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Abstract In this paper we apply change of numeraire techniques to the optimal transport

approach for computing model-free prices of derivatives in a two-period setting. In particular,

we consider the optimal transport plan constructed in Hobson and Klimmek [10] as well as the

one introduced in Beiglböck and Juillet [1] and further studied in Henry-Labordère and Touzi

[7]. We show that, in the case of positive martingales, a suitable change of numeraire applied

to Hobson and Klimmek [10] exchanges forward start straddles of type I and type II, so that

the optimal transport plan in the subhedging problems is the same for both types of options.

Moreover, for Henry-Labordère and Touzi [7]’s construction, the right-monotone transference

plan can be viewed as a mirror coupling of its left counterpart under the change of numeraire.
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1 Introduction

Let µ and ν be two probability measures on the positive half-line R++ := (0,∞), both with unit

mean and satisfying µ 4 ν in the sense of the convex order, i.e.
∫
fdµ ≤

∫
fdν for all convex

functions f : R++ → R. A classical theorem by Strassen [16] shows the existence of a discrete

time martingale M = (Mt)
2
t=0 = (1, X, Y ) with X ∼ µ and Y ∼ ν. LetM(µ, ν) denote the set of

all possible laws for such discrete martingales with pre-specified marginals µ, ν. If we interpret
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the process M as a price of a given stock, any function C(x, y) can be seen as a path-dependent

option written on that stock.

Motivated by the issue of model uncertainty (see, e.g., the seminal paper [8] and the survey

[9]), there has recently been a flourishing of articles on the problem of finding a model-free

upper (resp. lower) bound for the price of a given option C, which consists in maximizing (resp.

minimizing) the expectation EQ[C(X,Y )] with respect to all measures Q ∈ M(µ, ν). Indeed,

any such measure Q corresponds to some model for the price process of the underlying. In the

model-free setting such a price process is requested to be a martingale (hence free of arbitrage)

and to have pre-specified marginals µ and ν, which can be deduced as usual from the observation

of European Call option prices via the Breeden-Litzenberger formula. Therefore, in this context

M(µ, ν) is the set of risk-neutral pricing measures, which are compatible with the observed Call

option prices. The upper bound supQ∈M(µ,ν) EQ[C(X,Y )], for instance, corresponds essentially

to the cost of the least expensive semi-static strategy that super-replicates the given payoff. The

lower bound has an analogue interpretation as sub-replication price.

These optimization problems have been recently tackled using an approach based on optimal

transport (see, e.g., the papers [1,2,3,4,5,7,10] among others). More specifically, Beiglböck and

Juillet [1] perform a thorough analysis of martingale transport problems and, among other

results, prove that for a certain class of payoffs the optimal probabilities are of special type,

called the left-monotone and right-monotone transference plans. Later on, Henry-Labordère and

Touzi [7] provide an explicit construction of such optimal transference plans for a more general

class of payoffs C that satisfy the so-called generalized Spence-Mirrlees condition:

Cxyy > 0. (1.1)

Finally, Hobson and Klimmek [10] consider forward start straddles of type II, whose payoff is

|Y − αX| when the strike is α, while we recall for later use that the payoff of forward start

straddle of type I is given by | YX − α|. In the case α = 1, the authors construct another optimal

transference plan giving the model-free sub-replication price of a forward start straddle of type

II, whose payoff does not satisfy the condition (1.1) above.

In this paper we study the effect of change of numeraire on the martingale optimal transport

approach to model-free pricing. To our knowledge, change of numeraire has never been used so far

in connection to optimal transport and robust pricing. We will focus on the optimal transference

plans mentioned above in the case of marginals whose support is R++, i.e. we will consider

positive martingales with given marginals. Our main results can be briefly stated as follows:

regarding Hobson and Klimmek [10] optimal coupling measure, it turns out that the change of

numeraire exchanges forward start straddles of type I and type II with strike 1. As consequence,

this yields that the optimal transport plan in the subhedging problems is the same for both types

of forward start straddles. This complements, using a different method, the results in Hobson

and Klimmek [10] on forward start straddles of type II. On the other hand, regarding Beiglböck

and Juillet[1] and Henry-Labordère and Touzi [7] left- and right-monotone optimal transport

plans, the change of numeraire can be viewed as a mirror coupling for positive martingales.

More precisely, we will show that the right-monotone transport plan can be obtained with no

effort from its left-monotone counterpart by suitably changing numeraire. The effect of such a

transformation on the generalized Spence-Mirrlees condition is also studied. Other invariance

properties by change of numeraire will also be proved along the way. An extended version of the

present paper can be found in Laachir’s PhD thesis [14].
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The paper is structured as follows. We introduce in Section 2 the change of numeraire and

prove its main properties. In Section 3 we consider forward start straddles and extend the

results in [10] to forward start straddles of type I. In Section 4, we give an application of change

of numeraire to left and right-monotone transference plans for positive martingales.

