
IEE
E P

ro
of

Queries to the Author

When you submit your corrections, please either annotate the IEEE Proof PDF or send a list of corrections. Do not send
new source files as we do not reconvert them at this production stage.

Authors: Carefully check the page proofs (and coordinate with all authors); additional changes or updates WILL NOT
be accepted after the article is published online/print in its final form. Please check author names and affiliations, fund-
ing, as well as the overall article for any errors prior to sending in your author proof corrections. Your article has been
peer reviewed, accepted as final, and sent in to IEEE. No text changes have been made to the main part of the article as
dictated by the editorial level of service for your publication.

Per IEEE policy, one complimentary proof will be sent to only the Corresponding Author. The Corresponding Author is
responsible for uploading one set of corrected proofs to the IEEE Author Gateway

Q1. Please confirm or add details for any funding or financial support for the research of this article.
Q2. Please provide complete bibliographic details for Refs. [38] and [66].

IEE
E P

ro
of

1 Evaluation Goals for Online Process Mining:

2 A Concept Drift Perspective

3 Paolo Ceravolo , Gabriel Marques Tavares , Sylvio Barbon Junior , and Ernesto Damiani

4 Abstract—Online process mining refers to a class of techniques for analyzing in real-time event streams generated by the execution

5 of business processes. These techniques are crucial in the reactive monitoring of business processes, timely resource allocation and

6 detection/prevention of dysfunctional behavior. Many interesting advances have been made by the research community in recent

7 years, but there is no consensus on the exact set of properties these techniques have to achieve. This article fills the gap by identifying

8 a set of evaluation goals for online process mining and examining their fulfillment in the state of the art. We discuss parameters and

9 techniques regulating the balance between conflicting goals and outline research needed for their improvement. Concept drift detection

10 is crucial in this sense but, as demonstrated by our experiments, it is only partially supported by current solutions.Q1

11 Index Terms—Online process mining, event stream, requirements and goals, concept drift

Ç

12 1 INTRODUCTION

13 PROCESS Mining (PM) is a set of data science techniques
14 focused on the analysis of event logs [1]. Events are
15 recorded when executing a Business Process and collected
16 into cases, i.e., end to end sequences of events relevant to the
17 same process instance. Traditional PM algorithms were
18 designed to work offline, analyzing historical batches of logs
19 gathering the complete course of cases, if necessary with
20 multiple passes of analysis. This is, however, insufficient,
21 from a business standpoint, when the real-time assessment
22 of processes is crucial to timely manage resources and
23 quickly react to dysfunctional behaviors [2]. Today’s fast-
24 changing market requires systematic adjustments of pro-
25 cesses in response to changes in the organization’s operat-
26 ing system or to trends emerging from the environment [3].
27 Recently, the notion of online PMhas emerged in reference
28 to analytics capable of handling real-time event streams [4],
29 [5]. An event stream differs from an event log because it is an
30 unbounded sequence of events ingested one-by-one and
31 allowing for limited actions in terms of iteration andmemory
32 or time consumption [6].
33 Traditional (offline) PM techniques cover three main
34 tasks: process discovery where a new model is inferred based
35 on the information contained in the event log; conformance
36 checking where a model is compared with the event log, to
37 analyze possible deviations; process enhancement where the

38model is updated to reach better performance results [1]. In
39recent years, researchers have achieved significant results in
40proposing adaptations to classic offline techniques to han-
41dle online processing, mainly for process discovery [5], [7],
42[8], [9], [10], [11], [12] and conformance checking [13], [14],
43[15], [16], [17], [18].
44An assumption of several works is that online PM algo-
45rithms have to control time and space complexity, avoiding
46to exceed memory capacity, even dealing with logs that
47potentially tend to infinite size. In contrast, lower memory
48consumption is, in general, associated with lower accuracy;
49thus, the trade-off between these two dimensions should be
50controlled by algorithms, but little work has addressed this
51issue [10].
52A major goal related to online PM is to get a real-time
53response over executed activities, minimizing the latency of
54reaction to deviant behavior. This requires inspecting incom-
55ing events quickly and incrementally, ideally event by event
56in one pass, still, a few incremental algorithms are available
57in the literature [10], [19]. In fact, the offline PM algorithms
58presuppose complete cases and it may be hard to convert them
59into incremental procedures [20].
60Another crucial goal is Concept Drift Detection (CDD).
61Event streams are often non-stationary. The quality of a dis-
62covered model may change over time, and, by consequence,
63the validity of the conformance tests formerly executed is
64jeopardized. Techniques for detecting quality drifts in PM
65have been proposed [5], [21], [22], [23], [24], [25], [26], [27],
66[28], [29], [30], [31], [32], [33], [34], [35] but seldom applied to
67drive online updates or only partially able to fit the real-time
68constraint [20]. Also, there is no consensus on the criteria
69used to detect concept drift. Some approaches drive concept
70updates using a constant criterion [5], [26], [30], while others
71apply a variety of statistical tests to trigger it [24], [28], [30],
72[35]. Moreover, data streams are typically assumed as accu-
73rate and free of noise but this assumption is generallywrong.
74A cleansing stage, filtering out spurious events, may be
75required to improve the quality of the analysis [25], [36], [37]

� P. Ceravolo and G. M. Tavares are with the Universit�a degli Studi di
Milano, 20122 Milano, Italy.
E-mail: {paolo.ceravolo, gabriel.tavares}@unimi.it.

� S. Barbon Junior is with Londrina State University (UEL), Londrina
86057-970, Brazil. E-mail: barbon@uel.br.

� E. Damiani is with the Cyber-Physical Systems Center, Khalifa Uni-
versity, Abu Dhabi, UAE. E-mail: ernesto.damiani@ku.ac.ae.

Manuscript received 17 Oct. 2019; revised 15 June 2020; accepted 21 June 2020.
Date of publication 0 . 0000; date of current version 0 . 0000.
(Corresponding author: Paolo Ceravolo.)
Recommended for acceptance by M. Shyu.
Digital Object Identifier no. 10.1109/TSC.2020.3004532

IEEE TRANSACTIONS ON SERVICES COMPUTING 1

1939-1374� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4519-0173
https://orcid.org/0000-0002-4519-0173
https://orcid.org/0000-0002-4519-0173
https://orcid.org/0000-0002-4519-0173
https://orcid.org/0000-0002-4519-0173
https://orcid.org/0000-0002-2601-8108
https://orcid.org/0000-0002-2601-8108
https://orcid.org/0000-0002-2601-8108
https://orcid.org/0000-0002-2601-8108
https://orcid.org/0000-0002-2601-8108
https://orcid.org/0000-0002-4988-0702
https://orcid.org/0000-0002-4988-0702
https://orcid.org/0000-0002-4988-0702
https://orcid.org/0000-0002-4988-0702
https://orcid.org/0000-0002-4988-0702
https://orcid.org/0000-0002-9557-6496
https://orcid.org/0000-0002-9557-6496
https://orcid.org/0000-0002-9557-6496
https://orcid.org/0000-0002-9557-6496
https://orcid.org/0000-0002-9557-6496
mailto:paolo.ceravolo@unimi.it
mailto:gabriel.tavares@unimi.it
mailto:barbon@uel.br
mailto:ernesto.damiani@ku.ac.ae

IEE
E P

ro
of

76 or pre-processing is required to ingest event data into the
77 right level of abstraction [38].
78 These aforementioned goals are typically addressed in iso-
79 lation thus the translation into functional and non-functional
80 goals of the onlinePMproblem is not uniform in the literature.
81 This lack of common ground in terms of requirements and
82 evaluation goals harms the assessment and benchmarking of
83 online PM techniques. This paper aims at filling the gap by
84 identifying a set of requirements pertinent to online PM. In
85 our work, the state of the art is reviewed by a literature-based
86 analysis of the requirements different approaches can issue.
87 More specifically, we identify two design dimensions that
88 require a balance between their conflicting goals. One dimen-
89 sion is represented by the relationship between memory con-
90 sumption and accuracy, and the other by the relationship
91 between response latency and frequency of runs. We also
92 observe that handling multiple goals and addressing their
93 conflicts requires integrating concept drift techniques. Pro-
94 gressing in this direction is essential to a better understanding
95 of the topic. For this reason our work aims at:

96 � Identifying a set of goals of online PM to clarify the con-
97 flicting implications of different design approaches
98 and the role of CDD in conciliating them.
99 � Proposing a benchmark dataset of event streams incor-

100 porating concept drift and incomplete cases.
101 � Performing an initial assessment of online PM techni-
102 ques for CDD using quantitative measures for accu-
103 racy and scalability in memory consumption.
104 More specifically, the paper is organized as follows.
105 Section 2 sets the foundations by presenting standard con-
106 cepts used in PM and stream research. Section 3 proposes a
107 set of requirements and goals for online PM algorithms. The
108 section also reviews the approaches currently proposed in
109 the literature investigating the requirements they support.
110 Section 4 introduces a set of synthetic event streams created
111 to simulate various online scenarios, thus, providing rese-
112 archers with ways to compare CDD support in different
113 online PM algorithms. Section 4 performs then experiments
114 to compare current CDD techniques and analyzes their
115 implications regarding the proposed requirements, with
116 particular attention to the relationship between accuracy
117 and memory consumption. Lastly, Section 5 concludes the
118 paper and discusses subsequent steps for online PM.

119 2 PRELIMINARIES

120 2.1 Process Mining Definitions

121 This section provides the basic concepts we are going to use
122 throughout the paper.
123 An Event Log is a collection of events generated in tempo-
124 ral sequence and stored as tuples, i.e., recorded values from
125 a set of attributes. Events are aggregated by case, i.e., the end
126 to end execution of a business process. For the sake of classi-
127 fication, all cases performing the same sequence can be con-
128 sidered equal. A unique end to end sequence is therefore
129 referred to as a trace.

130 Definition 1 (Event, Attribute). Let S be the event uni-
131 verse, i.e., the set of all possible event identifiers; S� denotes
132 the set of all sequences over S. Events may have various attrib-
133 utes, such as timestamp, activity, resource,

134associated cost, and others. Let AN be the set of attri-
135bute names. For any event e 2 S and an attribute n 2 AN ,
136then #nðeÞ is the value of attribute n for event e. Typically val-
137ues are restricted to a domain. For example, #activity 2 A,
138where A is the universe of the legal activities of a business pro-
139cess, e.g., fa; b; c; d; eg.
140Definition 2 (Trace, Subtrace). A trace is a non-empty
141sequence of events t 2 S� where each event appears only once
142and time is non-decreasing, i.e., for 1 � i < j � jtj : tðiÞ 6¼
143tðjÞ. With abuse of notation we refer at the activity name of an
144event#activityðeÞ as the event itself. Thus ha; b; di denotes a trace
145of three subsequent events. An event can also be denoted by its
146position in the sequence as ei with en the last event of a trace. A
147trace can also be denoted as a function generating the corre-
148sponding event for each position of its sequence: tði ! nÞ 7!
149hei; . . . ; eni. A subtrace is a sequence tði ! jÞ where 0 <
150i � j < n.

151Definition 3 (Case, Event Log). Let C be the case universe,
152that is, the set of all possible identifiers of a business case execu-
153tion. C is the domain of an attribute case 2 AN . We denote a
154case ci 2 C as ha; b; dici , meaning that all events share the same
155case. For example, for ci we have #caseðe1Þ = #caseðe2Þ =
156#caseðe3Þ. An event log L is a set of cases L � S

� where each
157event appears only once in the log, i.e., for any two different
158cases the intersection of their events is empty.

159Given an Event Log L, we refer to its behavior as the set of
160traces that are required to represent all the cases in L.

161Definition 4 (Event Log behavior). An event log L can be
162viewed as the multiset of traces induced by the cases in L. For-
163mally, L :¼ ftj9ci 2 L; ciði ! nÞ ¼ tði ! nÞg. The behavior
164of L can be viewed as the set of the distinct elements of L, for-
165mally BL ¼ supportðLÞ.
166An event log L is then a multiset because multiple cases
167can generate the same trace, while its behavior BL is the set
168of distinct traces induced by the cases.
169Given a Model M, we refer to its behavior as the set of
170traces that can be generated from the model. In the presence
171of iterations, this set can be potentially infinite.

172Definition 5 (Process Model behavior). Given a process
173model M, we refer to its behavior BM � S� as the set of traces
174that can be generated by its execution.

175Several quality measures can be defined in order to
176assess the accuracy of a model. These measures assess the
177appropriateness of a model against an event log considering
178their behavior.

179Definition 6 (Appropriateness). Appropriateness is a func-
180tion aðBL;BMÞ or aðBM;BLÞ that measures aptness of ensur-
181ing that the BL is present in the BM versus ensuring that the
182BM is restrained to what observed in the BL.

183Our definitions of behavior and appropriateness are
184abstract enough to be valid regardless of the specific imple-
185mentations adopted in algorithms.

1862.2 Process Mining Tasks

187Discovering a model M from L implies to identify an appro-
188priate generative representation of L, as a model can generate

2 IEEE TRANSACTIONS ON SERVICES COMPUTING

IEE
E P

ro
of

189 multiple traces based on the optional paths it describes.
190 Many algorithms have been proposed, differing in terms of
191 their underlying computational schema and data structure,
192 and their resulting process modeling formalism. Most algo-
193 rithms address the control-flow perspective, i.e., themodel is
194 expected to generate the behaviors observed in L. More
195 recently, researchers have started targeting other perspec-
196 tives such as data, resources, and time. We refer to [39] the
197 reader interested in a detailed overview of process discovery
198 algorithms. In the online setting, research approaches have
199 principally focused on the control-flow perspective, with
200 algorithms generating Petri nets [5], [7], [8], [10] as well as
201 Declaremodels [11], [40]. This is then the perspectivewe con-
202 sider in our definitions.

