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HANKEL OPERATORS ON WEIGHTED BERGMAN
SPACES ON STRONGLY PSEUDOCONVEX DOMAINS

MARCO M. PELOSO

Introduction

Let f/ be a C-bounded strongly pseudoconvex domain, f/= {z Cn:
p(z) < 0}, n > 1. For v > 1, let dm Ip(z)ldrn, where drn is the
Lebesgue volume form. Let L2 be the L2-space L2(f/, drn). We consider the
weighted Bergman space A2’(), the closed subspace of L2 consisting of
the holomorphic functions. The orthogonal projection of L2 onto A2’ will
be denoted by P. Together with P we will consider a non-orthogonal
projection /5 of L2 onto A2’, given by an explicit integral kernel G(z, w).
Such a kernel, and projection, have been introduced by Kerzman and Stein in
[16], and studied by Ligocka in [14] and [15], and by Coupet in [6].

In this paper we consider the Hankel operator, and the so called non-
orthogonal Hankel operator, denoted by Hf and Hf respectively, and defined
by

Hg( z) ( I P)(fg)( z),

and

Ig( z) ( I )(fg)( z).

The Hankel operators on Bergman spaces are considered to be classical by
now. In [1] Axler proved that if f is holomorphic, then the Hankel operator

Hf on the unweighted Bergman space A2(D) on the unit disc D, is bounded
(respectively compact) if and only if f is a Bloch function (resp. a little Bloch
function). About the same time, in [3] Arazy, Fisher, and Peetre proved the
same characterization about boundedness and compactness for Hf in the
case of the weighted Bergman spaces on the unit disc for f an analytic
symbol. Moreover Arazy, Fisher, and Peetre proved that Hf belongs to the
Schatten ideal pp if and only if f is in a certain Besov space. These
pioneering results have been extended in various directions. In [21] Zhu
studied the Hankel operators H and H on the unweighted Bergman space
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A2(B) on the unit ball. He proved the same characterization as the previous
cases for generic symbol f, but assuming that both Hy and H are respec-
tively bounded, compact, in the Schatten class . For analytic symbols, the
same results were also proved in the weighted case by Feldman and Rochberg
in [8], by Arazy, Fisher, Janson, and Peetre in [2], and by Wallstn in [20].
More recently Leucking [10] first in the case of the unit disc, and then Li in
the case of smoothly bounded strongly pseudoconvex domain (see [13]), have
been able to characterize the bounded and compact Hankel operators on the
unweighted Bergman space for generic symbols.

In this paper, following an idea of Janson’s (see [9]), we relate the
properties of the Hankel operator Hf to the ones of the non-orthogonal
Hankel operator f. We prove that Hf and nf have the same properties..
Precisely we prove that, if f is holomorphic, Hf is bounded if and only if Hf
is bounded, and if and only if f. is a Bloch function. Moreover we prove that

Hf is compact if and only if Hf is compact, and if and only if f is a little
Bloch function. Next we turn to Schatten ideal properties of the operators Hf
and f. Consider the Besov space Bp defined as

Bp {f holomorphic"

f(lp(z)l E o(z)l--(n + 1)
dm(z) <

where rn is any integer such that mp > n. Let G be the explicit kernel
mentioned before. Then we prove that the following four conditions are
equivalent for f holomorphic in l-l, and 2n < p < :

(i) f e B,,
(ii) H.Z ,
(iii) H e ,
(iv) fafalG(z, w)121f(z) f(w)lp dm,,(z)dm,,(w) < .
We also prove that if one of the conditions (ii) through (iv) holds for

0 < p < 2n then f is constant.
These results extend to the strongly pseudoconvex case results in the

aforementioned papers. Some of these results also appear in [12] and [13].
We conclude this introduction by noticing the fact that by construction we

consider only the case n > 1. For these operators defined on general planar
domains, the reader can consult [4].
The paper is organized as follows. The first Section contains the definitions

and the statement of the main results. In Section 2 we prove some basic facts
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about the non-orthogonal projection /5 and relative kernel G(z, w). The last
two sections are devoted to the proofs of the main results.

1. Statement of the main results

Let 12 be a smoothly bounded strongly pseudoconvex domain in Cn, n > 1.
Let p be a C pluri-subharmonic defining function for , defined in a
neighborhood of :

{Z Cn" p(Z) < 0}.

Let dm be the Lebesgue volume form in Cn. For u > -1 we let

dm,,( z) IP(Z)I" dm( z),

and

L2 L2(l-l, dm).

