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Abstract

We use equity as the traded primitive for a detailed analysis of systematic default risk.

Default is parsimoniously represented by equity value hitting the zero barrier so that, unlike

in reduced-form models, the explicit linkage to the firm’s capital structure is preserved, but,

unlike in structural models, restrictive assumptions on the structure are avoided. Default

risk is either jump-like or diffusive. The equity price can jump to default: In line with recent

empirical evidence on the jump-to-default risk price, we highlight how reasonable choices

of the pricing kernel can imply remarkable differences in the equity-price-dependent status

between the objective default intensity and the risk-neutral intensity. As equity returns

experience negative diffusive shocks, their CEV-type local variance increases and boosts

the objective and risk-neutral probabilities of diffusive default. A parsimonious version of

our general model simultaneously enables analytical credit-risk management and analytical

pricing of credit-sensitive instruments. Easy cross-asset hedging ensues.
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1 Introduction

For individual firms in segments of the market with high default risk, default risk and equity

returns exhibit a clear link and default risk appears to be systematic (see Vassalou and Xing

(2004)). Estimated market prices of risk do include the jump-to-default risk price, which tends

to balloon at times of bear equity markets (see Berndt, Douglas, Duffie, Ferguson, and Schranz

(2005) and Berndt, Lookman, and Obreja (2006)). The credit-equity link has been attracting

attention from credit risk managers. In their effort of assessing actual distances from default,

they have been courting credit-risk models that focus on equity data1 and that, given the

systematic nature of default risk, explicitly treat the relationship between the objective prob-

ability measure and the pricing measure(s). An equity-based model that directly studies the

change of measure related to the prevailing pricing kernel enables a better informed assessment

of the objective probability of default by supporting a consistent integration of equity market

data, of equity options market data, and of market data on other credit-sensitive instruments.

Since cross-asset trading of credit risk has been gaining momentum2 among hedge funds and

banks, model by-products like analytical results under the pricing measure(s) will also benefit

investors.

Only partial help comes from reduced-form models (see Jarrow and Turnbull (1995) among

the seminal papers and the reviews in Lando (2004) and Schönbucher (2003)), as they do not

consider the direct linkage to the firm’s capital structure. Structural models are driven by the

value evolution in firm’s assets. The assets-value evolution is often assumed to be diffusive so

that the default can be seen predictably coming by observing changes in the capital structure of

the firm (see the seminal papers of Merton (1974) and Black and Cox (1976), and the reviews

in Lando (2004) and Schönbucher (2003)). While appealing, structural models suffer when

it comes to applications3. The underlying (the sum of firm’s liabilities and equity) is illiquid

and often non-tradable. Obtaining accurate asset volatility forecasts and dependable capital

structure leverage data is difficult. Predictability of the default event implies the counterfactual

prediction of zero credit spreads for short maturities4 and, last but not least, arbitrary use of

the structural default barrier is often a temptation hard to resist−endogenous barriers5 come
with a practicability issue because the capital-structure assumptions under which they are

derived are not fully realistic.

We propose a credit risk model that does look at the firm’s balance sheet but avoids the

application mishaps of structural models. We take as underlying the most liquid and observ-

able corporate security: Equity6. This modelling choice brings in hedging viability and the

1Fore example, KMV output for public firms is strongly driven by equity-value data.
2The rise of capital structure arbitrage is a good example (see Schaefer and Strebulaev (2006)).
3For an empirical analysis of structural models based on corporate-bond price data, see for example Eom,

Helwege, and Huang (2004).
4Zhou (1997) posits assets-value jumps to overcome default predictability. Duffie and Singleton (2001) explain

such jumps with the presence of incomplete accounting information.
5See for example Leland and Toft (1996), Acharya and Carpenter (2002), and references therein.
6It must be remarked that, while equity shares are indeed the most liquid and observable securities, equity-

based products are not always so. For example, implied volatilities for equity options with strikes such as those
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possibility of minimizing the dependability issue in model calibration−leverage information
from book values can be circumvented. We represent default as equity value hitting the zero

barrier either with a jump or diffusively. The presence of an equity-value drop to zero has its

credit-risk foundation in the incompleteness of accounting information (see Duffie and Lando

(2001)), rules out default predictability, and embeds the concept of unexpected default, typical

of reduced-form models, within a credit-risk model that is directly based on equity. We assume

that the continuous-path part of equity value is a Constant-Elasticity-of-Variance (CEV) diffu-

sion7, which enables a positive probability8 of diffusive absorption at zero. Unlike in structural

models, credit risk can be directly related to the so-called ‘leverage effect’ (the negative link

between equity returns’ volatility and equity price observed in equity markets as well as in

equity options markets) under the CEV assumption, because the primitives are equity returns

and their volatility skews rather than the unobserved market value of assets9.

Under these assumptions, we study incomplete-markets equity-based credit risk under the

objective probability measure as well as under the pricing measure(s), so that risk premia

receive explicit and careful treatment. Our study brings an interesting economic and technical

contribution, as the existing literature on equity-based jump-to-default credit risk focuses on

pricing-measure analysis10 and avoids the economic and technical treatment of default risk

premia. Technically, we prove that the state price densities we consider do back equivalent

martingale measures, also in uncharted regions of the parameters where the ‘leverage effect’ is

particularly strong. Economically, we show that reasonable choices of the pricing kernel can be

consistent with mounting empirical evidence that the two components of the jump-to-default

risk price exhibit remarkable differences in their equity-price-dependent status. The jump-to-

default risk price is captured by the ratio
λQ
λP
between the risk-neutral default intensity λQ

and the objective intensity λP. The variance-optimal kernel, which is known to suit market

players with hedging needs (for example, see Bertsimas, Kogan, and Lo (2001), Biagini and

Cretarola (2005, 2006), Bielecki, Jeanblanc and Rutkowski (2004a, b, c, d), Henderson and

Hobson (2003), and Schweizer (2001)), can easily agree with the fact that observed increases in

λQ come from increases in the jump-to-default risk price due to sliding equity valuations rather

involved in equity default swaps are not available directly, and often need be mutuated by credit products such

as credit default swaps (CDS). There are instances where CDSs provide more liquid information than equity. In

general, CDSs are now fundamental liquid credit products.
7The CEV process has been first introduced to finance by Cox (1975). Among others, the CEV-based asset-

pricing literature includes the works of Albanese, Campolieti, Carr, and Lipton (2001), Beckers (1980), Boyle

and Tian (1999), Cox and Ross (1976), Davydov and Linetsky (2001), Emanuel and MacBeth (1982), Forde

(2005), Goldenberg (1991), Leung and Kwok (2005), Lo, Hui, Yuen (2000), Lo, Hui, and Yuen (2001), Lo, Tang,

Ku, and Hui (2004), Sbuelz (2004), and Schroder (1989).
8Merton (1976) considers equity price’s possible jump to zero, but no diffusive absorption at zero with positive

probability.
9Hull, Nelken, and White (2004) study the link between credit risk and equity volatility skews in Merton’s

(1974) model, within which an option on the firm’s equity is a compound option on the firm’s assets.
10See the pricing analysis in Linetsky (2006), who has introduced some of the pricing motivations for pursuing

research on equity-based credit risk, and the pricing analysis in Carr and Linetsky (2006), who have studied the

pricing implications of a Jump-to-Default Extended CEV (JDCEV) model.
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than from fluctuations in λP. While λP looks pretty stable through time, significant equity-

driven variation is observed in the jump-to-default risk price, with recent peaks corresponding

to the late-2002 wretched equity markets (see Berndt, Douglas, Duffie, Ferguson, and Schranz

(2005) and Berndt, Lookman, and Obreja (2006)). A possible conjecture is that, among other

things, keenness to be hedged against default risk might be boosted by bear equity markets,

even if they are accompanied by only a slight increase in the objective likelihood of default.

