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Abstract

Given a deterministically time-changed Brownian motion Z starting from 1, whose
time-change V (t) satisfies V (t) > t for all t > 0, we perform an explicit construction
of a processX which is Brownian motion in its own filtration and that hits zero for the
first time at V (τ), where τ := inf{t > 0 : Zt = 0}. We also provide the semimartingale
decomposition of X under the filtration jointly generated by X and Z. Our construc-
tion relies on a combination of enlargement of filtration and filtering techniques. The
resulting process X may be viewed as the analogue of a 3-dimensional Bessel bridge
starting from 1 at time 0 and ending at 0 at the random time V (τ). We call this a
dynamic Bessel bridge since V (τ) is not known in advance. Our study is motivated
by insider trading models with default risk, where the insider observes the firm’s
value continuously on time. The financial application, which uses results proved in
the present paper, has been developed in the companion paper [6].
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1 Introduction

In this paper, we are interested in constructing a Brownian motion starting from 1

at time t = 0 and conditioned to hit the level 0 for the first time at a given random
time. More precisely, let Z be the deterministically time-changed Brownian motion
Zt = 1 +

∫ t
0
σ(s)dWs and let B be another standard Brownian motion independent of W .

We denote V (t) the associated time-change, i.e. V (t) =
∫ t

0
σ2(s)ds for t ≥ 0. Consider

the first hitting time of Z of the level 0, denoted by τ . Our aim is to build explicitly a
process X of the form dXt = dBt + αtdt, X0 = 1, where α is an integrable and adapted
process for the filtration jointly generated by the pair (Z,B) and satisfying the following
two properties:

1. X hits level 0 for the first time at time V (τ);
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Dynamic Bessel bridge of dimension 3

2. X is a Brownian motion in its own filtration.

This resulting process X can be viewed as an analogue of 3-dimensional Bessel bridge
with a random terminal time. Indeed, the two properties above characterising X can
be reformulated as follows: X is a Brownian motion conditioned to hit 0 for the first
time at the random time V (τ). In order to emphasise the distinct property that V (τ) is
not known at time 0, we call this process a dynamic Bessel bridge of dimension 3. The
reason that X hits 0 at V (τ) rather than τ is simply due to the relationship between the
first hitting times of 0 by Z and a standard Brownian motion starting at 1.

The solution to the above problem consists of two parts with varying difficulties. The
easy part is the construction of this process after time τ . Since V is a deterministic func-
tion, the first hitting time of 0 is revealed at time τ . Thus, one can use the well-known
relationship between the 3-dimensional Bessel bridge and Brownian motion conditioned
on its first hitting time to write for t ∈ (τ, V (τ))

dXt = dBt +

{
1

Xt
− Xt

V (τ)− t

}
dt.

The difficult part is the construction of X until time τ . Thus, the challenge is to con-
struct a Brownian motion which is conditioned to stay strictly positive until time τ using
a drift term adapted to the filtration generated by B and Z.

Our study is motivated by the equilibrium model with insider trading and default as
in [5], where a Kyle-Back type model with default is considered. In such a model, three
agents act in the market of a defaultable bond issued by a firm, whose value process
is modelled as a Brownian motion and whose default time is set to be the first time
that the firm’s value hits a given constant default barrier. It has been shown in [5]
that the equilibrium total demand for such a bond, after an appropriate translation, is a
process X∗ which is a 3-dimensional Bessel bridge in insider’s (enlarged) filtration but
is a Brownian motion in its own filtration. These two properties can be rephrased as
follows: X∗ is a Brownian motion conditioned to hit 0 for the first time at the default time
τ . However, the assumption that the insider knows the default time from the beginning
may seem too strong from the modelling viewpoint. To approach the reality, one might
consider a more realistic situation when the insider doesn’t know the default time but
however she can observe the evolution through time of the firm’s value. Equilibrium
considerations, akin to the ones employed in [5], lead one to study the existence of
processes which we called dynamic Bessel bridges of dimension 3 at the beginning of
this introduction. The financial application announced here has been performed in the
companion paper [6], where the tools developed in the present paper are used to solve
explicitely the equilibrium model with default risk and dynamic insider information, as
outlined above. We refer to that paper for further details.

We will observe in the next section that in order to make such a construction possi-
ble, one has to assume that Z evolves faster than its underlying Brownian motion W ,
i.e. V (t) ≥ t for all t ≥ 0. It can be proved (see next Section 2) that V (t) cannot be equal
to t in any interval (a, b) of R+. We will nevertheless impose a stronger assumption
that V (t) > t for all t > 0 in order to avoid unnecessary technicalities. In the context
of the financial market described above this assumptions amounts to insider’s informa-
tion being more precise than that of the market maker (see [1] for a discussion of this
assumption). Moreover, an additional assumption on the behaviour of the time change
V (t) in a neighbourhood of 0 will be needed.

Apart from the financial application, which is our first motivation, such a problem
is interesting from a probabilistic point of view as well. We have observed above that
the difficult part in obtaining the dynamic Bessel bridge is the construction of a Brow-
nian motion which is conditioned to stay strictly positive until time τ using a drift term
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Dynamic Bessel bridge of dimension 3

adapted to the filtration generated by B and Z. Such a construction is related to the
conditioning of a Markov process, which has been the topic of various works in the liter-
ature. The canonical example of this phenomenon is the 3-dimensional Bessel process
which is obtained when one conditions a standard Brownian motion to stay positive.
Chaumont [8] studies the analogous problem for Lévy process whereas Bertoin and
Doney [2] are concerned with the situation for random walks and the convergence of
their respective probability laws. Bertoin et al. [3] constructs a Brownian path over a
fixed time interval with a given minimum by performing transformations on a Brownian
bridge. More recently, Chaumont and Doney [9] revisits the Lévy processes conditioned
to stay positive and shows a Williams’ type path decomposition result at the minimum of
such processes. However, none of these approaches can be adopted to perform the con-
struction that we are after since i) the time interval in which we condition the Brownian
motion to be positive is random and not known in advance; and ii) we are not allowed
to use transformations that are not adapted to the filtration generated by B and Z.

The paper is structured as follows. In Section 2, we formulate precisely our main
result (Theorem 2.2) and provide a partial justification for its assumptions. Section 3
contains the proof of Theorem 2.2, that uses, in particular, a technical result on the
density of the signal process Z, whose proof is given in Section 4. Finally, several
technical results used along our proofs have been relegated in the Appendix for reader’s
convenience.

2 Formulation of the main result

Let (Ω,H,H = (Ht)t≥0,P) be a filtered probability space satisfying the usual condi-
tions. We suppose thatH0 contains only the P-null sets and there exist two independent
H-Brownian motions, B and W . We introduce the process

Zt := 1 +

∫ t

0

σ(s)dWs, (2.1)

for some σ whose properties are given in the assumption below.

Assumption 2.1. There exist a measurable function σ : R+ 7→ (0,∞) such that:

1. V (t) :=
∫ t

0
σ2(s)ds ∈ (t,∞) for every t > 0;

2. There exists some ε > 0 such that
∫ ε

0
1

(V (t)−t)2 dt <∞.

Notice that under this assumptions, Z and W generate the same minimal filtration
satisfying the usual conditions. Consider the following first hitting time of Z:

τ := inf{t > 0 : Zt = 0}, (2.2)

where inf ∅ = ∞ by convention. One can characterize the distribution of τ using the
well-known distributions of first hitting times of a standard Brownian motion. To this
end let

H(t, a) := P [Ta > t] =

∫ ∞
t

`(u, a) du, (2.3)

for a > 0 where

Ta := inf{t > 0 : Bt = a}, and

`(t, a) :=
a√
2πt3

exp

(
−a

2

2t

)
.

Recall that
P[Ta > t|Hs] = 1[Ta>s]H(t− s, a−Bs), s < t.
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Dynamic Bessel bridge of dimension 3

Thus, since V is deterministic and strictly increasing, (ZV −1(t))t≥0 is a standard Brown-
ian motion in its own filtration starting at 1, and consequently

P[τ > t|Hs] = 1[τ>s]H(V (t)− V (s), Zs). (2.4)

Hence,
P[V (τ) > t] = H(t, 1),

for every t ≥ 0, i.e. V (τ) = T1 in distribution. Here we would like to give another
formulation for the function H in terms of the transition density of a Brownian motion
killed at 0. Recall that this transition density is given by

q(t, x, y) :=
1√
2πt

(
exp

(
− (x− y)2

2t

)
− exp

(
− (x+ y)2

2t

))
, (2.5)

for x > 0 and y > 0 (see Exercise (1.15), Chapter III in [17]). Then one has the identity

H(t, a) =

∫ ∞
0

q(t, a, y) dy. (2.6)

In the sequel, for any process Y , FY is going to denote the minimal filtration satis-
fying the usual conditions and with respect to which Y is adapted. The following is the
main result of this paper.

Theorem 2.2. There exists a unique strong solution to

Xt = 1 +Bt +

∫ τ∧t

0

qx(V (s)− s,Xs, Zs)

q(V (s)− s,Xs, Zs)
ds+

∫ V (τ)∧t

τ∧t

`a(V (τ)− s,Xs)

`(V (τ)− s,Xs)
ds. (2.7)

Moreover,

i) Let FXt = N
∨
σ(Xs; s ≤ t), whereN is the set of P-null sets. Then, X is a standard

Brownian motion with respect to FX := (FXt )t≥0;

ii) V (τ) = inf{t > 0 : Xt = 0}.

