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We show that the visible sector probability density function of the Riemann-Theta Boltzmann

machine corresponds to a Gaussian mixture model consisting of an infinite number of component

multi-variate Gaussians. The weights of the mixture are given by a discrete multi-variate Gaussian

over the hidden state space. This allows us to sample the visible sector density function in a straight-

forward manner. Furthermore, we show that the visible sector probability density function possesses

an affine transform property, similar to the multi-variate Gaussian density.

I. INTRODUCTION

Learning the underlying probability density function

of a given dataset and then being able to draw samples

from the learned density is in general a challenging prob-

lem. In recent years several new approaches to tackle this

fundamental problem have been proposed. Perhaps the

most well known are Generative Adversarial Networks

(GANs) [1], which received a lot of attention recently.

Other recent approaches are Variational Autoencoders

[2, 3] and Normalizing Flows [4].

Somewhat orthogonal to these developments, a novel

version of a Boltzmann machine [5] has been introduced

in [6]. The particularity of this new twist of the Boltz-

mann machine is that the hidden state space is the dis-

crete lattice ZNh , where Nh corresponds to the number

of hidden nodes, while the Nv visible sector inputs are

taken from RNv . The important point about this mod-

ification is that the partition function and therefore the

Boltzmann probability density of the visible sector can

be calculated exactly. Hence, we have full analytic con-

trol, as we have an exact expression for the probability

density function.

The novelty about the visible sector density is that it

contains the mathematically well-known Riemann-Theta

function (cf., [7]). Therefore, the machine has been

dubbed the Riemann-Theta Boltzmann machine (RTBM

for short). Note that the Riemann-Theta function origi-

nates from the summation over the state space and can

be calculated explicitly, because for a given precision only

a finite number of terms contribute [8]. The Riemann-

Theta function possesses interesting mathematical prop-

erties, like quasi-periodicities, and the visible sector den-

sity inherits certain aspects of these. Note that the

Riemann-Theta function appears frequently in various

parts of mathematics and physics. Perhaps most promi-

∗Authors contributed equally to this work.

nently in algebraic geometry and in the construction

of quasi-periodic solutions of non-linear equations, cf.,

[7, 8]. The application of the Riemann-Theta function

to approximate statistical probability density functions,

pushed forward in [6], opens up an interesting novel con-

nection of the Riemann-Theta function to probability

theory and machine learning.

The original work [6] mainly investigated the visible

sector probability density function. It has been shown

that this density can be used to approximate the underly-

ing density of a given dataset via the maximum likelihood

method. In particular, the gradients can be calculated in

closed form. Hence, besides invoking a derivative free

optimizer, one can also make use of gradient descent to

solve for the maximum likelihood estimate.

In this work, we will take a more detailed look into

the hidden sector. Besides giving us a more probabilistic

interpretation of the RTBM, this will guide us a way of

sampling the RTBM without the need to invoke Markov

chain Monte Carlo based methods, which are usually

used for Boltzmann machines. Furthermore, reformu-

lating the visible sector probability density in terms of

a hidden sector marginalization sum allows us to inter-

pret the density as a Gaussian mixture model with an

infinite number of constituents and a global weighting

function. We will also show that the RTBM possesses

an affine transform property, inherited from its Gaussian

constituents.

The outline is as follows. In section II we will review

the construction of the Riemann-Theta Boltzmann ma-

chine of [6]. This is followed by a discussion of the affine

transform property of the visible sector probability den-

sity function in section III. A detailed discussion of the

hidden sector probability density function is given in sec-

tion IV. The results in this section allow us to give an

interpretation of the RTBM in terms of an infinite Gaus-

sian mixture, as we will discuss in section V. In turn, this

gives a simple and straight-forward way to sample the

visible sector probability density function of the RTBM,

see section VI. The sampling requires us to draw samples
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from a discrete multi-variate Gaussian. In this work, we

will make use of the Riemann-Theta function evaluation

of [8] to draw such samples. Several examples are dis-

cussed in section VII.

II. RTBM

The RTBM is defined as the quadratic energy model

E =
1

2
xtMx+Btx .

