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1Department of Physics, University of Surrey, Guildford, GU2 7XH, United
Kingdom

2TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3, Canada

We show the first results for the elastic scattering of neutrons off oxygen
and calcium isotopes obtained from ab initio optical potentials. The poten-
tial is derived using self consistent Green’s function theory (SCGF) with
the saturating chiral interaction NNLOsat. Our calculations are compared
to available scattering data and show that it is possible to reproduce low
energy scattering observables in medium mass nuclei from first principles.
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1. Introduction

Recent years have seen considerable advances in the theory of optical
potentials. Non locality effects have been seen to be necessary for describing
three-body processes [1, 2], the importance of both scattering and bound
states in the coupling to breakup channels has been explored [3], and global
dispersive optical potentials have been developed [4].

The greatest challenge remains, however, the one of describing the nu-
clear structure and scattering consistently, from the same theory. Many-
body Green’s function methods are particularly suited to attempt this for
medium and large nuclei since their central quantity, the self-energy, is natu-
rally linked to the Feshbach theory of optical potentials [5, 6]. In particular,
the particle part of the self-energy is equivalent to the original formulation
of Feshbach, while its hole part describes the structure of the target [7].
Nuclear field theory is one of the first (semi phenomenological) attempts
to build such a theory for atomic nuclei [8, 9] and it has been extended to
nuclear transfer reactions [10, 11]. Another incarnation of Green’s function
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related theories is the dispersive optical model [12], which is a data driven
formulation of global (local and non local) potentials constructed as the best
possible parameterization of the microscopic self-energy [13, 4].

For transfer reactions, such as (d, p), it would be particularly impor-
tant to have an optical potential that is deduced consistently from the same
Hamiltonian used in the proton-neutron channel [2]. To do so, one needs
realistic nuclear interactions and ab initio calculations of elastic nucleon-
nucleus scattering. The no-core shell model with continuum (NCSMC) has
been successful to calculate scattering and transfer reactions for light tar-
gets [14, 15, 16]. On the other hand, the self consistent Green’s function
(SCGF) formalism [17, 18] is better suited to derive optical potentials for
medium mass targets. SCGFs have been used to calculate phase shifts [19]
and to investigate analytical properties of optical potentials [20]. However,
these calculations were limited to two-body forces and a direct comparison
to the experiment has been hindered by the lack of realistic interactions
capable to reproduce accurately nuclear radii.

Three-body interactions have been recently implemented for SCGF in [21,
22, 23]. Moreover, the introduction of the NNLOsat interaction [24] has al-
lowed a good reproduction of nuclear saturation and, hence, of radii and
binding energies across the oxygen [25] and calcium chains [26]. Although
this interaction has limitations regarding the symmetry energy in neutron
rich nuclei, we are now in the position to make a meaningful comparison of
first principle approaches to scattering data. Here, we perform state of the
art SCGF calculations to test the quality of current ab initio methods and
of the NNLOsat Hamiltonian in predicting elastic scattering.

2. The microscopic optical potential

The irreducible self-energy, Σ?(ω), has the general spectral representa-
tion

Σ?
αβ(E) = Σ

(∞)
αβ +

∑
i,j

M†
α,i

[
1

E − (K> + C) + iη

]
i,j

Mj,β

+
∑
r,s

Nα,r

[
1

E − (K< + D)− iη

]
r,s

N†
s,β , (1)

where Σ
(∞)
αβ is the correlated and energy independent mean field. We per-

form calculations with the third order algebraic diagrammatic construction
[ADC(3)] method, where the matrices M (N) couple single particle states
to intermediate 2p1h (2h1p) configurations, C (D) are interaction matrices
among these configurations and K are their unperturbed energies.
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Fig. 1. Volume integrals of the real (left) and imaginary (right) parts of the

neutron-16O optical potential calculated for different numbers oscillator shells in

the model space: Nmax = 7 (dotted), 11 (dashed) and 13 (solid lines). Note that

=m{Σ?(E=EF )=0, so JW (E=EF )=0, where EF is the Fermi energy. Thus, the

potential for particle (holes) states is above (below) the gap in the JW plot.