In the second part of this work, we discuss a parsimonious version of our general model.

It uses the same technical steps to simultaneously enable analytical credit-risk management

and analytical pricing of credit-sensitive instruments. A frugal specification of the state-price

density is conducive to a closed form for the objective default probabilities. Under the pricing

measure, formulae for Corporate Bond (CB) prices and Credit Default Swap (CDS) fees are

obtained, from which hedge ratios can be easily calculated. Empirical tests show that parsimony

empowers the model with analytical results without jeopardizing its flexibility.

Albanese and Chen (2004) and Campi and Sbuelz (2006) also use a CEV-equity model to

price credit instruments but they ignore the default predictability issue and the analysis of

default-risk premia. In deriving closed-form values, we build upon a CEV result in Campi

and Sbuelz (2006). Naik, Trinh, Balakrishnan, and Sen (2003) and Trinh (2004) introduce a

hybrid debt-equity model that considers equity as primitive but that, like structural models,

necessitates a free default barrier, which is then left to potentially ad-hoc uses−equity value
is assumed to be a geometric Brownian motion. Das and Sundaram (2003) have proposed an

equity-based model that accounts for default risk, interest risk, and equity risk using a lattice

framework. As such, they do not seek hedger-friendly analytical solutions and do not deal

explicitly with default-risk premia. Those aspects are also missing in the numerical equity-

based credit-risk pricing that has been suggested by the convertible bond11 literature (see,

for example, Andersen and Andreasen (2000), Andersen and Buffum (2003), and Tsiveriotis

and Fernandes (1998); McConnell and Schwartz (1986) ignore the possibility of bankruptcy).

In Cathcart and El-Jahel (2003), default occurs when a geometric-Brownian-motion signaling

variable, interpreted as the credit quality of the reference entity, hits a lower default barrier

or according to a hazard rate process, so that both expected and unexpected defaults are

accomodated in a single framework. However, the signaling variable can hardly be identified

with equity value (the default barrier is above the inaccessible zero level and there is no ‘leverage

effect’) and the concern of a possibly freewheeling default barrier remains. Such a concern is

unlikely to have no impact on the calculation of impied default barriers from market quotes.

Hui, Lo, and Tsang (2003) use a dynamic default barrier to achieve an empowered calibration of

CB spreads. Brigo and Tarenghi (2005a, 2005b) and Brigo and Morini (2006) employ a flexible

time-varying default barrier (the barrier is random in Brigo and Morini (2006)) to accurately

calibrate CDS market data.

Linetsky (2006) builds upon the convertible bond literature to assess zero-coupon CB

11See Nelken (2000) for a review of hybrid debt-equity instruments.
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prices12 within a geometric-Brownian-motion model with jump-like bankruptcy where the haz-

ard rate of bankruptcy is a negative power of the share price. Carr and Linetsky (2006) consider

a general setup of a jump-to-default extended diffusion with arbitrary local volatility and inten-

sity functions. In particular, they take the stock price to follow a CEV diffusion, punctuated

by a possible jump to zero (the JDCEV model). To capture the possible positive link be-

tween default and volatility, they assume that the hazard rate of default is an increasing affine

function of the instantaneous variance of returns on the underlying stock. Linetsky (2006)

and Carr and Linetsky (2006) pursue a risk-neutral pricing analysis overlooking the study of

the existence of some equivalent martingale measure in their incomplete-markets setting−with
CEV-like complete markets, Delbaen and Shirakawa (2002) derive existence results for a given

lower bound on the CEV parameter. Since default-risk premia are not treated, no discussion

of the objective probability of default and of the pricing-kernel-based choice of an equivalent

martingale measure is attempted. By contrast, the systematic nature of CEV-like diffusive

risk as well as of jump-to-default risk are at the core of our work. In particular, while proving

that the pricing kernels13 we study do support equivalent martingale measures, we extend the

existence result of Delbaen and Shirakawa (2002) to any negative value of the CEV parame-

ter. Such a parameter region is particularly relevant for credit risk: The more negative the

CEV parameter, the higher the probability of diffusive default and the more negative the link

between equity returns’ volatility and equity price.

The rest of the work is organized as follows. Section 2 describes the general model for the

equity market, the market price of credit risk, and its related pricing kernel. Section 3 considers

a parsimonious version of the general model that simultaneously enables analytical credit-risk

management and analytical pricing of credit-sensitive instruments. Section 4 concludes. An

Appendix gathers lengthy proofs, analytical formulae, and details about model extensions with

time-dependent coefficients and about model-based hedging.

2 Credit risk under the objective probability measure

A sound assessment of a counterpart’s credit risk under the objective default probability is

crucial for any credit risk management system. Financial institutions and banks in particular

seek it to assist decisions on approving loans, portfolio monitoring and management reporting,

12Linetsky (2006) considers recovery payments at maturity. An alternative recovery assumption for corporate

bonds is the partial recovery of the face value at the default date regardless of maturity. See later Propositions

(5) and (6) and their discussion.
13Since the jump to default is not a stopping time of the filtration generated by the continuous-path part of

the stock price, our chosen Radon-Nikodym derivative is similar to the one coming from dynamic asset pricing

theory with uncertain time-horizon, Blanchet-Scaillet, El Karoui, and Martellini (2005), Proposition 2. Bellamy

and Jeanbleanc (2000) analyze the incompleteness of markets driven by a mixed diffusion, construct a similar

Radon-Nikodym derivative, and, among other contingent claims, study American contracts. Both Blanchet-

Scaillet, El Karoui, and Martellini (2005) and Bellamy and Jeanbleanc (2000) assume bounded local volatility

for the stock returns, which is not our CEV case. They also refrain from considering default-driven time-horizon

uncertainty.
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capital allocation, risk-adjusted performance measurement and loan pricing. Regulatory pres-

sure has been adding motivation. The New Basel Capital Accord allows the use of internal

ratings systems to determine the appropriate level of reserves to support corporate-exposure

activities and other credit risky activities.

We consider an arbitrage-free incomplete market where, under the objective probability

measure P, the reference entity’s share price process {S} has the following pre-default jump-
diffusion dynamics:

dSt
St−

= µP (St−) dt+ σSρ−1
t− dzPt −

³
dNP

t − λP (St−) dt
´
, (1)

where {zP} is a Wiener process and {NP} is a first-jump-stopped marked point process:

NP
t = 1{t≥τ} ,

τ ≡ inf
©
t : NP

t = 1
ª

(time of the only jump).