The x are divided into a set of visible and hidden nodes

as

x =

(
h

v

)
,

with total dimension Nv + Nh. The particularity of the

RTBM is that v ∈ RNv and h ∈ ZNh .

The coupling matrix M is taken to be positive definite

and takes the block form

M =

(
Q W t

W T

)
.

The block Q corresponds to the inner sector couplings of

the hidden sector, T of the visible sector, and W to the

coupling between the two sectors. Q and T are real, sym-

metric and positive definite, while W is either purely real

(phase I) or imaginary (phase II). Note that the positive

definiteness of M ensures that the quadratic form E has

a unique finite global minimum, as E is strictly convex

for such M .

The canonical partition function

Z =

∫
[dv]

∑

[h]

e−E(v,h) ,

with [dv] := dv1dv2 . . . dvNv
and [h] := h1, h2, . . . hNh

,

can be calculated in closed form [6]. Therefore, the Boltz-

mann distribution

P (v, h) =
e−E(v,h)

Z
, (1)

as well. As the energy E is strictly convex, the joint

density P (v, h) possesses a unique finite global maximum.

Via marginalization of h, the probability density func-

tion of the visible units can be calculated to be given by

[6]

P (v) =

√
detT

(2π)Nv
e−

1
2 (v+T−1Bv)tT (v+T−1Bv)

× θ̃ (Bth + vtW |Q)

θ̃ (Bth −BtvT−1W |Q−W tT−1W )
.

(2)

Here θ̃ is defined as

θ̃(z|Ω) := θ
( z

2πi

∣∣∣ iΩ
2π

)
,

where θ is the Riemann-Theta function

θ(z|Ω) =
∑

n∈Zg

e2πi( 1
2n

tΩn+ntz) . (3)

In the definition of θ, Ω has to be a symmetric matrix

with a positive definite imaginary part.

Hence, the density consists of a multivariate Gaussian

multiplied by a periodic (and quasi-periodic) function.

As discussed in [6], P (v) can be used as a rather general

density approximator via maximum likelihood estimation

of the parameters. The reason why will become more

clear in the following sections.

A remark is in order. The evaluation of (2) requires the

calculation of the Riemann-Theta function given by an

infinite sum, see equation (3). The fact that allows the

calculation of (3) is that for a given desired precision, only

a finite number of terms need to be summed. It is also

noteworthy that the calculation is vectorizable, as the

subset to be summed over only depends on Ω (uniform

approximation). For a detailed discussion we refer to [8].

III. AFFINE TRANSFORM

The multivariate normal distribution stays normal un-

der affine transformations. As this is a very useful prop-

erty, it is interesting to ask if the distribution of the visi-

ble units (2) possesses such a transformation property as

well. For that, let us consider the characteristic function

defined for a multi-variate distribution as the expectation

ϕX(r) = E(eir
tX) .

Hence, we have to calculate

ϕv(r) =

∫
[dv] eir

tv P (v) .

Simple algebra shows that

ϕv(r) = e−ir
tT−1Bv− 1

2 r
tT−1r

× θ̃
(
Bth − (Btv − irt)T−1W |Q−W tT−1W

)

θ̃ (Bth −BtvT−1W |Q−W tT−1W )
.

(4)

From this characteristic function we observe that P (v)

stays in the same distribution class under affine transfor-

mations

w = Av + b ,

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



3

at least as long as the linear transformation A has full

column rank. In detail, we have that

w ∼ PA,b(v) ,

where PA,b(v) is the distribution P (v) with parameters

rotated as

T−1 → AT−1At , Bv → (A+)tBv − Tb ,
W → (A+)tW , Bh → Bh −W tb .

(5)

Here, A+ is the left pseudo-inverse defined as

A+ = (AtA)−1At . (6)

In particular, A+A = 1 and so At(A+)t = 1.

Several remarks are in order. Note first that the char-

acteristic function (4) does not directly define the trans-

formation property of T , but of T−1. Taking the inverse

of the transformed T−1 implies

T → (A+)tTA+ .