The proof of this result is postponed to the next section. We conclude this section by
providing a justification for our assumption V (t) > t for all t > 0.

First, observe that we necessarily have V (t) ≥ t for any t ≥ 0. This follows from the
fact that if the construction in Theorem 2.2 is possible, then V (τ) is an FB,Z -stopping
time since it is an exit time from the positive real line of the process X. Indeed, if
V (t) < t for some t > 0 so that V −1(t) > t, then [V (τ) < t] cannot belong to FB,Zt since
[V (τ) < t] ∩ [τ > t] = [τ < V −1(t)] ∩ [τ > t] /∈ FZt , and that τ is not FB∞-measurable.

We will next see that when V (t) ≡ t construction of a dynamic Bessel bridge is not
possible. Similar arguments will also show that V (t) cannot be equal to t in an interval.
We are going to adapt to our setting the arguments used in [11], Proposition 5.1.

To this end consider any process Xt = 1 + Bt +
∫ t

0
αsds for some H-adapted and

integrable process α. Assume that X is a Brownian motion in its own filtration an
that τ = inf{t : Xt = 0} a.s. and fix an arbitrary time t ≥ 0. The two processes
MZ
s := P[τ > t|FZs ] and MX

s := P[τ > t|FXs ], for s ≥ 0, are uniformly integrable
continuous martingales, the former for the filtration FZ,B and the latter for the filtration
FX . In this case, Doob’s optional sampling theorem can be applied to any pair of finite
stopping times, e.g. τ ∧ s and τ , to get the following:

MX
τ∧s = E[MX

τ |FXτ∧s] = E[1τ>t|FXτ∧s]
= E[MZ

τ |FXτ∧s] = E[MZ
τ∧s|FXτ∧s],
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where the last equality is just an application of the tower property of conditional expec-
tations and the fact that MZ is martingale for the filtration FZ,B which is bigger than
FX . We also obtain

E[(MX
τ∧s −MZ

τ∧s)
2] = E[(MX

τ∧s)
2] + E[(MZ

τ∧s)
2]− 2E[MX

τ∧sM
Z
τ∧s].

Notice that, since the pairs (X, τ) and (Z, τ) have the same law by assumption, the
random variables MX

τ∧s and MZ
τ∧s have the same law too. This implies

E[(MX
τ∧s −MZ

τ∧s)
2] = 2E[(MX

τ∧s)
2]− 2E[MX

τ∧sM
Z
τ∧s].

On the other hand we can obtain

E[MX
τ∧sM

Z
τ∧s] = E[MX

τ∧sE[MZ
τ∧s|FXτ∧s]] = E[(MX

τ∧s)
2],

which implies that MX
τ∧s = MZ

τ∧s for all s ≥ 0. Using the fact that

MZ
s = 1τ>sH(t− s, Zs), MX

s = 1τ>sH(t− s,Xs), s < t,

one has
H(t− s,Xs) = H(t− s, Zs) on [τ > s].

Since the function a 7→ H(u, a) is strictly monotone in awhenever u > 0, the last equality
above implies that Xs = Zs for all s < t on the set [τ > s]. t being arbitrary, we have
that that Xτ

s = Zτs for all s ≥ 0.
We have just proved that, before τ , X and Z coincide, which contradicts the fact that

B and Z are independent, so that the construction of a Brownian motion conditioned to
hit 0 for the first time at τ is impossible. A possible way out is to assume that the signal
process Z evolves faster than its underlying Brownian motion W , i.e. V (t) ∈ (t,∞) for
all t ≥ 0 as in our assumptions on σ. We prove our main result in the following section.

3 Proof of the main result

Note first that in order to show the existence and the uniqueness of the strong
solution to the SDE in (2.7) it suffices to show these properties for the following SDE

Yt = y +Bt +

∫ τ∧t

0

qx(V (s)− s, Ys, Zs)
q(V (s)− s, Ys, Zs)

ds, y > 0, (3.1)

and that Yτ > 0. Indeed, the drift term after τ is the same as that of a 3-dimensional
Bessel bridge fromXτ to 0 over the interval [τ, V (τ)]. Note that V (τ) = T1 in distribution
implies that τ has the same law as V −1(T1) which is finite since T1 is finite and the
function V (t) is increasing to infinity as t tends to infinity. Thus τ is a.s. finite.

By Corollary 5.3.23 in [14] the existence and uniqueness of the strong solution of
(3.1) is equivalent to the existence of a weak solution and pathwise uniqueness of strong
solution when the latter exists. More precisely, after proving pathwise uniqueness for
the SDE (3.1), and thus establishing the uniqueness of the system of (2.1) and (3.1),
in Lemma 3.1, we will construct a weak solution, (Y,Z) , to this system. The weak
existence and pathwise uniqueness will then imply (Y,Z) = h(1, y, β,W ) for some mea-
surable h and some Brownian motion β in view of Corollary 5.3.23 in [14]. Moreover,
the second part of Corollary 5.3.23 in [14] will finally give us h(1, y, B,W ) as the strong
solution of the system described by (2.1) and (3.1).

In the sequel we will often work with a pair of SDEs defining (A,Z) where A is
a semimartingale given by an SDE whose drift coefficient depends on Z. In order to
simplify the statements of the following results, we will shortly write existence and/or
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uniqueness of the SDE for A, when we actually mean the corresponding property for
the whole system.

We start with demonstrating the pathwise uniqueness property.

Lemma 3.1. Pathwise uniqueness holds for the SDE in (3.1).

Proof. It follows from direct calculations that

qx(t, x, z)

q(t, x, z)
=
z − x
t

+
exp

(
− 2xz

t

)
1− exp

(
− 2xz

t

) 2z

t
. (3.2)

Moreover, qx(t,x,z)
q(t,x,z) is decreasing in x for fixed z and t. Now, suppose there exist two

strong solutions, Y 1 and Y 2. Then

(Y 1
t∧τ − Y 2

t∧τ )2 = 2

∫ τ∧t

0

(Y 1
s − Y 2

s )

{
qx(V (s)− s, Y 1

s , Zs)

q(V (s)− s, Y 1
s , Zs)

− qx(V (s)− s, Y 2
s , Zs)

q(V (s)− s, Y 2
s , Zs)

}
ds ≤ 0.

The existence of a weak solution will be obtained in several steps. First we show the
existence of a weak solution to the SDE in the following proposition and then conclude
via Girsanov’s theorem.

Proposition 3.2. There exists a unique strong solution to

Yt = y +Bt +

∫ τ∧t

0

f(V (s)− s, Ys, Zs) ds y > 0, (3.3)

where

f(t, x, z) :=
exp

(
− 2xz

t

)
1− exp

(
− 2xz

t

) 2z

t
.

Moreover, P[Yτ > 0 and Yt∧τ > 0,∀t > 0] = 1.

Proof. Pathwise uniqueness can be shown as in Lemma 3.1; thus, its proof is omitted.
Observe that if Y is a solution to (3.3), then

dY 2
t = 2YtdBt +

(
21[τ>t]Ytf(V (t)− t, Yt, Zt) + 1

)
dt.

Inspired by this formulation we consider the following SDE:

dUt = 2
√
|Ut|dBt +

(
21[τ>t]

√
|Ut|f(V (t)− t,

√
|Ut|, Zt) + 1

)
dt, (3.4)

with U0 = y2. In Lemma 3.3 it is shown that there exists a weak solution to this SDE
which is strictly positive in the interval [0, τ ]. This yields in particular that the absolute
values can be removed from the SDE (3.4) considered over the interval [0, τ ]. Thus,
it follows from an application of Itô’s formula that

√
U is a weak, therefore strong,

solution to (3.3) in [0, τ ] due to pathwise uniqueness and Corollary 5.3.23 in [14]. The
global solution can now be easily constructed by the addition of Bt − Bτ after τ . This
further implies that Y is strictly positive in [0, τ ] since

√
U is clearly strictly positive.

Lemma 3.3. There exists a weak solution to

dUt = 2
√
|Ut|dBt +

(
2
√
|Ut|f(V (t)− t,

√
|Ut|, Zt) + 1

)
dt, (3.5)

with U0 = y2 upto and including τ . Moreover, the solution is strictly positive in [0, τ ].
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Proof. Consider the measurable function g : R+ ×R2 7→ [0, 1] defined by

g(t, x, z) =


√
|x|f(t,

√
|x|, z), for (t, x, z) ∈ (0,∞)×R×R+

1, for (t, x, z) ∈ (0,∞)×R× (−∞, 0)

0, for (t, x, z) ∈ {0} ×R2

,

and the following SDE:

dŨt = 2

√
|Ũt|dBt +

(
2g(V (t)− t,

√
|Ũt|, Zt) + 1

)
dt. (3.6)

Observe that if we can show the existence of a positive weak solution to (3.6), then
U = (Ũt∧τ )t≥0 is a positive weak solution to (3.5) upto time τ .

It follows from Corollary 10.1.2 and Theorem 6.1.7 in [19] that the martingale prob-
lem defined by the stochastic differential equations for (Ũ , Z) with the state space R2 is
well-posed upto an explosion time, i.e. there exists a weak solution to (3.6), along with
(2.1), valid upto the explosion time by Theorem 5.4.11 in [14]. Fix one of these solutions
and call it (Ũ , Z). Then, since the range of g is [0, 3], it follows from Lemma A.1 that Ũ
is nonnegative and there is no explosion.

Next it remains to show the strict positivity of U in [0, τ ]. First, let a and b be strictly
positive numbers such that

ae−a

1− e−a
=

3

4
and

be−b

1− e−b
=

1

2
.