We consider the weighted Bergman spaces A2’(f), the closed subspaces
consisting of the holomorphic functions. The orthogonal projection of L2
onto Aa’ will be denoted by P. It is well-known that A2’ admits a
reproducing kernel K(z,w), called the (weighted) Bergman kernel, and
defined by the condition

Pf(z) fK(z, w)f(w) dm,,(w),

for z 12 and f L2. Notice that we adopt the convention of writing P and
K without explicitly indicating the weight Ipl . We do so because no
confusion will arise.

Together with the orthogonal projection we will consider a non-orthogonal
projection /5, that we define in 2.3 that follows,

15. L2 -) A2,v.

Such a projection is given by a kernel G(z, w), holomorphic in z f and
Coo(f 12\ A), where A is the diagonal of bf b12, and bO is the
boundary of I. Moreover, for all f A2’

f(z) ffG(z, w)f(w) dm,,(w).

Such a kernel (and projection) has been introduced by Ligocka (see [14]),
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following a construction developed Kerzmen and Stein in [16]. The same
projection also appears in [6]. We define the non-orthogonal Hankel operator

I with symbol f L2 defined on A2’ as

Il:g(z ) (I-15)(fg)(z)

fa(f(z) -f(w))G(z,w)g(w) dmv(w ).

Now, let f C(fl). Consider the modulus of the covariant derivative of f
at z, i.e.,

I f(z)l sup I f(z)

where [l,z is the norm of the vector sc at the point z in the Bergman
metric, and Vf means the gradient of f. Here and in the rest of the paper we
will write f (f) to indicate the holomorphic functions on . For
f () we say that f is a Bloch function, and we write f , if

We say that f (l) belongs to the little Bloch space, and we write

f 0, if

lim IDf(z)l O.
z bl

The Bloch and little Bloch spaces on strongly pseudoconvex domains have
been introduced and studied in [17].
Now we are ready to state our two first main theorems.

THEOREM 1.1. Let f (12). Then the following are equivalent.
(i) f .
(ii) Hf is bounded.
(iii) /f is bounded.

THEOREM 1.2. Let f (12). Then the following are equivalent.
(i) f 0.
(ii) Hf is compact.

(iii) Hf is compact.
The idea of relating the study of Hankel operators to the one-orthogonal

Hankel operators comes from [9], where similar results are obtained.
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In order to state our next results we need to introduce some more space of
functions and operators.

Let R and 0 < p < o. We define the (diagonal) analytic Besot; spaces
P as

B’p f (12)" IP(Z) m-t E am(z) < o (1)Ip(=)l

where rn is a non-negative integer such that rn > t. We can make B’ p into a
Banach space by fixing any compact set E c c 12 and set

-, din(z)Ilfll$,, IP(Z) [m E Io"f(x)l
lal=m Ip(z)l

+ E f lo f(z)l " din(z).

Since we will deal particularly with the space B;/p’p, we write

B;/p,p.

Finally, let H be any Hilbert space. Let k be a positive integer. For any
compact operator T on H define the k-singular number of T as

sk(T) {infllT- RII" rank(R) _< k}.

We define the Schatten p-class p
operators on H for which

to be the linear space of compact

THEOREM 1.3. Let f be a C%bounded strongly pseudoconvex domain. Let
2n < p < oo. Then the following are equivalent for f (f).

(i) f Bp.
(ii) fallf(z)lp dAfz) <
(iii) fafa[f(z) f(w)[P[G(z, w)[ dm,(z) dm,(w) <

Moreover, if 0 < p <_ 2n and either condition (ii) or (iii) holds, then f is a
constant.

Here, and in the rest of the paper, we let dh Ip(z)l-(n+ 1) dm(z), and G
is the kernel given by the non-orthogonal projection introduced in 2.3.
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THEOREM 1.4. Let f a’(fl). Then the following are equivalent.
(i) f Bp.
(ii) H.f p.
(iii) Hf p.

Moreover, if 0 < p < 2n and either condition (ii) or (iii) holds, then f is a
constant.

2. Basic facts

In this section we construct the non-orthogonal reproducing kernel and
describe some basic properties of it. In doing this we follow the construction
in [14], whose ideas go back to [16]. We will compare this kernel with the
Bergman kernel, of which we describe the asymptotic expansion due to
Fefferman (see [7]).

Let l) be a smoothly bounded strongly pseudoconvex domain,

where p is such that. the Levi form Lp satisfies

Lp(w) > c1112, : Cn

for p(w) < o, 0 > 0, and c depending only on l’l. Now set

F( z, w) - (w)( z w)
j=l

1 n 02p
+-,1 ww(w)(z w)(z w)

By strongly pseudoconvexity and Taylor formula it follows that there exist e 0,

co > 0 such that if p(w) > 80, Iz wl < e0, then

2ReF(z,w) > -p( z) + p(w) + Colz wl 2.

