fourth generation were reared before the 127 

starting of the exposure experiments. Eight-day old D. magna individuals with dimensions allowing 128 

the video tracking of their swimming activity (personal observation) were utilized.  129 

The algae were cultured in 2 L flask filled with ISO 8692/89 medium at 20.0 ± 2 °C under continuous 130 

light and shaken through aeration. Algae were harvested during their exponential growth and let for 131 

sedimentation in the dark at 4 °C for a week. At the end of sedimentation, the density of algal 132 

suspension was determined through a Burker chamber under a brightfield light microscope.  133 

 134 

2.3 Test conditions 135 

All the experiments were performed in beakers of 400 ml under static conditions. Eight-day old D. 136 

magna individuals (in group of 20 specimens) were exposed for 96 hours to 50 and 250 ng/L of CPF 137 

(nominal concentrations). The stability in water of CPF during the overall exposure period (96h) was 138 

measured by GC-MS and no significant degradation was noticed. Exposures were performed on 8-139 

day old individuals because our preliminary analyses have shown that at this age they reached the 140 

minimum dimension allowing the video tracking of their swimming activity (see also Parolini et al., 141 

2018). Exposure concentrations were identified by considering both the EC50 (48-h) of CPF to D. 142 

magna (EC50mean = 500 ng/L) (Pesticide Properties DataBase; Tomlin, 1994; Moore et al., 1998; 143 

Kikuchi et al., 2000; Printes and Callaghan, 2003; Palma et al., 2009) and the range of concentrations 144 

measured in surface waters (Palma et al., 2009). Individuals were not fed during the experiments. 145 

Stock solutions of CPF (0.01 µg/mL and 0.1 µg/mL) were prepared in dimethylsulfoxide (DMSO) 146 

and the final concentrations of DMSO was under the level suggested by the OECD guidelines 147 

(OECD, 2004). Water solutions of CPF were prepared by spiking water with the stock solutions in 148 

DMSO in order to reach the two concentrations of exposure. Four independent experimental 149 

replicates were performed.  Two negative control beakers (CTRL) containing each one 20 individuals 150 

were carried out during the period of exposure in all experimental replicate. Similarly, two control 151 

beakers containing 0.0005% of DMSO (DMSO) were also included to verify any carrier solvent 152 

effects. 153 

 154 

2.4 Analysis of molecular biomarkers 155 

The biomarker suite applied in the present study was performed on homogenates from a pool of all 156 

the alive D. magna individuals found in each jar at the end of the 96-h of static exposure (CTRL, 157 

DMSO, 50 ng/L and 250 ng/L). After video tracking (see the next paragraph), individuals were moved 158 

to a 1.5 mL Eppendorf tube, frozen in dry ice and stored at -80 °C until the biochemical analyses. As 159 

it cannot be excluded the complete removal of CPF from the outer carapax, individuals were washed 160 
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trice with 0.5 mL of homogenization buffer to prevent potential bias caused by in vitro interactions. 161 

After washing, individuals (17-20 individuals per beaker) were homogenized using a pestle in 100 162 

mM potassium phosphate buffer with the addition of 100 mM KCl, 1 mM EDTA, protease inhibitors 163 

1:100 v/v and 1 mM dithiothreitol (pH 7.4). The homogenates were centrifuged at 15.000 x g for 15 164 

minutes at 4 °C, then the supernatant was collected and immediately processed to determine the 165 

activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-166 

S-transferase (GST) and the inhibition of acetylcholinesterase (AChE) through spectrophotometric 167 

methods. All the enzymatic activities were measured in triplicate per each pool. SOD activity was 168 

assessed by measuring the inhibition of the reduction of cytochrome c (10 μM) caused by the 169 

superoxide anion produced by the xanthine oxidase (1.87 mU/mL)/hypoxanthine (50 μM) reaction 170 

for 1 min at  = 550 nm (Mc Cord and Fridovich, 1969). We added 25 µL of supernatant to 1.5 mL 171 

of reaction mixture. Results were expressed as SOD units (1 SOD unit = 50% inhibition of the 172 

xanthine oxidase reaction). The CAT activity was assessed according to Aebi (1974) by measuring 173 

the consumption of H2O2 (50 mM) in potassium phosphate buffer (100 mM; pH 7) for 1 min at  = 174 