The underlying filtration (Ft) is generated by {zP}, {NP}, and ©ζ1{τ<t}ª and satisfies the usual
conditions of right-continuity and P-completeness. Under (Ft), the jump-risk-pricing random

variable ζ (we assume EP [exp(ζ)] bounded) and the processes {zP} and {NP} are mutually
independent. While the form ‘σSρ−1

t− ’ of the local diffusive volatility suits the CEV-diffusion

focus of the present work, a general form of the local diffusive volatility is fully consistent with

the no-arbitrage analysis developed in this section, as long as it is accompanied by a bounded

price of diffusive risk and it differs from zero (see later our assumptions on the adapted process

{θ} and see Lemma (1) in the Appendix). By remaining unchanged under the pricing measure
of choice, such a general form of the local diffusive volatility agrees with the pricing-measure

analysis developed in the sections 2 and 3 of Carr and Linetsky (2006), pp. 306-311. The time

of absorption at zero in the absence of jumps is ξ, that is

ξ ≡ inf {t : St = 0, Nt = 0} ,

whereas the time of absorption at zero tout court is the minimum between τ and ξ, that is

τ ∧ ξ = inf {t : St = 0} .

The point 0 is the absorbing state of the share-price process {S}, so that, once default has
occurred, the share price remains at zero,

St = 0, ∀t ≥ τ ∧ ξ.
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The other main objects directly or indirectly appearing in Equation (1) are:

S ≡ S0 (current share price),

St− ≡ limε&0 St−ε (left time limit of the share price),

ρ− 1 < 0 (constant elasticity of the diffusive volatility),

T > 0 (finite maturity, in years),

λP (St−) ≥ 0 (jump-to-default intensity),

where the P-intensity λP (St−) is a non-negative bounded function of the pre-default share price
St−. The objective chance of seeing no jump is

EPt
£
1{τ>T}

¤
= EPt

·
exp

µ
−
Z T

t
λP (Su−) du

¶¸
.

We also introduce the time of absorption at zero of the continuous part {Sc} of {S}, that is,

ξc ≡ inf {t : Sc
t = 0},

where

dSc
t

Sc
t

= µP (St−) dt+ σ(Sc
t )
ρ−1dzPt + λP (St−) dt. (2)

2.1 Expected equity returns and the market price of credit risk

We take the bounded function θ (St−) as a vehicle of diffusive risk pricing, and the random

variable ζ and the positive bounded function F (St−) as vehicles of jump-to-default risk pricing.

The share’s instantaneous expected capital gain conditional upon St−, µP (St−), takes the

following percentage form:

µP (St−) = r − q + θ (St−)σ +
³
EP [exp(ζ)]F (St−)− 1

´
λP (St−) ,

r − q = share’s cost of carry,

θ (St−)σ = premium for the diffusive risk,¡
EP [exp(ζ)]F (St−)− 1

¢
λP (St−) = premium for the jump-like default risk,

where r is the constant riskfree rate, q is the constant dividend yield, σ (σ > 0) is a constant

scale factor for the diffusive volatility.

Proposition (1) states that, in our arbitrage-free incomplete market, the above specification

for µP (St−) is equivalent to fix the description of the chosen state-price-density process {π}.
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Proposition 1 For t < τ ∧ ξ, the P-dynamics of the state-price-density process {π} is
dπt
πt−

= −rdt

−θ (St−)S1−ρt− · dzPt
+
³
(exp (ζ)F (St−)− 1) · dNP

t −
³
EP [exp(ζ)]F (St−)− 1

´
λP (St−) dt

´
,

and, for t ≥ τ ∧ ξ,
πt = πτ∧ξ exp (−r (t− τ ∧ ξ)) .

Proof. If the process {π} has the stated P-dynamics (notice that {π}’s expected P-growth
rate is the usual −r as the cumulative premium for the jump-like default risk,

EP [exp(ζ)]

Z t

0
(F (Su−)− 1)λP (Su−) du,

compensates {π}’s jump process component), then there are no arbitrage opportunities. Indeed,
by virtue of Itô’s Formula, the π-deflated gain processes generated by holding one share and

by holding one unit of currency in the money-market account are local P-martingales,

EPt [d (πt · St exp (qt))] = 0, EPt [d (πt · exp (rt))] = 0,

and, hence, the market is arbitrage-free14.

As for diffusive risk, the usually-assumed negative relationship between the state-price

density and the underlying stock price implies positiveness of the pricing function θ (St−). If

the premium for diffusive risk vanishes, it is either because such a risk is not priced (sup θ ↓ 0)
or because the risk is dimming (σ ↓ 0). As for jump risk, the state price density exhibits a
sudden move from πτ− to πτ in the case of a jump to default (τ ∧ ξ = τ),

πτ = πτ− exp (ζ)F (St−) .

Since πτ represents the fair present value of 1 unit of currency received at the time of jump-

like default per unit probability of such an event, only a structural absence of discontinuity

between πτ− and πτ will imply that jump-to-default risk is not systematic (exp (ζ)F (St−) = 1

P-a.s.). The element exp (ζ) brings additional flexibility to the sudden move of the state-price
density at the jump-to-default date, on top of the component F (St−) that relates such a move

to the market conditions prevailing just before default. The degree of freedom contributed by

exp (ζ) to the {π}-related specification of market participants’ preferences can be valuable in
applications.

Given the assumed boundedness of θ (St−) and EP [exp (ζ)]F (St−), the chosen state-price

density process does support an equivalent martingale measure Q. Proposition (2) states that
the π-deflated gain process generated by holding one unit of currency in the money-market

account is also a P-martingale. Its T -time level represents the Radon-Nikodym derivative of Q
with respect to P , πT exp(rT ) = dQ

dP .

14This rules out arbitrage opportunities involving St exp (qt) and exp (rt), under natural conditions on dynamic

trading strategies. See, for example, Appendix B.2 in Pan (2000).
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Proposition 2 Let πt be defined as above and let T > 0 be any finite time horizon. Then, the

local P-martingale process {ertπt}, is a P-martingale over [0, T ].

Proof. See the Appendix.

By classic jump-diffusion Cameron-Martin-Girsanov results (see Jacod and Shiryaev (1988))

the risk-neutral jump-to-default intensity λQ (St−) is proportional to the objective intensity

λP (St−) via the pricing kernel’s relative jump at the time of unpredictable default:

λQ (St−)
λP (St−)

= EP [exp (ζ)]F (St−) .

Our general shape for the intensities ratio can account for the most recent empirical findings

on the jump-to-default risk price
λQ
λP
. Jump-to-default risk is priced (

λQ
λP
tends to differ from 1;

cfr. Driessen’s (2005) reduced-form study of corporate debt returns) and its price varies over

time with market conditions (
λQ
λP
varies with St−; cfr. Berndt, Douglas, Duffie, Ferguson, and

Schranz’ (2005) and Saita’s (2006) reduced-form studies of default swap rates and estimated

default frequencies and of corporate debt returns, respectively). Interestingly, Berndt, Douglas,

Duffie, Ferguson, and Schranz (2005) find that, while λP tends to have moderate fluctuations

over time, λQ is much more time-varying with peaks at times of markets’ reduced risk-bearing

capacity (see the situation in the third quarter of 2002). These peaks drive jump-to-defaut risk

compensation to relatively high levels. Berndt, Lookman, and Obreja (2006) extend Vassalou

and Xing’ (2004) empirical analysis to find that the interaction between the pricing kernel and

equity returns is due mainly to the quantity
λQ
λP
, which they also find to exhibit considerable

fluctuation through time.

