1 High-impact routines to ameliorate trunk and lower limbs flexibility in women

2

3

4 Abstract

5	Several types of routines and methods have been experimented to gain neuro/muscular
6	advantages, in terms of overall range of motion, in athletes and fitness enthusiasts. The aim
7	of the present study was to evaluate the impact of different routines on trunk- and lower
8	limbs flexibility in a sample of young women. In a randomized-crossover fashion, eleven
9	subjects underwent to: hamstrings stretching [S]; hamstrings stretching plus whole-body
10	vibration [S + WBV]; partial-body cryotherapy [Cryo]; rest [Control]. Standing hamstrings
11	stretch performance and sit-and-reach amplitude resulted to be improved with [S + WBV]
12	compared to all other protocols ($p < 0.05$). [Cryo] ameliorated the active knee extension
13	performance with respect to all other interventions $(p < 0.05)$. These flexibility
14	improvements were obtained without a loss in the trunk position sense proprioception.
15	These results represent the first evidence that a single session of either vibration or
16	cryotherapy can <u>ameliorate favourably impact on</u> -flexibility without losing the trunk
17	position sense compromising proprioception in young women.
18	
19	
20	Keywords: cryotherapy, whole-body vibration, standing hamstrings stretch
21	
22	Abbreviations: AKET, active knee extension test; ES, effect size; ICC, intraclass
23	correlation coefficient; PBC, partial body cryotherapy, ROIs, regions of interest; ROM,
24	range of motion; S, stretching; SHS, standing hamstrings stretch; SD, standard deviation,
25	TRE, trunk repositioning errors, WBC, whole-body cryotherapy; WBV, whole-body
26	vibration

28	
29	Introduction
30	A litany of studies has been repeatedly debating on different methods of stretching
31	to gain advantages in range of motion (ROM) and therefore in flexibility. However, it is
32	still controversial the extent by which a particular stretching routine might be effective in
33	relation to a specific sport rather than in the general population. For instance, it has been
34	previously shown that static stretching may be counterproductive immediately before
35	performing a strength/power sports discipline [1–3]. In fact, Pprolonged static stretching
36	can impair maximal muscle performance [4], however these negative effects, owing to the
37	decrease of the muscle-tendon unit stiffness, are transient [5] and affect muscle
38	performance only marginally [6]. Other works have reported that either static or dynamic
39	stretching can increase flexibility by the same magnitude of change [7–10]. In the vast
40	majority of these studies, the stretching-induced effects were observed with the targeted
41	muscles, in isolation, rather than in comparison with contralateral muscles, i.e. as global
42	effects [11]. The effects of whole-body vibration (WBV) have been extensively
43	investigated_[12–15], either as an adjunct to static stretching with the potential to enhance
44	retention of flexibility gains [16], or alone, to improve hamstring flexibility [17]. Short-
45	term WBV interventions have obtained improvements in flexibility and in other health-
46	related physical fitness indicators such as endurance, balance, and muscle strength, in
47	physically active adults and elderly [17, 18]. In essence, WBV transmits mechanical
48	oscillations of a given frequency, through a contact with the base of the platform, to the
49	human body. P-rior works [15, 19–21] have explained how the mechanical stimulus could

- 50 generate effects on the neuromuscular system. Issurin et al. [19] proposed that WBV would
- 51 <u>facilitate flexibility by means of potential mechanisms such as: increase in pain threshold,</u>

Formattato: Colore carattere: Blu

52	elevation of blood flow and induced-relaxation of the stretched muscle. Sands et al. [20]
53	underlined that carrying out a stretching exercise during vibration could result in Golgi
54	tendon organs activation, inducing an autogenic inhibition of the vibrated muscle.
55	Moreover, acute whole-body cryotherapy has been successfully used to reduce
56	neural activation therefore affecting ROM and increasing sit-and-reach amplitude in men
57	and women [22]. Even when locally applied, cryotherapy has been shown to decrease nerve
58	conduction velocity along with an analgesic effect [23]. Basically, cryostimulation consists
59	in a short exposure to very cold air (from -130 to -170 $^{\circ}$ C) either in on-purpose designed
60	cryo-chamber (Whole-Body Cryotherapy, WBC) or cryo-cabin (Partial-Body Cryotherapy,
61	PBC) or vaporizers (local cryotherapy) [24]. Bleakely and Costello reported favourable
62	effects of cryotherapy on ROM [25], however cohesive results are lacking and therefore
63	more research protocols are warranted. The hypothesised mechanism is that cryostimulation
64	inhibits spinal excitability [23], hence decreases neural activity, allowing more elongation
65	of the muscle at a given load [22].
66	A variety of routines have been sought by athletes, fitness enthusiasts and general
67	population to earn specific advantages in muscular performance, in terms of ROM and/or
68	flexibility, or simply in order to meet prevention programs against osteo-arthro-muscular
69	injuries, which represent the major cause of sick leave and back pain [26-28].
70	In this context, the aim of this study was to explore the effects of different
71	interventions, including stretching, WBV and PBC on trunk/lower limbs flexibility, while
72	also taking into account for trunk proprioception in young women. The hypothesis was that
73	a single session of either or some of these interventions would improve the indicators of
74	<u>flexibility.</u>
75	