240 nm. We added 50 µL of supernatant to 3 mL of reaction mixture. The GPx activity was assessed 175 

according to Livingstone et al. (1992) monitoring for 1 min the consumption of NADPH at  = 340 176 

nm using H2O2 (0.2 mM) as substrate in potassium phosphate buffer (50 mM, pH 7) including 177 

glutathione (2 mM), sodium azide (1 mM), glutathione reductase (2 U/mL), and NADPH (120 μM). 178 

We added 50 µL of supernatant to 1 mL of reaction mixture. The GST activity was assessed 179 

monitoring the reaction of reduced glutathione (1 mM) in phosphate buffer (100 mM; pH 7.4) and  180 

CDNB (1 mM) for 1 min at  = 340 nm (Habig et al., 1974). We added 20 µL of supernatant to 1 mL 181 

of reaction mixture. AChE activity was measured following the method described by Jemec et al. 182 

(2007), with slight modifications. The reaction mixture (1.5 mL) was prepared in potassium 183 

phosphate buffer (100 mM, pH 7.4) with the addition of acetylthiocholine chloride (1 mM) and 5,5’ 184 

dithiobis-2-nitrobenzoic acid (0.5 mM). Then, 100 µL of supernatant was added to the mixture and 185 

the reaction was monitored for 15 min at  = 412 nm. AChE activity was expressed as nmoles of 186 

acetylcholine chloride hydrolyzed min-1 mg protein-1 ( = 13,600 M-1 cm-1). The activity of all the 187 

enzymes was normalized on protein concentration determined with the Bradford method, using 188 

bovine serum albumin (BSA) as a standard. 189 

 190 

2.5 Analysis of behavioral biomarkers 191 

Video tracking analyses were performed on all the alive individuals at the end of the 96h exposures 192 

into 24-well plates. Each well contained 1 individual in 3 mL of culture medium, which was tracked 193 

individually. After a brief acclimation (3 minutes), video recordings were carried out by placing the 194 
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24-well plate with 17-20 animals on a light panel, and the movement of each individual was tracked 195 

three times for 15 seconds. The three 1080p Full HD videos acquired for each individual was analyzed 196 

using the software LoliTrack v.4 (Loligo Systems, Tjele, Denmark). This software was calibrated to 197 

measure the following endpoints: swimming velocity (mm/s), distance moved (mm) and 198 

active/inactive time (%). Tracking was based on differences in contrast between objects (animals) 199 

and background (water) without use of markers. When the object appeared against a contrasting 200 

background, the software assigned a coordinate pair (x, y) to the centroid of the contrasting object. 201 

Each well in the 24-well plates was defined as an arena, and each individual was considered as a 202 

single object. Data were reported as the mean of the three replicates per each single individual. 203 

 204 

2.6 Statistical analysis 205 

The effects of CPF exposure on the activity of antioxidants, GST and AChE, as well on the swimming 206 

activity endpoints of 8-day old D. magna individuals were investigated by using a one-way Analysis 207 

of Variance (ANOVA), after controlling for normal distribution and homoscedasticity of data. Each 208 

single endpoint was considered as dependent variable, while the treatments as predictor. When a 209 

significant effect of treatment was found, a Fisher LSD post-hoc test was applied to point out 210 

significant differences between treatments. Significance was set at P < 0.05. Statistical analyses were 211 

performed by using STATISTICA 7.0 software package (StatSoft, Inc., 2004) and R 3.1.2 software 212 

(R core team 2015). 213 

 214 

3. RESULTS AND DISCUSSION 215 

At the end of the exposure period, no significant difference in mortality/immobilization was found 216 

among the treated and untreated samples (p > 0.05). In the following paragraphs the results obtained 217 

both for the molecular and behavioral biomarkers are presented and discussed. 218 

 219 

3.1 Molecular biomarkers (sub-individual level) 220 

In invertebrates, enzyme activities and other sub-cellular components are commonly used as 221 

biomarkers to identify causal mechanisms potentially responsible for effects at higher levels of bio-222 

ecological organization. These include various defense enzymes, such as superoxide dismutase 223 

(SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), and the 224 

acetylcholinesterase (AChE). SOD represent the first defense against free radicals, intervening by 225 

dismuting the most reactive and dangerous molecules, such as the superoxide anion, into ions that are 226 

less reactive (Shi et al., 2010), CAT and GPx decomposes the hydrogen peroxide into water and 227 
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oxygen (Halliwell and Gutteridge, 2007). The GST catalyzes the conjugation of glutathione with 228 

diverse electrophilic molecules and contributes to the prevention of oxidative damage by conjugating 229 

glutathione to breakdown products of lipid peroxidation (Ketterer et al., 1983).  In case the activities 230 

of these enzymes are not sufficiently adequate, the organism can be exposed to high levels of pro-231 

oxidant molecules, which are produced during the metabolic pathways of contaminants (including 232 

pesticides) and this can lead to oxidative stress and consequent damage to lipids, proteins and DNA 233 