2.2 The variance-optimal pricing kernel

In an incomplete market, it is natural to look for a best approximation of a non-attainable claim

by the value of a self-financing trading strategy toghether with an initial injection of capital.

A quadratic criterion can be used to measure the quality of this approximation, in the sense

that the best proxy is taken to be the projection15 of the claim on the value space generated

by self-financing strategies. The initial capital associated to the best-proxy strategy can be

calculated as the P-expectation of the claim deflated by the variance-optimal pricing kernel

process16 {π∗}. Hence, the variance-optimal kernel not only provides the unique no-arbitrage
price of attainable claims but also yields the value of non-attainable claims with respect to

the reasonable criterion of best quadratic replication. Proposition (3) explicitly carachterizes

{π∗}’s structure in the context of our market.
15Square integrability is assumed for the claim as well as for the trading strategies’ value. The claim’s terminal

date can be the minimum between a fixed maturity and a credit-sensitive stopping time. Defaultable-claims

hedging has been recently studied by, among others, Biagini and Cretarola (2005, 2006), Bielecki, Jeanblanc and

Rutkowski (2004a, b, c, d).
16Since the pricing kernel {π∗} supports the Radon-Nikodym derivative of the variance-optimal martingale

measure Q∗ w.r.t. the objective measure P, labelling π∗ ‘variance-optimal kernel’ is a slight abuse of notation

that finds justification in keeping the credit-risk management analysis under its natural context, that is, under

P.
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Proposition 3 Assume the following majorant restriction on the conditional expected excess

return on equity:

0 ≤ µP (St−)− (r − q) < σ2S
2(ρ−1)
t− + λP (St−) .

The variance-optimal state-price-density process {π∗} is such that

θ∗ (St−)S1−ρt− =
µP (St−)− (r − q)

σ2S
2(ρ−1)
t− + λP (St−)

σSρ−1
t− ,

exp (ζ∗)F ∗ (St−) = 1 +
µP (St−)− (r − q)

σ2S
2(ρ−1)
t− + λP (St−)

,

ζ∗ = 0 P-almost surely.

Proof. In our jump-diffusion setting, the variance-optimal martingale measure coincides

with the minimal martingale measure (the Remark 4.1 in Henderson and Hobson (2003) applies

and the majorant restriction on µP (St−) avoids situations in which the minimal martingale

measure is signed), so that {π∗} is also the minimal pricing kernel. The minimal pricing kernel
is such that P-martingales that are orthogonal to the martingale part of the equity price process
{S} remain P-martingales even after being deflated by the minimal kernel itself (cfr. Schweizer
(2001) among others). Hence, {π∗} must have the following P-dynamics:

dπ∗t
π∗t−

= −rdt+ η∗t

µ
dSt
St−
− µP (St−) dt

¶
,

where dSt
St− −µP (St−) dt is the martingale increment of {S}. The kernel {π∗} must also correctly

price traded securities like equity, that is,

EPt [d (π
∗
t · St exp (qt))] = 0,

or, equivalently by virtue of Itô’s Formula,

µP (St−) + q − r + η∗t · σ2S2(ρ−1)t− + η∗t · λP (St−) = 0.

The remark that

θ∗ (St−)S1−ρt− = −η∗tσSρ−1
t− and exp (ζ∗)F ∗ (St−)− 1 = −η∗t ,

completes the proof.

The proof emphasizes that {π∗}’s choice is sensible from the point of view of market players
with hedging needs. Since {π∗} is also the minimal kernel, the P-expectation of a (possibly
non-attainable) claim deflated by {π∗} is not only the initial capital necessary to reproduce
the claim’s projection on the value space of self-financing strategies, but also represents the

initial cost of the trading strategy that yields an exact replica of the claim and that, although
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it may require intermediate injections/withdrawals of cash, is self-financing ‘on average’ and

minimizes the conditional size of possible intermediate injections/withdrawals (cfr. Schweizer

(2001) among others).

Most importantly, the choice of the pricing kernel {π∗} serves the purpose of highlighting
a point of definite interest for credit risk managers: The structure of the pricing kernel at

unpredictable default, exp (ζ∗)F ∗ (St−), implies substantial differences in the ways the objective

default intensity and the risk-neutral intensity depend on equity markets. This is best seen

by taking a constant objective intensity λP and a plausibly countercyclical risk premium on

equity, cµP (St−)− (r − q) = κ · σ2S2(ρ−1)t− , 0 < κ < 1.

From Proposition (3), the variance-optimal pricing kernel hands over a risk-neutral default

intensity that is increasing in the diffusive local variance of equity returns:

dλQ∗ (St−) = Ã1 + κ · σ2S2(ρ−1)t−
σ2S

2(ρ−1)
t− + λP

!
λP.

This stylized example17 illustrates the empirical finding of Berndt, Douglas, Duffie, Ferguson,

and Schranz (2005) that much of time variation in the risk-neutral intensity comes from time

variation in the jump-to-default risk price rather than from fluctuations in the objective inten-

sity. They find dramatic equity-market-linked variation over time in the jump-to-default risk

price, from peaks in the third quarter of 2002 to a significant drop by late 2003 after the bear

market in global equities came to an end in March 2003.

A last remark is in order. The variance-optimal pricing kernel links the market price of

diffusive risk with the market price of jump-to-default risk, so that the conditional expected

return on equity becomes:

µP (St−)− (r − q) =

µ
λQ∗ (St−)
λP (St−)

− 1
¶³

σ2S
2(ρ−1)
t− + λP (St−)

´
.

Hence, the intensities ratio implied by the variance-optimal pricing kernel can be read in the

time-varying betas of a conditional constrained regression of excess stock returns on proxies

for the diffusive local variance and for the objective intensity of default (the kernel choice

constrains the time-varying betas of the two regressors to be equal).

3 Consistency in risk management and pricing: A parsimo-

nious model

A parsimonious equity-based model that empowers analytical credit risk management as well as

analytical pricing of credit-sensitive instruments is valuable. Thrifty formulae for the relevant

items under P and under Q can be used to support, among other applications, a consistent and
integrated filtering of information from the equity market, equity options markets, and from

17Notice that, since λQ∗ (St−) is not a simple power function in the local variance, the asset-pricing facet of

the example is not within the risk-neutral analysis of Carr and Linetsky (2006).
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other credit-sensitive markets. Measurement-error issues are trimmed down by model’s explicit

focus on the underlying equity value, a clear market signal of corporate health.

Within our general model of Section 2, this is best done by considering the following par-

simonious version of it. We take the P-dynamics of the share price process {S} to be

dSt
St−

=


r − q+

θσ+¡
EP [exp(ζ)]− 1¢λP

 dt+ σSρ−1
t− dzPt −

³
dNP

t − λPdt
´
, (3)

with all the parameters constant. For the sake of simplicity, we assume that unpredictable

default is always not liked by investors, that is, the pricing kernel’s ‘percentage jump’ ζ is

non-negative. This assumption can be relaxed at zero computational cost, since ζ can easily be

either shifted downwards by adding a negative constant to it or taken with an opposite sign.