203 Definition 7 (Process Discovery). A process discovery algo-
204 rithm construct a process model from an event log and can thus
205 be seen as a function d : BL 7! BM.

206 When discovering a process model, different criteria can
207 set the appropriateness of a representation. More specifi-
208 cally, Fitness and Precision have been largely used in the lit-
209 erature. The notion of fitness is aimed at capturing the extent
210 of the behavior in L that can be generated using M. If we
211 trust on M, it can be used to detect anomalous traces in L.
212 The notion of precision is aimed at capturing the extent of
213 the behavior inM that is not observed in L. A precise model
214 does not generate more behavior than the observed.

215 Definition 8 (Fitness). Fitness is a function fðBL;BMÞ that
216 quantifies which part of the behavior observed in L can be repro-
217 duced in M. In abstract terms it can be defined as fðBL;
218 BMÞ ¼ BL\BM

BL .

219 Definition 9 (Precision). Precision is a function pðBM;BLÞ
220 that quantifies which part of the behavior that can be produced
221 in M cannot be observed in L. In abstract terms it can be
222 defined as pðBM;BLÞ ¼ BM\BL

BM .

223 Given that the set of traces characterizing a process
224 model behavior may be infinite, the metrics proposed in the
225 literature for fitness and precision work by approximations.
226 Our definition is abstract as it does not specify how the com-
227 parison between the behavior in L and M is implemented.
228 Indeed, defining an effective procedure requires addressing
229 complex aspects, such as accounting the partial alignment
230 between a trace and a model or confronting the finite behav-
231 ior recorded on traces with the infinite behavior of the
232 model [41]. These tasks are typically addressed using multi-
233 pass analysis, meaning the offline PM measures of appro-
234 priateness cannot match the event stream criteria.

235 2.3 Stream Mining Definitions

236 Formally, a data stream is an ordered pair ðs;DÞ where: s is a
237 sequence of tuples and D is a sequence of positive real time-
238 intervals. Unfortunately, data stream analytic techniques
239 [42], [43] cannot be readily applied in detecting business pro-
240 cess behavior [43] due to a mismatch at the representation
241 level. While stream analysis typically works at the event
242 level, PM operates at the case level, where multiple events
243 compose a trace. Nevertheless, in an event stream two subse-
244 quent events may belong to different cases then online PM
245 algorithms are assumed to analyze events in two distinct

246stages. During the ingestion stage, a stream is read one event
247per time. During the processing stage, cases and traces are
248reconstructed and PM analytics are run. Also, in common to
249data stream analysis, onlinePMhas to assume that the incom-
250ing flow of data is continuous and fast, i.e., the amount of
251memory that can be used during data analysis is much
252smaller than the entire series [42]. For this reason, a limited
253span of the stream is considered during analysis. Whatever
254this span is defined using memory space, time, or other con-
255ditions, we can refer to it as a window of analysis W . The
256behavior of the event stream can then be captured by com-
257paring two distinct windowsWa andWb.

258Definition 10 (Window of Analysis). A window of analysis
259W can be defined using its start time Ws and its end time We.
260In comparing two windows Wa and Wb we can say that Wa
261precedes Wb, formally Wa � Wb, if Wae < Wbe. LW denotes
262the projection of an event log L to a windowW .

263The ability to use a window of analysis is crucial to online
264PM and can be used together with metrics measuring the
265appropriateness of a model to assess the conditions for trig-
266gering updates. This identifies a set of properties that must
267apply to any online solution.

2682.3.1 Properties of Online Process Mining

269Given that analysis is executed on two different windows
270ðWa � Wb j Wb nWa 6¼ ; Þ ^ jWaj ¼ jWbj, i.e., Wb includes
271or excludes at least one behavior but the total number of
272observed behaviors does not change, the following proper-
273ties should hold.

274Axiom 1. ðBLWb \ BMÞ n ðBLWa \ BMÞ > ;¼) fðBLWb;

275BMÞ > fðBLWa;BMÞ; pðBM;BLWbÞ > pðBM; BLWaÞ.
276Axiom 2: ðBLWb \ BMÞ n ðBLWa \ BMÞ ¼ ;¼) fðBLWb;
277BMÞ ¼ fðBLWa;BMÞ; pðBM;BLWbÞ ¼ pðBM;BLWaÞ.
278Axiom 3: ðBLWb \ BMÞ n ðBLWa \ BMÞ < ;¼) fðBLWb;

279BMÞ < fðBLWa;BMÞ; pðBM;BLWbÞ < pðBM;BLWaÞ.
280These axioms support important indications in terms of
281constraints applying to online PM tasks. First of all, process
282discovery must be rerun only if the process loses quality
283(Axiom 3). Conformance checking must be replayed each
284time the balance between L and M changes (Axioms 1 and
2853). Finally, we have conditions where no update of the anal-
286ysis is required (Axiom 2). This tells us that CDD is a gen-
287eral requirement for online PM.

2882.3.2 Types of Concept Drift

289Static approaches have access to the complete data set. Thus,
290after a discovery procedure, the appropriateness of traces in
291front of the model is completely determined. In event stream
292processing, the appropriateness of traces changes over time,
293creating an additional challenge. In traditional data mining
294applications, concept drift is identified when in two separate
295points in time a concept, i.e., the true relation between a tuple,
296a feature vector, and its associated class, changes [43]. In
297online PM, drifts occur when the appropriateness between
298the model and the event stream changes creating, over time,
299the need for a model update. Otherwise, the model loses its

CERAVOLO ET AL.: EVALUATION GOALS FOR ONLINE PROCESS MINING: A CONCEPT DRIFT PERSPECTIVE 3

IEE
E P

ro
of

300 representational power. This phenomenonmanifests itself in
301 different forms, Fig. 1 shows the four main types of concept
302 drift identified in the literature [44]

303 � Sudden: concepts change abruptly.
304 � Recurring: changes appear seasonally over time, i.e.,
305 with recurring incidence.
306 � Gradual: concepts change by a gradual degradation,
307 their quality decreases initially in delimited contexts
308 to finally apply to the entire stream.
309 � Incremental: many small-scale intermediate changes
310 are observed, i.e., an initial concept suffers several
311 mutations until it becomes a different concept.
312 As observed in [45], current process discovery algorithms
313 behave poorly when logs incorporate drifts: causal relations
314 between events may appear and disappear, or even reverse,
315 and therefore cannot be resolved. Experiments have demon-
316 strated that concept drift produces a significant drop in the
317 accuracy of PM algorithms [27]. Approaches to detect con-
318 cept drift in event logs have been proposed [5], [21], [22],
319 [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],
320 [35]. Nonetheless, they are not strongly linked to online PM
321 approaches and mainly take aim at a single evaluation goal.
322 In Sections 3.2.3 and 4.4, we propose a detailed evaluation of
323 the CDD techniques today available, highlighting their limi-
324 tations and discussing directions for progressing the field.

325 3 FRAMING THE ONLINE PROCESS MINING STATE

326 OF THE ART

327 In this section, we discuss the goals motivating organiza-
328 tions in introducing online PM and their relationship to solu-
329 tions proposed in the literature.

330 3.1 Requirements of Online Process Mining

331 Different from offline PM, focused on observing a static log,
332 online PM aims at leveraging insights about cases during
333 their execution [46]. We come, then, by a base requirement
334 discriminating what enters in our discussion.
335 R0: Analysis Must Process Data Streams. The solutions rele-
336 vant to online PM must provide algorithms designed to
337 ingest data streams. Data samples in a stream, potentially
338 unbounded in size, demand for one-pass reading of not
339 arranged flow of data [47], [48]. An architecture ingesting

340data streams and accumulating events, to feed algorithms
341working in batch mode, is for us out of scope. Also, we do
342not drive our attention to approaches focusing on improv-
343ing the scalability of PM algorithms by exploiting task
344decomposition and parallelization [49], [50].
345In the following, we show that the goals motivating the
346adoption of online PM are different and conflict with one
347another. Depending on the levels of satisfaction to be
348achieved for each goal, a trade-off can be identified. How-
349ever, two conflicting goals cannot achieve their individual
350maximum levels of satisfaction at the same time. After list-
351ing these goals, we review the impact of current online PM
352approaches on them.
353G1: Minimize Memory Consumption. As data streams are
354potentially infinite, and often characterized by high genera-
355tion rates, an online analysis must minimize the amount of
356memory required during processing. A basic approach to
357address this goal is removing data out of the capacity of the
358available memory. This implies that the window of analysis
359Wi is periodically updated. However, reducing the size of
360the data sample can seriously affect accuracy [5] (G4). Strat-
361egies for removing the less relevant recorded tuples are
362then studied, taking inspiration from the memory-friendly
363algorithms for stream mining used in machine learning [51].
364CDD is proposed as a way of selecting relevant or irrelevant
365tuples to be maintained in memory [52]. The need for a
366trade-off between memory consumption and accuracy typi-
367cally brings to a relaxed version of this goal, i.e., it must be
368possible to bound the amount of memory to a given capacity.
369G2: Minimize Response Latency. One of the reasons for per-
370forming online analysis is to quickly react to events, e.g., for
371anomaly or fraud detection. If an executing business process
372is deviating from the expected behavior, an alert must be
373generated in time to analyze the case and coordinate a
374response. It follows that online analysis have to run on
375incomplete cases ciði ! jÞ, continuously assessing their
376appropriateness to a model: aðBL;BMÞ. It is, however, evi-
377dent that this affects the consumption of computational
378resources (G3). Lightweight representations for models and
379cases, together with single-pass evaluation of appropriate-
380ness metrics are then crucial challenges to be faced in order
381to achieve this goal.
382G3: Minimize the Number of Runs. Online analysis should
383consume computational resources only when its execution
384can change the inferences arising from data. In general, the
385achievement of this goal is in opposition to G2, which
386requires the analysis is constantly running. However, it is
387reasonable to equip algorithms to find a trade-off. Imposing
388a constant scheme for updating the model or not supporting
389updates at all is not appropriate in online settings. As
390observed in Section 2.3.1, the flow of an event stream can
391bring to conditions either requiring to update the analysis
392or not. Some memory-friendly approaches are grounded on
393this idea [43]. It follows, CDD is crucial to identify the
394appropriate moment for updating the analysis.
395G4: Optimize Accuracy. Even when implementing an
396online approach, it should be required to achieve levels of
397accuracy comparable to that of offline methods. In PM,
398accuracy is expressed by the appropriateness aðBM;BLÞ. In
399this sense, accuracy is, in general, positively affected by the
400number of events considered during the analysis, the more

Fig. 1. Distributions of concepts for different drift types. Each drift type
has its own transition period and characteristic. The image shows an ini-
tial concept A that after a transition is replaced by concept B. As an
example, the incremental drift has a transition composed of several dif-
ferent behaviors that change at a fast rate until it stabilizes.

4 IEEE TRANSACTIONS ON SERVICES COMPUTING

IEE
E P

ro
of401 events we use to discover M the more overlap with L we

402 are likely to represent. That is, needless to say, the inverse
403 of what G1 requires. In addition, accuracy is positively
404 affected by updates of the analysis [27]. As previously dis-
405 cussed, updates can arise from continuous incremental
406 algorithms [53] (G2) or can be handled when the model is
407 losing precision (G3), that implies being able to react to
408 different types of concept drift [52]. A challenge to be
409 faced when conciliating real-time response (G2) and accu-
410 racy is to have available lightweight representations
411 resulting in accurate analysis even with fast access to data
412 structures [20].

4133.2 Requirement Satisfaction in Online
414Process Mining

415We will now describe two design dimensions that require a
416balance between conflicting goals. Each dimension is repre-
417sented by the two apogean goals connected by inverse rela-
418tionships. One dimension is defined by the couple G1-G4
419and the other by G2-G3. However, as stated previously, G4
420is also dependent on G2-G3. A schematic representation of
421the conflicting dimensions in online PM is illustrated in Fig. 2.
422In the following paragraphs, we illustrate different
423approaches and discuss how they support and control the
424achievement of previously set goals. Often the relationship
425between conflicting goals is not made explicitly, and rarely
426parameters for controlling the trade-off between goals are
427made available by current PM solutions. To review the liter-
428ature, we use a three-level scale.

429� Full support (@). The method is designed to address
430the goal in all its aspects.
431� Partial support (–). The method addresses the goal but
432does not satisfy all its aspects.
433� No support (•). The method ignores the goal or cannot
434address it.
435If the literature does not provide sufficient information to
436estimate the impact on a goal, we do not include it in the
437discussion. Fig. 3 offers a summary of our review using
438radar charts.

Fig. 2. Conflicting dimensions in online PM: G1 (minimize memory con-
sumption), G2 (minimize response latency), G3 (minimize runs) and G4
(optimize accuracy).

Fig. 3. Levels of control over goals, G1 (minimize memory consumption), G2 (minimize response latency), G3 (minimize runs) and G4 (optimize
accuracy) by Process Discovery (PD) and Conformance Checking (CC) approaches.