76 Materials & Methods

77 Research design

78	Based on the <i>a priori</i> sample-sized determination (software package, G * Power 3.1.9.2).
79	with a statistical power of 0.8, a probability level of 0.05, an effect size f of 0.38 (which
80	<u>corresponds to a $\eta^2 = 0.13$</u> , eleven young adult women were enrolled for this study. The
81	present investigation was designed as a randomized-crossover trial. Using a restricted
82	blocks randomization (computer-generated sequence), the 11 participants were randomly
83	subjected to: 1) hamstrings stretching [S] in upright position; 2) S in conjunction with
84	whole-body vibration [S + WBV]; 3) PBC [Cryo]; 4) rest [Control]. All 11 participants
85	completed the 4 experimental trials, for which there were two within-group independent
86	variables, one with four conditions (intervention) and the other with two conditions (time:
87	pre- and post-interventions). To evaluate the flexibility responses to the interventions, three
88	dependent variables were examined: the ROM measured during the standing hamstring
89	stretch (SHS) test, sit-and-reach amplitude, and active knee extension test (AKET). In
90	addition, another dependent variable was registered as the absolute difference during the
91	trunk repositioning test: trunk repositioning error (TRE, Fig. 1). All the dependent variables
92	were measured prior and following each experimental condition (Fig. 1).
93	All subjects were examined by a <u>qualified</u> physician to exclude severe hypertension,
94	chronic low back pain, history of cardiovascular diseases, cold hypersensitivity (Raynaud's
95	syndrome) and history of previous fractures of bone lesions prior to performing any
96	contraindication to PBC and to WBV the study. To minimize the effects of circadian
97	variation, measurements were consistently carried out at the same hour of the day (from
98	08:30 to 10:30). Subjects were also instructed to refrain from consuming alcohol, caffeine,
99	theine, hot drinks nor undertaking any stretching, weight-training, or arduous physical
100	activity in the day before and during testing days. In addition, subjects were also instructed
101	not to take medications or supplements during the study. All measurements were completed

102	by the principal investigator and recorded onto a separate data collection sheet. To avoid
103	potential bias, the investigator did not review the participants' measurements from the
104	previous days on which they completed the other interventions until the y complete end of
105	the study. Rater was experienced with measurement protocol and the utilization of the
106	digital inclinometer and the Flex-Tester box.
107	
108	[Figure 1 near here]
109	
110	Ethics statement
111	The study protocol, including each aspect of the design, was approved by the
112	academic ethical board in accordance with the Declaration of Helsinki. All subjects were
113	given verbal and written information on the study and gave their written informed consent
114	to participate. The experimental protocol meets the ethical standards of the journal [29].
115	
116	Procedures
117	A diagram of the overall study-design is offered in Fig. 1.
118	On the day of the experiment, each participant arrived at the laboratory 30 min
119	before the session so to acclimate to the room temperature (22 \pm 0.5 °C). They had to wear
120	loose fitted clothing such as a T-shirt and shorts, to prevent any restrictions in range of
121	movement [30]. After acclimatisation, a measurement training session was held to
122	standardize measurement protocol. Before each session movements were practiced three
123	times to diminish stretching and learning biases [31]. Hamstring and lower limb muscle
124	length tests were performed in the same order at each testing session for each participant.
125	<u>Tests</u>
126	Before placement of the digital inclinometer (Fabrication Enterprises Inc., White

127	Plains, NY, USA), the anatomical reference points were marked with a skin marker.
128	Reference points were on the mid-point of the anterior tibial crest, which was determined
129	by applying tape to measure the participant's tibia length from the medial malleolus to the
130	medial joint line of the knee [32] and at the level of the T4 spinous process [33].
131	Standing Hamstrings Stretch (SHS) test_[34-36] To assess the maximum trunk and
132	lower limb flexibility. During the SHS test, the baseline digital inclinometer
133	(Fabrication Enterprises, White Plains, NY, USA) was used to measure the trunk
134	flexion. The manufacturer reports an accuracy of ± 0.5 degrees [37]. The participants
135	were asked to stand upright in a comfortable position and to flex <u>slowly</u> the trunk in the
136	sagittal plane without bending the knees, and hold this position for 3 s. After returning
137	to the neutral upright position, they were asked to duplicate the previously attained
138	position perform once again the maximal anterior trunk flexion and held the position for
139	3 s. The mean of the two scores was used to assess the value of the SHS test. The
140	reliability of the standing hamstring stretch test was excellent ($\alpha = 0.990$).
141	Sit-and-reach test [38] Using a Flex-Tester box (Cranlea, Birmingham, UK),
142	participants were barefoot with legs fully extended and instructed to lean forward as far
143	as possible with the end position held for at least 2 s. The task was repeated two times.
144	The better of the two trials from each time point was taken for further statistical
145	analysis [22]. The reliability of the sit and reach tests was excellent ($\alpha = 0.990$).
146	Active Knee Extension Test (AKET) [30] Participants were positioned supine on a
147	plinth so that the leg not being tested was flat on the plinth with the knee extended. A
148	strap was placed over the mid-thigh of this leg to eliminate any elevation of the limb.
149	An additional strap was positioned over the front of the participant's pelvis and around
150	the plinth to maintain the pelvis in a neutral position during hamstring measurements.
151	An iron apparatus was then placed on the plinth in line with the participant's anterior