(Trypuć, 2017).  234 

The measure of the acetylcholinesterase (AChE) activity is also frequently utilized as a useful 235 

biomarker to indicate that organisms have been exposed to a cholinesterase-inhibiting compound 236 

(such as organophosphate, carbamate insecticides, metals or detergents) at a sufficiently high level to 237 

elicit a significant effect (Lionetto et al., 2011). The inhibition of AChE suggests an over-238 

accumulation of the acetylcholine, causing prolonged electrical activity at nerve endings and 239 

ultimately leading to death.  240 

In the first part of our study, we measured changes in the activities of all the previously described 241 

biomarkers in 8-day old D. magna individuals after 96h of exposure to 50 ng/L and 250 ng/L of CPF 242 

(Figure 1). This allowed us to get an overall picture about the effects at sub-individuallevel. Since the 243 

activity of CAT was significantly increased in DMSO treated specimens with respect to CTRL, we 244 

compared the effects of CPF both to CTRL and DMSO. A significant effect of the treatments was 245 

found for all the molecular biomarkers: SOD (F = 9.723 ; p < 0.01), CAT (F = 58.310; p < 0.01), GPx 246 

(F = 35.041; p < 0.01) and GST (F = 9.113; p < 0.01), AChE (F = 6.483; p < 0.05). Whilst the lowest 247 

tested concentration did not cause a significant modulation of antioxidant and detoxifying enzymes 248 

(p > 0.05 in all the cases, except of a significant reduction of CAT compared to DMSO), the exposure 249 

to 250 ng/L of CPF induced a 2- to 4-fold significant increase of SOD, CAT, GPx and GST. Similarly, 250 

CPF exposure had a significant effect on AChE activity of individuals, which showed an inhibition 251 

accounting for the 22% compared to DMSO). However, no significant differences were found 252 

between the two tested concentrations. 253 

 254 

- SOD activity 255 

The enhancement in SOD activity of CPF-treated D. magna individuals suggested that this pesticide 256 

induced superoxide radicals (O2
·-) with the increase in concentrations. In an analogous experiment on 257 

D. magna exposed to CPF, Song and coworkers (2017), highlighted the dependency of the SOD 258 

activity in function of both the experiment duration and the exposure concentration. These authors, 259 

found that after 24h of exposure the SOD activity in 6-24 h old specimens of D. magna did not 260 
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significantly change in all the experimental treatments (range 360-5,720 ng/L). However, after 48h 261 

of exposure, SOD activity showed an increasing trendfirst (reaching a peak at 720 ng/L of exposure) 262 

followed by a decrease according to the increase of the concentrations. This may be explained by the 263 

oxidation of SOD cysteine due to superoxide anions or their transformation to hydrogen peroxide 264 

(Dimitrova et al., 1994). Our observation on SOD activity somewhat confirmed and widened these 265 

findings; in fact, SOD activity increased with the increase of CPF concentrations. In addition, the 266 

higher time of exposure (96h) also increased the SOD activity. In fact, even if our highest tested 267 

concentration (250 ng/L) was less than 720 ng/L we observed an increase of SOD. In the study of 268 

Song et al. (2017), after 48h the peak of SOD was 59.33 U mg protein-1 whereas in our study we 269 

obtained a value of 94.5 U mg protein-1 after 96h.  270 

 271 

- CAT and GPx activity 272 

As previously stated, a clear induction of CAT and GPx activity was observed with the increase of 273 

CPF concentrations. CAT and GPx concur for the removal of H2O2, which is metabolized to O2 and 274 

water. However, GPx is also considered an efficient enzyme in protection against lipid peroxidation 275 

(Winston and Di Giulio, 1991). CAT activity is directly regulated by the concentration of H2O2 276 

(Fornazier et al., 2002). Our results showed that the trends of both CAT and GPx was consistent with 277 

the changes of SOD activity. This suggests that both enzymes are involved in the protective response 278 

by the Daphnia’s antioxidant systems to counteract the adverse effects of hydrogen peroxide. Our 279 

results agree with the findings of Basopo and Ngabaza (2015) who measured an enhanced activity of 280 