The criterion of parameter parsimony suggests to take for ζ a one-parameter non-negative

distribution. One such distribution is the discrete Poisson distribution with parameter φ (0 <

φ < ∞) and with support {0, 1, 2, ...}, so that its quantities of interest admit a concise closed
form,

EP [exp (ζ)] = exp (φ (e− 1)) > 1, EP [ζ] = V arP [ζ] = φ.

Helpfully, the systematic nature of the jump-to-default risk is turned off (the state-price density

does not jump in the case of a jump to default) as the parameter φ is turned off (φ ↓ 0, that
is, ζ = 0 P-a. s.). An alternative parsimonious choice is the exponential distribution, whose
absolute continuity with respect to the Lebesgue measure greatly enriches ζ’s support.

3.1 Default probabilities

Given a finite maturity T (in years), V P (S, T, 0) denotes the objective default probability,

V P (S, T, y) ≡ EP0
£
exp (−y(τ ∧ ξ))1{τ∧ξ≤T}

¤
(4)

being the T -truncated Laplace transform of τ ∧ ξ’s probability density function under P (P-
p.d.f.) with Laplace parameter y (y ≥ 0). The next proposition is a useful result stemming
from the independence between {z} and {N}. It states that the quantity in Definition (4) is
the linear convex combination of the adjusted objective probability of default within T (with

weight λP
y+λP

) and of the T -truncated Laplace transform of ξc’s P-p.d.f. with Laplace parameter
y + λP (with weight

y
y+λP

).

Proposition 4 The quantity V P (S, T, y) admits the following expression:

V P (S, T, y) =
λP

y + λP

h
1− exp (− (y + λP)T )

³
1−EP0

£
1{ξc≤T}

¤´i
+

y

y + λP
EP0
£
exp (− (y + λP) ξ

c)1{ξc≤T}
¤
,

11



Proof. See the Appendix. The T -truncated Laplace transform of ξc’s P-p.d.f. with Laplace
parameter w ≥ 0,

EP0
£
exp (− (y + λ) ξc)1{ξc≤T}

¤
,

is analytical (see Campi and Sbuelz (2006)). Its closed form is also provided in the Appendix.

Equation (3) implies the following Q-dynamics for {S}:

dSt
St−

= (r − q) dt+ σSρ−1
t− dzQt −

³
dNQ

t − λQdt
´
, (5)

zQt = zPt +

Z t

0
θS1−ρu− du (Wiener process under Q),

λQ = exp (φ (e− 1))λP.

When the jump-like default risk is not systematic (φ ↓ 0), the risk-neutral and objective jump-
to-default intensities coincide. Let V Q (S, T, y) be the Q-counterpart of the truncated Laplace
P-transform V P (S, T, y), that is,

V Q (S, T, y) ≡ EQ0
£
exp (−y(τ ∧ ξ))1{τ∧ξ≤T}

¤
.

As long as diffusive risk and/or jump-to-default risk are systematic (with ζ ≥ 0), V P (S, T, y)
is always smaller than the quantity V Q (S, T, y) for any y. In particular, systematic risk makes

the P-probability of default smaller than the Q-probability of default. The technical reason is
that the change of measure from P to Q leaves diffusive volatility unchanged but, while boosting
the jump-to-default intensity (λQ > λP), shrinks the away-from-zero drift of the stock price

18:

r − q + λQ < r − q + θσ + λQ = µP + λP.

The financial reason is that the state-price-embedding measure Q weighs dislikeable states more
than the objective measure P.

3.2 Pricing instruments exposed to credit risk

The quantity

V Q (S, T, y) ≡ EQ0
£
exp (−y(τ ∧ ξ))1{τ∧ξ≤T}

¤
is the building block for the analytical pricing of T -year-lived CBs and CDSs. V Q (S, T, r)

represents the fair present value of 1 unit of currency at the reference entity’s default if default

occurs within T . The next proposition gives an analytical characterization of V Q (S, T, y).

An alternative integral expression for V Q (S, T, y) can be found by suitably specializing19 the

Formula (5.15) in Carr and Linetsky (2006), p. 320.

18More discussion on this point can be found, among others, in Duffie and Singleton (2003).
19The coefficient ‘c’ in Carr and Linetsky (2006), Equation (4.2), p. 311, must be set to zero.
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Proposition 5 The T -truncated Laplace transform of τ ∧ ξ’s Q-p.d.f. with Laplace parameter
y can be expressed as:

V Q (S, T, y) =
λQ

y + λQ

h
1− exp (− (y + λQ)T )

³
1−EQ0

£
1{ξc≤T}

¤´i
+

y

y + λQ
EQ0

£
exp (− (y + λQ) ξ

c)1{ξc≤T}
¤
.

Proof. Since the risk-neutral drift r − q + λQ is constant, the proof is similar to that of

Proposition (4). The w-discounted value of 1 unit of currency at the diffusive default within

T ,

EQ0
£
exp (−w · ξc)1{ξc≤T}

¤
,

is analytical20 (see Campi and Sbuelz (2006)).

Proposition (5) engenders analytical pricing of CBs and CDSs. Consider a reference entity’s

CB that has face value F and pays an (annualized) coupon C at regular 1k -spaced dates Tj up

to its maturity T (k is a positive integer). We take the maturity T to be a rational number of

the type n
k (n is also a positive integer) to keep notation simple.

Proposition 6 Given the recovery rate R at default and given the assumption of Recovery of

Face Value at Default (RFV), the fair CB price is

PCB (S, T, r) =
kTX
j=1

1

k
exp (−rTj)

h
1− V Q (S, Tj , 0)

i
C

+exp (−rT )
h
1− V Q (S, T, 0)

i
F

+V Q (S, T, r) ·R · F.

Proof. The result comes from taking the Q-expectation of CB’s discounted payoffs. RFV
bears the value V Q (S, T, r) · R · F for CB’s defaultable part as it implies that the relevant

discounted payoff is exp (−r(τ ∧ ξ))1{τ∧ξ≤T}.
R is a fixed historical data input in applications. Under RFV, CB holders receive the same

fractional recovery R of the face value F at default for CBs issued by the reference entity

regardless of maturity. Guha and Sbuelz (2005) show that the RFV recovery form is consistent

with typical bond indenture language (for example, the claim acceleration clause), defaulted

20Davidov and Linetsky (2001) point out that the quantity EQ
0

£
exp (−wξc)1{ξc≤T}

¤
can be obtained by

numerically inverting the closed-form non-truncated Laplace transform

1

a
EQ
0 [exp (− (w + a) ξc)] ,

where the inversion parameter is a > 0, see pp. 953 and 956. The same quantity has been also computed in

Davydov and Linetsky (2003), Equation (155), p. 206, by means of a spectral expansion (the theory for such

an expansion is thoroughly illustrated in Linetsky (2004)). The implementation of Equation (155) requires the

numerical finding of the roots of a Whittaker function (see Equation (90), p. 193) in concert with the calculation

of the limit ‘limL↓0’, where L is a lower price barrier (L < S).
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bond price data (same-seniority bonds exhibit the same market value at default regardless

of maturity), and relevant stylized facts of non-defaulted bond price data (the low empirical

duration of high-yield bonds; see Cornell and Green (1991) and Schaefer and Strebulaev (2006)).