As xe−x

1−e−x is strictly decreasing for positive values of x, one has 0 < a < b. Now define
the stopping time

I0 := inf{0 < t ≤ τ :
√
UtZt ≤

V (t)− t
2

a},

where inf ∅ = τ by convention. As
√
UτZτ = 0,

√
U0Z0 = y2, and V (t)−t > 0 for t > 0, we

have that 0 < I0 < τ , νy-a.s. by continuity of (U,Z) and V , where νy is the probability
measure associated to the fixed weak solution. Moreover, Ut > 0 on the set [t ≤ I0].

Note that Ct := 2
√
UtZt

V (t)−t is continuous on (0,∞) and CI0 = a. Thus, τ̄ := inf{t > I0 :

Ct = 0} > I0. Consider the following sequence of stopping times:

Jn := inf{In ≤ t ≤ τ̄ : Ct /∈ (0, b)}
In+1 := inf{Jn ≤ t ≤ τ̄ : Ct = a}

for n ∈ N ∪ {0}, where inf ∅ = τ̄ by convention.
Our aim is to show that τ = τ̄ = limn→∞ Jn, a.s.. We start with establishing the sec-

ond equality. As Jns are increasing and bounded by τ̄ , the limit exists and is bounded by
τ̄ . Suppose that J := limn→∞ Jn < τ̄ with positive probability. Note that by construction
we have In ≤ Jn ≤ In+1 and, therefore, limn→∞ In = J . Since C is continuous, one has
limn→∞ CIn = limn→∞ CJn . However, as on the set [J < τ̄ ] we have CIn = a and CJn = b

for all n, we arrive at a contradiction. Therefore, τ̄ = J .
Next, we will demonstrate that τ̄ = τ . Observe that since τ is finite, a.s., and U does

not explode until τ , one has that Cτ = 0. Therefore, τ̄ ≤ τ and thus Cτ̄ = 0. Suppose
that τ̄ < τ with positive probability. Then, we claim that on this set CJn = b for all n,
which will lead to a contradiction since then b = limn→∞ CJn = Cτ̄ = 0. We will show
our claim by induction.

1. For n = 0, recall that I0 < τ̄ by construction. Also note that on (I0, J0] the drift

term in (3.5) is greater than 2 as xe−x

1−e−x is strictly decreasing for positive values
of x and due to the choice of a and b. Therefore the solution to (3.5) is strictly
positive in (I0, J0] in view of Lemma A.2 since a 2-dimensional Bessel process is
always strictly positive. Thus, CJ0 = b.
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2. Suppose we have CJn−1
= b. Then, due to continuity of C, In < τ̄ . For the same

reasons as before, the solution to (3.5) is strictly positive in (In, Jn]. Thus, CJn = b.

Thus, we have shown that for all t > 0, Uτ∧t > 0, a.s.. In order to show that Uτ > 0

consider the stopping time I := sup{In : In < τ}. Then, we must have that I < τ a.s.
since otherwise a = CI = Cτ = 0, another contradiction. Similar to the earlier cases
the drift term in (I, τ ] is larger than 2, thus, Uτ > 0 as well.

Proposition 3.4. There exists a unique strong solution to (3.1) which is strictly positive
on [0, τ ].

Proof. Due to Proposition 3.2 there exists a unique strong solution, Y , of (3.3). Define
(Lt)t≥0 by L0 = 1 and

dLt = 1[τ>t]Lt
Yt − Zt
V (t)− t

dBt.

Observe that there exists a solution to the above equation since∫ t

0

1[τ>s]

(
Ys − Zs
V (s)− s

)2

ds <∞, a.s. ∀t ≥ 0.

Indeed, since Y and Z are well-defined and continuous upto τ , we have sups≤τ |Ys−Zs| <
∞, a.s. and thus the above expression is finite in view of Assumption 2.1.2.

If (Lt)t≥0 is a true martingale, then for any T > 0, QT on HT defined by

dQT

dPT
= LT ,

where PT is the restriction of P to HT , is a probability measure on HT equivalent to
PT . Then, by Girsanov Theorem (see, e.g., Theorem 3.5.1 in [14]) under QT

Yt = y + βTt +

∫ τ∧t

0

qx(V (s)− s, Ys, Zs)
q(V (s)− s, Ys, Zs)

ds,

for t ≤ T where βT is a QT -Brownian motion. Thus, Y is a weak solution to (3.1) on
[0, T ]. Therefore, due to Lemma 3.1 and Corollary 5.3.23 in [14], there exists a unique
strong solution to (3.1) on [0, T ], and it is strictly positive on [0, τ ] since Y has this
property. Since T is arbitrary, this yields a unique strong solution on [0,∞) which is
strictly positive on [0, τ ].

Thus, it remains to show that L is a true martingale. Fix T > 0 and for some 0 ≤
tn−1 < tn ≤ T consider

E

[
exp

(
1

2

∫ tn∧τ

tn−1∧τ

(
Yt − Zt
V (t)− t

)2

dt

)]
. (3.7)

As both Y and Z are positive until τ , (Yt − Zt)2 ≤ Y 2
t + Z2

t ≤ Rt + Z2
t by comparison

where R satisfies

Rt = y2 + 2

∫ t

0

√
RsdBs + 3t.

Therefore, since R and Z are independent, the expression in (3.7) is bounded by

E

[
exp

(
1

2

∫ tn

tn−1

Rtυ(t)dt

)]
E

[
exp

(
1

2

∫ tn

tn−1

Z2
t υ(t)dt

)]
(3.8)

≤ E

[
exp

(
1

2
R∗T

∫ tn

tn−1

υ(t)dt

)]
E

[
exp

(
1

2
(Z∗T )2

∫ tn

tn−1

υ(t)dt

)]
,
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Dynamic Bessel bridge of dimension 3

where Y ∗t := sups≤t |Ys| for any càdlàg process Y and υ(t) :=
(

1
V (t)−t

)2

. Recall that Z

is only a time-changed Brownian motion where the time change is deterministic and Rt
is the square of the Euclidian norm of a 3-dimensional standard Brownian motion with
initial value (y2, 0, 0). Thus, since V (T ) > T , the above expression is going to be finite if

Ey∨1

[
exp

(
1

2
(β∗V (T ))

2

∫ tn

tn−1

υ(t)dt

)]
<∞, (3.9)

where β is a standard Brownian motion and Ex is the expectation with respect to the
law of a standard Brownian motion starting at x. Indeed, it is clear that, by time change,
(3.9) implies that the second expectation in the RHS of (3.8) is finite. Moreover, since
R∗T is the supremum over [0, T ] of a 3-dimensional Bessel square process, it can be
bounded above by the sum of three supremums of squared Brownian motions over
[0, V (T )] (remember that V (T ) > T ), which gives that (3.9) is an upper bound for the
first expectation in the RHS of (3.8) as well.

In view of the reflection principle for standard Brownian motion (see, e.g. Proposi-
tion 3.7 in Chap. 3 of [17]) the above expectation is going to be finite if∫ tn

tn−1

υ(t)dt <
1

V (T )
. (3.10)

However, Assumption 2.1 yields that
∫ T

0
υ(t)dt < ∞. Therefore, we can find a finite

sequence of real numbers 0 = t0 < t1 < . . . < tn(T ) = T that satisfy (3.10). Since T

was arbitrary, this means that we can find a sequence (tn)n≥0 with limn→∞ tn =∞ such
that (3.7) is finite for all n. Then, it follows from Corollary 3.5.14 in [14] that L is a
martingale.

The above proposition establishes 0 as a lower bound to the solution of (3.1) over the
interval [0, τ ], however, one can obtain a tighter bound. Indeed, observe that qx

q (t, x, z)

is strictly increasing in z on [0,∞) for fixed (t, x) ∈ R2
++. Moreover,

qx
q

(t, x, 0) := lim
z↓0

qx
q

(t, x, z) =
1

x
− x

t
.

Therefore, qx
q (V (t) − t, Yt, Zt) > qx

q (V (t) − t, Yt, 0) = 1
Yt
− Yt

V (t)−t for t ∈ (0, τ ]. Although
qx
q (t, x, z) is not Lipschitz in x (thus, standard comparison results don’t apply), if Y0 < Z0

then the comparison result of Exercise 5.2.19 in [14] can be applied to obtain P[Yt ≥
Rt; 0 ≤ t < τ ] = 1 where R is given by(3.11).

However, this strict inequality may break down at t = 0 when Y0 ≥ Z0, and, thus,
rendering the results of Exercise 5.2.19 is inapplicable. Nevertheless, we will show in
Proposition 3.6 that P[Yt ≥ Rt; 0 ≤ t < τ ] = 1 where R is the solution of

Rt = y +Bt +

∫ t

0

{
1

Rs
− Rs
V (s)− s

}
ds, y > 0. (3.11)

Before proving the comparison result we first establish that there exists a unique strong
solution to the SDE above and it equals in law to a scaled, time-changed 3-dimensional
Bessel process. We incidentally observe that the existence of a weak solution to an SDE
similar to that in (3.11) is proved in Proposition 5.1 in [7] along with its distributional
properties. Unfortunately, our SDE (3.11) cannot be reduced to theirs and moreover, in
our setting, existence of a weak solution is not enough.
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Dynamic Bessel bridge of dimension 3

Proposition 3.5. There exists a unique strong solution to (3.11). Moreover, the law
of R is equal to the law of R̃ = (R̃t)t≥0, where R̃t = λtρΛt where ρ is a 3-dimensional
Bessel process starting at y and

λt := exp

(
−
∫ t

0

1

V (s)− s
ds

)
,

Λt :=

∫ t

0

1

λ2
s

ds.