152	superior iliac spine of the pelvis. The participant was asked to flex the hip of the tested
153	leg so that their thigh was touching the iron apparatus. The participant was then asked,
154	"straighten your leg at the knee as far as you can while maintaining your thigh touching
155	the iron apparatus" and held the end position for at least 2 s. The digital inclinometer
156	determined the angle of knee extension giving an indication of hamstring muscle
157	length [30]. Two measurements were taken for each leg and the mean of the two scores
158	was used to assess the value of the AKET. The reliability of the AKET testing was
159	excellent ($\alpha = 0.976$ for the left leg; $\alpha = 0.987$ for the right leg).
160	Trunk repositioning To assess the trunk position sense, as indicated by trunk
161	reposition errors (TRE), a digital inclinometer was held at the level of the T4 spinous
162	process. Participants, with eyes closed, flexed the trunk in the sagittal plane until the
163	position the rater wanted the individual to be and hold this position for 3 s and to
164	remember this position (position 1). After returning to the neutral upright position, they
165	were asked to duplicate the previously attained position. Participants indicated verbally
166	when they felt they had reached the angle and held their position for a count of 3 s
167	(position 2). The absolute difference in degrees between position 1 and 2 was defined
168	as the TRE [33]. Participants generated three scores and the mean of the scores
169	represents the TRE score. The reliability of the trunk repositioning testing was
170	excellent ($\alpha = 0.976$).
171	Interventions
172	The four above mentioned tests were performed before and immediately after each
173	condition: 1) [S]; 2) [S + WBV]; 3) [Cryo]; 4) [Control];
174	1) Subjects performing [S] were asked to stand upright in a comfortable position and
175	to flex the trunk in the sagittal plane and hold this position for 30 s. After returning
176	to the neutral upright position, they were asked to recover for 30 s and to repeat this

177	procedure for three times [39]: the total duration (SHS repetitions plus recovery)
178	was 150 s.
179	2) Similarly to [S], subjects performing [S + WBV] had to stand upright in a
180	comfortable position and to flex the trunk in the sagittal plane and hold this position
181	for 30 s over a vibration platform (Power Plate pro5; Power Plate International Ltd,
182	London, United Kingdom) set with a moderate (40Hz) frequency and a low (2-4
183	mm) amplitude. After returning to the neutral upright position, they were asked to
184	recover for 30 s and to repeat this procedure for three times [39]: the total duration
185	(SHS repetitions and recovery) was 150 s. The 30 s duration of each set over the
186	vibration platform can provide adequate safety for participants who engage in WBV
187	training for the first time [40].
188	3) During the PBC [Cryo], subjects completed a partial-body cryotherapy session of
189	150 s in a cryo-cabin (Space Cabin, Criomed, Ltd, Kherson, Ukraine). PBC session
190	allowed to expose participants to very low temperatures (from -130 to -170 $^\circ$ C, as
191	reported by the manufacturer). During the session subjects wore swimwear, a pair of
192	gloves, woollen socks and wooden clogs to prevent the occurrence of frostbite. The
193	head was not cryo-exposed. Participants were instructed to turn around continuously
194	in the cabin for the entire time of the session [41].
195	4) Under control condition [Control], subjects rested in sitting position for a period of
196	150 s between the two bouts of tests, upright against the back of a chair with feet
197	flat on the floor, in a room where the temperature was stabilized (22 \pm 0.5 °C).
198	Skin temperatures of the ventral and dorsal regions of of interest (ROIs) were assessed by
199	means of a ThermoVision SC640 thermal imaging camera (Flir Systems, Danderyd,
200	Sweden) in accordance with the standard protocol of infrared imaging in medicine [42,43].
201	Thermal images were taken prior to each testing protocol. The camera, with the emissivity

202	set in the range of 0.97 to 0.98, was connected to a personal computer with appropriate
203	software (Thermacam Researcher Pro 2.10, version 5.13.18031.2002, Flir systems 2015,
204	Danderyd, Sweden). The camera was mounted on a tripod and positioned in a way to focus
205	on the hamstrings area. The distance between the camera and the ROIs was kept constant at
206	1m. A mean temperature was calculated by averaging the skin temperature recorded for the
207	ROIs.
208	
209	Statistical analysis
210	The normality of the data distribution was assessed by Shapiro-Wilk test.