Consider a CDS related to the CB just described. It offers a protection payment of (1−R)F

in exchange for an (annualized) fee fCDS paid at regular
1
m -spaced dates up to the contract’s

maturity (m is a positive integer).

Proposition 7 The fair CDS fee is

fCDS (S, T, r) =
V Q (S, T, r) (1−R)PmT

j=1
1
m exp (−rTj) [1− V Q (S, Tj , 0)]

.

Proof. Under Q, the fee fCDS (S, T, r) makes the CDS’ net present value equal to zero.

The holder of a CB can achieve total recouping of the face value F at default by being

long a CDS. Being short ∂
∂SPCB (S, T, r) shares Delta-hedges

21 against the pre-default price

shocks driven by diffusive news. Recent empirical evidence shows that hedges based on equity

portfolios perform reasonably well for high-yield CBs (see Naik, Trinh, Balakrishnan, and Sen

(2003) and Schaefer and Strebulaev (2006)). Given analytical CB prices, an easy and effective

measure of the Delta-hedge ratio is PCB’s incremental ratio with respect to S. More details on

model-based CB hedging are in the Appendix.

While extensive calibration22 is beyond the scope of the present work, a first interesting

empirical test is the troubled market situation, as represented by stock prices and by reliable

CDS quotes, of a big American air carrier like Delta Airline in the year 2002. Industry’s long

term problems emerged soon after the September 11th, 2001, terrorist attacks and the deep

recession in air travel that followed. In addition, America’s top airlines have suffered from huge

pension obligations to retired employees and fierce competition from low-cost carriers. As Delta

Airline’s stock price dived from about $32 in January 2002 to below $12 by the end of December

2002, the term structure of annualized fees of quarterly CDSs was lifted from levels below 650

basis points to levels above the 1500 basis points and took a downward-sloping shape. Table 1

21The interest-rate sensitivity of bonds issued by non-high-credit-quality entities is kept quite subdued by

the claim acceleration clause. In any case, parallel shifts of the (flat) term structure of the interest rates can

be hedged by selling a portfolio of default-free bonds that has interest-rate sensitivity equal to ∂
∂r
PCB (S, T, r).

Such a hedge ratio can be easily calculated in our model as PCB ’s incremental ratio with respect to r.
22For example, see Carr and Wu (2006).
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exhibits CDS market quotes23 and, in parentheses, the corresponding model-based quotes.

Table 1: CDS fees and share prices, Delta Airline (2002)

1− year 2− year 3− year share price Date

575.00

(586.51)

636.65

(645.61)

586.98

(626.79)
$32.18 (Jan. 4th, 2002)

1979.42

(2025.80)

1572.92

(1657.53)

1503.58

(1438.37)
$11.90 (Dec. 18th, 2002)

According to a distance-minimization criterion, the calibration of the model-implied CDS-fee

curve to the market curve has been performed by setting the elasticity of the diffusive volatility

ρ− 1 equal to −1.1, the recovery rate R equal to 65%, and the risk-neutral intensity λQ equal

to 1
12.5 . The parameter σ has been chosen to reproduce the annualized volatility of daily

percentage returns on the Delta stock over the last 3 months, which was 58% on January

4th and 115% on December 18th. The other parameters are r = 4.25% (close to the average

midpoint of the term structure of US default-free interest rates over the year 2002) and q = 0.

Although parsimonious, the model seems flexible in capturing levels and shapes of CDS fees

that come along with significative states of equity market valuation.

As CDS markets have been growing by leaps and bounds, reliable quotes can be currently

gathered for maturities up to 10 years and the shape of CDS-fee term structures can be confi-

dently measured for the 1-to-10-year maturity span. In our last empirical test, the model does

show goodness of fit to different patterns of curve steepness. We consider recent Bloomberg

data on two American giants of the car industry, which has not been unfamiliar with distress

in recent years. For Ford, Table 2 exhibits CDS quotes and, in parentheses, the corresponding

model-based quotes.

Table 2: CDS fees and share price, Ford (December 2nd, 2006)

1− year 3− year 5− year 7− year 10− year share price

145.00

(181.41)

405.50

(411.51)

534.75

(536.33)

572.00

(572.84)

584.25

(584.08)
$8.04

The calibration of the model-implied CDS-fee curve to the market curve has been implemented

by fixing ρ− 1 = −0.22, R = 65%, and λQ =
1
20 . The parameter σ has been chosen to yield a

23Data was provided by Fortis Bank, Brussels.
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diffusive volatility of 105%. The other parameters are r = 5.25% (about the midpoint of the

term structure of US default-free interest rates at the beginning of December 2006) and q = 0.

The model is able to match the marked steepness at short maturities and fits well the 5-to-10

year curve. Table 3 exhibits the case of General Motor.

Table 3: CDS fees and share price, General Motor (December 2nd, 2006)

1− year 3− year 5− year 7− year 10− year share price

130.00

(142.55)

296.25

(287.64)

404.92

(406.25)

443.50

(449.53)

463.50

(467.39)
$29.85

Calibration has been achieved by taking ρ−1 = −0.225, R = 65%, and λQ = 1
25 . The parameter

σ has been chosen to yield a diffusive volatility of 95%. The other parameters are r = 5.25%

and q = 0. The goodness of fit is fine also in this case. In summary, these empirical pricing

tests show that thrift has empowered the model with analytical results without jeopardizing

its flexibility.’

4 Conclusions

We present an equity-based credit risk model that, by taking as primitive the most liquid and

observable part of a firm’s capital structure, departs from reduced-form models and overcomes

many of the problems suffered by structural models in credit-risk management, pricing, and

hedging applications. We study systematic credit risk via an explicit modelling of risk premia.

This brings an economic and technical contribution to the current literature on equity-based

jump-to-default credit risk, which, focused on pricing-measure concerns, has not been dealing

with the economic and technical treatment of risk premia and of default risk premia in partic-

ular. Technically, we prove that the pricing kernels we study do support equivalent martingale

measures, also in unexplored but credit-risk-relevant regions of the parameters. Economically,

we show that sensible pricing kernels for hedgers can be consistent with mounting empirical

evidence that the jump-to-default risk price heavily loads equity market fluctuations, reaching

highs during bear equity markets. A conceivable conjecture is that bear equity markets might,

among other things, exacerbate the propensity to be hedged against default risk even if the

increase of such a risk is only marginal. We then discuss a parsimonious version of our gen-

eral model that uses the same technical steps to support analytical credit-risk management as

well as analytical pricing of credit-sensitive instruments. Empirical tests show that parsimony

enriches the model with analytical results without jeopardizing its flexibility.

As the equity price is becoming a popular measure of the ‘dollar’ distance to default, we

believe that future research can capitalize with avail on our model to investigate credit risk
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issues that reach over different securities (equity and other credit-sensitive instruments) and

over different applications (risk management, pricing, and hedging).