CERAVOLO ET AL.: EVALUATION GOALS FOR ONLINE PROCESS MINING: A CONCEPT DRIFT PERSPECTIVE 5

IEE
E P

ro
of

439 3.2.1 Approaches to Online Process Discovery

440 Themost studied online procedures relate to Process Discov-
441 ery (PD). Theymostly focus on boundingmemory consump-
442 tion, though other goals are also discussed in the literature.
443 Events Accumulation. The first works addressing online
444 PM are [45], [54]. They both focus on process discovery and
445 identify that concept drift has to drive updates. This implic-
446 itly addresses G3 as a computational task will run only if
447 events follow new distributions. However, they rely on off-
448 line process discovery analysis, and for this reason, do not
449 meet •R0. In [54], the events are accumulated capturing all
450 the behavior observed in the event stream, then, using a
451 sliding window, a statistical test verifies if significant
452 changes are recorded and eventually calls an offline proce-
453 dure to update the model. In [45] the events accumulated
454 are used to generate an abstract interpretation of their
455 behavior using a convex polyhedron that offers an upper
456 approximation. When new cases are acquired, online analy-
457 sis matches them with the polyhedron to estimate their
458 divergence to the previously observed behavior, supporting
459 the online assessment of concept drift. If a drift is detected,
460 the polyhedron can be recalculated using an offline proce-
461 dure. The problem of bounding the memory usage is not
462 addressed (•G1), moreover, the time of accumulation
463 implies a delay in the response (•G2).
464 Sliding Window. The sliding window method offers the
465 simplest approach to bound the memory capacity based on
466 maintaining only the last n events of the stream. However,
467 this approach is very limited. It does not guaranty the new
468 behavior is captured (•G4) nor the memory capacity is met
469 (–G1) as both these dimensions are dynamically evolving.
470 In principle, extending the span of the window positively
471 impacts accuracy but, at the same time, negatively affects
472 memory usage and response time, which is by definition
473 dependent on the dimension of the window (•G2). More-
474 over, the runs of analysis are predefined and cannot be con-
475 trolled (•G3). Therefore, the validity of the approach is
476 restrained to domains characterized by constant periodicity
477 of updates and monotonic behavior. Actually, the approach
478 is mentioned by different authors [10], [11], [45], [54] but
479 not proposed as a solution.
480 Adaptive Buckets. The natural evolution of the sliding win-
481 dow approach is developingmemory-friendly strategies, e.g.,
482 maintaining buckets of memory based on selective counting
483 of events. Sticky Sampling and Lossy Counting are examples of,
484 respectively probabilistic and deterministic, algorithms for
485 computing item frequency over a data stream [55].
486 Lossy Counting with Budget is an adaptive version of the
487 Lossy Counting algorithm that was successfully adapted to
488 PM. The idea is to store events in buckets and count how
489 many times an event is observed. When the maximum avail-
490 able memory (the budget) is reached, infrequent events are
491 removed from memory (@G1). The accuracy of the analysis
492 is controlled by an error margin � that sizes thememory bud-
493 get to be used. However, it is not possible to define a deter-
494 ministic function mapping memory usage and accuracy
495 (–G4) [10]. The approach requires, in any case, a separate
496 algorithm to run process updates with an intrinsic delay in
497 generating up-to-date responses (•G2), and nothing guaran-
498 tees the updates will run consistently to axioms introduced

499in Section 2.3.1 (•G3). Moreover, these approaches do not
500offer support for all the drift types presented in Section 2.3.2.
501The idea was originally proposed in [7] and improved in
502terms of memory consumption in [8]. The latter work intro-
503duces heuristics for memory pruning based on a decay fac-
504tor applied both on events and cases. The approach was
505also applied to declarative process discovery [11], [40],
506where the model is expressed in terms of a set of constraints
507that cannot be violated during the process execution. Each
508constraint can be associated with an independent learner,
509reducing the response time required to update the model.
510In [36], the authors proposed a general framework to feed
511the abstract representations adopted by existing process dis-
512covery algorithms with event streams. All the algorithms
513investigated in the framework adapt their memory usage
514based on the current capacity.
515Different authors put forward the idea that concept drift
516can drive the updates of memory buckets. However, some of
517the CDD techniques are unable to identify specific classes of
518drift such as incremental and recurring [5], [26], [30], while
519the advanced techniques that were proven to detect them
520adopt temporally extended tests that work with windows of
521significant size [24], [30], [32], [35] (–G3). In general, concept
522drift positively affects accuracy since, when updating the
523model, better conformance with incoming events is
524obtained [27] but, again, it is unclear which classes of drift
525can be effectively detectedwithmemory-friendly approaches
526(–G4).Wewill go back to this issue in Section 4.4.
527Incremental Model Updates. The most efficient way of limit-
528ing memory usage in stream processing is adopting incre-
529mental algorithms that consume events in a single step. This
530implies that no backtracking is possible and events can be
531deleted after being consumed (@G1). The incremental
532approach is also the best solution to minimize response
533latency because the analysis can be executed in real-time
534(@G2). However, the consumption of computational resour-
535ces is continuous (•G3), and accuracy may be unsatisfactory
536in non-stationary environments where concept drift is recur-
537ring, because past behavior cannot be used to shape the
538model (–G4). Accuracy can be improved by keeping the
539results of incremental updates in buckets of memory and
540constructing a synoptic representation of the observed data
541stream. This is, however, a trade-off solution where bothG1
542andG2 are partially satisfied, due to the need of introducing
543auxiliary procedures besides the incrementalmodel updates.
544To the best of our knowledge, the only approaches using
545this strategy in online PM are [10], [20]. Barbon et al. [20]
546incrementally update a process model graph (PMG) to
547obtain a reliable process model. The PMG is maintained
548throughout stream processingwith specific checkpoints trig-
549gering refresh and release statements of allocated resources.
550Similarly, Leno et al. [10] idea is to incrementally update an
551abstract representation bounding its size by the memory
552budget. The abstract representation is constructed by a
553directly follow graph with nodes representing activities and
554arcs representing direct follow relations between activities.
555The last event of every executing case is kept in memory, this
556way, any incoming event can be attached to the graph by a
557direct follow relation with its preceding event. Moreover,
558arcs and nodes are annotated with their observed frequen-
559cies thus, if the size of the graph exceeds the available

6 IEEE TRANSACTIONS ON SERVICES COMPUTING

IEE
E P

ro
of

560 memory, the less representative elements can be removed.
561 The authors compared different deletion strategies with the
562 Lossy Counting with Budget algorithm presented in [7], con-
563 cluding that their approach outperforms it in terms of the
564 amount of memory required to get high levels of accuracy.
565 This confirms that the trade-off between memory and accu-
566 racy is a key parameter of configuration for online PM. None-
567 theless, the relationship between memory consumption and
568 accuracy and the impact that the emergence of concept drifts
569 may have is not clarified in the literature.
570 Trace Clustering. In [31], various trace clustering techni-
571 ques are tested for detecting concept drift. If a drift is
572 detected, a model update can be executed, keeping the
573 model aligned to the event log. However, the connection
574 with event streams processing is not studied. In [19] process
575 discovery is addressed using a sliding window approach
576 (@G1). The authors boost this approach by interlaying a
577 density-based clustering procedure that interconnects mul-
578 tiple online PM tasks. A lightweight abstract representation
579 of cases, supporting incomplete cases, is adopted to group
580 cases in clusters constructed using density-based bound-
581 aries. Each time a new event is ingested, clusters are
582 updated. Periodically, based on the dimension of the sliding
583 window, the process model is updated (•G2). This cluster-
584 ing procedure allows, however, to identify anomalous cases
585 and to capture concept drift with positive impacts on accu-
586 racy (–G4) and resource consumption (–G3), as dysfunc-
587 tional cases are pruned from the model update procedure.
588 The approach, however, requires to express drifts in terms
589 of a distance between traces and cannot cope with PM
590 appropriateness measures. For this reason, it does not offer
591 full coverage of the axioms in Section 2.3.1.

592 3.2.2 Approaches to Online Conformance Checking

593 Approaches to online Conformance Checking (CC) essen-
594 tially focus on supporting real-time analysis (G2). Memory
595 consumption and accuracy are left in their natural inver-
596 sional relationship or are managed using solutions dis-
597 cussed in Section 3.2.1.
598 Event Accumulation. Traditional offline CC uses the token-
599 based replay technique, where previously executed cases are
600 replayed over themodel. Each executed activity corresponds
601 to firing a token. Consumed, missed, and remaining tokens
602 are counted to create conformance statistics. Themost critical
603 aspect of these replay techniques is that multiple alignments
604 between a case and amodel (corresponding to different start-
605 ing points for log replay) are possible, and computing the
606 optimal alignment is challenging from a computational point
607 of view [56]. Even if, recently, general approximation
608 schemata for alignment have been proposed [57], these
609 approaches require to backtrack cases, and, for this reason,
610 make memory bounding difficult (•G1). Moreover, they do
611 not support the analysis of incomplete cases (•G2). Namely,
612 these approaches rely on offline procedures and, thus, do not
613 enter our comparative review (•R0).
614 Pre-Computation. Another strategy proposed to support
615 online CC is based on the pre-computation of all the possi-
616 ble deviations on top of a model. In particular, in [13] a Petri
617 net is converted into a transition system decorated with
618 arcs describing the possible deviations from the model.

619Transitions representing deviations are associated with a
620cost, while transitions allowed by the model have no cost.
621By this approach, it is possible to compute conformance in
622real-time (@G2). However, the requirements imposed in
623terms of memory consumption are high and difficult to be
624parameterized (•G1). The impact on model update and
625accuracy is not discussed by the authors, except for referen-
626ces to papers adopting the Lossy Counting with Budget
627approach (–G4). It can be, however, generally remarked
628that the approach imposes significant effort on model
629update (•G3), making hard to use CDD with a negative
630impact on accuracy for non-stationary environments.
631Prefix-Based. In order to address the problem of comput-
632ing the conformance of incomplete cases, in [17] an
633approach for assessing the optimal alignment of sub-traces
634is proposed. This goes in the direction of supporting confor-
635mance checking in real-time (@G2), as, in principle, each
636new event can trigger the analysis. However, the approach
637is intrinsically related to the backtracking procedures
638required for alignment. The authors are aware of this prob-
639lem and propose either Random Sampling with Reservoir [58]
640or Decay-based data structures [59], similarly to the solutions
641provided respectively in [7], [10] for process discovery. This
642way it is possible to manage the trade-off between memory
643consumption (@G1) and accuracy (–G4). It is clear that CDD
644in non-stationary environments is a precondition to not lose
645accuracy. Despite that, no specific effort was dedicated to
646the interconnection of these prefix-based approaches and
647CDD; thus, there is no guarantee that the axioms introduced
648in Section 2.3.1 can be matched (•G3).
649Constraint-Based. One pass conformance checking can be
650achieved using declarative constraints, i.e., relationships
651between the sequential order of activities that must be
652respected during the execution (typically expressed using
653linear temporal logic). In [60], a set of finite-state automata
654are proposed to validate declarative constraints. The
655authors show that online validation of these constraints is
656possible at the cost of clearly identifying the validity of the
657inferred conditions that can pass from different states given
658by the combination of violated/fulfilled, permanent/tem-
659porary conditions. The approach is designed to support
660real-time conformance checking at an event level (@G2), i.e.,
661supporting incomplete cases. Resource consumption is less
662significant than in other approaches because the analysis
663can be localized to the set of constraints that are activated
664by the case under analysis. This positively impacts memory
665consumption during analysis (@G1), moreover, analysis run
666only if a constraint is matched (–G3). Accuracy is guaran-
667teed if the set of constraints used is updated, which can be
668achieved using an approach based on adaptive buckets
669(–G4) [11]. However, this is clearly in counterbalance with
670G3, and no specific method for managing this balance is
671proposed. The experimental analysis we run shows that this
672approach, in practical terms, does not scale, due to the rele-
673vant number of cross-checks it imposes.
674Trace Clustering. The approach presented in [19] uses
675density-based clustering to calculate, event by event, how
676similar a case is to the process model. This is a simplified
677conformance checking measure that can be computed in
678real-time (@G2). The accuracy is, however, non-optimal as
679the adopted metrics do not have the same potential of

CERAVOLO ET AL.: EVALUATION GOALS FOR ONLINE PROCESS MINING: A CONCEPT DRIFT PERSPECTIVE 7

IEE
E P

ro
of

680 methods that use backtracking procedures because they do
681 not exploit the generalization power of model-aware replay
682 procedures (–G4). Memory consumption is controlled by
683 the sliding window, adopted to buffer incoming events
684 (@G1). Resource consumption is partially limited by the
685 identification in real-time of dysfunctional cases that are
686 pruned from conformance checking procedures (–G3).