Now set

q’( z, w) ( F( z, w) p(w))x(lz w I) + (1 -x(Iz wl))lz wl 2,
(2)

where X is a C cut-off function of the real variable t, X(t)- 1 for
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Itl < e0/2, x(t) 0 for Itl > 3/4e0. Thus, for p(w) < 0, Iz wl < e0/2,

I (z,w)l = IRe 1 + IIm 1
=lp(z)l +lp(w)l + Iz wl 2 + IIm 1.

Here and in the rest of the paper we adopt the following convention. The
notation 0 _< b means that 0() < c. b(:) for all :, and for a constant c
depending only on the parameters involved, not on :. In the same manner,
0 -- b means q _< b and b _< q.

2.1 The weighted Bergman kernel. For v < -1 we consider L2 and the
weighted Bergman space A2’. Let P be the orthogonal projection

P" L2,, A2,v,

and K K(z,w) be the (weighted) Bergman kernel. In [7], Fefferman
proved that, when v 0, for Ip(w)l < 0, Iz wl < e0/2,

K( z, w) clVp(w) 2
det Zp( w) XIt( z, w) -(n+ l)

where E Coo(f f \ A), A the diagonal of bf bf, and

IE(z,w)l <l(z,w)l -(n+1)+’/2 .llogl (z,w) 11.

When v m is a positive integer, we can embed 1 into Cn+m and obtain
Fefferman’s result for the reproducing kernel of A2’. Put

-m {(Z,) Cn X Cm" pl(z,) p(z) -[- I:1 z < 0}.

The following result is implicit in [15].

LEMMA 2.2. Let m be a positive integer, and let K(z, w) be the weighted
Bergman kernel for A2,m, the subspace of L2(, Ipl m din). Then

K(z,w) clVp(w)ldet Zp(w)(XI(z,w)) -(n+l+m)
d- E(z,w),

where E C( X f \ A), and E satisfies the estimate

IE(z,w)l [xIt(z,w)l -(n+l+m)+l/2 "llogl*(z,w)[I.
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Proof. It is clear that m is a C-bounded strongly pseudoconvex do-
main. Therefore, by Fefferman’s theorem,

KI’Im(( Z, ), (W, TI))

cIVPl(W, 7)Idet Lp,(w, rt)( (( z, :), (w, 7)))-(n+l+m)
+E((z.)(w..)).

where is defined as in (2), with the obvious changes. We claim that

gfm((z,O),(w,O)) K(z,w)

is the reproducing kernel for z2’m(). Indeed, K(z, w) is holomorphic in z,
and K(z, w) K(w, z). Moreover, for each fixed z,

- > famlKam((z,O),(w,O))l: dm(w, rl)

fa[K(z,w)[:flhI2 < Io(w’l
dm(rl) dm(w)

flg(z,w)12lp(w)[m din(w).

So, K(z,. ) L(12). Finally, for f Lm(f) define j L:(12m) by setting
j(z, :) f(z). We have that

f(z) f.mg.m((Z,O), (W, 7-l));(W) dm(w, 7)

w) flrtl2 <Ip(w)Igfm((Z’O)’(W"rl) ) dm( rt) dm(w)

fJ(w)K(z, w)l p(w)I" din(w).

Thus, K(z, w) is the reproducing kernel for A2’m(’) and

g( z, w) gm(( Z, 0), (w, 0))

cl 7p(w)Idet Lo(w)( z, w)+’+" + E( z, w),

and the lemma follows.
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The non-orthogonal reproducing kernel.
the following.

Let v > 1. Ligocka [15] proved

THEOREM 2.3. There exists a kernel G(z, w) such that"
(i) G C(1 f \ A), G is holomorphic in z.
(ii) G reproduces the holomorphic functions in A2’V; i.e., for f A2’,

f(z) fsaG(z,w)f(w) dm(w).
(iii) Ia(z,w)l - [(z,w)[ -(n+l+) f_or Ip(w)l < 0 and [z w[ < eo.
(iv) G(z, w)- G(-: -= O(Iz wl

Moreover, let

15. L2 --> A2,

be the integ,ral operator defined by G. Let P and K be respectively the weighted
Berg,man projection and kernel. Then:

(v) P =/5(i A)- and P (I + A)- 1/5, where A is a smoothing opera-
tor of order tx/2, where tx Iv v]l.
Here [x] is the integral part of x R.

2.4 We adopt the following convention. By the notation G(z, w) we mean
the kernel described above for v > -1, when v is not an integer. When v is
an integer, G K, the weighted Bergman kernel.

Remark 2.5. The kernel described in 2.3 has the advantage of being
explicit, that is the behaviour of G(z, w) along the diagonal of Z of the
boundary is well described, as 2.7 will show. When v is an integer, Feffer-
man’s theorem [7] and 2.2 give complete information about the behaviour of
the weighted Bergman kernel near A.