CAT and GPx in the freshwater snail Helisoma duryi exposed to 25 ng/L of CPF.  281 

 282 

- GST activity 283 

GST is involved in the detoxification processes of different organic xenobiotics including CPF 284 

(Ecobichon, 1996). Exposure to CPF has been demonstrated to induce GST in chickens and rats 285 

(Vodela and Dalvi, 1995). In freshwater invertebrates, the experimental evidences on the role of GST 286 

are quite contradictory. McLoughlin and coworkers (2000) suggested low sensitivity of GST to 287 

organophosate (OP) insecticides in annelids and crustaceans. In addition, Steevens and Benson 288 

(1999), found that GST was not affected by 48h CPF exposure but is inhibited after 96h in Hyalella 289 

azteca. On the contrary, other studies have shown the induction of GST in Hydropsyche pellucidula 290 

(Berra et al., 2006) and Chironomus riparius exposed to OPs (Callaghan et al., 2002; Choi et al., 291 

2000). In mollusks, an induction of GST occurred in Corbicula fluminea after exposure to fenitrothion 292 
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(Oneto et al., 2005). The same findings were highlighted in the recent study of Basopo and Ngabaza 293 

(2015). In fact, these authors found that the GST activity was significantly increased in snail H. duryi. 294 

Finally, Song and coworker (2017) in a study of D. magna showed that the GST was activated at low 295 

concentration and inhibited at high concentration of CPF reaching a maximum when the 296 

concentration was 360 ng/L and after 24h of exposure. The same authors reported an inhibition of 297 

GST activity after 48h exposure to increasing CPF concentrations (the lowest inhibition was obtained 298 

at the concentration of 360 ng/L). Our results partially confirmed these findings. In fact, we 299 

highlighted an increase of the GST activity following the increase of CPF concentrations even if at a 300 

higher time of exposure (96h) compared to previous studies. A possible explanation could be related 301 

to the tested concentrations. In our study, we were always below the concentration of 360 ng/L which 302 

was the peak of GST activity at 24h and the lowest level of inhibition at 48h. We hypothesize that the 303 

highest concentration of 250 ng/L tested in our study was not sufficiently high to induce the inhibition 304 

of GST activity even with an exposure of 96h. 305 

 306 

- AChE activity 307 

Acetylcholinesterase activity is one of the most important biomarker in the evaluation of the exposure 308 

to OPs and carbamate pesticides, and several studies, in which AChE has been used as a biomarker 309 

for anticholinesterase insecticides, are present in literature (e.g. Fulton and Key, 2001; Printes and 310 

Callaghan, 2004, Xuereb et al., 2009). For crustaceans, several studies report a concentration-311 

dependent inhibition of AChE with OPs pesticides (Domingues et al., 2009 and references therein). 312 

These observations are in accordance with the expectations based on the mechanism of action of OPs 313 

pesticides. In our study we measured significant difference of AChE activity in the individuals 314 

exposed to both the selected concentrations compared to CTRL and DMSO, without a reliance of the 315 

enzyme inhibition in function of the concentration of CPF. No significant difference was found 316 

between 50 ng/L and 250 ng/L (diff = 0.04, 95% CI: (-0.07) – (-0.15), p = 0.37). A possible 317 

explanation of our results could be related to the tested concentrations which were not sufficiently 318 

high to induce a drastic change in the AChE activity. Indeed, in a previous work, Barata et al. (2004) 319 

measured the response of AChE to single dose exposures of OPs and carbamates insecticides. These 320 

authors described the AChE inhibition by means of an allosteric decay model with a period of no or 321 

low response at the low concentrations followed by an accelerated negative response as concentration 322 

increased.  323 

 324 

 325 
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3.2 Behavioral biomarkers (individual level) and potential link with molecular biomarkers 326 

(sub-individual level) 327 

In this study, three swimming parameters (percent of active time, distance moved and swimming 328 

velocity) in Daphnia magna individuals were measured for each exposure condition. Behavioural 329 

responses were investigated in all the alive individuals at the end of the 96h exposure. Since the active 330 

velocity was significantly different in individuals treated with DMSO compared to the CTRL group 331 