Proof. Note that 1
x −

x
t is decreasing in x and, thus, pathwise uniqueness holds for

(3.11). Thus, it suffices to find a weak solution for the existence and the uniqueness of
strong solution. Consider the 3-dimensional Bessel process ρ which is the unique strong
solution (see Proposition 3.3 in Chap. VI in [17]) to

ρt = y +Bt +

∫ t

0

1

ρs
ds.

Therefore, ρΛt = y + BΛt +
∫ Λt

0
1
ρs
ds. Now, Mt = BΛt is a martingale with respect to

the time-changed filtration (HΛt) with quadratic variation given by Λ. By integration by
parts we see that

d(λtρΛt) = λtdMt +

{
1

λtρΛt

− λtρΛt

V (t)− t

}
dt.

Since λ0ρΛ0
= y and

∫ t
0
λ2
sd[M,M ]s = t, we see that λtρΛt is a weak solution to (3.11).

This obviously implies the equivalence in law.

Proposition 3.6. Let R be the unique strong solution to (3.11). Then, P[Yt ≥ Rt; 0 ≤
t < τ ] = 1 where Y is the unique strong solution of (3.1).

Proof. Note that

Rt − Yt =

∫ t

0

{
qx
q

(V (s)− s,Rs, 0)− qx
q

(V (s)− s, Ys, Zs)
}
ds,

so that by Tanaka’s formula (see Theorem 1.2 in Chap. VI of [17])

(Rt − Yt)+ =

∫ t

0

1[Rs>Ys]

{
qx
q

(V (s)− s,Rs, 0)− qx
q

(V (s)− s, Ys, Zs)
}
ds

=

∫ t

0

1[Rs>Ys]

{
qx
q

(V (s)− s,Rs, 0)− qx
q

(V (s)− s, Ys, 0)

}
ds

+

∫ t

0

1[Rs>Ys]

{
qx
q

(V (s)− s, Ys, 0)− qx
q

(V (s)− s, Ys, Zs)
}
ds

≤
∫ t

0

1[Rs>Ys]

{
qx
q

(V (s)− s,Rs, 0)− qx
q

(V (s)− s, Ys, 0)

}
ds,

since the local time of R − Y at 0 is identically 0 (see Corollary 1.9 n Chap. VI of [17]).
Let τn := inf{t > 0 : Rt ∧ Yt = 1

n}. Note that as R is strictly positive and Y is strictly
positive on [0, τ ], limn→∞ τn > τ . Since for each t ≥ 0∣∣∣∣qxq (t, x, 0)− qx

q
(t, y, 0)

∣∣∣∣ ≤ (1

t
+

1

n2

)
|x− y|

for all x, y ∈ [1/n,∞), we have

(Rt∧τn − Yt∧τn)+ ≤
∫ t

0

(Rs∧τn − Ys∧τn)+

(
1

V (s)− s
+

1

n2

)
ds.
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Dynamic Bessel bridge of dimension 3

Thus, by Gronwall’s inequality (see Exercise 14 in Chap. V of [18]), we have (Rt∧τn −
Yt∧τn)+ = 0 since ∫ t

0

(
1

V (s)− s
+

1

n2

)
ds <∞

by Assumption 2.1. Thus, the claim follows from the continuity of Y and R and the fact
that limn→∞ τn > τ .

Remark 3.7. Note that the above proof does not use the particular SDE satisfied by Z.
The result of the above proposition will remain valid as long as Z is nonnegative and Y
is the unique strong solution of (3.1), strictly positive on [0, τ ].

Since the solution to (3.1) is strictly positive on [0, τ ] and the drift term in (2.7) after
τ is the same as that of a 3-dimensional Bessel bridge from Xτ to 0 over [τ, V (τ)], we
have proved

Proposition 3.8. There exists a unique strong solution to (2.7). Moreover, the solution
is strictly positive in [0, τ ].

Using the well-known properties of a 3-dimensional Bessel bridge (see, e.g., Section
12.1.3, in particular expression (12.9) in [20]), we also have the following

Corollary 3.9. Let X be the unique strong solution of (2.7). Then,

V (τ) = inf{t > 0 : Xt = 0}.

Thus, in order to finish the proof of Theorem 2.2 it remains to show that X is a stan-
dard Brownian motion in its own filtration. We will achieve this result in several steps.
First, we will obtain the canonical decomposition of X with respect to the minimal filtra-
tion, G, satisfying the usual conditions such that X is G-adapted and τ is a G-stopping
time. More precisely, G = (Gt)t≥0 where Gt = ∩u>tG̃u, with G̃t := N

∨
σ({Xs, s ≤ t}, τ∧t)

and N being the set of P-null sets. Then, we will initially enlarge this filtration with τ

to show that the canonical decomposition of X in this filtration is the same as that of a
Brownian motion starting at 1 in its own filtration enlarged with its first hitting time of
0. This observation will allow us to conclude that the law of X is the law of a Brownian
motion.

In order to carry out this procedure we will use the following key result, the proof of
which is deferred until the next section for the clarity of the exposition. We recall that

H(t, a) =

∫ ∞
0

q(t, a, y)dy,

where q(t, a, y) is the transition density of a Brownian motion killed at 0.

Proposition 3.10. Let X be the unique strong solution of (2.7) and f : R+ 7→ R be a
bounded measurable function with a compact support contained in (0,∞). Then

E[1[τ>t]f(Zt)|Gt] = 1[τ>t]

∫ ∞
0

f(z)
q(V (t)− t,Xt, z)

H(V (t)− t,Xt)
dz.

Using the above proposition we can easily obtain the G-canonical decomposition of
X.

Corollary 3.11. Let X be the unique strong solution of (2.7). Then,

Mt := Xt − 1−
∫ τ∧t

0

Hx(V (s)− s,Xs)

H(V (s)− s,Xs)
ds−

∫ V (τ)∧t

τ∧t

`a(V (τ)− s,Xs)

`(V (τ)− s,Xs)
ds

is a standard G-Brownian motion starting at 0.
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Proof. It follows from Theorem 8.1.5 in [13] and Lemma A.5 that

Xt − 1−
∫ t

0

E

[
1[τ>s]

qx(V (s)− s,Xs, Zs)

q(V (s)− s,Xs, Zs)

∣∣∣∣Gs] ds− ∫ V (τ)∧t

τ∧t

`a(V (τ)− s,Xs)

`(V (τ)− s,Xs)
ds

is a G-Brownian motion. However,

E

[
1[τ>s]

qx(V (s)− s,Xs, Zs)

q(V (s)− s,Xs, Zs)

∣∣∣∣Gs]
= 1[τ>s]

∫ ∞
0

qx(V (s)− s,Xs, z)

q(V (s)− s,Xs, z)

q(V (s)− s,Xs, z)

H(V (s)− s,Xs)
dz

= 1[τ>s]
1

H(V (s)− s,Xs)

∫ ∞
0

qx(V (s)− s,Xs, z) dz

= 1[τ>s]
1

H(V (s)− s,Xs)

∂

∂x

∫ ∞
0

q(V (s)− s, x, z) dz
∣∣∣∣
x=Xs

= 1[τ>s]
Hx(V (s)− s,Xs)

H(V (s)− s,Xs)
.

A naive way to show that X as a solution of (2.7) is a Brownian motion is to calculate
the conditional distribution of τ given the minimal filtration generated by X satisfying
the usual conditions. Although, as we will see later, the conditional distribution of V (τ)

given an observation of X is defined by the function H as defined in (2.3), verification
of this fact leads to a highly non-standard filtering problem. For this reason we use an
alternative approach which utilizes the well-known decomposition of Brownian motion
conditioned on its first hitting time as in [5].

We shall next find the canonical decomposition of X under Gτ := (Gτt )t≥0 where
Gτt = Gt

∨
σ(τ). Note that Gτt = FXt+

∨
σ(τ). Therefore, the canonical decomposition

of X under Gτ would be its canonical decomposition with respect to its own filtration
initially enlarged with τ . As we shall see in the next proposition it will be the same as
the canonical decomposition of a Brownian motion in its own filtration initially enlarged
with its first hitting time of 0.

Proposition 3.12. Let X be the unique strong solution of (2.7). Then,

Xt − 1−
∫ V (τ)∧t

0

`a(V (τ)− s,Xs)

`(V (τ)− s,Xs)
ds

is a standard Gτ -Brownian motion starting at 0.