211	The test-retest reliability of the sit-and-reach test, AKET, SHS test, trunk
212	repositioning test were measured using an intraclass correlation coefficient (ICC,
213	Cronbach- α) and interpreted as follows: $\alpha \ge 0.9 = \text{excellent}; 0.9 > \alpha \ge 0.8 = \text{good}; 0.8. > \alpha$
214	$\geq 0.7 = \text{acceptable}; 0.7 > \alpha \geq 0.6 = \text{questionable}; 0.6 > \alpha \geq 0.5 = \text{poor [44]}.$
215	All data were presented as mean \pm standard deviation (SD). The flexibility
216	performances and trunk repositioning pre- and post-intervention, and the relative
217	thermographic measurements were analyzed with a mixed (time x intervention) repeated
218	measures analysis of variance (ANOVA). Post hoc pair-wise comparisons were conducted
219	utilizing Tukey's or Bonferroni's test when main or interaction effects were demonstrated.
220	The sphericity assumption was examined using Mauchly's test. Eta squared (η^2) effect sizes
221	(ES) were determined and interpreted using the following criteria: $0.01 =$ small; $0.06 =$
222	medium; $0.14 = large[45]$. For all analyses, a p value less than 0.05 was considered
223	statistically significant.
224	Analyses were carried out with the Statistical Package SPSS version 25 for Mac
225	(IBM Corp., Armonk, NY, USA), GraphPad Prism 5 (San Diego, CA, USA), and Excel

version 16.32 for Mac (Microsoft, Redmond, WA, USA). 226

228	Results
229	All demographic and anthropometric characteristics of the participants are offered in
230	Table 1. All women resulted to be normal weight, fit, and healthy, as assessed on physical
231	examination.
232	
233	[Table 1 near here]
234	
235	Flexibility variables and proprioception
236	Standing Hamstring Stretch (SHS) test Results, expressed as change from baseline,
237	revealed a main interaction (F = 3.575, \underline{pP} = 0.0254, η^2 = 0.153) among the interventions
238	with a significant improvement in ROM after $[S + WBV]$ with respect to [Control] (Tukey's
239	post-hoc, <u>p</u> P < 0.05; mean difference: -2.909, 95% CI: -5.599 to -0.2188) (Fig. 2A). <u>The</u>
240	reliability of the standing hamstring stretch test was excellent ($\alpha = 0.990$).
241	Sit-and-reach ANOVA showed a significant interaction among the interventions as to
242	the sit-and-reach amplitude of the women tested (F = 3.688, $\mathbf{pP} = 0.0226$, $\eta^2 = 0.243$). In line
243	with the SHS results, the participants' sit-and-reach amplitude benefitted from [S + WBV]
244	as compared to [Control] (Tukey's post-hoc, $pP < 0.05$; mean difference: -2.136, 95% CI: -
245	4.067 to -0.2058) (Fig. 2B). The reliability of the sit-and-reach test was excellent ($\alpha = 0.990$).
246	Active Knee Extension Test (AKET) Outcomes, still expressed as change from baseline,
247	revealed a main effect among the interventions (F = 4.694, $\mathbf{p}\mathbf{P}$ = 0.0084, η^2 = 0.168), with a
248	significant improvement in ROM after PBC [Cryo] with respect to [Control] (Tukey's post-
249	hoc, <u>p</u> P < 0.05; mean difference: 3.434, 95% CI: 0.4880 to 6.380) (Fig. 2C). <u>The reliability</u>
250	of the AKET testing was excellent ($\alpha = 0.976$ for the left leg; $\alpha = 0.987$ for the right leg).

251 Trunk Repositioning Error As to absolute difference during the repositioning test, a main effect was not found (Fig. 2D). The reliability of the trunk repositioning testing was 252 excellent ($\alpha = 0.976$). 253 Overall performance data, emerging from the four routine protocols, are also reported 254 as pre- and post- intervention values in Table 2. 255 256 [Figure 2 near here] 257 [Table 2 near here] 258 259 Thermal responses 260 Ventral skin temperature analysed by means of thermal images confirmed an effective 261 262 decrease procured by cryotherapy (Fig. 3). A significant interaction "time x treatment" was documented (F = 715.6, $\underline{pP} < 0.0001$, $\eta^2 = 0.906$). In detail, ventral temperature of both lower 263 limbs was significantly affected by PBC (F = 146.2, pP < 0.0001, $\eta^2 = 0.916$) and time (F = 264 845, pP < 0.0001, $\eta^2 = 0.793$). As expected, post-hoc comparisons revealed that temperature 265 was significantly lower after PBC (13.7 ± 1.9 °C, Bonferroni's, pP<_0.0001, Fig. 3) with 266 respect to all other post-intervention temperatures, which remained ~ 29-30 °C (Fig. 3). 267 [Figure 3 near here] 268 269 Discussion 270 In this study we investigated the impact of different routines to ameliorate trunk-, 271 lower limbs flexibility while considering trunk proprioception in a sample of young 272 273 women. 274 The present data showed that women gained a greater effect in SHS test and sit-andreach amplitude with [S + WBV] as compared to all other protocols. PBC allowed to 275