Acknowledgments

We are grateful to the Co-Editor (Carl Chiarella) and to two referees for their detailed feed-

back that helped us to refine our manuscript. For many valuable comments and suggestions we

wish to thank Rossella Agliardi, Giovanni Barone-Adesi, Anna Battauz, Andrea Berardi, Antje

Berndt, Michele Bonollo, Nicole Branger, Andrea Buraschi, Umut Cetin, Francesco Corielli,

Rita Laura D’Ecclesia, Marzia De Donno, Darrell Duffie, Andrea Gamba, Martino Grasselli,

Rajiv Guha, Monique Jeanblanc, Antonio Mele, Thorsten Rheinlander, Francesco Rossi, Chris-

tian Schlag, Claudio Tebaldi, Fabio Trojani, Oldrich Vasicek, Marc Yor, and the participants of

the Conference ’From Basel II to Basel III’ Conference (Monte Verità - Ascona, March 2006),
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5 Appendix

Proof of Proposition (2)

We will use the following auxiliary result.

Lemma 1 Let ρ < 1, so possibly taking negative values, let Sc be the continuous part of S with

P-dynamics
dSc

t

Sc
t

= (r − q + θ(Sc
t )σ + λP(S

c
t ))dt+ σ(Sc

t )
ρ−1dzPt ,

and let ηt be defined as follows:

ηt ≡ E
µ
−
Z ·

0
θ(Sct )(S

c
u)
1−ρdzPu

¶
t

, t ≥ 0. (6)

Then, for any 0 < T <∞, {η} is a true P-martingale over [0, T ]. In particular, EP0 [ηT ] = 1.

Proof. Following the proof of Theorem 2.3 in Delbaen and Shirakawa (2002), the crucial

argument for ηt to be a true P-martingale is that the integral
R T
0 θ(Sc

t )
2(Sc

u)
2(1−ρ)du is finite

a.s.. Delbaen and Shirakawa (2002) show that this is the case for ρ ∈ (0, 1). We notice that
this integral remains finite a.s. even for ρ ≤ 0. Indeed, since the function θ(·) is bounded and
Sc has continuous trajectories, the integral cannot explode.

To simplify the notation, we set eπt ≡ ertπt. From Proposition (1) stating {π} ’s P-dynamics,
it follows that for t < τ ∧ ξ

deπteπt− = −θ(St−)S1−ρt− dzPt + ((e
ζF (St−)− 1)dNP

t − (EP0 [eζ ]F (St−)− 1)λP(St−))dt,

and eπt = eπτ∧ξ for t ≥ τ ∧ ξ. The initial condition is of course eπ0 = 1. We can write the processeπt as a Doléans-Dade stochastic exponential (see, e.g., Protter (1990), p. 78) in the following
way: eπt = E µ−Z ·

0
θ(Su−)S1−ρu− dz

P
u

¶
t∧τ∧ξ

Yt∧τ∧ξ,

where we set

Yt = exp

X
u≤t

ln(1 + (eζF (Su−)− 1)∆NP
u )−

Z t

0
(EP0 [e

ζ ]F (Su−)− 1)λP(Su−)du
 .

Fix a finite time horizon T > 0. We first prove that the process

E
µ
−
Z ·

0
θ(Su−)S1−ρu− dz

P
u

¶
t∧τ∧T

Yt∧τ∧T , t ≥ 0, (7)

is a P-martingale. Being the stochastic exponential of a local P-martingale, it is a local P-
martingale itself.

To show that it is a P-martingale, it suffices to prove that

Ψ := EP0 [E(−
Z

θS1−ρu− dz
P
u)τ∧TYτ∧T ] <∞.
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First, note that, in the stochastic exponential containing the Brownian part, i.e.

E
µ
−
Z ·

0
θ(Su−)S1−ρu− dz

P
u

¶
t∧τ∧T

,

we can replace the process S with its continuous part Sc, which is independent of NP and ζ

by construction and has dynamics (6). Conditioning with respect to ζ gives

EP0

·
E
µ
−
Z ·

0
θ(Su−)S1−ρu− dz

P
u

¶
τ∧T

Yτ∧T
¸
= EP0

·
E
µ
−
Z ·

0
θ(Su−)(Sc

u−)
1−ρdzPu

¶
τ∧T

eYτ∧T¸ ,
where eY is the process Y after replacing eζ with its expectation EP0 [e

ζ ], so that

eYτ∧T = (1 + (EP0 [eζ ]F (Sc
τ∧T )− 1)1{τ≤T}) exp

½
−(EP0 [eζ ]F (Scτ∧T )− 1)

Z τ∧T

0
λP(S

c
u)du

¾
.

Since the functions F and λP are positive and bounded, one has

1 + (EP0 [e
ζ ]F (Sc

τ∧T )− 1)1{τ≤T} ≤ C

for some positive constant C. Moreover, being F (·) ≥ 1, ζ ≥ 0 and λP(·) ≥ 0 we also have

exp

½
−(EP0 [eζ ]F (Sc

τ∧T )− 1)
Z τ∧T

0
λP(S

c
u)du

¾
≤ 1,

so giving

Ψ ≤ CEP0

·
E
µ
−
Z ·

0
θ(Su−)(Sc

u−)
1−ρdzPu

¶
τ∧T

¸
.

An application of Lemma 1 gives

Ψ ≤ CEP0

·
E
µ
−
Z ·

0
θ(Sc

u−)(S
c
u−)

1−ρdzPu

¶
τ∧T

¸
= C <∞.

This yields that E(− R θ(Su−)S1−ρu− dzPu)t∧τ∧TYt∧τ∧T is a P-martingale. Doob’s optional

sampling theorem applies (e.g., Theorem 18 in Protter (1990)) so that the process eπt is a
P-martingale over the time interval [0, T ]. Being T arbitrary, the proof is now complete.

Proof of Proposition (4)

We have that

P0[τ ∧ ξ > s] = P0[τ > s, ξ > s]

= EP0 [1{τ>s}P0[ξ > s|Nu = 0, u ≤ s]]

= EP0 [1{τ>s}P0[ξc > s|Nu = 0, u ≤ s]]

= P0[τ > s]P0[ξc > s],
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where the last equality follows from the independence between ξc and τ . Hence, the time-s-

evaluated P-p.d.f. of the stopping time τ ∧ ξ is

fτ∧ξ(s) = − d
ds
P0[τ ∧ ξ > s]

= − d
ds
(P0[τ > s]P0[ξc > s])

= fτ (s)P0[ξc > s] + fξc(s)P0[τ > s]

= λ exp (−λs)P[ξc > s] + fξc(s) exp (−λs) .

By Definition (4), the T -truncated Laplace transform of τ ∧ ξ’s P-p.d.f. with Laplace

parameter y is

V P (S, T, y) =

Z T

0
exp (−ys) fτ∧ξ (s) ds

=

Z T

0
exp (−ys) fτ∧ξc (s) ds

= λY1 + Y2,

Y1 =

Z T

0
exp (− (y + λ) s)P0[ξc > s]ds,

Y2 =

Z T

0
exp (− (y + λ) s) fξc (s) ds.