Proof. First, we will determine the law of τ conditional on Gt for each t. Let f be a test
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function. Then

E
[
1[τ>t]f(τ)|Gt

]
= E

[
E
[
1[τ>t]f(τ)|Ht

] ∣∣∣∣Gt]
= E

[
1[τ>t]

∫ ∞
t

f(u)σ2(u)`(V (u)− V (t), Zt) du

∣∣∣∣Gt]
= 1[τ>t]

∫ ∞
t

f(u)σ2(u)

∫ ∞
0

`(V (u)− V (t), z)
q(V (t)− t,Xt, z)

H(V (t)− t,Xt)
dz du

= −1[τ>t]

∫ ∞
t

f(u)σ2(u)

∫ ∞
0

Ht(V (u)− V (t), z)
q(V (t)− t,Xt, z)

H(V (t)− t,Xt)
dz du

= −1[τ>t]

∫ ∞
t

f(u)σ2(u)
∂

∂s

∫ ∞
0

∫ ∞
0

q(s, z, y) dy
q(V (t)− t,Xt, z)

H(V (t)− t,Xt)
dz

∣∣∣∣
s=V (u)−V (t)

du

= −1[τ>t]

∫ ∞
t

f(u)σ2(u)
∂

∂s

∫ ∞
0

∫ ∞
0

q(V (t)− t,Xt, z)

H(V (t)− t,Xt)
q(s, z, y) dz dy

∣∣∣∣
s=V (u)−V (t)

du

= −1[τ>t]

∫ ∞
t

f(u)σ2(u)
∂

∂s

∫ ∞
0

q(V (t)− t+ s,Xt, y)

H(V (t)− t,Xt)
dy

∣∣∣∣
s=V (u)−V (t)

du

= −1[τ>t]

∫ ∞
t

f(u)σ2(u)
Ht(V (u)− t,Xt)

H(V (t)− t,Xt)
du

= 1[τ>t]

∫ ∞
t

f(u)σ2(u)
`(V (u)− t,Xt)

H(V (t)− t,Xt)
du.

Thus, P[τ ∈ du, τ > t|Gt] = 1[τ>t]σ
2(u) `(V (u)−t,Xt)

H(V (t)−t,Xt) du.

Then, it follows from Theorem 1.6 in [16] that

Mt −
∫ τ∧t

0

(
`a(V (τ)− s,Xs)

`(V (τ)− s,Xs)
− Hx(V (s)− s,Xs)

H(V (s)− s,Xs)

)
ds

is a Gτ -Brownian motion as in Example 1.6 in [16]. This completes the proof.

Corollary 3.13. Let X be the unique strong solution of (2.7). Then, X is a Brownian
motion with respect to FX .

Proof. It follows from Proposition 3.12 that Gτ - decomposition of X is given by

Xt = 1 + µt +

∫ V (τ)∧t

0

{
1

Xs
− Xs

V (τ)− s

}
ds,

where µ is a standard Gτ -Brownian motion vanishing at 0. Thus, X is a 3-dimensional
Bessel bridge from 1 to 0 of length V (τ). As V (τ) is the first hitting time of 0 for X and
V (τ) = T1 in distribution, the result follows using the same argument as in Theorem 3.6
in [5].

Next section is devoted to the proof of Proposition 3.10.

4 Conditional density of Z

Recall from Proposition 3.10 that we are interested in the conditional distribution of
Zt on the set [τ > t]. To this end we introduce the following change of measure on Ht.
Let Pt be the restriction of P to Ht and define Pτ,t on Ht by

dPτ,t

dPt
=

1[τ>t]

P[τ > t]
.
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Note that this measure change is equivalent to an h-transform on the paths of Z until
time t where the h-transform is defined by the function H(V (t) − V (·), ·) and H is the
function defined in (2.3) (see Part 2, Sect. VI.13 of [10] for the definition and properties
of h-transforms). Note also that (1[τ>s]H(V (t) − V (s), Zs))s∈[0,t] is a (P,H)-martingale
as a consequence of (2.4). Therefore, an application of Girsanov’s theorem yields that
under Pτ,t (X,Z) satisfy

dZs = σ(s)dβts + σ2(s)
Hx(V (t)− V (s), Zs)

H(V (t)− V (s), Zs)
ds (4.1)

dXs = dBs +
qx(V (s)− s,Xs, Zs)

q(V (s)− s,Xs, Zs)
ds, (4.2)

with X0 = Z0 = 1 and βt being a Pτ,t-Brownian motion. Moreover, due to the property
of h-transforms, transition density of Z under Pτ,t is given by

Pτ,t[Zs ∈ dz|Zr = x] = q(V (s)− V (r), x, z)
H(V (t)− V (s), z)

H(V (t)− V (r), x)
. (4.3)

Thus, Pτ,t[Zs ∈ dz|Zr = x] = p(V (t);V (r), V (s), x, z) where

p(t; r, s, x, z) = q(s− r, x, z)H(t− s, z)
H(t− r, x)

. (4.4)

Note that p is the transition density of the Brownian motion killed at 0 after the analo-
gous h-transform where the h-function is given by H(t− s, x).

Lemma 4.1. Let Fτ,t,Xs = σ(Xr; r ≤ s) ∨ N τ,t where X is the process defined by (4.2)
with X0 = 1, and N τ,t is the collection of Pτ,t-null sets. Then the filtration (Fτ,t,Xs )s∈[0,t]

is right-continuous.

The proof of the above lemma is trivial once we observe that (Fτ,t,Xτn∧s )s∈[0,t], where
τn := inf{s > 0 : Xs = 1

n}, is right continuous. This follows from the observation that
Xτn is a Brownian motion under an equivalent probability measure, which can be shown
using the arguments of Proposition 3.4 along with the identity (3.2) and the fact that 1

X

is bounded upto τn. Thus, for each n one has

Fτ,t,Xτn ∩ Fτ,t,Xu = Fτ,t,Xτn∧u =
⋂
s>u

Fτ,t,Xτn∧s

=
⋂
s>u

(
Fτ,t,Xτn ∩ Fτ,t,Xs

)
=

(⋂
s>u

Fτ,t,Xs

)
∩ Fτ,t,Xτn

Indeed, since ∪nFτ,t,Xτn = Fτ,t,Xτ , letting n tend to infinity yields the conclusion.
The reason for the introduction of the probability measure Pτ,t and the filtration

(Fτ,t,Xs )s∈[0,t] is that (Pτ,t, (Fτ,t,Xs )s∈[0,t])-conditional distribution of Z can be charac-
terised by a Kushner-Stratonovich equation which is well-defined. Moreover, it gives us
(P,G)-conditional distribution of Z. Indeed, observe that Pτ,t[τ > t] = 1 and for any set
E ∈ Gt, 1[τ>t]1E = 1[τ>t]1F for some set F ∈ Fτ,t,Xt (see Lemma 5.1.1 in [4] and the
remarks that follow). Then, it follows from the definition of conditional expectation that

E
[
f(Zt)1[τ>t]|Gt

]
= 1[τ>t]E

τ,t
[
f(Zt)

∣∣Fτ,t,Xt

]
,P− a.s.. (4.5)

Thus, it is enough to compute the conditional distribution of Z under Pτ,t with respect
to (Fτ,t,Xs )s∈[0,t]. In order to achieve this goal we will use the characterization of the
conditional distributions obtained by Kurtz and Ocone [15]. We refer the reader to [15]
for all unexplained details and terminology.
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Let P be the set of probability measures on the Borel sets of R+ topologized by weak
convergence. Given m ∈ P and m−integrable f we write mf :=

∫
R
f(z)m(dz). The next

result is direct consequence of Lemma 1.1 and subsequent remarks in [15]:

Lemma 4.2. There is a P-valued Fτ,t,X -optional process πt(ω, dx) such that

πtsf = Eτ,t[f(Zs)|Fτ,t,Xs ]

for all bounded measurable f . Moreover, (πts)s∈[0,t] has a càdlàg version.

Let’s recall the innovation process

Is = Xs −
∫ s

0

πtrκrdr

where κr(z) := qx(V (r)−r,Xr,z)
q(V (r)−r,Xr,z) . Although it is clear that I depends on t, we don’t empha-

size it in the notation for convenience. Due to Lemma A.5 πtsκs exists for all s ≤ t.
In order to be able to use the results of [15] we first need to establish the Kushner-

Stratonovich equation satisfied by (πts)s∈[0,t). To this end, let B(A) denote the set of
bounded Borel measurable real valued functions on A, where A will be alternatively a
measurable subset of R2

+ or a measurable subset of R+. Consider the operator A0 :

B([0, t]×R+) 7→ B([0, t]×R+) defined by

A0φ(s, x) =
∂φ

∂s
(s, x) +

1

2
σ2(s)

∂2φ

∂x2
(s, x) + σ2(s)

Hx

H
(V (t)− V (s), x)

∂φ

∂x
(s, x), (4.6)

with the domain D(A0) = C∞c ([0, t] × R+), where C∞c is the class of infinitely differen-
tiable functions with compact support. By Lemma A.3 the martingale problem for A0 is
well-posed over the time interval [0, t − ε] for any ε > 0. Therefore, it is well-posed on
[0, t) and its unique solution is given by (s, Zs)s∈[0,t) where Z is defined by (4.1). More-
over, the Kushner-Stratonovich equation for the conditional distribution of Z is given by
the following:

πtsf = πt0f +

∫ s

0

πtr(A0f)dr +

∫ s

0

[
πtr(κrf)− πtrκrπtrf

]
dIr, (4.7)

for all f ∈ C∞c (R+)(see Theorem 8.4.3 in [13] and note that the condition therein is
satisfied due to Lemma A.5). Note that f can be easily made an element of D(A0) by
redefining it as fn where n ∈ C∞c (R+) is such that n(s) = 1 for all s ∈ [0, t). Thus, the
above expression is rigorous. The following theorem is a corollary to Theorem 4.1 in
[15].

Theorem 4.3. Let mt be an Fτ,t,X -adapted càdlàg P-valued process such that

mt
sf = πt0f +

∫ s

0

mt
r(A0f)dr +

∫ s

0

[
mt
r(κrf)−mt

rκrm
t
rf
]
dImr , (4.8)

for all f ∈ C∞c (R+), where Ims = Xs −
∫ s

0
mt
rκr dr. Then, mt

s = πts for all s < t, a.s..