276	achieve a major benefit in the AKET with respect to the other routines. Overall, these
277	flexibility improvements were obtained without a loss in the trunk position sense
278	proprioception.
279	A broad literature entails a multitude of strategies and stretching protocols to obtain
280	specific advantages in flexibility [9, 10, 46, 47]. Nevertheless, only a few studies have
281	included cryo-exposures protocols to assess possible gains in ROM and proprioception
282	acuity [48, 49]. Proprioception can be defined as the awareness of the position of a joint or
283	of a particular body district in space. Although proprioception encompasses several
284	components, including kinesthesia, balance, reflexive joint stability, somatosensation, a
285	number of evidence-based indications suggest that the somatosensory system is affected
286	when very low temperature is applied to the muscles [48]. Increases in flexibility could be
287	due a reduced neural activation during cryo-exposure [22]. Cryo-induced pain limitation
288	may represent another potential mechanism responsible for these flexibility improvements.
289	Similarly, increases in pain thresholds have been reported in research articles studying
290	flexibility by means of whole-body vibration [19, 20].
291	Consistently with other studies focusing on the combination of stretching with
292	vibration [15,16], the present results confirmed the efficacy of WBV in augmenting
293	flexibility, acutely. Differently from cryotherapy, iIt has been suggested that vibration
294	might procure increases in flexibility by enhancing the stretch reflex loop, through the
295	activation of the primary endings of the muscle spindles, which influences agonist muscle
296	contraction, whilst antagonists are simultaneously inhibited [50]. Furthermore, vibration
297	may also enhance flexibility by activating the Ia inhibitory interneurons of the antagonist
298	muscle, thus decreasing the braking force around a joint [51]. It has also been hypothesized
299	that the inhibition of the antagonist muscle, induced by vibration, is mediated by
300	supraspinal neuronal circuitry [52]. Finally, the vibratory stimulus of the Ia neural drive and

301	proprioceptive loop may also replicate a warm-up effect by increasing pain threshold, blood	
302	flow and muscle elasticity augmenting muscle temperature and elasticity resulting from	
303	elevated blood flow [19, 20]. However, these mechanisms remain putative and associated to	
304	prolonged interventions and longer vibration applications than the subjects experienced in	
305	the present study.	
306	At the superficial level, skin temperature decreased significantly only after	
307	cryostimulation <u>as expected</u> .	
308	The results of this research provided the first and unique evidence that a single	
309	session of either PBC or WBV can significantly and positively impact on flexibility without	
310	compromising the proprioception capacity. This is of practical value for coaches and	
311	trainers aiming to find routines to ameliorate trunk and lower limbs flexibility of female	
312	athletes in sports disciplines where a high level of proprioception, in addition to the	
313	flexibility, is required. That might be the case, for example, for ice skaters, divers and	
314	gymnasts.	
315	As a limitation, the present research was restricted to female subjects therefore	
316	generalizations cannot be inferred and applied to a large spectrum of the population. This	
317	latter problem is exacerbated by the small sample size. Promising data stemming from	
318	previous works [22], along with a prevalent practice of gymnastics and skating among	
319	females [53], justified a local mono-gender investigation. Beyond enrolling different	
320	gender, further insights could be gathered by recruiting different athletes and diverse sport	
321	practitioners. In addition, longitudinal studies may examine adaptive effects originating	
322	from chronic modalities of training.	
323	As a strength point, the experimental design in which all the tests were performed, in	
324	all interventions, in the same subjects, enhanced the signal-to-noise ratio associated to this	

325 study, permitting to achieve a clear-cut significance.

326	In light of the emerged findings, it is now sound that coaches can schedule PBC and
327	WBV sessions before a training session or a competition, such as in skating, diving, and
328	gymnastics, whereby adequate levels of both flexibility and proprioception are required.
329	
330	
331	
332	
333	
334	
335	Declaration of interest
336	None.
337	
338	Funding
338 339	Funding This research did not receive any specific grant from funding agencies in the public,
339	This research did not receive any specific grant from funding agencies in the public,
339 340	This research did not receive any specific grant from funding agencies in the public,
339 340 341	This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
339340341342	This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Author Contributions M.D.N., C.F. performed the studies. R.C. analyzed the data.
 339 340 341 342 343 	 This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Author Contributions M.D.N., C.F. performed the studies. R.C. analyzed the data. M.D.N., R.C. wrote the manuscript. M.D.N., C.F., P.R., A.L.T., R.C. contributed to the
 339 340 341 342 343 344 	 This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Author Contributions M.D.N., C.F. performed the studies. R.C. analyzed the data. M.D.N., R.C. wrote the manuscript. M.D.N., C.F., P.R., A.L.T., R.C. contributed to the discussion and reviewed the manuscript. M.D.N. designed the studies. M.D.N., R.C.
 339 340 341 342 343 344 345 	 This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Author Contributions M.D.N., C.F. performed the studies. R.C. analyzed the data. M.D.N., R.C. wrote the manuscript. M.D.N., C.F., P.R., A.L.T., R.C. contributed to the discussion and reviewed the manuscript. M.D.N. designed the studies. M.D.N., R.C. supervised the studies. All authors edited the manuscript. R.C. is the guarantor of this work
 339 340 341 342 343 344 345 346 	 This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Author Contributions M.D.N., C.F. performed the studies. R.C. analyzed the data. M.D.N., R.C. wrote the manuscript. M.D.N., C.F., P.R., A.L.T., R.C. contributed to the discussion and reviewed the manuscript. M.D.N. designed the studies. M.D.N., R.C. supervised the studies. All authors edited the manuscript. R.C. is the guarantor of this work and, as such, had full access to all the data in the studies and takes responsibility for the