687 3.2.3 Concept Drift Detection

688 CDD was identified as a central issue already in the first
689 works addressing online PM [45], [54]. The sliding window
690 approach is, in general, adopted to track the latest process
691 behavior. This makes it challenging to manage the balance
692 between accuracy and memory management (G1-G4). Static
693 window size is sometimes used [26], [30], the bias associ-
694 ated with the selected window size is then reflected on the
695 results obtained by these solutions. To improve the accuracy
696 of change-point detection, statistical tests were introduced
697 to set the optimal size of the window of analysis [24], [61],
698 but disregarding then memory management. As not all the
699 proposed procedures can effectively identify specific classes
700 of drift, such as incremental and recurring, statistical tests
701 were also exploited to create robust detection techniques
702 [24], [30]. Other approaches have improved change detec-
703 tion by isolating the behavioral properties impacted by
704 changes [32], [35]. This allows going further change-point
705 detection offering an explanation and a description of the
706 detected changes. Advanced techniques, however, come at
707 the cost of higher memory consumption. The control flow
708 perspective is the most adopted, even if approaches focus-
709 ing on temporal drifts are available [33], [34].
710 A general critical point to highlight is that CDD techni-
711 ques are not specifically integrated with online PM tasks.
712 Indeed, when two techniques adopt a different representa-
713 tion of the process behavior, their integration implies a
714 higher consumption of resources (G3). Another critical
715 aspect is that noise may be confused with concept drift if
716 not appropriately filtered out [36], [37] (G4). Also, most
717 CDD cannot cope with incomplete cases, an important
718 requirement for implementing real-time response (G2).
719 In Section 4, we experimentally compare the performan-
720 ces of different CDD approaches. We then limit our review
721 to solutions that were implemented in open source software
722 and are available for execution.
723 The first drift detection PM approach implemented in
724 open-source software is by Bose et al. [21]. The authors pro-
725 posed an offline analysis of the event log, meaning that the
726 log is consumed in a batch procedure. From the event log
727 the relationships between activities, such as the follows or
728 precedes relations are extracted. Then, two non-overlapping
729 windows go through the event log. Finally, a statistical test
730 is applied to compare the populations of both windows.
731 Concept drift is found when the distributions of the popula-
732 tions are different.
733 Using a clustering algorithm as a kernel, Zheng et al. [62]
734 introduced a three-stage approach to detect concept drifts
735 from event logs. First, the log is converted into a relation
736 matrix by extracting direct succession and weak order rela-
737 tions from traces. Then, each relation is checked for varia-
738 tion trends to obtain candidate change points. Lastly, the

739candidate change points are clustered using the DBSCAN
740algorithm [63] and combined into real change points.
741In Yeshchenko et al. [32], the authors propose a technique
742for drift detection and visualization using Declare con-
743straints and time series analysis [64]. Declare is a declarative
744process specification used to represent process behavior
745based on temporal rules, e.g., in which conditions activities
746may (or may not) be executed [65]. The approach starts by
747splitting the event log into sub-logs, where a set of Declare
748constraints are computed. Then, multi-variate time series
749representing constraints confidence are extracted and clus-
750tered. Each cluster is analyzed for change detection in the
751relation between constraints, highlighting the overall and
752behavior-specific drifts. The last step of the approach creates
753charts for a visual analysis of the detected drifts.
754Differently from previous techniques, Ostovar et al. [28]
755perform natively over a stream of events. The authors
756describe process behavior using aþ relations. An aþ rela-
757tion is characterized by a set of rules capturing the relation
758insisting between two activities, where the follows or precedes
759relations are the most representative [66]. Then, statistical
760tests over two consecutive sliding windows are performed.
761Moreover, the approach proposes a trade-off between accu-
762racy and drift detection latency. For that, windows with
763adaptive sizes are adopted.
764Tavares et al. [19] introduce a framework supporting
765multiple online PM tasks, including concept drift and anom-
766aly detection. The framework models the business process
767as a graph and extracts case features based on graph distan-
768ces. The features consider trace and inter-activity time
769between events as case descriptors. With the use of Den-
770Stream [67], case descriptors are clustered in an online fash-
771ion. Drifts are found once new clusters, which represent
772core behavior, are discovered in the stream.
773Table 1 presents the requirements and goals supported
774by currently available drift detection techniques. Only Osto-
775var et al. [28] and Tavares et al. [19] satisfy the online proc-
776essing premises (@R0), ingesting event streams in a native
777way. Bose et al. [21], Yeshchenko et al. [32] and Zheng et al.
778[62] pre-process the event log and group events into cases.
779Then, they simulate a stream of traces (•R0).
780Bose et al. [21], Ostovar et al. [28], Yeshchenko et al. [32]
781and Zheng et al. [62] approaches impose a boundary to the
782window of analysis. As stated in Section 3.2.1, these techni-
783ques minimize the amount of memory used as only the last
784n events in the event stream are maintained (@G1). At the
785same time, these methods present limitations regarding

TABLE 1
Requirement (R0) and Goals Met by the Concept

Drift Detection Techniques Analyzed

Technique R0 G1 G2 G3 G4

Bose et al. [21] • @ • • –
Ostovar et al. [28] @ @ – • –
Tavares et al. [19] @ @ – – –
Yeshchenko et al. [32] • @ • • –
Zheng et al. [62] • @ • • –

G1 (minimize memory consumption), G2 (minimize response latency), G3
(minimize runs) and G4 (optimize accuracy). @, – and • represent full, partial
and no support, respectively.

8 IEEE TRANSACTIONS ON SERVICES COMPUTING

IEE
E P

ro
of786 accuracy since there is a bias associated with the arbitrary

787 dimension selected for windows. This drawback can be
788 counterbalanced with window size tuning, leveraging the
789 accuracy in specific scenarios (–G4).
790 Additionally, the response latency is associated with the
791 window size. Since there is a minimum window size that
792 yields acceptable results, the response time has a boundary.
793 Bose et al. [21], Yeshchenko et al. [32] and Zheng et al. [62]
794 approaches lack fast response to new events as they do not
795 deal incomplete cases (•G2). For Ostovar et al. [28], the
796 boundary can be reached by hyperparameter tuning (–G2).
797 Moreover, the windows slide according to new events in
798 the stream. This means that a single event stays in the win-
799 dow for at least s iterations, where s is the window size.
800 Hence, s runs over each event are performed (•G3).
801 The solution presented in Tavares et al. [19] consumes
802 events in a single step as they arrive in the stream. Hence,
803 events are deleted after consumption, saving memory
804 (@G1). Concerning CC the approach has a real-time
805 response because each received event is clustered in the fea-
806 ture space (@G2). Contrary PD has a latency that depends
807 on the window size adopted (•G2). The technique maintains
808 case descriptors in memory for some time, consequently
809 running over cases more than once. However, these latter
810 aspects can be partially controlled with the hyperpara-
811 meters configurations, either minimizing the number of
812 runs (–G3) or leveraging accuracy (–G4).
813 On a general note, it is clear that all methods reviewed
814 here prioritizeG1, as memory consumption is a key require-
815 ment when dealing with potentially infinite data streams.
816 The same is observed in traditional data streams literature
817 [43]. However, as seen in Table 1, there is still a need for
818 methods that can satisfy multiple goals or provide explicit
819 support to calibrate their balance.
820 The analysis we proposed offers interesting insights but
821 is limited by the fact that we performed a literature-based
822 review insisting on qualitative aspects. In Section 4 we take
823 one step further by introducing quantitative methods to
824 compare CDD approaches.

825 4 EXPERIMENTAL ANALYSIS

826 As stated in the ProcessMiningManifesto [1], it is still difficult
827 to compare different PM tools and techniques. This problem is
828 aggravated by the variety of goals one can consider when
829 assessing PM. Therefore, one of the challenges in PM research
830 is to provide reliable benchmark datasets consisting of repre-
831 sentative scenarios. In addition, identifying quantitative
832 metrics is a pre-requisite to implement strategies conciliating

833conflicting goals and optimizing online PM algorithms. In this
834Section, we contribute to these aims by proposing an experi-
835mental analysis of the five CDD tools [19], [21], [28], [32], [62]
836we reviewed in Section 3.2.3.
837The first stage of our experimental analysis consists of
838identifying the goals to be assessed. We focused on the G1-
839G4 (memory-accuracy) dimension, the most discussed in the
840literature. Accuracy is calculated focusing on the ability to
841detect drifts by the five tools we consider (Section 4.2). To
842make the comparison fair, we developed an ad-hoc synthetic
843log not previously tested by the tools (Section 4.1). The ability
844to limitmemory consumption is assessed by executing a scal-
845ability analysis of their memory usage (Section 4.3). Observ-
846ing howmemory consumption varies with logs of increasing
847sizes provides us with a means for comparing tools running
848under different software frameworks. The results we
849obtained are finally discussed in Section 4.4.

8504.1 Incorporating Drifts in a Synthetic Event Stream

851Despite the availability of PM event logs from a public
852repository,1 the majority of them was not created for event
853stream scenarios, and none fits the purpose of this study.
854Maaradji et al. [68] proposed 72 synthetic event logs for
855online PM. Although the datasets simulated concept drifts
856in business event logs, they do not comprehend the vast set
857of variables of a streaming scenario: (i) there is only one
858drift type explored (sudden), (ii) only one perspective
859(trace) and (iii) no noise was inducted. By ignoring other
860drift types (incremental, gradual, and recurring) and per-
861spectives, such as time, the proposed event logs are limited
862for testing online PM techniques, i.e., they only represent a
863limited number of the possible scenarios in online environ-
864ments. Therefore, inspired by [68], we created synthetic
865event logs following similar guidelines towards the explora-
866tion of additional drift configurations.
867Our synthetic event logs incorporate the four drift types
868identified in the literature [44], articulated according to con-
869trol-flow and time perspectives. The event logs are publicly
870available for further adoptions [69]. A business process for
871assessing loan applications [70] was used as the base busi-
872ness process. Other variants were generated by perturbing
873the base process with change patterns. Fig. 4 shows this ini-
874tial process, using Latin letters to label the 15 activities that
875compose it.
876In [68] the authors used twelve simple change patterns
877from [71] to emulate different deviations of the original base
878model. Table 2 show the change patterns, which consist of

Fig. 4. BPMN model that represents the common behavior. Drifts are applied to this base model.

1. https://data.4tu.nl/repository/collection:event_logs_synthetic

CERAVOLO ET AL.: EVALUATION GOALS FOR ONLINE PROCESS MINING: A CONCEPT DRIFT PERSPECTIVE 9

https://data.4tu.nl/repository/collection:event_logs_synthetic

IEE
E P

ro
of879 adding, removing, looping, swapping, or parallelizing frag-

880 ments.Moreover, the changes are organized into three catego-
881 ries: insertion (I), resequentialization (R) and optionalization
882 (O), also shown in Table 2. To create more complex drifts, we
883 randomly combined three simple change patterns fromdiffer-
884 ent categories, building a composite change pattern, e.g.,
885 “IRO”, which consists of the combination of insertion, rese-
886 quentialization, and optionalization simple change patterns.
887 Thus, the proposed change patterns were applied with a
888 broader set of constraints and combinations to extend the
889 degree of variability addressed in the benchmark. The main
890 goal is to provide a wide range of event streams where CDD
891 can be exhaustively represented. BPMN modeller2 and
892 BIMP3 were used as supporting tools to model the process
893 and simulate the event stream log, respectively.
894 All event streams share a few common characteristics: (i)
895 the arrival rate of cases is fixed to 20 minutes, i.e., after
896 every 20 minutes an event from a new case arrives in the
897 stream; (ii) the time distribution between events of the same
898 case follows a normal distribution. For baseline behavior,
899 the mean time was set to 30 minutes, and the standard vari-
900 ation to 3 minutes. While for drifted behavior the mean and
901 standard variation were 5 and 0.5 minutes, respectively; (iii)
902 for time drifts, the model used in a single event stream is
903 the same, i.e., the drift happens only in the time perspective;
904 this way, we avoid introducing other factors; (iv) all drifts
905 were created with 100, 500 or 1,000 cases; (v) noise was
906 introduced in the event stream for all the trace drifts. The
907 noise consisted of removing either the first or the last half of
908 the trace. Then, different percentages were applied (5, 10,
909 15, and 20 percent) in relation to the total stream size. Note
910 that standard cases were swapped for anomalous ones, this
911 way preserving the event stream size. The drift types we
912 injected are implemented in the following way:

913 � Sudden drift. The first half of the stream is composed of
914 the baseline model, and the second half is composed
915 of the drifted model. The same idea applies for trace
916 and time drifts (for time drifts, the change is only in
917 the time distribution and not the actual model).
918 � Recurring drift. For streams sizes of 100 traces, cases
919 follow the division 33–33–34. The initial and the last
920 groups come from the baseline, and the inner one is

921the drifted behavior, i.e., the baseline behavior starts
922the stream, fades after 33 traces, and reappears for
923the last 34 traces; the same applies for time drifts.
924For 500 and 1,000 traces, the division is 167–167–166
925and 330–330–340, respectively.
926� Gradual drift. One concept slowly takes place over
927another. This way, 20 percent of the stream was ded-
928icated to the transition between concepts where one
929concept fades while the other increase it probability
930to be observed.
931� Incremental drift. For the trace perspective, an interme-
932diate model between the baseline and the drift model
933is required. Only complex change patterns were used
934because it was possible to create intermediate models
935from them, whereas, for simple change patterns, the
936same is not possible since the simple change is
937already the final form of drift. This way, 20 percent of
938the stream log was dedicated to the intermediate
939behavior, so the division was 40–20–40 (baseline–
940intermediate model–incremental drift). The same
941applies for the other sizes following the proportion.
942For the time perspective, all change patterns were
943used since the time drifts disregard the trace model.
944The transition state (20 percent of the stream log) was
945subdivided into four parts where standard time dis-
946tribution decreases 5 minutes between them, follow-
947ing the incremental change of time.
948When combining all drift types and perspectives, a total
949of 942 event streams were generated following the widely
950used MXML format [72]. The file names follow the pattern:
951[A]_[B]_[C]_[D]_[E]. The letters used to compose the event
952stream names refer to the following values: four drift types:
953A 2 {gradual, incremental, recurring, sudden}; two perspec-
954tives: B 2 {time, trace}; five noise percentage variations: C 2
955{0, 5, 10, 15, 20}; three different number of cases: D 2 {100,
956500, 1000}; 16 patterns: E 2 {baseline, cb, cd, cf, cp, IOR, IRO,
957lp, OIR, pl, pm, re, RIO, ROI, rp, sw}.