(F = 29.25, p < 0.0001), the effects induced by CPF were compared to DMSO.  332 

In Figure 2 the increasing or decreasing effects on D. magna swimming behaviour induced by 333 

different concentrations of CPF are normalized to DMSO.  334 

An overall different profile is observed when the two concentrations of exposure are compared. In 335 

fact, at the lowest tested concentration (50 ng/L) a slight reduction in the % of active time of 336 

individuals can be observed (<5%), whereas a consistent decrease of both total distance moved and 337 

velocity (-24% and -25% respectively) is recorded. On the contrary, at CPF concentration of 250 ng/L 338 

the % of active time of individuals decreased notably (<17%), whereas a slight reduction in distance 339 

moved and an increase of velocity (-6% and 13% respectively) was noticed. The percent of activity 340 

time (i.e., how much of the time have the animal been in an active and inactive state) is calculated by 341 

considering, frame to frame, if the animal is moving a distance longer than a minimum threshold 342 

value (in pixels). Based on our results, a concentration-dependent reduction of the percent active time 343 

for individuals is demonstrated, meaning that as higher is the concentration of exposure as higher will 344 

be the period of inactivity or immobility.  345 

The inhibition of AChE has been historically related to the mode of action of OP insecticides such as 346 

CPF. Indeed, in previous studies several authors have tried to link the inhibition of AChE activity 347 

with adverse effects at the organism level, including growth, reproduction and mortality or 348 

immobilization (Depledge and Fossi, 1994; Jemec et al., 2010) with contrasting results. For instance, 349 

Ludke et al. (1974) suggested the 50% inhibition of AChE as a threshold limit of a life-threatening 350 

situation. This limit was somewhat confirmed by Barata et al. (2004) in a study on D. magna. On the 351 

other hand, Phillips et al. (2002) linked acute exposures to CPF at levels causing mortality, to enzyme 352 

inhibition of >71% and >90% in juvenile and larval walleye (Stizostedion vitreum) respectively. In 353 

addition, no immobility of D. magna exposed to 100 μM of the OP acephate was observed, although 354 

the 70% inhibition of the enzyme activity was reached (Printes and Callaghan, 2004). These authors 355 

also found that different cholinesterase-inhibiting pesticides had different inhibition level associated 356 

with immobilisation of the exposed daphnids. These studies indicated that although AChE activity 357 

has been associated with mortality/immobilization, the association is species- and chemical-specific.  358 
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Given the key role of AChE in nervous system, it seems reasonable to relate swimming behaviour 359 

and the inhibition of this enzyme. Recently, Ren et al. (2017) investigated the role of AChE in 360 

swimming behaviour of D. magna. The authors concluded that 50% of AChE inhibition may cause 361 

changes in swimming behaviour in treated specimens. On the other hand, they also highlighted that 362 

there is no clear evidence for the role of AChE in the behaviour homeostasis. Similarly, in another 363 

study Xuereb and coworkers (2009) highlighted locomotor alterations in Gammarus fossarum 364 

exposed to CPF and the carbamate insecticide methomyl.  The authors observed significant behaviour 365 

alterations for AChE inhibitions higher than 50% for both insecticides. 366 

In our study we measured an inhibition of the AChE of about 22% (Fig. 1) without significant 367 

differences between the two tested concentrations. which is quite far from the threshold limits 368 

reported above. Therefore, we cannot establish a relationship between the AChE levels of inhibition 369 

and the percent of the reduced activity time.  370 

Chevalier and coworkers (2015) highlighted a variability in behavioral changes during time in D. 371 

magna exposed to different concentrations of several pollutants with different mechanism of action 372 

(including an AChE inhibitor). In our study, the temporal variability of metabolic changes and 373 

swimming behavior was not taken into consideration. Consequently, our results should be regarded 374 

as a snapshot after 96h of exposure to CPF and this could have limited a more appropriate evaluation 375 

of the link between AChE inhibition and behavioural changes.  376 

The same concentration-dependent trend obtained for the time of activity cannot be observed for the 377 

other two considered parameters (distance moved and active velocity). Indeed, as previously 378 

described, the decreases in the distance moved is significantly higher at 50 ng/L than at 250 ng/L 379 

(diff= -0.11, 95% CI: (-0.15) – (-0.06), p < 0.0001). Moreover, when speed is considered, a 380 

contrasting result is obtained with a significant decrease at the lowest tested concentration and even 381 

an increase at the highest one (diff= -0.17, 95% CI: (-0.20) – (-0.15), p < 0.0001). Probably, the 382 