351		
352		
353		
354		
355		
356		
357		
358		
359		
360	Refe	rences
361		
362	[1]	Behm DG, Chaouachi A. A review of the acute effects of static and dynamic
363		stretching on performance. Eur J Appl Physiol 2011; 111: 2633–2651
364	[2]	Kay AD, Blazevich AJ. Effect of acute static stretch on maximal muscle
365		performance: a systematic review. Med Sci Sports Exerc 2012; 44: 154-164
366	[3]	Simic L, Sarabon N, Markovic G. Does pre-exercise static stretching inhibit maximal
367		muscular performance? A meta-analytical review. Scand J Med Sci Sports 2013; 23:
368		131–148
369	[4]	Behm DG. The Science and Physiology of Flexibility and Stretching Implications
370		and Applications in Sport Performance and Health, 1st Edition. 1st Aufl. Routledge,
371		2018
372	[5]	Mizuno T, Matsumoto M, Umemura Y. Decrements in Stiffness are Restored within
373		10 min. Int J Sports Med 2012; 34: 484-490
374	[6]	Annino G, Ruscello B, Lebone P, Palazzo F, Lombardo M, Padua E, Verdecchia L,
375		Tancredi V, Iellamo F. Acute effects of static and dynamic stretching on jump

376		performance after 15 min of reconditioning shooting phase in basketball players. J
377		Sports Med Phys Fitness 2017; 57: 330–337
378	[7]	Matsuo S, Iwata M, Miyazaki M, Fukaya T, Yamanaka E, Nagata K, Tsuchida W,
379		Asai Y, Suzuki S. Changes in Flexibility and Force are not Different after Static
380		Versus Dynamic Stretching. Sport Med Int Open 2019; 03: E89–E95
381	[8]	Behm DG, Blazevich AJ, Kay AD, McHugh M. Acute effects of muscle stretching
382		on physical performance, range of motion, and injury incidence in healthy active
383		individuals: a systematic review. Appl Physiol Nutr Metab 2016; 41: 1-11
384	[9]	Opplert J, Babault N. Acute Effects of Dynamic Stretching on Muscle Flexibility and
385		Performance: An Analysis of the Current Literature. Sport Med 2018; 48: 299-325
386	[10]	Marchetti PH, Miyatake MMS, Magalhaes RA, Gomes WA, Da Silva JJ, Brigatto
387		FA, Zanini TCC, Behm DG. Different volumes and intensities of static stretching
388		affect the range of motion and muscle force output in well-trained subjects. Sport
389		Biomech 2019; 1–10
390	[11]	Caldwell SL, Bilodeau RLS, Cox MJ, Peddle D, Cavanaugh T, Young JD, Behm
391		DG. Unilateral hamstrings static stretching can impair the affected and contralateral
392		knee extension force but improve unilateral drop jump height. Eur J Appl Physiol
393		2019; 119: 1943–1949
394	[12]	Rittweger J. Vibration as an exercise modality: how it may work, and what its
395		potential might be. Eur J Appl Physiol 2010; 108: 877–904
396	[13]	Karatrantou K, Bilios P, Bogdanis GC, Ioakimidis P, Soulas E, Gerodimos V.
397		Effects of whole-body vibration training frequency on neuromuscular performance: a
398		randomized controlled study. Biol Sport 2019; 36: 273-282
399	[14]	Bemben D, Stark C, Taiar R, Bernardo-Filho M. Relevance of Whole-Body
400		Vibration Exercises on Muscle Strength/Power and Bone of Elderly Individuals.