9584.2 Evaluating Concept Drift Detection

959As previously mentioned, our experiments used the avail-
960able software for drift detection in PM, which includes: Bose
961et al. [21], Ostovar et al. [28], Tavares et al. [19], Yeshchenko
962et al. [32] and Zheng et al. [62]. Evaluating CDD methods for
963PM is a complex task as there are no established metrics to
964assess performance. However, as proposing metrics is out
965of the scope of this paper, we adopted two traditional
966regression metrics: Mean Squared Error (MSE) and Root
967Mean Squared Logarithmic Error (RMSLE), expressed in
968Equations (1) and (2). For both equations, assume that n is
969the number of predictions, Y is the predicted value, and Ŷ
970is the real value. Thus, in our setup, n is the number of event
971streams (942), Ŷi is 1 (as each event stream contains one con-
972cept drift) and Yi is the predicted number of drifts for an
973event stream Li.

MSE ¼ 1

n

Xn
i¼1

ðYi � ŶiÞ2 (1) 975975

976

RMSLE ¼
ffi
1

n

Xn
i¼1

ðlog ðYi þ 1Þ � log ðŶi þ 1ÞÞ2
s

: (2) 978978

979

TABLE 2
Simple Control-Flow Change Patterns [68]

Code Simple change pattern Category

cb Make fragment skippable/non-skippable O
cd Synchronize two fragments R
cf Make two fragments conditional/sequential R
cp Duplicate fragment I
lp Make fragment loopable/non-loopable O
pl Make two fragments parallel/sequential R
pm Move fragment into/out of parallel branch I
re Add/remove fragment I
rp Substitute fragment I
sw Swap two fragments I

2. https://demo.bpmn.io
3. http://bimp.cs.ut.ee

10 IEEE TRANSACTIONS ON SERVICES COMPUTING

https://demo.bpmn.io
http://bimp.cs.ut.ee

IEE
E P

ro
of980 MSE (Equation (1)) measures the average of the squares

981 of the errors of an estimator, i.e., the distance between pre-
982 dicted and real values. Thus, MSE quantifies the quality of
983 an estimator by evaluating both the variance and the bias of
984 the predictor. RMSLE (Equation (2)) considers the logarithm
985 of predicted and real values and is this way more robust to
986 outliers, as the penalization for out of the curve predictions
987 is lower. More specifically, RMSLE penalized an underesti-
988 mation more than an overestimation. For both metrics, the
989 closer to 0 a score is, the better the algorithm is performing.
990 Table 3 presents MSE and RMSLE scores of each tool
991 regarding concept drift detection. Yeshchenko et al. [32],
992 Zheng et al. [62] and Bose et al. [21] were the least performing
993 methods in both metrics. All three approaches have in com-
994 mon the offline assessment of features. As for Bose et al. [21],
995 one of the first CDD methods, the techniques applied were
996 still preliminary. Moreover, the experiments only used stan-
997 dard hyperparameters, which may have impacted the perfor-
998 mance. However, the non-adaptive behavior of the
999 approaches comes to light because the techniques were not

1000 able to adapt itself to concept drifts. Furthermore, for Bose
1001 et al. [21], its placement inMSE is closer to the best-performing
1002 algorithms, while in RMSLE, it is closer to Zheng et al. [62].
1003 This shows a tendency of underestimation on drift detection,
1004 as RMSLE punishes more heavily underestimations. Yes-
1005 hchenko et al. [32] clearly had the worst performance, mainly
1006 in MSE. An important aspect of online processing is to deal
1007 with incomplete traces, which is not addressed in this
1008 method. The high standard deviation shows that the method
1009 tends to predict amassive number of drifts.
1010 Ostovar et al. [28] and Tavares et al. [19] present an inter-
1011 esting relation between their performances. From the MSE
1012 perspective, Ostovar et al. [28] is better, but from RMSLE
1013 Tavares et al. [19] is better. This means that the Tavares et al.
1014 [19] method is more sensible as it usually mispredicts more
1015 than Ostovar et al. [28], according to MSE. However,
1016 Tavares et al. [19] mispredictions tend to overestimate the
1017 number of drifts while Ostovar et al. [28] tend to underesti-
1018 mate it, according to RMSLE. This behavior is explained by
1019 how both methods detect drifts. Ostovar et al. [28] is
1020 grounded in the application of a statistical test over two
1021 non-overlapping windows. Thus, the trace distribution
1022 within the two windows has to be different enough to trig-
1023 ger a drift from a statistical analysis. On the other hand,
1024 Tavares et al. [19] uses an online clustering technique (Den-
1025 Stream) to support the detection of new common behavior,
1026 interpreted as a drift, thus being more sensitive to change
1027 detection.

1028It emerges that in evaluating CDD methods for online
1029PM, it is crucial to determine which is more negative
1030between underestimation and overestimation. Another
1031important note is that no metric captures the behavior of an
1032online PM method completely, as different metrics evaluate
1033different aspects. Hence, a necessity for dedicated metrics
1034for online PM is exposed by the results.
1035Furthermore, we analyzed drift detection according to
1036different characteristics of the event streams. Table 4 shows
1037the results given two perspectives: trace and time. Gener-
1038ally, the algorithms follow similar performances in both
1039metrics. We can see that Yeshchenko et al. [32] and Zheng
1040et al. [62] were the only methods with better performances
1041when detecting time-related drifts than trace-related drifts.
1042Though the approaches do not explicitly handle time, the
1043process behavior is also shaped by the events’ time distribu-
1044tion, which affects the CDD. Contrarily, the other three
1045approaches had better performance at detecting trace-
1046related drifts. We expected Tavares et al. [19] to outperform
1047the other methods in time-related drifts as this method
1048extracts time features from cases. RMSLE confirms this
1049assumption while MSE does not, which also reveals how
1050the metrics might affect interpretation. Moreover, though
1051Ostovar et al. [28] had the best MSE time-related drift detec-
1052tion, it was only the third-best in RMSLE. For trace-related
1053drifts, Ostovar et al. [28] was better in MSE ranking while
1054Tavares et al. [19] was better in RMSLE.
1055Further, we investigated the capability of the studied
1056approaches in detecting different drift types (Table 5). Though
1057most techniques only claim to identify the sudden drift type,
1058they were able to detect other types satisfactorily. A possible
1059explanation is that even with small changes over time, at one
1060point, the behaviorwill become entirely different from the ref-
1061erence. In any case, Bose et al. [21], Zheng et al. [62] and Osto-
1062var et al. [28] were better at detecting sudden drifts than the
1063other types. Yeshchenko et al. [32] and Tavares et al. [19] were
1064better at detecting gradual drifts. Yeshchenko et al. [32] prof-
1065ited from the Declare constraints, correctly modeling the
1066small changes of behavior. Tavares et al. [19] benefited from
1067the constant adapting characteristic, which is implemented
1068by the online clustering phase. As new events arrive, they
1069slowly change the feature space, hence, gradual drifts become
1070easier to detect. Another interesting observation is that

TABLE 3
MSE and RMSLE Scores for Different Approaches Using

the 942 Synthetic Event Streams Proposed

Approach MSE (s) RMSLE (s)

Bose et al. [21] 1.34 (7.48) 0.68 (0.16)
Ostovar et al. [28] 0.69 (0.52) 0.51 (0.31)
Tavares et al. [19] 0.95 (3.63) 0.4 (0.33)
Yeshchenko et al. [32] 12.01 (16.05) 0.94 (0.33)
Zheng et al. [62] 6.09 (7.98) 0.74 (0.28)

The standard deviation (s) is shown in parentheses. The best performances are
highlighted.

TABLE 4
MSE and RMSLE Scores for Different Approaches Per

Perspective Using the 942 Synthetic Event Streams Proposed

Perspective Approach MSE (s) RMSLE (s)

trace

Bose et al. [21] 0.98 (0.39) 0.68 (0.14)
Ostovar et al. [28] 0.65 (0.49) 0.49 (0.31)
Tavares et al. [19] 0.88 (3.54) 0.37 (0.31)
Yeshchenko et al. [32] 12.53 (16.47) 0.95 (0.33)
Zheng et al. [62] 6.98 (8.61) 0.78 (0.29)

time

Bose et al. [21] 2.76 (16.47) 0.7 (0.21)
Ostovar et al. [28] 0.85 (0.56) 0.6 (0.28)
Tavares et al. [19] 1.2 (3.98) 0.49 (0.36)
Yeshchenko et al. [32] 10 (14.08) 0.89 (0.31)
Zheng et al. [62] 2.6 (2.84) 0.56 (0.19)

The standard deviation (s) is shown in parentheses. The best performances are
highlighted.

CERAVOLO ET AL.: EVALUATION GOALS FOR ONLINE PROCESS MINING: A CONCEPT DRIFT PERSPECTIVE 11

IEE
E P

ro
of

1071 Ostovar et al. [28] shows a high decay in performance when
1072 detecting recurring drifts. Such a phenomenon is probably
1073 due to the tool detecting two sudden drifts instead of a recur-
1074 ring behavior. Thus, it was penalized by the scoring metrics.
1075 The same can be stated for Tavares et al. [19] in incremental
1076 drifts, which presents a considerably lower performance,
1077 mainly in MSE. The incremental drift is composed of several
1078 small-scale changes, which probably were detected as several
1079 drifts by the approach instead of a single one.
1080 Most techniques were stable when tested with noisy
1081 streams, as shown in Table 6. According to MSE, Bose et al.
1082 [21] had a worse performance when the stream contains no
1083 noise. In other configurations, its performance is very stable.
1084 Yeshchenko et al. [32] and Zheng et al. [62] did not perform
1085 well for streams with 5 percent of anomalous cases, which
1086 might be due to configuration settings. Note that both
1087 approaches assess all traces at once, so their anomaly detec-
1088 tion methods are impractical in online scenarios. Differ-
1089 ently, Ostovar et al. [28] and Tavares et al. [19] worst
1090 performances are in noiseless streams. This might be due to
1091 the approaches identifying less frequent behavior as out-
1092 liers, thus triggering less change points when no noise is
1093 applied. However, as the noise percentage increases, both
1094 approaches’ performances increase. Moreover, Tavares et al.
1095 [19] readily identify anomalous or incomplete traces, which
1096 positively affect the accuracy in event streams with noise,
1097 according to RMSLE.
1098 Regarding stream size, the approaches vary their behav-
1099 iors widely, according to Table 7 (note that stream sizes are
1100 expressed in number of traces). This happens because win-
1101 dow size parameters heavily influence change point detec-
1102 tion. Table 7 shows that Tavares et al. [19] performed better
1103 as the stream size increases. Due to Tavares et al. [19]

1104constantly adapting approach, smaller streams are more dif-
1105ficult to handle as the number of traces is not enough to
1106characterize a drift. Contrarily, Yeshchenko et al. [32] and
1107Zheng et al. [62] best performances are for smaller streams.

TABLE 5
MSE and RMSLE Scores for Different Approaches Per Drift
Type Using the 942 Synthetic Event Streams Proposed

Drift type Approach MSE (s) RMSLE (s)

gradual

Bose et al. [21] 1.07 (1.07) 0.68 (0.13)
Ostovar et al. [28] 0.62 (0.64) 0.51 (0.34)
Tavares et al. [19] 0.36 (0.9) 0.36 (0.3)
Yeshchenko et al. [32] 11.73 (16.06) 0.92 (0.33)
Zheng et al. [62] 6.71 (7.8) 0.77 (0.29)

incremental

Bose et al. [21] 1.63 (4.08) 0.7 (0.16)
Ostovar et al. [28] 0.64 (0.48) 0.51 (0.31)
Tavares et al. [19] 2.47 (8.41) 0.49 (0.4)
Yeshchenko et al. [32] 12.57 (16.44) 0.95 (0.33)
Zheng et al. [62] 5.71 (7.58) 0.72 (0.28)

recurring

Bose et al. [21] 1.88 (13.55) 0.7 (0.13)
Ostovar et al. [28] 1.0 (0.0) 0.55 (0.14)
Tavares et al. [19] 1.19 (2.99) 0.42 (0.33)
Yeshchenko et al. [32] 11.94 (15.39) 0.94 (0.32)
Zheng et al. [62] 7.11 (8.3) 0.78 (0.3)

sudden

Bose et al. [21] 0.93 (0.33) 0.66 (0.19)
Ostovar et al. [28] 0.46 (0.5) 0.47 (0.35)
Tavares et al. [19] 0.6 (1.53) 0.37 (0.31)
Yeshchenko et al. [32] 12.11 (16.49) 0.94 (0.32)
Zheng et al. [62] 4.62 (7.78) 0.66 (0.24)

The standard deviation (s) is shown in parentheses. The best performances are
highlighted.