Standard coordinate systems. Near any boundary point sr bO we intro-
duce a coordinate system that we call standard, and that allows us to make
precise estimates for the integral kernels.

LEMMA 2.6. Let 12 be a C-bounded strongly pseudoconvex domain. There
exist positive constants eo, o, ca, andM such that for any 1, [p(sr)[ < eo,
on B(, ’o) is defined a C-diffeomorphism t(z, ) for which the following hold.
The coordinates

t(z,) (t,tz, t’) e R+ R R2"-2
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satisfy:
(1) tl(Z, r) --p(z), t(r, r) (_p(’), 0,..., 0).
(2) t2(z, r) Im (z, r).
(3) IJacR t(., ’)1 < M.
(4) IdetJacR t(.,r)l > 1/M.

Proof. By (2) we can find g0, e0 > 0 so that (z, w) is well defined. Then,
using the same notation as before,

dz(Im(z,))lz=c (l(F(z,r)-F(,z)))ld(Im F(z, r)) [= =d
Z-

1 +

Therefore, at z r,

dz(Im) A dz(-p) i-() A Op() , O.

Hence we can find smooth functions tj, 3 < j < 2n with tj 0 for z r and

dz(-p) A dz(Im) A dt3 A /k dt2n q 0

at z r. Now we use the inverse function theorem. The construction so
obtained holds in a neighborhood of r. Since f is compact, a finite subcol-
lection of such neighborhoods covers f. Call these neighborhoods U(r), for
some r near the boundary. Hence we can determine eo, 0, M so that the
conclusions hold. t

Now we use this coordinate system to prove the next result. Put

D {t (tl, t2, t’) R+ R R2n-2" 0 < < 1, It2l < 1, It’[ < 1}.
(3)

LEMMA 2.7. Let 12 be a C=-bounded strongly pseudoconvex domain. Let
a R, v > -1, and let (z, w) be the function defined in (2). Then

[P(w)l 
I (z,w)ln+l+v+a

1 if a<O

dm(w) , loglp(z)1-1 if a =0.

[p(z)[ -a

if a > 0

Proof. This is standard. Otherwise, it suffices to pass to standard coordi-
nates, and use elementary estimates.



HANKEL OPERATORS ON WEIGHTED BERGMAN SPACES 233

LEMMA 2.8.
Then

Let v > -1, and let K(z, ) be the weighted Bergman kernel.

IIK(’,’)I[ lp()l -n++)/2.

Proof If v is an integer the result follows from [7]. Let v be non-integer.
With the notation of 2.8

p =/5(i A) -1 (I + A)-I/6.

Put Kc K(., sr). Then

< IIP*Kcll 2.

Now, let G*(z, w) G(w, z). It follows that

P*Kc( z) (w)G*( z, w) dm(w)

fnG(w,z)K(,w) dm.(w)

G*(z, ),

where we have used the fact that G is holomorphic in the first variable.
Therefore,

IIKcll < Ila*(’, )

and the result follows from 2.7.

3. Boundedness and compactness

In this section we prove Theorems 1.1 and 1.2. Recall that we fixed
v < -1 and we put G(z, w) to be the reproducing kernel introduced in 2.3,
with the convention 2.4. We begin with a lemma that is a generalization of
Lemma 5 in [1].

LEMMA 3.1. Let 12 be a strongly pseudoconvex domain, v < -1, and let
(z, w) be the function defined in (2). Moreover, let 6o > 0 be fixed. For any
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O < 3a/2 < v + 1 there exists a constant C > O such that for all z with
-o < p(z) < O, and for all f C1(12),

If(z) -f(w)l ip(w)l-a dm(w) <_ Clp(z)l -a
sup

z) IxI( z, w) n+l+v
U(z)

where U(z) is the neighborhood of z on which the standard coordinates are
defined (see 2.6).

Proof. Let k(z, w) denote the Kobayashi distance between z and w 12
(see [17] for the definition). Then, for all f Cl(f/) we have that

If(z) -f(w)l-< sup l)f()’k(z,w) for w e U(z).
’eU(z)

By [11] Theorem 4 it follows that, for 0 < e < 1,

(z,w) <_ Ip(z)l-lp(w)l
I(z,w)l -=

Therefore, taking e a/2, we have

fu( If(Z) -- W)! -a

z)(i-zw) +l+. Ip(w)l dm(w)

lp(z)l -a/2 sup I f< )l f <z din(w)
U(z) I(Z,W)In+l+v-a

lp(z)l -a
sup If(’)l,

eU(z)

applying 2.7 again.