401 Dose-Response 2018; 16: 155932581881306

402	[15]	Sá-Caputo DC, Paineiras-Domingos LL, Oliveira R, Neves MFT, Brandão A, Marin
403		PJ, Sañudo B, Furness T, Taiar R, Bernardo-Filho M. Acute Effects of Whole-Body
404		Vibration on the Pain Level, Flexibility, and Cardiovascular Responses in
405		Individuals With Metabolic Syndrome. Dose-Response 2018; 16: 155932581880213
406	[16]	Feland JB, Hawks M, Hopkins JT, Hunter I, Johnson AW, Eggett DL. Whole Body
407		Vibration as an Adjunct to Static Stretching. Int J Sports Med 2010; 31: 584–589
408	[17]	Houston MN, Hodson VE, Adams KKE, Hoch JM. The Effectiveness of Whole-
409		Body-Vibration Training in Improving Hamstring Flexibility in Physically Active
410		Adults. J Sport Rehabil 2015; 24: 77–82
411	[18]	Gómez-Cabello A, González-Agüero A, Ara I, Casajús JA, Vicente-Rodríguez G.
412		Effects of a short-term whole body vibration intervention on physical fitness in
413		elderly people. Maturitas 2013; 74: 276–278
414	[19]	Issurin VB, Liebermann DG, Tenenbaum G. Effect of vibratory stimulation training
415		on maximal force and flexibility. J Sports Sci 1994; 12: 561-566
416	[20]	Sands WA, McNeal JR, Stone MH, Russell EM, Jemni M. Flexibility enhancement
417		with vibration: Acute and long-term. Med Sci Sports Exerc 2006; 38: 720-725
418	[21]	Di Giminiani R, Manno R, Scrimaglio R, Sementilli G, Tihanyi J. Effects of
419		individualized whole-body vibration on muscle flexibility and mechanical power. J
420		Sports Med Phys Fitness 2010; 50: 139–151
421	[22]	De Nardi M, La Torre A, Benis R, Sarabon N, Fonda B. Acute effects of whole-body
422		cryotherapy on sit-and-reach amplitude in women and men. Cryobiology 2015; 71:
423		511–513
424	[23]	Algafly AA, George KP, Herrington L. The effect of cryotherapy on nerve

425 conduction velocity, pain threshold and pain tolerance * Commentary. Br J Sports

426 Med 2007; 41: 365–369

- 427 [24] De Nardi M, Silvani S, Ruggeri P, Luzi L, La Torre A, Codella R. Local
- 428 cryostimulation acutely preserves maximum isometric handgrip strength following
- 429 fatigue in young women. Cryobiology 2019; 87: 40–46
- 430 [25] Bleakley CM, Costello JT. Do Thermal Agents Affect Range of Movement and
 431 Mechanical Properties in Soft Tissues? A Systematic Review. Arch Phys Med
- 432 Rehabil 2013; 94: 149–163
- 433 [26] Morrissey MC, Harman EA, Johnson MJ. Resistance training modes: specificity and
 434 effectiveness. Med Sci Sports Exerc 1995; 27: 648–660
- 435 [27] Elvestad P, Ingersoll CD, Katch VL, Katch FI, Weltman A. The Effects of a
- Worksite Neuromuscular Activation Program on Sick Leave: A Pilot Study. Med Sci
 Sport Exerc 2008; 40: S434–S435
- 438 [28] Bentsen H, Lindgärde F, Manthorpe R. The Effect of Dynamic Strength Back
- 439 Exercise and/or a Home Training Program in 57-year-old Women With Chronic
- 440 Low Back Pain. Spine (Phila Pa 1976) 1997; 22: 1494–1500
- 441 [29] Harriss DJ, MacSween A, Atkinson G. Ethical Standards in Sport and Exercise
- 442 Science Research: 2020 Update. Int J Sports Med 2019; 40: 813–817
- 443 [30] Shepherd E, Winter S, Gordon S. Comparing Hamstring Muscle Length
- 444 Measurements of the Traditional Active Knee Extension Test and a Functional
- 445 Hamstring Flexibility Test. J Physiother Phys Rehabil 2017; 02
- 446 [31] Williford HN, East JB, Smith FH, Burry LA. Evaluation of warm-up for
- 447 improvement in flexibility. Am J Sports Med 1986; 14: 316–319
- 448 [32] Deguzman L, Flanagan SP, Stecyk S, Montgomery MM. The Immediate Effects of
- 449 Self-administered Dynamic Warm-up, Proprioceptive Neuromuscular Facilitation,
- 450 and Foam Rolling on Hamstring Tightness. Athl Train Sport Heal Care 2018; 10:

451 108–116

452	[33]	Goldberg A, Hernandez ME, Alexander NB. Trunk Repositioning Errors Are
453		Increased in Balance-Impaired Older Adults. Journals Gerontol Ser A Biol Sci Med
454		Sci 2005; 60: 1310–1314