However, only for invertible A, for which A+ = A−1, we

then have that the transformed matrices are still inverse

to each other. Nevertheless, if we treat T and T−1 as

independent, we have that P (v), as given in equation (2),

satisfies P (Av + b) = PA,b(v) under the transformation.

Note also that the determinant in P (v) may need to be

regularized for non-invertible A via taking instead the

pseudo-determinant.

We can generalize to general A by taking A+ to be

the Moore-Penrose pseudo inverse, which is algebraically

given by (6) in case A has full column rank. In this case

we have that A+A = R is an orthogonal projection opera-

tor. Hence, the action (5) on the parameters corresponds

to

P̄ (Av + b) = PA,b(v) ,

with the bar over P indicating that some of the param-

eters are projected, i.e.,

B̄v = RBv , W̄ = RW .

Note that then also the dimension of v may be reduced.

The interpretation is as follows. As there is no exact

solution for non full column rank A, the Moore-Penrose

inverse gives an approximation

P (Av + b) ≈ P̄ (Av + b) = PA,b(v) .

However, in order that the characteristic function is still

well-defined after the transformation, we need that Q −
W̄ tT−1W̄ stays positive definite, which is a priori not

clear to be generally the case. It would be interesting to

clarify this issue. In this work, we are mainly interested

in affine transformations like translations, rotations and

scalings, which are invertible. For instance, this allows

us to train the RTBM on one dataset, and then apply the

trained RTBM to data related by an affine transform. As

long as we transform the parameters according to (5), no

retraining of the RTBM is needed.

IV. HIDDEN SECTOR

The probability density for the hidden states can be

calculated via marginalization of v, i.e.,

P (h) =
1

Z

∫
[dv] e−E(h,v) .

Making use of Gaussian integrals (cf.,[6]), it is not hard

to show that

P (h) =
I(h)∑
[h] I(h)

,

with

I(h) =

∫
[dv] e−E(h,v)

=
(2π)Nv/2

√
detT

e−
1
2h

tQh−Bt
hh+ 1

2 (htW t+Bt
v)T−1(Wh+Bv) .

(7)

Performing the sums over h then yields

P (h) =
e−

1
2h

t(Q−W tT−1W )h−(Bt
h−Bt

vT
−1W )h

θ̃(Bth −BtvT−1W |Q−W tT−1W )
. (8)

From the definition of the θ-function, we infer that∑
[h] P (h) = 1, as it should be.

We infer that the (discrete) probability density func-

tion of the hidden sector is simply a discrete multivariate

Gaussian.

The expectation E(hi) can be calculated easily via

marginalization, yielding

E(hi) =

∑
[h] hi e

− 1
2h

t(Q−W tT−1W )h−(Bt
h−Bt

vT
−1W )h

θ̃(Bth −BtvT−1W |Q−W tT−1W )

= − 1

2πi

∇iθb
θb

.

(9)

Note that we defined

θb := θ̃(Bth −BtvT−1W |Q−W tT−1W ) .

The two-point function E(hihj) can be calculated simi-

larly and reads

E(hihj) =
1

(2πi)2

∇i∇jθb
θb

. (10)
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We infer that the covariance

Σ := cov(hi, hj) = E(hihj)−E(hi)E(hj) ,

is given by

Σ =
1

(2πi)2

(∇i∇jθb
θb

− (∇iθb)(∇jθb)
θ2
b

)
.

Alternatively, we may also obtain the above moments

from the characteristic function

ϕh(r) =
θ̃(Bth − irt −BtvT−1W |Q−W tT−1W )

θ̃(Bth −BtvT−1W |Q−W tT−1W )
, (11)

by simply taking derivatives and multiplying appropri-

ately by factors of 2πi.

To conclude this section, note that the affine transform

(with full column rank) introduced in the previous sec-

tion keeps P (h) invariant. This means that all the affine

transforms (with full column rank) of the input dataset

share the same probability density function over the hid-

den state space.