Proof of 1.1. Recall that for f (f/), g A2’

/-[(g) (I fi)(fg)
(I- P)(fg) + PA(fig).

(i) (ii). Let f ,
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Let 0 < 3a/2 < v + 1. Then by the Schwarz inequality we have

IIfg(z) [2 f12 If(z)-- w)yq-! lp(w) lv-a dmv(w)

X (_ti W)
+l+v [[9(W) dm(w). (4)

Fix a finite partition of unity on a neighborhood of fl such that on each open
set the standard coordinates are defined. Now using 3.1 it follows that the
right hand side of (4) is less or equal to a constant times

ff/ f(__Z)--! g(w) 121 [9(W)[v+a dm(w).IP(z)l-allfll
i,(z, w)

Therefore, by Fubini’s theorem and 3.1 again,

[lfg 112,. < [If
1( Z, W) in +1 +" [[9( Z)[ g(W) p(W)

+a
dm dm

Ilfll fa g(w)121 p(w)I dm.(w)

(ii) (iii). recall t.hat f =HI, + PA(f. ). Since Hf and PA(f. ) have
orthogonal ranges, H bounded implies that both H and PA(f. ) are
bounded.

(iii) (i). This follows from [6], Theorem 5. t

Proof of 1.2.
let 6 > 0. Then

(i) = (ii). Let f 0 and g A2,v. Let e > 0 be fixed, and

We claim that T is compact and that II T2 II < e. From this it follows that



236 MARCO M. PELOSO

is compact. Let {gj} e A2,v be such that gj 0 weakly, and hence uniformly
on compact subsets. Then

IlTlgjll 2 _< csff If(z) -f(w)llgy(w)ldm(w) dmv( z)

<_ C flloglp(w)ll /lloglp(z)lll&(w)ldm(w) dm(z)

if j > jo(e). Then T is compact. Next, as in the proof of 3.1, it follows that if
O < 3a/2 < u + 1,

IZ2g(z) [(z)I -a
sup l f(z)l

Ip(z)l<,5

Therefore,

Since f e 0, supl,()l <l/f()l can be as small as we like by taking 8 small
enough. Therefore II TII < e for 8 < 8(e) and the claim is established.

(ii) (iii). This is as in the proof of 1.1.
(iii) (i). This follows from [6], Theorem 7. El

Remark 3.2. The assumption f holomorphic has been used only in
proving the implication "Hf bounded (compact) implies f ,(0)"- Con-

2sider the linear space I (12) q L (f) with the norm

llfll .,’ sup l/f(z)l + llfllL’:’<:n).
zl’2

Notice that if f is holomorphic then Ilfll Ilfll . Moreover, consider the
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subspace z0 of a of the functions for which

lim I/f(-)l 0.
p(O--,o-

Then we have the following

COROLLARY 3.3. Let f (respectively ’o). Then the Hankel and non-
orthogonal Hankel operators Hf and Hf are bounded (resp. compact) on A2,v.

It would be interesting to prove the final implication, that is "H, Hf
bounded (resp. compact), implies f (resp. go)". So far, we have not
been able to prove the statement. Related results are contained in [10], [12],
and [13].

4. Besov spaces and Schatten ideal classes

In this section we prove Theorems 1.3 and 1.4. We begin with 1.3, the
proof of which requires us to show few lemmas.

LEMMA 4.1. Let v > -1, /3 > 0. For a, > 0 set

and

h(t)
(a + t)’

H(t) h(z) d.

Then for all M > 0 there exists a positive constant C C(M, v,/3), such that

H(t) < Cth,,(t)

for all a > O, and O < < Ma.

Proof. First of all we dispose of the case/3 < v. In this case an integra-
tion by parts give that

Thus,

1 /3H(t) < the(t) + H(t)v+l v+l

1
H( t) < the(t) for alla t>Ov+l-/3
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Suppose now that fl > u. For any positive integer m, integrating by parts
m-times gives that

m t+j
H(t) E cy(u,fl) + c(u,fl) f

j=l (t9l d- t)/3+J-1 "0 (0 q- t)+m
d’. (5)

where c 1/(v + 1), and for j > 2,

1)"’(/3 +j-2)((v+ 1)’"(v+]))-.

By applying the mean value theorem we see that

.v+m tv+m
(O "JI- 7)/3+m

dr <t (6)
(o + t)+m

for

v+m
< a.

Having fixed M, we can choose m such that

v+m
M< [3 v

Plugging (5) into (6) we find that

H(t) < C( M, v, )th( t) for0 < <
v+m

This finishes the proof.