Y2 is the T -truncated Laplace transform of ξc’s P-p.d.f. with Laplace parameter y + λ,

Y2 = EP0
£
exp (− (y + λ) ξc)1{ξc≤T}

¤
.

Its closed form has been derived by Campi and Sbuelz (2006) and it can be found below after

this proof. An integration by parts gives

Y1 =
−1
y + λ

exp (− (y + λ) s)P0[ξc > s]

¯̄̄̄T
0

−
Z T

0

−1
y + λ

exp (− (y + λ) s)
¡−fξc (s)¢ ds

=
1

y + λ
[1− exp (− (y + λ)T )P0[ξc > T ]]− 1

y + λ
Y2.

This completes the proof.

The objective probability of default at ξc within T

The continuous-path process {ξc} has the following P-dynamics:
dSc

t

Sc
t

= (µP + λP)dt+ σ(Sc
t )
ρ−1dzPt .
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Campi and Sbuelz (2006) have shown that the T -truncated Laplace transform of ξc’s P-p.d.f.
with Laplace parameter w (w ≥ 0) has this analytical expression:

EP0
£
exp (−wξc)1{ξc≤T}

¤
= lim

↓0

∞X
n=0

an (AP, BP)
³x
2

´n Γ(ν − n, x
2KP

, x
2 )

Γ(ν)
,

for

Γ(ν) ≡
Z +∞

0
uν−1e−udu (Gamma Function),

Γ

µ
ν − n,

x

2KP
,
x

2

¶
≡

Z x
2

x
2KP

u−nuν−1e−udu (Generalized Incomplete Gamma Function),

an (AP, BP) ≡ (−1)nC (BP, n)An
P,

C (BP, n) ≡
Qn

k=1 (BP − (k − 1))
n!

1{n≥1} + 1{n=0},

and

x ≡ S2(1−ρ), ν ≡ 1

2(1− ρ)
,

AP ≡ 2 (µP + λP)

σ2(1− ρ)
, KP ≡ σ2(1− ρ)

2 (µP + λP)

³
1− e−2T (µP+λP)(1−ρ)

´
,

BP ≡ w

2 (µP + λP) (1− ρ)
.

Notice that the limit ‘lim ↓0’ can be exchanged with the limit ‘limm↑∞
Pm

n=0’, that is, the first

limit can be brought inside the infinite summation and computed in closed form term by term.

This is because the origin is a limit point for the set (0,KP] and the series
P∞

n=0 fn ( ) enjoys

uniform convergence on the set (0,KP], with

fn ( ) = an (AP, BP)
³x
2

´n Γ(ν − n, x
2KP

, x
2 )

Γ(ν)
.

To see this, notice that |fn ( )| is bounded for ν − n > 0. For ν − n < 0, start with observing
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that

Z x
2

x
2KP

uν−n−1e−udu <

Z ∞

x
2KP

uν−n−1du

=

µ
x

2KP

¶ν−n (−1)
ν − n

.

Consider now the following -independent majoration for |fn ( )|:

|fn ( )| <
1

Γ(ν)
max

¡
B2P, 1

¢
An
P

³x
2

´nµ x

2KP

¶ν−n (−1)
ν − n

<
1

Γ(ν)
max

¡
B2P, 1

¢
(APKP)

n

µ
x

2KP

¶ν (−1)
ν − n

= gn .

By construction, APKP is positive and smaller than unity and the series
P∞

n=0 gn converges. It

follows that

EP0
£
exp (−wξc)1{ξc≤T}

¤
=

∞X
n=0

an (AP, BP)
³x
2

´n Γ(ν − n, x
2KP

)

Γ(ν)
,

Γ

µ
ν − n,

x

2KP

¶
≡

Z ∞

x
2KP

u−nuν−1e−udu (Incomplete Gamma Function).

The Incomplete Gamma Function and the Gamma function are built-in routines in many

computing software like MATLAB and Mathematica, which makes the above expressions fully

viable. The analytical expression of the objective probability of diffusive default within time

T is retrieved by taking w = 0.

The discounted value of cash at ξc within T

The replacement of the objective drift µP + λP with the risk-neutral drift r− q+ λQ in the

formula for the T -truncated Laplace transform of ξc’s p.d.f. with Laplace parameter w (w ≥ 0)
implies that the discounted value of cash at ξc within T is

EQ0
£
exp (−w · ξc)1{ξc≤T}

¤
=

∞X
n=0

an (A,B)
³x
2

´n Γ(ν − n, x
2K )

Γ(ν)
,
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where

A ≡ 2 (r − q + λQ)

σ2(1− ρ)
, K ≡ σ2(1− ρ)

2 (r − q + λQ)

³
1− e−2T (r−q+λQ)(1−ρ)

´
,

B ≡ w

2 (r − q + λQ) (1− ρ)
.

The CEV model and time-dependent coefficients

In the standard CEV model (i.e. without jumps, λP ↓ 0), Campi and Sbuelz (2006) obtain
an explicit formula for ξc’s truncated Laplace transform via the identity in law (2.7) in Delbaen

and Shirakawa (2002). Using similar arguments and defining

m (t) =


µP (t) under P ,

r (t)− q (t) under Q ,

one can extend such an identity to the case of time-dependent coefficients, so that the following

time-changed process

e
R t
0 m(s)ds

³
|ρ|X(2(1−ν))

τ t

´1/|ρ|
, t ≥ 0,

has the same law as the CEV process with time-dependent coefficients m(t) and σ(t), where

X
(δ)
t is a δ−dimensional squared Bessel process and the deterministic time-change τ t is

τ t =

Z t

0
σ(s)2e−|ρ|

R s
0 m(u)duds, t ≥ 0.

The mentioned identity in law implies the following relation between ξc and bξ = inf ns: X(2(ν−1))
s = 0

o
:

bξ = Z ξc

0
σ2(s)e−2|ρ|

R s
0 m(u)duds.

Unfortunately, the complex non-linearity of the above relation can hardly be unravelled, so

that ξc cannot be be expressed as an explicit function of bξ. This is true even when, e.g. under
Q, σ and q are constant and the interest rate r(t) is linear in t.

Model-based CB hedging

Full dynamic hedging of a long position in a CB (with recovery rate R and face value F )

implies being short η units of stocks as well as being long ξ units of CDSs with given fee f
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(for recovery rate Z and notional X), where η and ξ are adapted processes that satisfy the

following system of risk-exposure-nullifying equations:
∂
∂SPCB − η + ξ ∂

∂SH (S, T, r) = 0

R · F − PCB (S, T, r)− η (−S) + ξ [(1− Z)X −H (S, T, r)] = 0

with H (S, T, r) being the fair present value of a long CDS position:

H (S, T, r) ≡ V Q (S, T, r) (1− Z)X −
mTX
j=1

1

m
exp (−rTj)

h
1− V Q (S, Tj , 0)

i
f.

Our model also states that, in the case of a jump to default (τ ∧ ξ = τ), pure Delta hedging

recoups a fraction

∂
∂SPCB (Sτ−, T − τ−, r)Sτ−
PCB (Sτ−, T − τ−, r)−R · F

of the CB loss suffered at default.
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