V. INTERPRETATION

It is illustrative to consider the conditional probability

P (v|h) =
P (v, h)

P (h)
. (12)

From (1) and (8) we obtain

P (v|h) =
1

(2π)Nv/2
√

detT−1
e−

1
2 (v−µ(h)))tT (v−µ(h)) ,

with

µ(h) = −T−1(Wh+Bv) . (13)

Hence, P (v|h) is a multivariate Gaussian with covariance

matrix T and mean µ. In particular, only the mean is h

dependent. The law of total probability

P (v) =
∑

[h]

P (v|h)P (h) , (14)

then tells us that the visible unit density function (2) is

simply a Gaussian mixture model consisting of an infinite

number of Gaussians with weights P (h). Note that each

lattice point in the hidden state space is linearly mapped

via (13) to the center (mean) of one Gaussian constitu-

tent and that all Gaussians share the same covariance

matrix.

In particular, the periodicity of the lattice in the hid-

den state space is linearly mapped via (13) to a corre-

sponding periodicity of the means of the Gaussians in

FIG. 1: Illustration of the infinite Gaussian mixture model

interpretation of the visible sector probability density of the

RTBM in the Nh = Nv = 1 case. One continuous Gaussian

in the visible sector domain is associated to each possible

hidden state (lattice point in the hidden state space). The

contribution of each continuous Gaussian is weighted by the

discrete Gaussian hidden sector probability density function

evaluated at the associated hidden state and summed to yield

the visible sector probability density function.

the visible sector domain. An illustration of the relation

between the hidden and visible sector for Nv = Nh = 1

can be found in figure 1.

From the above discussion we infer that the affine

transform property introduced in section III is inher-

ited from the well-known affine transformation property

of the Gaussian distribution. In detail, from (14) we

see that P (Av + b) translates to the same sum over

P (Av + b|h). Since P (Av + b|h) is Gaussian for given

h, P (Av+ b|h) = PA,b(v|h), with PA,b(v|h) the Gaussian

with mean µ → Aµ + b and T → (A+)tTA+. However,

the mean depends on T−1, see (13). Hence, in order that

indeed µ→ Aµ+ b we need as well to transform Bv, Bh,

W and T−1 as in equation (5).

As a side remark, note that (12) and (14) also allow us

to calculate the cumulative distribution function of the

visible units as a sum over multi-variate error functions.

Finally, one might ask what the benefit of the RTBM

is, as we showed above that the RTBM visible sector

probability density function corresponds in essence to a

Gaussian mixture model with the weights not freely tun-

able, but given by a particular weighting function (the
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discrete Gaussian over the state space). Besides the more

theoretical advantages of having closed form expressions,

like for example the characteristic function, cf., (4), the

main point we promote here is that in putting some ex-

tra structure on the weight space (here a discrete Gaus-

sian over a lattice), allows far more constituent Gaussians

with fewer total parameters in the model (harvesting the

lattice symmetry and properties of the weighting func-

tion). As we will see in the examples section VII, this

mostly yields better results for our toy examples consid-

ered than using a standard Gaussian mixture model.

We conclude that approximating a given probability

density function via the visible sector density of the

RTBM should be seen as sort of a probabilistic Fourier

expansion of the original density (or as wavelet expan-

sion under taking the global damping factor given by the

weight structure into account), with the lattice spanning

the hidden state space determining the expansion modes.

VI. SAMPLING

Expressing P (v) as a mixture of Gaussians via (14)

gives us a straightforward way to draw samples v ∼ P (v).

In detail, a sample is generated by drawing

h ∼ P (h) ,

followed by

v ∼ P (v|h) .

The v are then distributed according to P (v).

As P (v|h) is a multi-variate Gaussian, samples thereof

can be easily drawn, for example via making use of the

affine transformation property. However, how to draw ef-

ficiently samples from the discrete multi-variate Gaussian

is less clear. In fact, this is also a topic of significant im-

portance in lattice based cryptography, see for instance

[9–11] and references therein.