Proof. Proof follows along the same lines as the proof of Theorem 4.1 in [15], even
though, differently from [15], we allow the drift of X to depend on s and Xs, too. This is
due to the fact that [15] used the assumption that the drift depends only on the signal
process, Z, in order to ensure that the joint martingale problem (X,Z) is well-posed,
i.e. conditions of Proposition 2.2 in [15] are satisfied. Note that the relevant martingale
problem is well posed in our case by Proposition A.4.

Now, we can state and prove the following corollary.
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Corollary 4.4. Let f ∈ B(R+). Then,

πtsf =

∫
R+

f(z)p(V (t); s, V (s), Xs, z) dz,

for s < t where p is as defined in (4.4).

Proof. Let ρ(t; s, x, z) := p(V (t); s, V (s), x, z). Direct computations lead to

ρs +
Hx(V (t)− s, x)

H(V (t)− s, x)
ρx +

1

2
ρxx (4.9)

= −σ2(s)

(
Hx(V (t)− V (s), z)

H(V (t)− V (s), z)
ρ

)
z

+
1

2
σ2(s)ρzz.

Define mt ∈ P by mt
sf :=

∫
R+

f(z)ρ(t; s,Xs, z)dz. Then, using the above pde and Ito’s

formula one can directly verify that mt solves (4.8). Finally, Theorem 4.3 gives the
statement of the corollary.

Now, we have all necessary results to prove Proposition 3.10.

Proof of Proposition 3.10. Note that as X is continuous, Fτ,t,Xt =
∨
s<t Fτ,t,Xs . Fix

r < t and let E ∈ Fτ,t,Xr . We will show that for any f ∈ C∞c (R+)

Eτ,t[f(Zt)|1E ] = Eτ,t

[∫
R+

f(z)
q(V (t)− t,Xt, z)

H(V (t)− t,Xt)
dz 1E

]
.

Since Z is continuous and f is bounded we have

Eτ,t[f(Zt)1E ] = lim
s↑t
Eτ,t[f(Zs)1E ].

As s will eventually be larger than r, 1E ∈ Fτ,t,Xs for large enough s and, then, Corollary
4.4 and another application of the Dominated Convergence Theorem will yield

lim
s↑t
Eτ,t[f(Zs)1E ] = lim

s↑t
Eτ,t

[∫
R+

f(z)p(V (t);V (s)− s,Xs, z) dz 1E

]

= Eτ,t

[
lim
s↑t

∫
R+

f(z)p(V (t);V (s)− s,Xs, z) dz 1E

]
.

Since X is strictly positive until τ by Proposition 3.8, mins≤tXs > 0. This yields that
1

H(V (t)−s,Xs) is bounded (ω-by-ω) for s ≤ t. Moreover, q(V (s) − s,Xs, ·) is bounded by
1√

2π(V (s)−s)
. Thus, in view of (4.4),

p(V (t);V (s)− s,Xs, z) ≤
K(ω)√
V (s)− s

H(V (t)− V (s), z),

where K is a constant. Since (V (s)− s)−1 can be bounded when s is away from 0, H is
bounded by 1, and f has a compact support, it follows from the Dominated Convergence
Theorem that

lim
s↑t

∫
R+

f(z)p(V (t);V (s)− s,Xs, z) dz =

∫
R+

f(z)
q(V (t)− t,Xt, z)

H(V (t)− t,Xt)
dz, Pτ,t − a.s..

This in turn shows,

Eτ,t[f(Zt)1E ] = Eτ,t[lim
s↑t

f(Zs)1E ] = Eτ,t

[∫
R+

f(z)
q(V (t)− t,Xt, z)

H(V (t)− t,Xt)
dz 1E

]
.

The claim now follows from (4.5).
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A Auxiliary results and their proofs

A.1 Comparison results

Lemma A.1. Suppose that d : R+ ×R2
+ 7→ [0,M ] for some constant M > 0 is a measur-

able function and Y is a strong solution to

Yt = y + 2

∫ t

0

√
|Ys|dBs +

∫ t

0

d(s, Ys, Zs)ds
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for some y ≥ 0 upto an explosion time τ . Then, P[τ =∞] = 1 and P[0 ≤ Yt ≤ YMt ,∀t] = 1,
where

YMt = y + 2

∫ t

0

√
|YMs |dBs +

∫ t

0

Mds.

Proof. Let τn := inf{t > 0 : |Yt| ≥ n}. By Tanaka’s formula,

(Yt∧τn − YMt∧τn)+ = 2

∫ t∧τn

0

(
√
|Ys| −

√
YMs )1[Ys>YMs ]dBs

−
∫ t∧τn

0

(M − d(s, Ys, Zs))1[Ys>YMs ]ds+ L0(Y − YM )t∧τn ,

Y −t∧τn = −2

∫ t∧τn

0

√
|Ys|1[Ys<0]dBs

−
∫ t∧τn

0

d(s, Ys, Zs)1[Ys<0]ds+ L0(Y )t∧τn

where L0(Y − YM ) and L0(Y ) are the local times of Y − YM and Y at 0, respectively.
We will first show that Y is nonnegative upto τn. Since∫ t∧τn

0

1[0<−Ys<1]
|Ys|
|Ys|

ds ≤ t

and
∫∞

0
1
xdx = ∞, it follows from Lemma 3.3 in Chap. IX of [17] that L0(Yt∧τn) = 0 for

all t ≥ 0. Thus,

E
[
Y −t∧τn

]
= E

[
−2

∫ t∧τn

0

√
Ys1[Ys<0]dBs −

∫ t∧τn

0

d(s, Ys, Zs)1[Ys<0]ds

]
≤ 0,

since the stochastic integral is a martingale having a bounded integrand. Thus, Yt∧τn ≥
0, a.s. for every t ≥ 0 and any n.

Similarly,∫ t∧τn

0

1[0<Ys−YMs <1]

(
√
|Ys| −

√
YMs )2

|Ys − YMs |
ds =

∫ t∧τn

0

1[0<Ys−YMs <1]

(
√
Ys −

√
YMs )2

|Ys − YMs |
ds ≤ t,

where the first equality is due to the fact that YM ≥ 0 implies Ys ≥ 0 on the set [Ys −
YMs > 0], and the second inequality follows from the elementary fact that |

√
x − √y| ≤√

|x− y|. Thus it follows from Lemma 3.3 in Chap. IX of [17] that L0(Yt∧τn − YMt∧τn) = 0

for all t ≥ 0 and

E
[
(Yt∧τn − YMt∧τn)+

]
= 2E

[∫ t∧τn

0

(
√
Ys −

√
YMs )1[Ys>YMs ]dBs

]
−E

[∫ t∧τn

0

(M − d(s, Ys, Zs))1[Ys>YMs ]ds

]
≤ 0,

since the stochastic integral (
∫ t∧τn

0
(
√
Ys−

√
YMs )1[Ys>YMs ]dBs)t≥0 is a martingale having

a bounded integrand. Thus, Yt∧τn ≤ YMt∧τn , a.s. for every t ≥ 0 and any n. Since Y and
YM are continuous upto time τn, we have

P[0 ≤ Yt∧τn ≤ YMt∧τn ,∀t ≥ 0] = 1.

By taking the limit as n→∞, we obtain

P[0 ≤ Yt∧τ ≤ YMt∧τ ,∀t ≥ 0] = 1.

Since YM is non-explosive, this implies that τ =∞, a.s..
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In view of the above lemma, the hypothesis of the next lemma is not vacuous.

Lemma A.2. Suppose that d : R+ ×R2
+ 7→ [0,M ] for some constant M > 0 is a measur-

able function and Y is the nonnegative strong solution to

Yt = y + 2

∫ t

0

√
YsdBs +

∫ t

0

d(s, Ys, Zs)ds,

for some y ≥ 0. Moreover, suppose that there exists two stopping times S ≤ T such
that d((t ∨ S) ∧ T, Y(t∨S)∧T , Z(t∨S)∧T ) ∈ [a, b] ⊆ [0,M ] for some constants a and b. Then,
P[Y at∧T ≤ Yt∧T ≤ Y bt∧T ,∀t] = 1, where

Y at = Yt∧S +

∫ t∨S

S

{
2
√
Y as dBs + ads

}
Y bt = Yt∧S +

∫ t∨S

S

{
2
√
Y bs dBs + bds

}
.

Proof. Observe that using the similar arguments as in the previous lemma, one obtains
that L0(Y − Y a) = L0(Y − Y b) = 0. Thus, by Tanaka’s formula,

(Yt∧T − Y bt∧T )+ = 2

∫ t∧T

t∨S
(
√
Ys −

√
Y bs )1[Ys>Y bs ]dBs

−
∫ t∧T

t∨S
(b− d(s, Ys, Zs))1[Ys>Y bs ]ds

(Y at∧T − Yt∧T )+ = 2

∫ t∧T

t∨S
(
√
Y as −

√
Ys)1[Y as >Ys]

dBs

−
∫ t∧T

t∨S
(d(s, Ys, Zs)− a)1[Y as >Ys]

ds.

Observe that the stochastic integrals above are nonnegative local martingales, there-
fore they are supermartingales. Thus, by taking the expectations we obtain

E
[
(Yt∧T − Y bt∧T )+

]
≤ 0

E
[
(Y at∧T − Yt∧T )+

]
≤ 0.

Hence, the conclusion follows.

A.2 Martingale problems and some L2 estimates

In the next lemma we show that the martingale problem related to Z as defined in
(4.1) is well posed. Recall that A0 is the associated infinitesimal generator defined in
(4.6). We will denote the restriction of A0 to B([0, t− ε]×R+) by Aε0.