TABLE 6
MSE and RMSLE Scores for Different Approaches
per Noise Percentage Type Using the 942 Synthetic

Event Streams Proposed

Noise Approach MSE (s) RMSLE (s)

0%

Bose et al. [21] 1.94 (12.37) 0.68 (0.21)
Ostovar et al. [28] 0.77 (0.56) 0.56 (0.3)
Tavares et al. [19] 1.06 (3.7) 0.44 (0.35)
Yeshchenko et al. [32] 10.68 (15) 0.9 (0.32)
Zheng et al. [62] 3.59 (3.39) 0.63 (0.22)

5%

Bose et al. [21] 0.97 (0.16) 0.68 (0.12)
Ostovar et al. [28] 0.64 (0.48) 0.49 (0.3)
Tavares et al. [19] 0.94 (5.3) 0.36 (0.31)
Yeshchenko et al. [32] 13.41 (17.28) 0.96 (0.34)
Zheng et al. [62] 13.29 (15.28) 0.94 (0.38)

10%

Bose et al. [21] 1.03 (0.67) 0.69 (0.1)
Ostovar et al. [28] 0.65 (0.48) 0.49 (0.3)
Tavares et al. [19] 0.91 (3.09) 0.37 (0.32)
Yeshchenko et al. [32] 12.67 (16.5) 0.95 (0.33)
Zheng et al. [62] 6.81 (6.23) 0.78 (0.28)

15%

Bose et al. [21] 0.99 (0.31) 0.68 (0.12)
Ostovar et al. [28] 0.63 (0.48) 0.48 (0.31)
Tavares et al. [19] 0.73 (1.89) 0.36 (0.3)
Yeshchenko et al. [32] 12.83 (16.64) 0.95 (0.33)
Zheng et al. [62] 5.13 (4.4) 0.72 (0.24)

20%

Bose et al. [21] 0.99 (0.31) 0.68 (0.13)
Ostovar et al. [28] 0.63 (0.48) 0.49 (0.31)
Tavares et al. [19] 0.95 (3.23) 0.38 (0.32)
Yeshchenko et al. [32] 12.17 (15.8) 0.94 (0.32)
Zheng et al. [62] 4.83 (3.67) 0.71 (0.23)

The standard deviation (s) is shown in parentheses. The best performance is
highlighted.

TABLE 7
MSE and RMSLE Scores for Different Approaches per Stream
Size Type Using the 942 Synthetic Event Streams Proposed

Size Approach MSE (s) RMSLE (s)

100

Bose et al. [21] 1 (0.2) 0.69 (0.07)
Ostovar et al. [28] 1 (0) 0.69 (0)
Tavares et al. [19] 1.42 (5.07) 0.55 (0.35)
Yeshchenko et al. [32] 1 (0) 0.69 (0)
Zheng et al. [62] 1 (0) 0.41 (0)

500

Bose et al. [21] 1.21 (2.36) 0.68 (0.15)
Ostovar et al. [28] 0.42 (0.49) 0.35 (0.27)
Tavares et al. [19] 0.75 (2.54) 0.32 (0.28)
Yeshchenko et al. [32] 3.48 (1.15) 0.65 (0.12)
Zheng et al. [62] 6.58 (3.17) 0.81 (0.18)

1000

Bose et al. [21] 1.81 (12.72) 0.68 (0.21)
Ostovar et al. [28] 0.65 (0.62) 0.44 (0.29)
Tavares et al. [19] 0.68 (2.66) 0.26 (0.25)
Yeshchenko et al. [32] 31.55 (13.98) 1.31 (0.2)
Zheng et al. [62] 10.69 (11.57) 0.9 (0.3)

The standard deviation (s) is shown in parentheses. The best performances are
highlighted.

12 IEEE TRANSACTIONS ON SERVICES COMPUTING

IEE
E P

ro
of

1108 Ostovar et al. [28] dealt better with stream composed of 500
1109 traces, whichmight be due to configuration settings. Interest-
1110 ingly, Ostovar et al. [28], Yeshchenko et al. [32] and Zheng
1111 et al. [62] have a standard deviation of 0 for both metrics
1112 when the stream size is 100. We noticed that Ostovar et al.
1113 [28] and Yeshchenko et al. [32] detected no drifts in all
1114 streams with 100 traces, while Zheng et al. [62] always
1115 detected two drifts for the same size. This explains the low
1116 standard deviation and alsowhy Zheng et al. [62] has a better
1117 RMSLE, as thismetric heavily punishes underestimations.
1118 Though evaluating online PM methods is still a challenge
1119 for future research, our experiments supported the identifi-
1120 cation of some patterns relating each approach to its per-
1121 formances. The MSE and RMSLE metrics enabled to
1122 uncover the propensity to overestimation or underestima-
1123 tion in algorithms, but other perspectives could be investi-
1124 gated by adopting different metrics. In a general view, Bose
1125 et al. [21] presented stable results when submitted to
1126 streams with different characteristics. Such behavior is posi-
1127 tively affected by the offline assessment of traces. Zheng
1128 et al. [62] was more affected by different perspectives, mean-
1129 ing that it performs better for specific scenarios. The same
1130 phenomenon was observed in Yeshchenko et al. [32], though
1131 its overall performance is weaker when compared to the
1132 other methods. Ostovar et al. [28] had the best overall MSE
1133 and generally was not very affected by different stream con-
1134 figurations. The same applies to Tavares et al. [19], which
1135 overall had the best RMSLE scores. Regarding drift types,
1136 most approaches state that they can detect only sudden
1137 drifts. However, our experiments demonstrated that detect-
1138 ing other drifts is feasible, meaning that different drift types
1139 have commonalities within them. The change-point detec-
1140 tion of recurring drift is confirmed as the most challenging.

1141 4.3 Scalability Analysis on Memory Consumption

1142 The experiments went further investigating memory con-
1143 sumption using a quantitative method. Accurately profiling
1144 memory is a difficult task, as the evaluated tools are avail-
1145 able in different formats and languages. Tavares et al. [19],
1146 Yeshchenko et al. [32] and Zheng et al. [62] are available in
1147 Python code, this way, their memory consumption is mea-
1148 sured by profiling Python methods. Ostovar et al. [28] is
1149 available as a standalone tool written in Java. To capture its
1150 memory consumption, we assessed the process identifica-
1151 tion generated by the execution of the tool. Finally, Bose
1152 et al. [21] is available as a plug-in in the ProM framework.4

1153 We profiled memory as the difference between the memory
1154 consumption when the plug-in is executed with the mem-
1155 ory consumption of the framework in standby.
1156 The absolute values that can be measured are biased by
1157 several factors and cannot be used for comparison. Thus, the
1158 solutionwe proposed is focused around a scalability analysis
1159 that offers us the field for the comparative evaluation of the
1160 recorded results. The goal of this experiment is to evaluate
1161 how each algorithm scales with event streams of different
1162 sizes. Five event streams with a different number of cases
1163 were used, making it possible to observe the evolving trend
1164 in memory consumption each different approach has. We
1165 performed 30 runs of all algorithms for each stream.Memory

1166consumption was measured in megabytes (MB), while time
1167was measured in seconds. The absolute values we recorded
1168measure both memory and time consumption (Table 8).
1169Memory and time consumption increases are presented
1170using a logarithmic view in Figs. 5 and 6, respectively.
1171Table 8 reports the mean and the standard variation of
1172the absolute values recorded in our experiments. As the
1173results show, there is a clear pattern where Zheng et al.
1174[62] approach was the best performing time-wise while
1175Tavares et al. [19] approach had the best performance
1176memory-wise.
1177According to the time perspective, Zheng et al. [62] out-
1178performs the other methods because (i) it applies an offline
1179analysis, accessing the complete stream at once, and (ii) per-
1180forms fewer steps in order to detect drifts. This way, it has
1181an advantage against more robust and sophisticated meth-
1182ods. Regarding memory, both Zheng et al. [62] and Bose
1183et al. [21] methods consume more memory since they are
1184offline, and thus, they load all the events into the memory
1185instantly. Yeshchenko et al. [32] does not suffer as much
1186since it creates sub-logs, diminishing memory consumption.
1187It is also possible to see that in smaller streams, Zheng et al.
1188[62] completes the analysis using less memory than Ostovar
1189et al. [28]. However, as the stream size grows, Zheng et al.
1190[62] suffers from scalability issues because it loads all events
1191at once. Tavares et al. [19] performed better memory-wise.
1192This is a direct result of the method being stream grounded
1193and consuming events only once as the stream arrives.
1194Tavares et al. [19] outperforms Ostovar et al. [28] because
1195the latter uses a window-based approach and passes several
1196times over the same data, leveraging memory consumption.

TABLE 8
Memory and Time Consumption of the Evaluated

Algorithms Given Several Stream Sizes

Cases Approach Memory in MB (s) Time in sec. (s)

2,500

Bose et al. [21] 439.78 (58.1) 9.66 (0.23)
Ostovar et al. [28] 494.25 (22.69) 11.12 (0.19)
Tavares et al. [19] 73.68 (0.22) 7.11 (0.13)
Yeshchenko et al. [32] 209.61 (0.31) 27.9 (0.76)
Zheng et al. [62] 174.35 (0.13) 0.52 (0.004)

12,500

Bose et al. [21] 706.81 (88.89) 52.98 (4.86)
Ostovar et al. [28] 1087.61 (27.77) 29.42 (0.84)
Tavares et al. [19] 107.25 (0.23) 32.13 (0.85)
Yeshchenko et al. [32] 391.98 (0.01) 321.04 (2.49)
Zheng et al. [62] 667.11 (0.15) 2.67 (0.03)

25,000

Bose et al. [21] 1400.67 (147.27) 103.16 (14.83)
Ostovar et al. [28] 1560.71 (42.25) 54.13 (1.58)
Tavares et al. [19] 151.29 (1.03) 62.49 (0.93)
Yeshchenko et al. [32] 874.87 (1.86) 3698.62 (24.36)
Zheng et al. [62] 1282.1 (0.1) 5.43 (0.06)

37,500

Bose et al. [21] 1946.71 (158.87) 127.6 (2.29)
Ostovar et al. [28] 1743.43 (61.28) 95.13 (5.62)
Tavares et al. [19] 193.42 (0.26) 93.29 (2.01)
Yeshchenko et al. [32] 1432.66 (9.27) 42491.12 (98.07)
Zheng et al. [62] 1890.49 (0.17) 8.38 (0.09)

50,000

Bose et al. [21] 2330.23 (178.84) 165.53 (9.44)
Ostovar et al. [28] 1963.08 (19.75) 132.44 (3.24)
Tavares et al. [19] 242.7 (3.51) 122.4 (2.9)
Yeshchenko et al. [32] 1832.87 (16.66) 487899.6 (463.11)
Zheng et al. [62] 2497.23 (0.14) 11.18 (0.14)

The standard deviation (s) is shown in parentheses. The best performances are
highlighted.

4. http://www.promtools.org/

CERAVOLO ET AL.: EVALUATION GOALS FOR ONLINE PROCESS MINING: A CONCEPT DRIFT PERSPECTIVE 13

http://www.promtools.org/

IEE
E P

ro
of

1197 Figs. 5 and 6 show how the methods scale when dealing
1198 with larger streams. Tavares et al. [19] is the approach that
1199 better scales as event stream size increases, a direct result of
1200 ingesting stream events without storing them in memory.
1201 This behavior is interesting for online settings where events
1202 are expected to arrive at high rates. A similar trend was
1203 expected from Ostovar et al. [28] since it is also an online
1204 method, however, its behavior is similar to offline methods,
1205 which load all the events to memory at once. For time scal-
1206 ing, Zheng et al. [62] exhibited the best performance. Bose
1207 et al. [21], Ostovar et al. [28] and Tavares et al. [19] demon-
1208 strated a very similar behavior in time scalability. Finally,
1209 Yeshchenko et al. [32] showed the worst scaling perfor-
1210 mance time-wise as the method applies several processing
1211 steps, and as the data size increases, the processing time
1212 tends to increase exponentially.

1213 4.4 Discussion

1214 Although there was no hyperparameter tuning, our experi-
1215 ments aimed at understanding if the current solutions meet
1216 online PM goals. Moreover, the synthetic event logs cover a
1217 complex set of scenarios, exploring the approaches from dif-
1218 ferent points of view: drift type, perspective, noise percent-
1219 age, and event stream size. Furthermore, it is important to
1220 notice that Bose et al. [21], Yeshchenko et al. [32] and Zheng
1221 et al. [62] do not meet a key requirement (•R0) since the
1222 methods pre-process the event stream to create an event log.
1223 Regarding accuracy the experiments provided a clear
1224 ranking of the examined methods (G4). This is achieved by
1225 assessing the statistical significance of the differences in their
1226 scores. For that, Friedman’s statistical test and the Nemenyi
1227 post-hoc analysis were used [73]. We decide to compare the

1228approaches using RMSLE, that punishes underestimation, as
1229we think than in online PM reactiveness is crucial and poten-
1230tial changes cannot be disregarded by a monitoring algo-
1231rithm. Fig. 7 shows the results of this test. If the difference
1232between any two instances is higher than the critical differ-
1233ence (CD), then it can be concluded that their performance is
1234statistically different. According to Fig. 7, there is a statistical
1235difference between all methods, meaning that the presented
1236ranking is maintained for all event streams tested. Tavares
1237et al. [19] outperforms the other approaches statistically, cor-
1238roborating with previous score results. Then, it is followed
1239by Ostovar et al. [28], showing that online methods tend to
1240perform better as they take into account event streams char-
1241acteristics. Following, though Zheng et al. [62] and Bose et al.
1242[21] performed closely in some scenarios, it can be statisti-
1243cally stated that Zheng et al. [62] has a better overall perfor-
1244mance. Furthermore, Yeshchenko et al. [32] ranks as the least
1245significant approach, which is also supported by Table 3.
1246We also applied the Friedman statistical test to comple-
1247ment our analysis of memory and time consumption (G1).
1248The results are presented in Figs. 8 and 9. Tavares et al. [19]
1249always perform better than the other approaches. This way, it
1250is positioned as the best algorithm in this comparison. The
1251next approach is Yeshchenko et al. [32], which diminishes
1252memory consumption by applying sub-logs. The other meth-
1253ods do not present a statistical difference between them,
1254meaning that their memory consumption is similar in these
1255experiments. The statistical test corroborates with the analysis
1256of Table 8 as Tavares et al. [19] has the best memory perfor-
1257mance in all configurations, followed by Yeshchenko et al.
1258[32] in most cases, while Bose et al. [21], Ostovar et al. [28] and
1259Zheng et al. [62] change positions in different configurations.