PROPOSITION 4.2. Let v > -1 and 1 < p < oo. Then there exists a con-
stant C > 0 such that for all f CI(gl),

Proof In [16] it was proved that

(z, w) (w, z) + O(Iz wl 3) for z, w 12.
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Because of this symmetry it suffices to estimate the integral over the subset
of l’l fl,

Moreover, it is also clear that it suffices to estimate integrals of the kind

If(z)- f(w)l
I-i’) 12(n+l+v, dmv(w)dmv(z)’

where " is any point on bIl. We apply the change of coordinates described in
2.6. Put

E {(s1, $2, s’) R+ R R2n-2" < s < 1, It2 s2l < 1, It’- s’[ < 1}.

We find that the above double integral is less than or equal to a constant
times

fDfE If(t) f(S) ’
t(t + S + IS2 --t21 + Is’-t’12)

2(n+l+v)St dsdt

If(t,,t2, t’) f(sl, s2 + t2,s’ + t’)l
(tl + Sl + Is21 + Is’12)2(n+l+)

st dsdt.

Now we break the integral into three different ones, called I, II, and III
respectively, by majorizing the numerator of the integrand as follows:

f(tl, t2, ) f(s1, $2 + t2, s’ + t’)Ip

<lf( tl, t2, t’) f(s1, t2, t’)Ip

+lf(s, s2 + t2, t’) f(s1, 2, t’)[P
+lf(sl, s2 + tz, s’ + t’) -f(sa, s2 + t2, t’){p.

We estimate the three different terms I, II, and III in a sequence of claims.

Claim 1.

pO
t’ (n+ 1)llf(tl, t2, ) t{ dt.
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Proof of Claim 1. We need to estimate the double integral

If(tl, t2, ) f(sl, t2, t’)lpfDfDn{tl<Sl (t + S -t-Is2l-]-Is’12)2(n+l+v)
st[ dsdt.

Now set/3 2(n + 1 + v), a s + Is21 + Is’l 2, Also, put

h,(tl)
(a + tl) t’

and

H(tl) fth(-l) dr.

By 4.1 we know that H(t 1) < tlh(t) for t < a, in particular for tx < s < a.
Now, we proceed with an integration in the variable

follf(tl, t2, ’) f(sl, t2, t’)lPh(t) dt

If(tl’t2’t’)-f(sl’t2’t’)lPH(tl) 0

_pf:lf(tl, t2,t,) f(sl, t2, t,)lp-1 0
t’-7 If(tl, t2’ )ln(tl) dr1"

(7)

Now we use the estimate

This inequality holds for all b C and for all x for which b(x) 4: 0. When
we pass to an integral we see that we can simply extend the above inequality
to all x. Since the first term on the right hand side of (7) is zero, we see that
the left hand side is majorized by a constant times
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where we have applied H61der’s inequality with conjugate exponents p and
p’. Hence,

sl PIf(t1, t2, t’) f(Sl, t2, t’)l ha(t1) dtl

_< tlI(t, t, h(t d.

Therefore, by 2.7,

0lf( t’ S1
tl tl’t2’ ) tl

(t -1-S W Isel + Is’le)(n+l+)

O
t’ (n 1) dt.< 1-lf(tl,t2, ) t{ +

ds dt

This establishes Claim 1.

Claim 2.

3
t’ 1) dt.II < 1-2f(tl, t2, ) t(n+

Proof of Claim 2. We argue essentially as in Claim 1. First we need an
integration by parts. Notice that,

t
(t -b S -b iS2[ + IS’J2)2(n*l*v)

dtl

(1 + S d-Is21 + [s’12)2(n+l+v)

+ fO t dt

(t -t-S "+" Is=l / Is’12)2(n+1+’)+1
v+ktl<H(s) +

(tl + S -[szl / [st[2)2(n+a+v)+k
dtl,

where H C(D), and k is an integer. Then, if we choose k > p,

t’ ]PII fDfolfls fls [f(sI’S2 q-t2’t’) --f(sl, t2, )
21<1 ’[<1 (t + Sl + is2l / 1S’12)2(n+l+v)+k

S dst v+k dt
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Now consider the integral

fls21< (tl q-S1 q-Is21 + Is’

where we have set /3 2(n + 1 + v) + k. By symmetry we can integrate
over {0 < s2 < 1}. Then set

H’ f01 If(st.’. S_2..+. t_2., t._) _-- f(sl, 2, t’)Ip

(tl + S -+-[$21 + [S’[i/
We integrate by parts in H’.

p [f(Sl, S2 + t2, t’ ) --f(sl, t2, t’)lp-1-lfa O
t’os-slf(Sl, $2, )lds2

(tl + S2 + Is21 + IS’J2)/-1

[1 ’f(sl, s2+t2, t’)-f(sl, t2, t’)[P]l
0

+ /3- 1 (t + s / Is2l / Is’[2)/-1
(8)