Lemma A.3. Fix ε > 0 and let µ ∈ P. Then, the martingale problem (Aε0, µ) is well-
posed. Moreover, the SDE (4.1) has a unique weak solution for any nonnegative initial
condition and the solution is strictly positive on (s, t− ε] for any s ∈ [0, t− ε].

Proof. Let s ∈ [0, t− ε] and z ∈ R+. Then, direct calculations yield

dZr = σ(r)dβr + σ2(r)

{
1

Zr
− Zrηt(r, Zr)

}
dr, for r ∈ [s, t− ε], (A.1)

with Zs = z, where

ηt(r, y) :=

∫∞
V (t)−V (r)

1√
2πu5

exp
(
− y2

2u

)
du∫∞

V (t)−V (r)
1√

2πu3
exp

(
− y2

2u

)
du
, (A.2)
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thus, ηt(r, y) ∈ [0, 1
V (t)−V (t−ε) ] for any r ∈ [0, t− ε] and y ∈ R+.

First, we show the uniqueness of the solutions to the martingale problem. Suppose
there exists a weak solution taking values in R+ to the SDE above. Thus, there exists
(Z̃, β̃) on some filtered probability space (Ω̃, F̃ , (F̃r)r∈[0,t−ε], P̃ ) such that

dZ̃r = σ(r)dβ̃r + σ2(r)

{
1

Z̃r
− Z̃rηt(r, Z̃r)

}
dr, for r ∈ [s, t− ε],

with Z̃s = z. Consider R̃ which solves

dR̃r = σ(r)dβ̃r + σ2(r)
1

R̃r
dr, (A.3)

with R̃s = z. Note that this equation is the SDE for a time-changed 3-dimensional Bessel
process with a deterministic time change and the initial condition R̃s = z. Therefore, it
has a unique strong solution which is strictly positive on (s, t− ε] (see 9. 446 in Chap. XI
of [17]). Then, from Tanaka’s formula (see Theorem 1.2 in Chap. VI of [17]), since the
local time of R̃− Z̃ at 0 is identically 0 (see Corollary 1.9 in Chap. VI of [17]), we have

(Z̃t − R̃t)+ =

∫ t

0

1[Z̃r>R̃r]σ
2(r)

{
1

Z̃r
− Z̃rηt(r, Z̃r)−

1

R̃r

}
dr ≤ 0,

where the last inequality is due to ηt ≥ 0, and 1
a <

1
b whenever a > b > 0. Thus, Z̃r ≤ R̃r

for r ∈ [s, t− ε].
Define (Lr)r∈[0,t−ε] by L0 = 1 and

dLr = −LrZ̃rηt(r, Z̃r) dβ̃r.

If (Lr)r∈[0,t−ε] is a true martingale, then Q on F̃t−ε defined by

dQ

dP̃
= Lt−ε,

is a probability measure on F̃t−ε equivalent to P̃ . Then, by Girsanov Theorem (see, e.g.,
Theorem 3.5.1 in [14]) under Q

dZ̃r = σ(r)dβ̃Qr + σ2(r)
1

Z̃r
dr, for r ∈ [s, t− ε],

with Z̃s = z, where β̃Q is a Q-Brownian motion. This shows that (Z̃, β̃Q) is a weak
solution to (A.3). As (A.3) has a unique strong solution which is strictly positive on
(s, t− ε], any weak solution to (4.1) is strictly positive on (s, t− ε]. Thus, due to Theorem
6.4.2 in [19], the martingale problem for (δz,Aε0) has a unique solution. Note that
although the drift coefficient is not bounded, Theorem 6.4.2 in [19] is still applicable
when L is a martingale.

Thus, it remains to show that L is a true martingale when Z̃ is a positive solution to
(A.1). For some 0 ≤ tn−1 < tn ≤ t− ε consider

E

[
exp

(
1

2

∫ tn

tn−1

(Z̃rη
t(r, Z̃r))

2dr

)]
. (A.4)

The expression in (A.4) is bounded by

E

[
exp

(
1

2

∫ tn

tn−1

R̃2
r

(
1

V (t)− V (t− ε)

)2

dr

)]
≤ E

[
exp

(
1

2
(R̃∗r)

2 tn − tn−1

(V (t)− V (t− ε))2

)]
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where Y ∗t := sups≤t |Ys| for any càdlàg process Y . Recall that R̃ is only a time-changed

Bessel process where the time change is deterministic and, therefore, R̃2
r is the square

of the Euclidian norm at time V (r) of a 3-dimensional standard Brownian motion, start-
ing at (z, 0, 0) at time V (s). Thus, by using the same arguments as in Proposition 3.4,
we get that the above expression is going to be finite if

EzV (s)

[
exp

(
1

2
(β∗V (t−ε))

2 tn − tn−1

(V (t)− V (t− ε))2

)]
<∞,

where β is a standard Brownian motion and Exs is the expectation with respect to the
law of a standard Brownian motion starting at x at time s. In view of the reflection
principle for standard Brownian motion (see, e.g. Proposition 3.7 in Chap. 3 of [17]) the
above expectation is going to be finite if

tn − tn−1

(V (t)− V (t− ε))2
<

1

V (t− ε)
.

Clearly, we can find a finite sequence of real numbers 0 = t0 < t1 < . . . < tn(T ) = T

that satisfy above. Now, it follows from Corollary 3.5.14 in [14] that L is a martingale.
In order to show the existence of a nonnegative solution, consider the solution, R̃, to

(A.3), which is a time-changed 3-dimensional Bessel process, thus, nonnegative. Then,
define (L−1

r )r∈[0,t−ε] by L−1
0 = 1 and

dL−1
r = L−1

r R̃rη
t(r, R̃r) dβ̃r.

Applying the same estimation to L−1 as we did for L yields that L−1 is a true martingale.
Then, Q on F̃t−ε defined by

dQ

dP̃
= L−1

t−ε,

is a probability measure on F̃t−ε under which R̃ solves

dZ̃r = σ(r)dβ̃Qr + σ2(r)

{
1

Z̃r
− Z̃rηt(r, Z̃r)

}
dr, for r ∈ [s, t− ε],

with Z̃s = z and β̃Q is a Q-Brownian motion. This means that the nonnegative process
R̃ is a weak solution of (A.1). Therefore, the martingale problem (δz,Aε0) has a solution
by Proposition 5.4.11 and Corollary 5.4.8 in [14] since σ is locally bounded. Thus,
the martingale problem (δz,Aε0) is well-posed for any z ∈ R+. The well-posedness of
the martingale problem for (µ,Aε0) follows from Theorem 21.10 in [12] since P z is the
unique solution of the martingale problem for (δz,Aε0) for any z ∈ R+.

We are now ready to show that the joint martingale problem for (X,Z) defined by
the operator A : B([0, t)×R2

+) 7→ B([0, t)×R2
+) which is given by

Aφ(s, x, z) =
∂φ

∂s
(s, x, z) +

1

2

∂2φ

∂x2
(s, x, z) +

1

2
σ2(s)

∂2φ

∂z2
(s, x, z)

+
qx
q

(V (t)− V (s), x, z)
∂φ

∂x
(s, x, z) + σ2(s)

Hz

H
(V (t)− V (s), z)

∂φ

∂z
(s, x, z),

with the domain D(A) = C∞c ([0, t)×R2
+).

Proposition A.4. Let µ ∈ P2 where P2 is the set of probability measures on the Borel
sets of R2

+ topologized by weak convergence. Then, the martingale problem (µ,A) is
well-posed.
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Proof. Clearly, if (µ,Aε) is well-posed for any ε > 0, where Aε is the restriction of A to
B([0, t − ε],R+), then (µ,A) is well-posed. As in the proof of Lemma A.3, the problem
of well-posedness of (µ,Aε) can be reduced to that of (δx,z,Aε) for any fixed (x, z) ∈ R2

+

due to Theorem 21.11 in [12] and Proposition 1.6 in Chap. III of [17]. To this end, in
view of Proposition 5.4.11 and Corollary 5.4.8 in [14], it suffices to show the existence
and the uniqueness of weak solutions to the system of SDEs defined by (4.1) and (4.2)
with the initial condition that Xs = x and Zs = z for a fixed s ∈ [0, t−ε]. We will consider
the following three cases to finish the proof.

Case 1: x > 0, z > 0. In Lemma A.3 we have proved the existence and the unique-
ness of a weak solution to the SDE (4.1) for any initial condition Zs = z for
s ∈ [0, t − ε] and z ≥ 0. Thus, there exists (Z̃, β̃) on some filtered probability
space (Ω̃, F̃ , (F̃r)r∈[0,t−ε], P̃ ) such that (Z̃, β̃) solves the SDE (4.1) with the ini-
tial condition Zs = z. Without loss of generality we can assume that the space
(Ω̃, F̃ , (F̃r)r∈[0,t−ε], P̃ ) supports another Brownian motion, B̃, independent of β̃.
Then, Proposition 3.4 yields that there exists a unique strong and strictly positive
solution to (4.2) on (Ω̃, F̃ , (F̃r)r∈[0,t−ε], P̃ ). Indeed, the proof of Proposition 3.4
would remain the same as long as the initial condition for Z is strictly positive and
one observes that although Z is not a Brownian motion, the finiteness of (3.8) still
follows from (3.9) since Z is strictly positive and bounded from above by a time-
changed 3-dimensional Bessel process and the time change is given by V (t). This
demonstrates that there exists a weak solution to the system of SDEs. Moreover,
the solution is unique in law since X is pathwise uniquely determined by Z, which
is unique in law.