Fig. 5. Logarithmic memory consumption increase for different stream
sizes.

Fig. 6. Logarithmic time consumption increase for different stream sizes.

Fig. 7. Analysis of the RMSLE scores of the different methods according
to the Friedman and Nemenyi test. Tavares et al. [19] was statistically
superior to the others.

Fig. 8. Analysis of the memory consumption among the different meth-
ods according to the Friedman and Nemenyi test. Tavares et al. [19]
consumes less memory. Yeshchenko et al. [32] comes next while the
other approaches do not have a statistical difference.

Fig. 9. Analysis of time consumption among the different methods
according to the Friedman and Nemenyi test. Zheng et al. [62] was sta-
tistically superior to the others.

14 IEEE TRANSACTIONS ON SERVICES COMPUTING

IEE
E P

ro
of

1260 In a general note, our experiments confirm that the online
1261 methods scale better. Offline methods tend to have scalabil-
1262 ity problems due to memory limitations. Regarding time-
1263 processing, though, the offline methods usually perform
1264 better due to having access to the complete log. However, in
1265 real streaming scenarios, their applicability is impractical.

1266 5 CONCLUSION

1267 This paper highlights that the current research on online PM
1268 lacks a shared comprehension of the requirements framing
1269 this field. Different works target different requirements, the
1270 explicit assertion of goals addressed by specific solutions is
1271 not always available, parameters and techniques for handling
1272 the trade-off between conflicting goals are rarely proposed.
1273 Developing strategies for conciliating conflicting goals, possi-
1274 bly at run-time, is essential to design optimal and adaptive
1275 online PMalgorithms.
1276 This paper contains three main contributions to progress-
1277 ing the field. We identified a set of goals motivating the
1278 adoption in organizations of online PM and underlined their
1279 conflicting relationships. As emerged in the discussion, CDD
1280 is an important pre-requirement of many stream processing
1281 approaches. We then proposed a benchmark dataset dedi-
1282 cated to online CDD, composed of a total of 942 event
1283 streams. The event streams explore different characteristics
1284 of an online scenario, such as drift types based both on trace
1285 and time perspectives, cases of varied size and noise percent-
1286 age, including incomplete cases. We developed experiments
1287 to quantitatively measure accuracy and memory consumption
1288 highlighting initial insights for creating strategies to trade-
1289 off conflicting goals. The window of analysis significantly
1290 impacts all the conflicting goals we identified, therefore adap-
1291 tive and parametric methods, connected with PM appropriate-
1292 ness metrics, are required for effectively handling CDD. The
1293 impact of drift types did not emerge as a critical issue for
1294 CDD, with the notable exception of recurring drifts that will
1295 require the investigation of ad-hoc techniques. Contrarily,
1296 stream size significantly affects both memory consumption
1297 and accuracy, with memory-wise methods that typically
1298 have worse accuracy for streams of small size, due to the
1299 incremental learning procedures they implement. Moreover,
1300 it emerged that within the same goal multiple propensities
1301 can be considered and well suited metrics are required to
1302 assess them. For example, algorithms focusing on incremen-
1303 tal analysis tend to overestimate drifts, while algorithms
1304 exploiting statistical tests tend to underestimate them.
1305 Our future work will focus on the definition of quan-
1306 titative metrics for assessing the entire set of goals and
1307 requirements we identified and to develop more exhaus-
1308 tive benchmarks.

1309 REFERENCES

1310 [1] W. van der Aalst et al., “Process mining manifesto,” in Proc. Int.
1311 Conf. Bus. Process Manage. Workshops, 2012, pp. 169–194.
1312 [2] M. Zur Muehlen and R. Shapiro, “Business process analytics,” in
1313 Handbook on Business Process Management 2. Berlin, Germany:
1314 Springer, 2015, pp. 243–263.
1315 [3] P. Coughlan and D. Coghlan, “Action research for operations
1316 management,” Int. J. Oper. Prod. Manage., vol. 22, no. 2,
1317 pp. 220–240, 2002.

1318[4] A. Burattin, “Streaming process discovery and conformance
1319checking,” in Encyclopedia of BigData Technologies. Berlin, Germany:
1320Springer, 2018.
1321[5] S. J. van Zelst, B. F. van Dongen, and W. M. van der Aalst, “Event
1322stream-based process discovery using abstract representations,”
1323Knowl. Inf. Syst., vol. 54, no. 2, pp. 407–435, 2018.
1324[6] L. Rutkowski, M. Jaworski, and P. Duda, Basic Concepts of Data
1325Stream Mining. Cham, Switzerland: Springer, 2020, pp. 13–33.
1326[7] A. Burattin, A. Sperduti, andW.M. vanderAalst, “Control-flowdis-
1327covery from event streams,” in Proc. IEEE Congress Evol. Comput.,
13282014, pp. 2420–2427.
1329[8] M. Hassani, S. Siccha, F. Richter, and T. Seidl, “Efficient pro-
1330cess discovery from event streams using sequential pattern
1331mining,” in Proc. IEEE Symp. Series Comput. Intell., 2015,
1332pp. 1366–1373.
1333[9] M. Hassani, S. J. van Zelst, and W. M. P. van der Aalst, “On the
1334application of sequential pattern mining primitives to process dis-
1335covery: Overview, outlook and opportunity identification,” Wiley
1336Interdisciplinary Rev. Data Mining Knowl. Discov., vol. 9, no. 6, 2019,
1337Art. no. e1315. [Online]. Available: https://onlinelibrary.wiley.
1338com/doi/abs/10.1002/widm.1315
1339[10] V. Leno, A. Armas-Cervantes, M. Dumas, M. La Rosa, and
1340F. M. Maggi, “Discovering process maps from event streams,” in
1341Proc. Int. Conf. Softw. Syst. Process, 2018, pp. 86–95. [Online]. Avail-
1342able: http://doi.acm.org/10.1145/3202710.3203154
1343[11] F. M. Maggi, A. Burattin, M. Cimitile, and A. Sperduti, “Online
1344process discovery to detect concept drifts in LTL-based declara-
1345tive process models,” in Proc. OTM Confederated Int. Conf. “On the
1346Move Meaningful Internet Syst.”, 2013, pp. 94–111.
1347[12] F. Stertz and S. Rinderle-Ma, “Detecting and identifying data drifts
1348in process event streams based on process histories,” in Proc. Int.
1349Conf. Inf. Syst. Eng. Responsible Inf. Syst., 2019, pp. 240–252.
1350[13] A. Burattin and J. Carmona, “A framework for online conformance
1351checking,” in Proc. Int. Conf. Bus. ProcessManage., 2017, pp. 165–177.
1352[14] A. Burattin, S. J. van Zelst, A. Armas-Cervantes, B. F. van Dongen,
1353and J. Carmona, “Online conformance checking using behavioural
1354patterns,” inProc. Int. Conf. Bus. ProcessManage., 2018, pp. 250–267.
1355[15] P. Koenig, J. Mangler, and S. Rinderle-Ma , “Compliance monitor-
1356ing on process event streams from multiple sources,” in Proc. 1st
1357Int. Conf. Process Mining, 2019, pp. 113–120. [Online]. Available:
1358http://eprints.cs.univie.ac.at/6066/
1359[16] G. M. Tavares, V. G. T. da Costa, V. E. Martins, P. Ceravolo, and
1360S. Barbon Jr.,, “Anomaly detection in business process based on
1361data stream mining,” in Proc. XIV Brazilian Symp. Inf. Syst., 2018,
1362pp. 16:1–16:8. [Online]. Available: http://doi.acm.org/10.1145/
13633229345.3229362
1364[17] S. J. van Zelst, A. Bolt, M. Hassani, B. F. van Dongen, and
1365W. M. P. van der Aalst, “Online conformance checking: Relating
1366event streams to process models using prefix-alignments,” Int. J.
1367Data Sci. Analytics, vol. 8, pp. 269–284, 2019. [Online]. Available:
1368https://doi.org/10.1007/s41060–017-0078-6
1369[18] G. Tello, G. Gianini, R. Mizouni, and E. Damiani, “Machine learn-
1370ing-based framework for log-lifting in business process mining
1371applications,” in Proc. Int. Conf. Bus. Process Manage., 2019,
1372pp. 232–249.
1373[19] G. M. Tavares, S. Barbon Junior, P. Ceravolo, and E. Damiani,
1374“Overlapping analytic stages in online process mining,” in Proc.
1375IEEE Int. Conf. Service Comput., 2019, pp. 167–175.
1376[20] S. Barbon Junior, G. M. Tavares, V. G. T. da Costa, P. Ceravolo,
1377and E. Damiani, “A framework for human-in-the-loop monitoring
1378of concept-drift detection in event log stream,” in Companion Proc.
1379Web Conf., 2018, pp. 319–326. [Online]. Available: https://doi.
1380org/10.1145/3184558.3186343
1381[21] R. P. J. C. Bose,W.M. P. van der Aalst, I. liobait, andM. Pechenizkiy,
1382“Dealing with concept drifts in process mining,” IEEE Trans. Neural
1383Netw. Learn. Syst., vol. 25, no. 1, pp. 154–171, Jan. 2014.
1384[22] R. P. J. C. Bose, W. M. P. van der Aalst, I. �Zliobait _e, and
1385M. Pechenizkiy, “Handling concept drift in process mining,” in
1386Proc. Int. Conf. Advanced Inf. Syst. Eng., 2011, pp. 391–405.
1387[23] B. Hompes, J. C. Buijs,W.M. van der Aalst, P. Dixit, and J. Buurman,
1388“Detecting changes in process behavior using comparative case
1389clustering,” in Proc. Int. Symp. Data-Driven Process Discov. Anal.,
13902015, pp. 54–75.
1391[24] J. Martjushev, R. P. J. C. Bose, and W. M. P. van der Aalst,
1392“Change point detection and dealing with gradual and multi-
1393order dynamics in process mining,” in Proc. Int. Conf. Perspectives
1394Bus. Informat. Res., 2015, pp. 161–178.

CERAVOLO ET AL.: EVALUATION GOALS FOR ONLINE PROCESS MINING: A CONCEPT DRIFT PERSPECTIVE 15

https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1315
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1315
http://doi.acm.org/10.1145/3202710.3203154
http://eprints.cs.univie.ac.at/6066/
http://doi.acm.org/10.1145/3229345.3229362
http://doi.acm.org/10.1145/3229345.3229362
https://doi.org/10.1007/s41060--017-0078-6
https://doi.org/10.1145/3184558.3186343
https://doi.org/10.1145/3184558.3186343

IEE
E P

ro
of

1395 [25] A.Maaradji, M. Dumas,M. L. Rosa, andA.Ostovar, “Detecting sud-
1396 den and gradual drifts in business processes from execution traces,”
1397 IEEE Trans. Knowl. Data Eng., vol. 29, no. 10, pp. 2140–2154,
1398 Oct. 2017.
1399 [26] T. Li, T. He, Z. Wang, Y. Zhang, and D. Chu, “Unraveling process
1400 evolution by handling concept drifts in process mining,” in Proc.
1401 IEEE Int. Conf. Services Comput., 2017, pp. 442–449.
1402 [27] M. Maisenbacher and M. Weidlich, “Handling concept drift in
1403 predictive process monitoring,” in Proc. IEEE Int. Conf. Services
1404 Comput., 2017, pp. 1–8.
1405 [28] A. Ostovar, A. Maaradji, M. La Rosa, A. H. M. ter Hofstede, and B.
1406 F. V. van Dongen, “Detecting drift from event streams of unpre-
1407 dictable business processes,” in Proc. Int. Conf. Conceptual Model.,
1408 2016, pp. 330–346.
1409 [29] F. Stertz and S. Rinderle-Ma , “Process histories-detecting and rep-
1410 resenting concept drifts based on event streams,” in Proc. OTM
1411 Confederated Int. Conf. “On Move Meaningful Internet Syst.”, 2018,
1412 pp. 318–335.
1413 [30] N. Liu, J. Huang, and L. Cui, “A framework for online process
1414 concept drift detection from event streams,” in Proc. IEEE Int.
1415 Conf. Services Comput., 2018, pp. 105–112.
1416 [31] F. Prathama, B. N. Yahya, D. D. Harjono, and E. Mahendrawa-
1417 thi, “Trace clustering exploration for detecting sudden drift: A
1418 case study in logistic process,” Procedia Comput. Sci., vol. 161,
1419 pp. 1122–1130, 2019.
1420 [32] A. Yeshchenko, C. Di Ciccio, J. Mendling, and A. Polyvyanyy,
1421 “Comprehensive process drift detection with visual analytics,” in
1422 Proc. Int. Conf. Conceptual Model., 2019, pp. 119–135.
1423 [33] F. Richter and T. Seidl, “Looking into the tesseract: Time-drifts in
1424 event streams using series of evolving rolling averages of comple-
1425 tion times,” Inf. Syst., vol. 84, pp. 265–282, 2019.
1426 [34] I. Firouzian, M. Zahedi, and H. Hassanpour, “Investigation of the
1427 effect of concept drift on data-aware remaining time prediction of
1428 business processes,” Int. J. Nonlinear Anal. Appl., vol. 10, no. 2,
1429 pp. 153–166, 2019.
1430 [35] A. Ostovar, S. J. Leemans, and M. L. Rosa, “Robust drift character-
1431 ization from event streams of business processes,” ACM Trans.
1432 Knowl. Discov. Data, vol. 14, no. 3, pp. 1–57, 2020.
1433 [36] S. J. van Zelst, M. Fani Sani, A. Ostovar, R. Conforti, and
1434 M. La Rosa , “Filtering spurious events from event streams of busi-
1435 ness processes,” in Proc. Int. Conf. Adv. Inf. Syst. Eng., 2018, pp. 35–52.
1436 [37] S. J. van Zelst, M. F. Sani, A. Ostovar, R. Conforti, and M. La Rosa ,
1437 “Detection and removal of infrequent behavior from event streams
1438 of business processes,” Inf. Syst., vol. 90, 2019, Art. no. 101451.
1439 [38] S. J. van Zelst, F. Mannhardt, M. de Leoni, and A. Koschmider,
1440 “Event abstraction in process mining: Literature review and
1441 taxonomy,” Granular Comput., 2020.Q2
1442 [39] J. D. Weerdt, M. D. Backer, J. Vanthienen, and B. Baesens, “A
1443 multi-dimensional quality assessment of state-of-the-art process
1444 discovery algorithms using real-life event logs,” Inf. Syst., vol. 37,
1445 no. 7, pp. 654–676, 2012. [Online]. Available: http://www.
1446 sciencedirect.com/science/article/pii/S0306437912000464
1447 [40] A. Burattin, M. Cimitile, F. M. Maggi, and A. Sperduti, “Online dis-
1448 covery of declarative process models from event streams,” IEEE
1449 Trans. Services Comput., vol. 8, no. 6, pp. 833–846,Nov./Dec. 2015.
1450 [41] A. Augusto, A. Armas-Cervantes, R. Conforti, M. Dumas, M. La
1451 Rosa, and D. Reissner, “Abstract-and-compare: A family of scal-
1452 able precision measures for automated process discovery,” in
1453 Proc. Int. Conf. Bus. Process Manage., 2018, pp. 158–175.
1454 [42] J. Gama, P. P. Rodrigues, E. Spinosa, and A. Carvalho, “Knowledge
1455 discovery from data streams,” in Web Intelligence and Security -
1456 Advances inData and TextMining Techniques for Detecting and Prevent-
1457 ing Terrorist Activities on the Web. Amsterdam, Netherlands: IOS
1458 Press, 2010, pp. 125–138.
1459 [43] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Woniak,
1460 “Ensemble learning for data stream analysis: A survey,” Inf. Fusion,
1461 vol. 37, pp. 132–156, 2017. [Online]. Available: http://www.
1462 sciencedirect.com/science/article/pii/S1566253516302329
1463 [44] J. A. Gama, I. �Zliobait _e, A. Bifet, M. Pechenizkiy, and A. Boucha-
1464 chia, “A survey on concept drift adaptation,” ACM Comput. Surv.,
1465 vol. 46, no. 4, pp. 44:1–44:37, Mar. 2014. [Online]. Available:
1466 http://doi.acm.org/10.1145/2523813
1467 [45] J. Carmona and R. Gavald�a, “Online techniques for dealing with
1468 concept drift in process mining,” in Proc. Int. Symp. Intell. Data
1469 Anal., 2012, pp. 90–102.