Here, we will make use of the numerical evaluation of

the Riemann-Theta function [8] to sample the discrete

multi-variate Gaussian. The sampling proceeds as fol-

lows. Note first that the numerical evaluation of θ is not

exact, but rather

θ = θn + ε(R) ,

where θn refers to the numerical evaluated value of the

Riemann-Theta function and ε denotes its error. The

origin of the error lies in the fact that the algorithm to

approximate the Riemann-Theta function sums only over

a finite number of lattice points in the summation (3),

which lie in an ellipsoid of radius R, see figure 2. In more

detail, the radius is determined by the desired error ε and

4 3 2 1 0 1 2 3
h1

4

2

0

2

4

6

8

h2

FIG. 2: Illustration of the discrete Gaussian sampling proce-

dure. The blue dots mark the integer points included in the

ellipsoid of radius R used to calculate the Riemann-Theta

function (with Nh = 2) to precision ε. The orange dot corre-

sponds to E(h) and the circles are the contour lines of P (h),

with h taken continuous.

the shortest lattice vector. The latter is calculated via

the LLL algorithm [12], which gives a sufficient approx-

imation, at least as long as Nh is not too large [8]. The

lattice points inside the ellipsoid are determined recur-

sively via taking sections in one lower dimension until we

reach a set of one-dimensional ellipsoids for which the set

of included integer points can be easily determined.

For sampling, the key point is that

p =
ε(R)

θn + ε(R)
,

gives us the probability that a point sampled from P (h)

lies outside of the ellipsoid of radius R used to evaluate

the Riemann-Theta function. Hence, for sufficiently high

precision (small error) we have that p� 1. In turn,

∑

[h](R)

P (h) =
θn

θn + ε(R)
≈ 1 ,

where [h](R) stands for that we sum only over the lattice

points inside the ellipsoid used to evaluate the denomi-

nator of P (h).

We conclude that we can simply sample from P (h) by

uniformly drawing from the lattice points included in the

ellipsoid used to evaluate the Riemann-Theta function

in the denominator and accepting the drawn sample h

with probability P (h). Note that the rate of convergence

can be further increased by normalizing the acceptance

probability by the maximum probability on the set of

lattice points in the ellipsoid. In the next section several

examples will be discussed.
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VII. EXAMPLES

In this section we present several examples of sampling

from RTBMs fitted to one- and two-dimensional proba-

bility distributions. Four of the examples discussed below

are based on the analytic densities already considered in

[6], while two new examples are based on empirical fi-

nancial return distributions. In all examples the RTBMs

are learned from an original data sample via the Theta

Python package [13] with CMA-ES as optimizer [14].

a. Sampling 1d distributions The plot on the first

row of figure 3 shows an example for the gamma distri-

bution with probability density function reading

pγ(x, α, β) =
βxα−1eβx

Γ(α)
.

In this example we take pγ(x, 7.5, 1) as input distribu-

tion (blue curve) and train P (ν) of a single RTBM with

two hidden nodes (red curve) with 2000 samples from

the input distribution. The histogram contains Ns = 105

samples generated from the trained RTBM using the al-

gorithm given in section VI with ε ∼ 10−12. Similarly

to the first example setup, the plots on the second and

third row of figure 3 illustrate the sampling of RTBMs

with three hidden nodes fitted respectively to the Cauchy

distribution, pC(x, 0, 1), defined as

pC(x, x0, γ) =
γ

π((x− x0)2 + γ2)
,

and to the Gaussian mixture defined as

mG(v) = 0.6pG(v,−5, 3) + 0.1pG(v, 2, 2) + 0.3pG(v, 5, 5),

where pG(v, ν, σ) is the normal distribution.

In figure 4 we perform a similar RTBM sampling exer-

cise, however for empirical daily return data from two dif-

ferent equities: GOOG and XOM. Note that such return

distributions are usually non-normal (heavy tails). In

both examples stock data is extracted between the years

2005 and 2017, and RTBMs with three hidden nodes are

fitted to the empirical daily return distributions.