Case 2: x = 0, z ≥ 0. We can use the same arguments as in the previous case once we
establish Lemma 3.3 over the time interval [s, t − ε]. Note that we only need to
show the strict positivity of the solution as the existence of a nonnegative weak
solution follows along the same lines. Consider the sequence of stopping times
(τn)n≥1

τn := inf{r ∈ [s, t− ε] : Ur =
1

n
},

where inf ∅ = t − ε. On (τn, t − ε] the solution exists and is strictly positive as in
Case 1 since Zτn > 0 and Uτn = 1

n when τn < t− ε. Consider τ := infn τn. If τ = s,
we are done. Suppose τ > s with some positive probability. Then, on this set
Ut = 0 for t ≤ τ . However, this contradicts the fact that U solves (3.5) on [s, t− ε].

Case 3: x > 0, z = 0. As in the previous case it only remains to establish the strict positivity
of the solution of (3.5), which exists by the same arguments. Again consider the
following sequence of stopping times:

τn := inf{r ∈ [s, t− ε] : Zr =
1

n
},

where inf ∅ = t− ε. That the weak solution to (3.5) is strictly positive on (τn, t− ε]
follows from Case 1 if Xτn > 0, and from Case 2 if Xτn = 0. Since infn τn = s by
Lemma A.3, we have the strict positivity on [s, t− ε].

Lemma A.5. Let (Z,X) be the unique strong solutions to (2.1) and (2.7). Then they
solve the martingale problem on the interval [0, t) defined by (4.1) and (4.2) with the
initial condition X0 = Z0 = 1. Moreover, under Assumption 2.1 we have

i) E

[∫ t
0
1[τ>s]

(
qx
q (V (s)− s,Xs, Zs)

)2

ds

]
<∞.
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ii) Eτ,t
[∫ t

0

(
qx
q (V (s)− s,Xs, Zs)

)2

ds

]
<∞.

iii) Eτ,t
[∫ t−ε

0
σ2(s)

∣∣Hx
H (V (t)− V (s), Zs)

∣∣ ds]2 <∞, for any ε > 0.

Proof. Recall that dPτ,t

dPt
=

1[τ>t]

P[τ>t] and that Eτ,t denotes the expectation operator with

respect to Pτ,t. Hence, under Pτ,t, (Z,X) satisfy (4.1) and (4.2) with the initial condition
X0 = Z0 = 1, which implies that they solve the corresponding martingale problem.

i) & ii) Note that

P[τ > t]Eτ,t

[∫ t

0

(
qx
q

(V (s)− s,Xs, Zs)

)2

ds

]

= E

[
1[τ>t]

∫ t

0

(
qx
q

(V (s)− s,Xs, Zs)

)2

ds

]

≤ E

[∫ t

0

1[τ>s]

(
qx
q

(V (s)− s,Xs, Zs)

)2

ds

]
.

Thus, it suffices to prove the first assertion since P[τ > t] > 0 for all t ≥ 0. Recall
from (3.2) that

qx(t, x, z)

q(t, x, z)
=
z − x
t

+
exp

(
− 2xz

t

)
1− exp

(
− 2xz

t

) 2z

t
=
z − x
t

+ f

(
2xz

t

)
1

x
,

where f(y) = e−y

1−e−y y is bounded by 1 on [0,∞). As
∫ t

0
1

(V (s)−s)2 ds < ∞ and

sups∈[0,t]E[Z2
s ] ≤ V (t) + 1, the result will follow once we obtain

1. sups∈[0,t]E[X2
s1[τ>s]] <∞, and

2. E
(∫ t

0
1[τ>s]

1
X2
s
ds
)
<∞,

demonstrated below.

1. By Ito formula,

1[τ>t]X
2
t = 1[τ>t]

(
1 + 2

∫ t

0

XsdBs + 2

∫ t

0

{
ZsXs −X2

s

V (s)− s
+ f

(
2ZsXs

V (s)− s

)
+

1

2

}
ds

)
.

(A.5)

Observe that the elementary inequality 2ab ≤ a2 + b2 implies

21[τ>t]

∫ t

0

XsdBs ≤ 1 +

(
1[τ>t]

∫ t

0

XsdBs

)2

≤ 1 +

(∫ τ∧t

0

XsdBs

)2

, and

2

∫ t

0

ZsXs −X2
s

V (s)− s
ds ≤

∫ t

0

Z2
s −X2

s

V (s)− s
ds ≤

∫ t

0

Z2
s

V (s)− s
ds.

As f is bounded by 1, using the above inequalities and taking expectations of
both sides of (A.5) yield

E[1[τ>t]X
2
t ] ≤ 2 + E

(∫ t

0

1[τ>s]XsdBs

)2

+

∫ t

0

E[Z2
s ]

V (s)− s
ds+ 3t

≤ 2 + 3t+ (V (t) + 1)

∫ t

0

1

V (s)− s
ds+

∫ t

0

E
(
1[τ>s]X

2
s

)
ds.
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The last inequality obviously holds when
∫ t

0
E
(
1[τ>s]X

2
s

)
ds = ∞, otherwise,

it is a consequence of Ito isometry. Let T > 0 be a constant, then for all
t ∈ [0, T ] it follows from Gronwall’s inequality that

E[1[τ>t]X
2
t ] ≤

(
2 + 3T + (V (T ) + 1)

∫ T

0

1

V (s)− s
ds

)
eT .

2. In view of Proposition 3.6 we have 1[τ>s]
1
X2
s
≤ 1

R2
s

where R is the unique

strong solution of (3.11). Thus, it is enough to show that
∫ t

0
E
[

1
R2
s

]
ds < ∞.

Recall from Proposition 3.5 that the law of Rs is that of λsρΛs where ρ is a
3-dimensional Bessel process starting at 1 and

λt = exp

(
−
∫ t

0

1

V (s)− s
ds

)
,

Λt =

∫ t

0

1

λ2
s

ds.

Therefore, using the explicit form of the probability density of 3-dimensional
Bessel process (see Proposition 3.1 in Chap. VI of [17]) one has

∫ t

0

E

[
1

R2
s

]
ds ≤

∫ t

0

E

[
1

R2
s

1[Rs≤ 3
√

Λs]
+ Λ

− 2
3

s

]
ds

≤
∫ t

0

λ−2
s

∫ 3
√

Λsλ
−1
s

0

1

y
q(Λs, 1, y) dy ds+ 3 3

√
Λt

=

∫ t

0

λ−2
s

∫ 3
√

Λsλ
−1
s

0

qy(Λs, 1, y
∗) dy ds+ 3 3

√
Λt

where the last equality is due to the Mean Value Theorem and y∗ ∈ [0, y]. It

follows from direct computations that |qy(t, 1, y)| ≤
√

2
πe

1
t for all y ∈ R and

t ∈ R+. Therefore, we have

∫ t

0

E

[
1

R2
s

]
ds ≤

√
2

πe

∫ t

0

λ−2
s

∫ 3
√

Λsλ
−1
s

0

1

Λs
dy ds+ 3 3

√
Λt

=

√
2

πe

∫ t

0

λ−3
s Λ

− 2
3

s ds+ 3 3
√

Λt

≤ 3

(√
2

πe
λ−1
t + 1

)
3
√

Λt.

iii) Recall that

Hx

H
(V (t)− V (s), Zs) =

1

Zs
− Zsηt(s, Zs),

where ηt is as defined in (A.2). Fix an ε > 0. Then,

∫ t−ε

0

σ2(s)

∣∣∣∣Hx

H
(V (t)− V (s), Zs)

∣∣∣∣ ds =

∫ V (t−ε)

0

∣∣∣∣Hx

H
(V (t)− s, ZV −1(s))

∣∣∣∣ ds.
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Consider the process Sr := ZV −1(r) for r ∈ [0, V (t)). Then,

Eτ,t
[∫ t−ε

0

σ2(s)

∣∣∣∣Hx

H
(V (t)− V (s), Zs)

∣∣∣∣ ds]2

= Eτ,t

[∫ V (t−ε)

0

∣∣∣∣ 1

Ss
− Ssηt(V −1(s), Ss)

∣∣∣∣ ds
]2

≤ 2

Eτ,t [∫ V (t−ε)

0

1

Ss
ds

]2

+
V (t− ε)

(V (t)− V (t− ε))2

∫ V (t−ε)

0

Eτ,t[S2
s ]ds

 .

(A.6)

Moreover, under Pτ,t

dS2
s = (3− 2S2

sη
t(V −1(s), Ss))ds+ 2SsdW

t
s

for all s < V (t) for the Brownian motion W t defined by W t
s :=

∫ V −1(s)

0
σ2(r)dβtr.

Thus,

Eτ,t[S2
s ] ≤ 3s+ 1 +

∫ s

0

Eτ,t[S2
r ]dr.

Hence, by Gronwall’s inequality, we have Eτ,t[S2
s ] ≤ (3s + 1)es. In view of (A.6) to

demonstrate iii) it suffices to show that

Eτ,t

[∫ V (t−ε)

0

1

Ss
ds

]2

<∞.

However,(∫ V (t−ε)

0

1

Ss
ds

)2

=

(
SV (t−ε) − S0 −W t

V (t−ε) +

∫ V (t−ε)

0

ηt(V −1(s), Ss)Ssds

)2

,

which obviously has a finite expectation due to earlier results.
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