Stepwise Stress Model (SSM) (Gerhardt, 1999, 2001; Gerhardt et al., 2005) can be a useful starting 383 

point to explain our findings. According to SSM, a cascade of regulatory behavioural stress responses 384 

is performed by the organisms either by increasing the toxicant concentration or the exposure time.  385 

We hypothesize that the concentration of 50 ng/L of CPF after 96h of exposure was too low to activate 386 

regulatory or compensatory mechanisms at sub-individual levels such as the activation of the 387 

detoxifying enzymes (Fig.1) useful to maintain the homeostatic conditions. This situation has led to 388 

a significant reduction of both parameters indicating a condition of behavioural stress which can be 389 

associated to a mechanism of protective reaction due to a loss of coordination (Ferrando and Andreu, 390 

1993; Wolf et al., 1998). On the contrary, the concentration of 250 ng/L of CPF stimulated the 391 

activation of the detoxifying enzymes (Fig. 1). The activation of these regulatory mechanisms allowed 392 
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the organisms to recover the movement capability (in terms of distance moved) and to activate another 393 

behavioural response, that is the avoidance. In fact, the increased velocity of swimming can be 394 

associated to the attempt of the organism to “escape” from the polluted aquatic environment and this 395 

has been recognized as one of the first behaviour modulation in Daphnia magna (Ren et al., 2007). 396 

On the other hand, detoxification process and antioxidant protection as well as the avoidance 397 

behaviour require energy and this could help to explain also the reduction in the % of activity time in 398 

individuals exposed at the highest tested concentration. 399 

 400 

4. CONCLUSIONS 401 

This study was aimed at investigating potential links in the stress transition from the sub-individualto 402 

the supra-individual levels in aquatic organisms. Our goal was achieved by measuring changes in 403 

molecular and behavioral biomarkers in Daphnia magna exposed to sub-lethal concentrations of CPF.  404 

The results have shown that daphnids were in a condition of stress in both conditions of exposure, 405 

however, with a contrasting pathway. In fact, at the lowest tested CPF concentration we measured a 406 

partial inhibition of the AChE and a significant decrease of some parameters related to swimming 407 

behavior (distance moved and velocity), whereas the activity of antioxidant enzymes and GST 408 

(molecular biomarkers) were not different from the control. In addition, the percent of activity time 409 

(behavioral biomarkers) was slightly modulated in treated specimens in comparison with control. At 410 

the highest tested concentration, we did not measure further inhibition of AChE suggesting that this 411 

concentration was not sufficiently high to induce drastic changes in the activity of this enzyme. On 412 

the other hand, we measured significant changes in antioxidant activity and GST suggesting that at 413 

this concentration the organisms used a strategy of adaptation by synthesizing the antioxidant and 414 

detoxification enzymes. At supra-individual levels, organisms showed the tendency to recover the 415 

movement capability (distance moved) and also activated a mechanism of avoidance (increased 416 

swimming velocity). However, a reduction in the percent of active time was noticed, and this was 417 

attributed to the energy spent by organisms to activate the enzymes and the mechanism of avoidance. 418 

Overall, our results suggest the existence of a link from sub- and supra-individual levels as the 419 

activation or non-activation in the antioxidant and detoxifying enzymes activities can lead to different 420 

modifications of the swimming behaviour in D. magna. Finally, although sub-lethal concentrations 421 

of CPF elicited enzymatic and behavioural changes in D. magna, these cannot be directly related to 422 

effects on their fitness or at higher ecological hierarchical level in a quantitative way. Therefore, they 423 

cannot be considered into an environmental risk assessment procedure at this time and more effort 424 

should be done in this direction. 425 
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 688 

 689 

FIGURE CAPTIONS 690 

 691 

Figure 1: mean activity (±SD) of SOD (a), CAT (b), GPx (c), GST (d) and AChE (e) measured in 8d old 692 
individuals after 96h of CPF exposure (50 ng/L and 250 ng/L). Different letters indicate significant 693 
difference among groups.  694 
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 695 

Figure 2: Histograms of increasing/decreasing effects (% active time, distance moved and active 696 

velocity) on swimming behaviour for D. magna individuals exposed to different concentrations of CPF 697 

(50 ng/L and 250 ng/L). Data are normalized to DMSO. Different letters indicate significant difference 698 

between the tested concentrations (p < 0.05). Asterisks indicate significant difference with DMSO 699 

(Significance codes:  0 ≤  ‘***’ , 0.001≤  ‘**’ , 0.01≤  ‘*’ < 0.05 ). 700 
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