In table I we provide distance estimators to quantify

the quality of the sampling examples. The first estimator

is χ2 defined as

χ2
RTBM =

Nbins∑

i=1

(Oi − Pi)2

Pi
,

where Oi is the value of the histogram bin i, Pi is the

RTBM prediction at the lower edge of the ith bin and

Nbins is the total number of bins used by the histogram

to store the sampling data. This estimator provides a

quadratic distance measure between the sampling his-

togram and the RTBM model. Values of χ2
RTBM/Nbins �

0 5 10 15 20
v

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

P

Gamma pdf
RTBM model
Sampling Ns = 105

20 10 0 10 20
v

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P

Cauchy pdf
RTBM model
Sampling Ns = 105

20 10 0 10 20
v

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P

Gaussian mixture pdf
RTBM model
Sampling Ns = 105

FIG. 3: Sampling examples for RTBMs trained on the

Gamma (Nh = 2), Cauchy (Nh = 3) and Gaussian mixture

(Nh = 3) distributions. Each sample contains Ns = 105 ele-

ments. The blue curve represent the underlying distribution

while the red curve is the corresponding RTBM model. The

gray histogram is sampled from the RTBM model.

1 indicate good agreement between the model and the

sampling thereof.

In the fourth column of table I we show the

Kolmogorov-Smirnov distance defined as

KS = sup
x
|S(x)− F (x)| ,

where supx is the supremum of the set of distances, S(x)

the sampling empirical cumulative distribution function

(CDF) and F (x) the underlying exact CDF.

Another useful estimator is the mean squared error
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20 15 10 5 0 5 10 15 20
v

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P

RTBM model
Sampling Ns = 105

GOOG data

15 10 5 0 5 10 15
v

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P

RTBM model
Sampling Ns = 105

XOM data

FIG. 4: Sampling examples for RTBMs fitted to GOOG (up-

per plot) and XOM (lower plot) stock daily return distribu-

tions (in percent). Each sample contains Ns = 105 elements.

The red curve is the corresponding RTBM model. The blue

histogram is the empirical data. The gray histogram is sam-

pled from the RTBM model.

(MSE)

MSEA
B =

1

Nbins

Nbins∑

i=1

(Ai −Bi)2 .

The index i refers to the bin index of the corresponding

sampling histogram. The MSE distances between the

sampling, RTBM and the underlying distribution are also

given in table I. Small values indicate good agreement

between the measured quantities.

In order to have a baseline to compare the model fit

quality against, we also give the MSE distances between

the underlying distribution and three other common fit-

ting models in table I. Namely, a Gaussian mixture, a

(Gaussian) kernel density estimator and the continuous

Gaussian restricted Boltzmann machine (CRBM) with

binary hidden units, cf., [15]. The hyper-parameters

of these models are manually picked for the best fit-

ting result. In particular, we use 20 hidden units for

the CRBM with 10k training iterations making use of

the package [16] (GaussianBinaryVarianceRBM). We ob-

serve that the RTBM fit is superior to the CRBM fit and

competitive with the other models, i.e., yielding mostly

better or comparable MSEs with less parameters.

6 4 2 0 2 4 6
v1

6

4

2

0

2

4

6

v2

0.0

0.2

0.4
P(v1)

0.00 0.25 0.50
P(v2)

FIG. 5: Sampling of a multivariate Gaussian mixture fitted

by a RTBM model with Nh = 2. The contour plot of the

trained model is shown together with its projections along

the two axis. The blue line corresponded to the underlying

true distribution, the red line to the RTBM model and the

histogram show the samples generated by the RTBM model.

In table II the mean and the 2nd to 4th central mo-

ments,

µn =

∫ +∞

−∞
(x− µ)nf(x)dx ,

with µ the mean, are given for the sampling examples,

the RTBM model (round brackets) and the original un-

derlying distribution (square brackets).

In summary we can confirm that the sampling exam-

ples achieve a good level of agreement with the underly-

ing distributions and RTBM models.

b. Sampling 2d distributions In figure 5 we show a

sampling example for a two-dimensional RTBM with two

hidden units fitted by the Gaussian mixture

mG(v) = 0.5pG(v, [0, 0], 1)

+ 0.25pG(v, [−4, 0], 1)

+ 0.25pG(v, [4, 0], 1).