Notice that the second term on the right hand side of (8) can be easily
estimated. Thus, using H61der’s inequality with p and p’ conjugate expo-
nents, it follows that

H’ fo If(s1-?.(tl-s2-+-+-s12’t’) +f(sli3t’)ls’ -1

[p-1 O
t’-2f(sl, s2, )

X fol’(tl +
O

t’-2f(Sl,S2, )

S q-Is21 / Is,12)-p
ds2

1/p

ds2

Thus,

-2f($1,
$2, t’)I

p

foII’ < ds.
(tl + Sl + Is21 / Is’12)-p
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Finally,

0
t’ ]"2f(s1, S2 / 2, )

for01 (
H < dStlv+k

tl + Sl + Is21 / Is’12)2n/l/)/k’sl
dt

b’zf( sl’ $2 / /2’ l’)

(t / S / ISI / Is’12)2(n+l+)+k-p
v+k dssl t dt.

Next we switch the integration order having enlarged the region of integra-
tion of s to {0 < s < 1}. Applying 2.7 to the kernel at the denominator of
the fraction in the last integral, over the region

{0 < < 1} x {[Sel < 1} x {Is’l < 1}

we find that

II f01gflt,[ <
0

-2f( s1, $2

p

t’) SlV+k-(k-v-p+n+ 1) dt’ dse ds

t9
S’ + 1)S "-2f( S1, $2, ) S(n ds.

This proves Claim 2.

Claim 3.

III <_ foist/2 Vs, lf(s1, $2, s’)lPs(n+l) ds.

Proof of Claim 3. All the ingredients appeared already in the proofs of
Claim 1 and Claim 2. Integrating by parts in the t variable we see that

III < fDfDCttl <s0 f(Sl’ $2 / t2’ S’ / t’) f(s1, S2 / t2, t’)[P
(t / S / IS21 / 1S’[2)/3+k

ds v+k dtS1

where k is an integer larger than p, and /3 =2(n + 1 +u). Next we
consider the integral

s’ t’f(Sl, $2 / /2, / ) f(s1, $2 / t2, t’)IpIII’= fls’l<l (t + Sl / ]S2I / Is,12)/k
ds’
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By passing into polar coordinates, setting s’ ru, u S, 0 < r < 1, we find
that

III’= fsfo If(sl’s2 +- t2.’.r-. + t’) f(sl, s2 + t2, t’)lp

(t -F S --IS2i-f ’i"21--k" r 2n-3 dr dtr(u).

We apply the same procedure as in Claim 2 to the inner integral. It follows

f(sl, s + t2,s’ t’)lPIII’< fls’l<l (t d-S d-IS2i "-f [;i2 "+k-p/2

Then, using 2.7 again

s’ t’ p

iii<fofo Is’f(Sl’S2-Ft2’ q-) v+kdstVdt
c{tl<Sl} (t + Sl + Is2l + Istl2)

2(n+l+v)+k-p/2S1

folfolfls"<2ls’f(Sl’S2 + t2’s’ -+- t’)[Pskl-(k-p/2)-(n+l)ds’

which proves Claim 3, and the proposition.

LEMMA 4.3. Let be a C2-bounded strongly pseudoconvex domain. Let
v > -1 and 0 < r < o. Let 8(z, r) denote the ball in the Bergman metric
centered at z f with radius r. Then there exists a constant C > 0 such that
for all f og(f)

Iz f(z)l I (;ir)l (z,r)
If(if) f(z)ldm(),

where I Iv denotes the volume of the set with respect to dm.

Proof Since f is strongly pseudoconvex we have that

I/f(z)l =[p(z)llNf(Z)l /IP(Z)I1/21Tf(Z)I,

where VN and Vr denote the derivatives in the complex normal and complex
tangential directions respectively, see [17]. It is well known that /3(z, r) is
comparable with the product of a disc and of a 2n 2 real dimensional ball,

fl( z, r) DN(z)(Z, c,lP( z) l) x B’T(z)(Z, cp’/),
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where

DN(z) { cn" -- Z + CliP(Z) I’0N(z)},

and N(z) indicates the normal direction at z ,
r/ C, I1 < 1 and c is

a constant that depends only on 1. Moreover,

nT(z, ( cn" z + c21p(z)ll/2, N(z) 0),
and c2 is another constant. Then

Iv f(z) I-< ip(z)l  .,If(z + Cllp(z)l) f(z)ldm(n).