1470[46] M. Dumas and L. Garc�ıa-Ba~nuelos, “Process mining reloaded:
1471Event structures as a unified representation of process models
1472and event logs,” in Proc. Int. Conf. Appl. Theory Petri Nets Concur-
1473rency, 2015, pp. 33–48.
1474[47] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy, “Mining data
1475streams: A review,” ACM SIGMOD Rec., vol. 34, no. 2, pp. 18–26,
14762005.
1477[48] J. Gama and P. P. Rodrigues, “Data stream processing,” in Learn-
1478ing from Data Streams. Berlin, Germany: Springer, 2007, pp. 25–39.
1479[49] D. Redlich, T. Molka, W. Gilani, G. S. Blair, and A. Rashid,
1480“Scalable dynamic business process discovery with the constructs
1481competition miner,” in Proc. 4th Int. Symp. Data-driven Process Dis-
1482cov. Anal., 2014, pp. 91–107.
1483[50] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Scalable
1484process discovery and conformance checking,” Softw. Syst. Model.,
1485vol. 17, no. 2, pp. 599–631, May 2018. [Online]. Available: https://
1486doi.org/10.1007/s10270–016-0545-x
1487[51] V. G. T. da Costa et al., “Strict very fast decision tree: A memory
1488conservative algorithm for data stream mining,” Pattern Recognit.
1489Lett., vol. 116, pp. 22–28, 2018.
1490[52] D. Brzezinski and J. Stefanowski, “Reacting to different types
1491of concept drift: The accuracy updated ensemble algorithm,”
1492IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 1, pp. 81–94,
1493Jan. 2014.
1494[53] R. Elwell and R. Polikar, “Incremental learning of concept drift in
1495nonstationary environments,” IEEE Trans. Neural Netw., vol. 22,
1496no. 10, pp. 1517–1531, Oct. 2011.
1497[54] P. Weber, P. Tino, and B. Bordbar, “Process mining in non-station-
1498ary environments,” in Proc. Eur. Symp. Artif. Neural Netw. Comput.
1499Intell. Mach. Learn., 2012. [Online]. Available: https://www.i6doc.
1500com/en/book/?GCOI=28001100967420
1501[55] G. S. Manku and R. Motwani, “Approximate frequency counts
1502over data streams,” in Proc. 28th Int. Conf. Very Large Data Bases,
15032002, pp. 346–357. [Online]. Available: http://dl.acm.org/
1504citation.cfm?id=1287369.1287400
1505[56] A. Adriansyah, B. F. van Dongen, and W. M. P. van der Aalst,
1506“Conformance checking using cost-based fitness analysis,” in Proc.
1507IEEE 15th Int. Enterprise Distrib. Object Comput. Conf., 2011, pp. 55–64.
1508[57] F. Taymouri and J. Carmona, “A recursive paradigm for aligning
1509observed behavior of large structured process models,” in Proc.
1510Int. Conf. Bus. Process Manage., 2016, pp. 197–214.
1511[58] J. S. Vitter, “Random sampling with a reservoir,” ACM Trans.
1512Math. Softw., vol. 11, no. 1, pp. 37–57, Mar. 1985. [Online]. Avail-
1513able: http://doi.acm.org/10.1145/3147.3165
1514[59] G. Cormode, V. Shkapenyuk, D. Srivastava, and B. Xu, “Forward
1515decay: A practical time decay model for streaming systems,” in
1516Proc. IEEE 25th Int. Conf. Data Eng., 2009, pp. 138–149.
1517[60] F. M. Maggi, M. Montali, and W. M. P. van der Aalst, “An opera-
1518tional decision support framework for monitoring business con-
1519straints,” in Proc. Int. Conf. Fundam. Approaches Softw. Eng., 2012,
1520pp. 146–162.
1521[61] W. Li, Y. Fan, W. Liu, M. Xin, H. Wang, and Q. Jin, “A self-adap-
1522tive process mining algorithm based on information entropy to
1523deal with uncertain data,” IEEE Access, vol. 7, pp. 131 681–131 691,
15242019.
1525[62] C. Zheng, L. Wen, and J. Wang, “Detecting process concept drifts
1526from event logs,” in Proc. On Move Meaningful Internet Syst., 2017,
1527pp. 524–542.
1528[63] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
1529algorithm for discovering clusters in large spatial databases with
1530noise,” in Proc. 2nd Int. Conf. Knowl. Discov. Data Mining, 1996,
1531pp. 226–231. [Online]. Available: http://dl.acm.org/citation.cfm?
1532id=3001460.3001507
1533[64] A. Solti, L. Vana, and J. Mendling, “Time series petri net models,” in
1534Proc. Int. Symp. Data-Driven Process Discov. Anal., 2015, pp. 124–141.
1535[65] W. M. P. van der Aalst, M. Pesic, and H. Schonenberg, “Declarative
1536workflows: Balancing between flexibility and support,” Comput. Sci.
1537- Res. Develop., vol. 23, no. 2, pp. 99–113, 2009. [Online]. Available:
1538https://doi.org/10.1007/s00450–009-0057-9
1539[66] A. Alves De Medeiros, B. Dongen van, W. Aalst van der, and
1540A. Weijters, “Process mining : Extending the alpha-algorithm to
1541mine short loops,”, 2004.
1542[67] F. Cao, M. Estert, W. Qian, and A. Zhou, “Density-based cluster-
1543ing over an evolving data stream with noise,” in Proc. SIAM Int.
1544Conf. Data Mining, 2006, pp. 328–339.

16 IEEE TRANSACTIONS ON SERVICES COMPUTING

http://www.sciencedirect.com/science/article/pii/S0306437912000464
http://www.sciencedirect.com/science/article/pii/S0306437912000464
http://www.sciencedirect.com/science/article/pii/S1566253516302329
http://www.sciencedirect.com/science/article/pii/S1566253516302329
http://doi.acm.org/10.1145/2523813
https://doi.org/10.1007/s10270--016-0545-x
https://doi.org/10.1007/s10270--016-0545-x
https://www.i6doc.com/en/book/?GCOI=28001100967420
https://www.i6doc.com/en/book/?GCOI=28001100967420
http://dl.acm.org/citation.cfm?id=1287369.1287400
http://dl.acm.org/citation.cfm?id=1287369.1287400
http://doi.acm.org/10.1145/3147.3165
http://dl.acm.org/citation.cfm?id=3001460.3001507
http://dl.acm.org/citation.cfm?id=3001460.3001507
https://doi.org/10.1007/s00450--009-0057-9

IEE
E P

ro
of

1545 [68] A.Maaradji, M. Dumas, M. L. Rosa, and A. Ostovar, “Fast and accu-
1546 rate business process drift detection,” in Proc. 13th Int. Conf. Bus. Pro-
1547 cess Manage., 2015, pp. 406–422. [Online]. Available: https://eprints.
1548 qut.edu.au/83013/
1549 [69] G. M. Tavares, S. Barbon, and P. Ceravolo, “Synthetic event
1550 streams,” 2019. [Online]. Available: http://dx.doi.org/10.21227/
1551 2kxd-m509
1552 [70] M. Dumas, M. L. Rosa, J. Mendling, and H. A. Reijers, Fundamentals
1553 of Business ProcessManagement. Berlin, Germany: Springer, 2013.
1554 [71] B. Weber, M. Reichert, and S. Rinderle-Ma , “Change patterns and
1555 change support features enhancing flexibility in process-aware
1556 information systems,” Data Knowl. Eng., vol. 66, no. 3, pp. 438–466,
1557 2008. [Online]. Available: http://www.sciencedirect.com/science/
1558 article/pii/S0169023X0800058X
1559 [72] B. F. van Dongen and W. M. P. van der Aalst, “A meta model for
1560 process mining data,” in Proc. Open Interop Workshop Enterprise
1561 Modelling Ontologies Interoperability, 2005, pp. 309–320.
1562 [73] J. Dem�sar, “Statistical comparisons of classifiers over multiple
1563 data sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30, Dec. 2006. [Online].
1564 Available: http://dl.acm.org/citation.cfm?id=1248547.1248548

1565 Paolo Ceravolo is currently an associate profes-
1566 sor with the Dipartimento di Informatica, Universit�a
1567 degli Studi di Milano, Italy. His research interests
1568 include data representation and integration, busi-
1569 ness process monitoring, empirical software engi-
1570 neering. On these topics, he has published several
1571 scientific papers. As a data scientist, he was
1572 involved in several international research projects
1573 and innovative startups. For more information
1574 please visit: http://www.di.unimi.it/ceravolo

1575 Gabriel Marques Tavares received the graduate
1576 degree from the Londrina State University (UEL),
1577 Brazil. He is currently working toward the PhD
1578 degree at the Universit�a degli Studi di Milano, Italy.
1579 In 2014 he participated in an exchange program at
1580 the University of Michigan, Ann Arbor, Michigan.
1581 His research interests include machine learning for
1582 online process mining with particular attention to
1583 Process Discovery and Concept Drift Detection.
1584 Currently, his exploration has expanded for anom-
1585 aly detection and conformance checking.

1586Sylvio Barbon Junior is currently an assistant
1587professor with the Computer Science Depart-
1588ment, Londrina State University (UEL), Brazil.
1589His research interests are focused on pattern rec-
1590ognition and their applications, with several inter-
1591national dissemination achieved on topics from
1592image processing, text mining, stream mining,
1593and process mining. For more information please
1594visit: http://www.barbon.com.br

1595Ernesto Damiani is currently a full professor with
1596the Universit�a degli Studi di Milano, Italy, where he
1597leads the SESAR research lab, and the leader of
1598the Big Data Initiative at the EBTIC/Khalifa Univer-
1599sity in Abu Dhabi, UAE. He is the Principal Investi-
1600gator of several H2020 projects. He was a recipient
1601of the Chester-Sall Award from the IEEE IES Soci-
1602ety (2007). He was named ACMDistinguished Sci-
1603entist (2008) and received the Stephen S. Yau
1604ServicesComputing Award (2016).

1605" For more information on this or any other computing topic,
1606please visit our Digital Library at www.computer.org/csdl.

CERAVOLO ET AL.: EVALUATION GOALS FOR ONLINE PROCESS MINING: A CONCEPT DRIFT PERSPECTIVE 17

https://eprints.qut.edu.au/83013/
https://eprints.qut.edu.au/83013/
http://dx.doi.org/10.21227/2kxd-m509
http://dx.doi.org/10.21227/2kxd-m509
http://www.sciencedirect.com/science/article/pii/S0169023X0800058X
http://www.sciencedirect.com/science/article/pii/S0169023X0800058X
http://dl.acm.org/citation.cfm?id=1248547.1248548
http://www.di.unimi.it/ceravolo
http://www.barbon.com.br