The contour plot of the trained model is shown together

with its projections along the two axis. The blue line

corresponds to the underlying true distribution while the

red line is the RTBM model prediction. The sampling is

represented by the gray histogram in the (v1×v2) domain

and in the axis projection planes. We observe that also

in this example the sampling provides a good description

of the underlying distribution.

Finally, let us verify at hand of this 2d example the

affine transform properties of P (v) discussed in section

III. We take the RTBM model used to generate figure 5

(red lines) and perform a scaling of factor two, a rotation
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Distribution χ2
RTBM/Nbins MSEsampling

RTBM MSEsampling
pdf KS MSEpdf

RTBM MSEpdf
GMM MSEpdf

GKDE MSEpdf
GRBM

Gamma 0.02/50 2 · 10−5 2.6 · 10−5 0.01 6.8 · 10−6 2.4 · 10−5 [3] 2.8 · 10−5 [0.5] 5.8 · 10−3

Cauchy 0.12/50 2.9 · 10−4 3.7 · 10−4 0.02 2.9 · 10−5 8.1 · 10−5 [10] 1.5 · 10−5 [0.4] 4.8 · 10−3

Gaussian mixture 0.01/50 6.7 · 10−6 1.4 · 10−5 0.01 1.9 · 10−6 4.7 · 10−6 [3] 2.1 · 10−6 [1] 1.3 · 10−3

GOOG 0.10/50 2.7 · 10−4 9.5 · 10−3 0.02 2.5 · 10−4 2.7 · 10−4 [2] 2.4 · 10−4 [0.4] 8.9 · 10−3

XOM 0.09/50 2.6 · 10−4 6.7 · 10−3 0.02 3.7 · 10−4 3.1 · 10−4 [4] 3.0 · 10−4 [0.4] 1.1 · 10−2

TABLE I: Distance estimators for the sampling examples in figures 3 and 4. Exact definitions for all distance estimators are

given in section VII. The mean squared error (MSE) is taken between the sampling, the fitting model and the underlying

distribution (pdf). The Kolmogorov-Smirnov (KS) distance is shown in the fourth column of the table. The numbers in the

brackets correspond to the number of constituents of the Gaussian mixture model (GMM), respectively to the bandwidth of the

Gaussian kernel density estimator (GKDE) model. For GOOG and XOM the empirical distribution is employed as underlying

pdf.

Distribution Mean 2nd moment 3th moment 4th moment

Gamma 7.43 (7.43) [7.49] 6.91 (6.89) [7.41] 10.03 (10.03) [13.79] 154 (153.23) [195.8]

Cauchy -0.057 (-0.057) [-] 11.64 (11.64) [-] -4.63 (-4.97) [-] 1749.8 (1753) [-]

Gaussian mixture -1.48 (-1.48) [-1.31] 34.45 (34.45) [34.29] 134.35 (136.67) [131.78] 3558.7 (3571.8) [3569.1]

GOOG 0.06 (0.06) [0.08] 3.28 (3.23) [3.58] 1.52 (1.42) [6.04] 117 (108) [191]

XOM 0.02 (0.02) [0.03] 2.13 (2.15) [2.36] -0.42 (-0.18) [1.44] 38.3 (40.2) [97.1]

TABLE II: Mean and central moments for the sampling data, the RTBM model (round brackets) and the underlying true

distribution (square brackets). Note that the moments of the Cauchy distribution are either undefined or infinite. The given

values correspond to the RTBM model approximation and its sampling, which are defined and finite, cf., (4). For the GOOG

and XOM distributions the true moments (square brackets) are evaluated from the underlying empirical distribution.
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FIG. 6: Example of an affine transform. The RTBM model

from figure 5 (red lines) is scaled, rotated and translated ac-

cordingly to the expressions in section III (black lines). The

affine transform is also applied to the sampling histogram.

of π/4 and a translation of b = [1, 2] (black lines) via

the affine transform action (5). The results are shown in

figure 6, together with a rotation of the sampling. We

can confirm that the affine transform works as expected.
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