We use a spherical harmonic oscillator basis consisting of Nmax+1 oscil-
lator shells, so the optical potential for a given partial wave (l, j) is expressed
in terms of the oscillator radial functions Rn,l(r) as

Σ? l,j(r, r′;E) =
∑
n,n′

Rn,l(r) Σ? l,j
n,n′(E)Rn′,l(r

′) , (2)

which is non local and depends on energy, angular momentum and parity.
We solve the corresponding scattering problem in the full one-body space (so
that the kinetic energy is treated exactly, without truncations) and account
for the non locality and l, j dependence of Eq. (2). For each partial wave and
parity, the phase shifts δ(E) are obtained as function of the projectile energy,
from where the differential cross section is calculated. We show results for
incident energies in the laboratory frame, except for Fig. 4 below.

3. Results

In the following, we consider the volume integrals of the real and imag-
inary parts of the self-energy (i.e., the optical potential):

JV (E) = 4π
∫

drr2
∫

dr′r′2
∑

l,j <e{Σ? l,j(r, r′;E)} , (3)

JW (E) = 4π
∫

drr2
∫

dr′r′2
∑

l,j =m{Σ? l,j(r, r′;E)} , (4)

since these are strongly constrained by experimental data [6].
Fig. 1 shows the volume integrals of the neutron-16O for different model

space truncations. Both the part of the self-energy below the Fermi surface
(which describes the structure of the target) and the resonant structures for
scattering at low energy are substantially converged already for Nmax=11.
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Fig. 2. Volume integral of the imaginary part of the neutron optical potentials,

JW (E), for the 40Ca, 48Ca and 54Ca targets. Calculated at Nmax=11.

The oscillations seen at higher energies (E >10 MeV) are an artefact of
using a discretized model space and keep changing with Nmax. They can
fade away for an infinite space, or by exploiting a basis with the continuum.

Fig. 2 shows JW for selected closed sub-shell Ca isotopes. The gap at
the Fermi surface, where =mΣ?(E)=0, shifts to higher energies and even-
tually crosses the continuum threshold with increasing neutron number.
Compared to previous calculations using the Argonne v18 and N3LO(500)
interactions [20], the NNLOsat predicts an increased level density in the
proximity of the Fermi energy, as expected for a correct nuclear saturation.

In Fig. 3, the neutron s1/2 phase shifts for 16O is shown for Nmax=11
and 13. The resonance at E ≈5 MeV is almost converged for these spaces.
Note that this state is dominated by 2p1h components and thus it can still
be affected by many-body truncations. The wiggles computed at energies
E >8 MeV are due to similar but very narrow resonances. Again, these are
linked to the discretisation of the model space and drift when increasing
the number of oscillator shells. The right panel of Fig. 3 shows the phase
shifts for other representative partial waves. The p1/2 has a sub-threshold
bound state, while there is a very narrow f7/2 that is also seen experimen-
tally within 1 MeV of our calculation [27]. The dominant d3/2 resonance
is converged with respect to Nmax and it is computed at ≈1.15 MeV in
the c.o.m. energy, while the experimental value is 0.94 MeV. In general,
we find that NNLOsat predicts the location of dominant quasiparticle and
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Fig. 3. Nuclear phase shifts, δ(E), for scattering off 16O as a function of the incident

neutron energy. Left panel: dependence of the s1/2 partial wave on the number of

oscillator shells, for Nmax=11 (dashed) and 13 (solid). The oscillations at larger

energies are narrow resonances. Right panel: d3/2, p1/2 and f7/2 partial waves.
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Fig. 4. Plot of differential cross section for neutron elastic scattering on 40Ca at

13.56 MeV of center of mass energy compared with experimental data from [28].

Note that proton scattering on 40Ca was similarly computed in Ref. [29]

holes states with a (conservative) accuracy of <2 MeV for this nucleus.

Finally, Fig. 4 compares the differential cross section for the elastic scat-
tering of neutrons off 40Ca with the experiment at 13.56 MeV c.o.m. energy,
with Nmax=11. Minima in the cross section are reproduced reasonably well,
confirming the correct prediction of matter radii, but there appears to be
a general lack of absorption. This may be due to either missing doorway
configurations (3p2h and beyond) or to the (still crude) model space.

Even with the limitations of a (non optimal) oscillator basis, we found
that most important features of optical potentials are well reproduced. In
the long term, it will be necessary to properly account for the continuum
in calculating the self-energy and to improve the realistic nuclear interac-
tions. Nevertheless, it is clear from the present results that reliable ab initio
calculations of optical potentials are now a goal within reach.
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