(Here dm is the 2-dimensional Lebesgue measure.) Therefore, using the
submean value theorem in the tangential directions we see that

C

Ip(z)ln+2

XfD fBN(z) ’T(z)

(Here drn() is the (2n 2)-dimensional Lebesgue measure, thinking of sc as
vector in cn-1.) Since I/3(z,r)l IDN(z)X B(z)l Ip(z)l n+l, we have
bounded one term of the desired estimate. In order to estimate the term
IO(z)l/l IVrf(z)l we argue in the same fashion:

The estimate now follows.

Proof of 1.3. Suppose 2n < p < first. The implication (i)= (ii) is
trivial. The proof of (ii) = (iii) is contained in 4.2 where f is assumed to be
only CI(fl). The implication (iii) (i) now follows from 4.3 and the implica-
tion (ii) (i) valid for f e d(d(fI). A proof of this fact can be found in [5].
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Finally, suppose 0 < p < 2n, and f g,a(fl). Moreover assume that (ii) or
(iii) holds. Lemma 4.3 gives that (iii) (ii). Therefore it suffices to prove that
the condition

flrf(z)llp(z)l/2-n+1 din(z) < oo, f (l-l) (9)

implies that f is constant. Since 12 is strongly pseudoconvex it follows that
the functions that are holomorphic in a neighborhood of fl are dense in Bp
(see [18] for instance). Hence we can assume that f in the integral in (9) is
holomorphic across the boundary. This implies that IVfl-= 0 near bfl.
Thus, f is constant on the level sets {p(z) -e}, for 0 < e < e0, for some
e0 > 0. Since f can be reproduced from its boundary values (on a slightly
smaller domain), it follows that f is constant. This finishes the proof, ra

Now we turn to the proof of 1.4. We need a proposition which is a version
in the strongly pseudoconvex case as a result of Russo’s, (see [19]), refined by
Arazy, Fisher, Janson, and Peetre (see [2] Lemma 3.6 and Theorem 6). We
begin with a lemma. In this lemma Ll(dm) denotes the weak-L space with
respect to the measure dm, (recall also the notation introduced in 2.4).

LEMMA 4.4. Let v > -1. Then

sup G(., z) II.+<dmv) < 00.
zl-I

Proof.
show that

The statement is clear when Ip(z)l > 0 > 0. Then we want to

G( z) Ll( dm,)

with norm uniformly bounded in z fl, Ip(z)l < 60. Let z > 0. Set r

r- 1/(n + +,). Using the special coordinates we see that

m(w" G(w, z)l > r) _< fDXtS, +1s21+1,12 < r}S ds

forfls fls Vdsl< ds’ ds2 s
r[<r ’[<r 1/2

< s /ds

which is the desired inequality.



HANKEL OPERATORS ON WEIGHTED BERGMAN SPACES 247

PROPOSITION 4.5 (Russo-Arazy, Fisher, Janson, Peetre). Let 2 <_ p < 0%
and let H be any measurable function on [l x fl. Suppose that

ffa[H( z, w)IPlG( z, w)12 dm(z) dm,(w) < oo.

Then the kernel H(z, w)G(z, w) defines an operator in ap of L2.

Proof. Given 4.4 and Theorem 6 of [2], the proof is the same as the proof
of Lemma 3.6 of [2]. I3

Proof of 1.4. The implication (i) = (ii) follows from 1.3 and 4.5.
(ii) (iii). Recall that if , is an integer, Hf and , are the same

operator. For v not an integer

that is

P=P(I-A) -1,

P=P +PA,

where A is a/z/2-smoothing operator,/z Iv [’]l. Then

(I- fi) (I-P) + PA.

N.otice that the operators H, and PA(f. ) have orthogonal ranges. Thus, if

Hr p, both Hr and PA(f. ) .
(iii) = (i). Suppose now p > 0 and Hr . Then hy =- P(f. )

and therefore also the operator T,

T =- (I P)(fi’) AP(fi’).

Recall that (I + A)P P*. Hence,

r (z)

=.ft(f(z) f(w))G*( z, w) dm(w),

where G*(z, w) G(w, z). Now recall that for all operators S on L2,
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where k K(., sr)/ILK(’, if)II, Recall that by 2.8

Moreover notice that

TK(. )( z) f( f( z) f(w))G*( z, w)K(w, ) dm,,(w)

fa(f(z) -f(w))G(w,z)K(,w) dm,,(w)

(f() f(i))*(, i),

since (f(z) f)G(., z) is holomorphic. Thus,

fxllZkcll2 dA()
fllK(.,)ll=ftf() -f()[2[G(z,sr)12 dm(z)dA()

>_ fl o(c )l +1+ ff[ f( z ) f( ’)121 G( z, ’)[2 dm( z ) dA()

fnfnlf(z) -f()121G(z,)]2 dm(z)dm().

Finally, Theorem 1.3 finishes the proof in both cases, 2n < p < , and
0<p<2n. []
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