- 455 [34] Kippers V, Parker AW. Toe-Touch Test. Phys Ther 1987; 67: 1680–1684 Im
 456 Internet: https://academic.oup.com/ptj/article-lookup/doi/10.1093/ptj/67.11.1680
- 457 [35] Kraus H, Eisenmenger-Weber S. Evaluation of Posture Based on Structural and
 458 Functional Measurements. Phys Ther 1945; 25: 267–271
- 459 [36] Perret C, Poiraudeau S, Fermanian J, Colau MML, Benhamou MAM, Revel M.
- 460 Validity, reliability, and responsiveness of the fingertip-to-floor test. Arch Phys Med
 461 Rehabil 2001; 82: 1566–1570
- 462 [37] Cheatham SW, Stull KR. Comparison of three different density type foam rollers on
 463 knee range of motion and pressure pain threshold: a randomized controlled trial. Int J
 464 Sports Phys Ther 2018; 13: 474–482
- 465 [38] AAHPERD. Health related physical fitness test manual. Reston, VA, 1980
- [39] Tsuji T, Kitano N, Tsunoda K, Himori E, Okura T, Tanaka K. Short-term Effects of
 Whole-Body Vibration on Functional Mobility and Flexibility in Healthy, Older
- 468 Adults. J Geriatr Phys Ther 2014; 37: 58–64
- [40] Bogaerts A, Delecluse C, Claessens AL, Coudyzer W, Boonen S, Verschueren SMP.
 Impact of Whole-Body Vibration Training Versus Fitness Training on Muscle
- 471 Strength and Muscle Mass in Older Men: A 1-Year Randomized Controlled Trial.
- 472 Journals Gerontol Ser A Biol Sci Med Sci 2007; 62: 630–635
- 473 [41] Fonda B, De Nardi M, Sarabon N. Effects of whole-body cryotherapy duration on
 474 thermal and cardio-vascular response. J Therm Biol 2014; 42: 52–55
- 475 [42] Ring EFJ. The technique of infrared imaging in medicine. In: Infrared Imaging. IOP

Publishing, 2014 476

- [43] Costello JT, McInerney CD, Bleakley CM, Selfe J, Donnelly AE. The use of thermal 477 478 imaging in assessing skin temperature following cryotherapy: A review. J Therm Biol 2012; 37: 103-110
- Tavakol M, Dennick R. Making sense of Cronbach's alpha. Int J Med Educ 2011; 2: 480 [44]
- 53-55 481

479

- 482 [45] Cohen J. Statistical Power for the Behavioral Sciences (2nd Edition). 1988
- [46] Oliveira UF de, Araújo LC de, Andrade PR de, Santos HH dos, Moreira DG, Sillero-483
- Quintana M, Almeida Ferreira JJ de. Skin temperature changes during muscular 484
- static stretching exercise. J Exerc Rehabil 2018; 14: 451-459 485
- [47] Johnson AW, Warcup CN, Seeley MK, Eggett D, Feland JB. The acute effects of 486 stretching with vibration on dynamic flexibility in young female gymnasts. J Sports 487 Med Phys Fitness 2019; 59 488
- [48] Costello JT, Donnelly AE. Cryotherapy and Joint Position Sense in Healthy 489
- 490 Participants: A Systematic Review. J Athl Train 2010; 45: 306-316
- [49] Uchio Y, Ochi M, Fujihara A, Adachi N, Iwasa J, Sakai Y. Cryotherapy influences 491 492 joint laxity and position sense of the healthy knee joint. Arch Phys Med Rehabil
- 493 2003; 84(1): 131-135
- Cochrane DJ. Acute whole body vibration training increases vertical jump and [50] 495 flexibility performance in elite female field hockey players. Br J Sports Med 2005;
- 39:860-865 496

- Annino G, Iellamo F, Palazzo F, Fusco A, Lombardo M, Campoli F, Padua E. Acute 497 [51] changes in neuromuscular activity in vertical jump and flexibility after exposure to 498 whole body vibration. Medicine (Baltimore) 2017; 96: e7629 499
- [52] Binder C, Kaya AE, Liepert J. Vibration prolongs the cortical silent period in an 500

501antagonistic muscle. Muscle Nerve 2009; 39: 776–780

- 502 [53] Centro Studi e Osservatori Statistici per lo Sport. I numeri dello sport 2017. Rome,
- 503 Italy, 2017

Captions

Table 1. Demographic and anthropometric characteristics of the women studied.

Table 2. Summary results of the participants performing different routine protocols (mean \pm SD)

Figure 1. Flow-chart of the study.

AKET, active knee extension test; Cryo, partial-body cryotherapy; S, stretching; SHS, standing hamstrings stretch; SD, standard deviation, TRE, trunk repositioning errors; WBV, whole-body vibration.

Formattato: Inglese (Stati Uniti)

Figure 2. Flexibility outcomes and proprioception

Graphical representation of the absolute difference in the three flexibility tests (A, B, C) and trunk position sense (D) compared to the baseline measurements. Whiskers box-plot: the hinges of the plot extend from the 25th to 75th percentiles. The whiskers go down to the smallest value and up to the largest one.

AKET, active knee extension test; Cryo, partial-body cryotherapy; S, stretching; SHS, standing hamstrings stretch; SD, standard deviation, TRE, trunk repositioning errors; WBV, whole-body vibration.

p < 0.05

Figure 3. Thermal responses

Cryo, partial-body cryotherapy; S, stretching; WBV, whole-body vibration. *** p < 0.0001