Notations:

– Let X be any random variable defined on some measurable space (Ω,F). We denote by

LQ(X) the law of X under some measure Q. For the expectation of X under Q we use the

notation EQ[X].

– We denote by P = P(R++) the set of all probability measures µ on R++ := (0,∞), equipped

with the Borel σ-field B(R++), and set

P1 = P1(R++) :=

{
µ ∈ P :

∫
R++

xµ(dx) = 1

}
.

The subset of all measures µ ∈ P1 having a positive density, say pµ, with respect to the

Lebesgue measure, is denoted by Pd1 .

– If µ, ν ∈ P1, then Fµ, Fν denote their respective cumulative distribution functions. We also

use the notation δF for the difference between the two, i.e.

δF = δFµ,ν = Fν − Fµ.

– For any function q(x) we use the notation q(x) := 1−q(x), and Gµ(x) :=
∫

(0,x)
yµ(dy), x > 0,

for the cumulated expectation of any measure µ. Finally id denotes the identity function.

2 Change of numeraire

The technique of change of numeraire was first introduced by Jamshidian [12] in the context

of interest rate models and it turned out to be a very powerful tool in derivatives pricing (see

Geman et al. [6], Jeanblanc et al. [13, Section 2.4] and the other references therein for further

details). Here we see that such techniques can be fruitfully transposed to a model-free setting.

We consider a two-period financial market with one riskless asset, whose price is identically

equal to one, and one risky asset whose discounted price evolution is modelled by the process

(Mt)
2
t=0 = (1, X, Y ). The random variables X and Y , modelling respectively the prices at time

t = 1 and t = 2, are defined on the canonical measurable space (Ω,F), where Ω = Ω1 × Ω2

with Ω1 = Ω2 = R++ and F = B(Ω). For any ω = (ω1, ω2) ∈ Ω, we set X(ω) = ω1 and

Y (ω) = ω2. This space is equipped with the filtration F = (Ft)2
t=0, where F0 is the trivial σ-

field, F1 = σ(X) and F2 = σ(X,Y ). The martingale property will always refer to this filtration.

The final ingredients of our setting are the two marginal laws µ and ν, which are probability

measures on, respectively, (Ω1,B(R++)) and (Ω2,B(R++)), so that X (resp. Y ) has law µ (resp.

ν). Throughout the whole paper, we will work under the following standing assumption:

Assumption 2.1 The marginals µ and ν have unit mean and satisfy µ 4 ν in the sense of the

convex order, i.e.
∫
fdµ ≤

∫
fdν for all convex functions f : R++ → R.

Let M(µ, ν) denote the set of all probability measures on (Ω,F) such that X ∼ µ, Y ∼ ν,

and M is a martingale. As we already claimed in the introduction, by a classical theorem in [16],

we know that the previous assumption guarantees that M(µ, ν) is non-empty.
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2.1 The one-dimensional symmetry operator S

As a preliminary step, we first consider the change of numeraire in a static setting, i.e. for the

marginal laws. Thus, we define the (marginal) symmetry operator S as an operator acting on

the space of probability measures on (R++,B(R++)) given by

S(µ) := Lµ̄(1/X), µ ∈ P(R++), (2.1)

where µ̄ is the probability measure defined by µ̄(A) = Eµ[X1A], for any A ∈ B(R++).

Remark 2.2 Financially speaking, S(µ) is the law of the riskless asset price at time t = 1 mea-

sured in units of the risky one under the new probability Xdµ. This is the usual change of

measure associated to a change of numeraire. An analogue interpretation applies to S(ν).

Notice that if µ ∈ P1, i.e. it has unit mean, then S(µ) ∈ P1 too, due to the equalities

ES(µ)[X] = Eµ[X/X] = 1. In the case where µ ∈ Pd1 with density pµ, the new measure S(µ) has

a density too and this is given by

pS(µ)(x) =
pµ(1/x)

x3
, x > 0, (2.2)

hence in particular we have S(µ) ∈ Pd1 . Moreover, S is an involution, i.e. S ◦ S = id. Indeed, we

have

ES◦S(µ)[f(X)] = ES(µ)[Xf(1/X)] = Eµ[(X/X)f(X)] = Eµ[f(X)],

for all bounded measurable functions f . For future reference we summarize our findings in the

following lemma, which also contains few more properties, such as the fact that the operator S

preserves the convex order.

Lemma 2.3 The symmetry operator S defined in (2.1) satisfies the following properties:

(i) S is an involution preserving the convex order in P1, i.e. S ◦ S = id and if µ, ν ∈ P1 satisfy

µ 4 ν, then S(µ) 4 S(ν).

(ii) If µ has density pµ, the measure S(µ) has a density given by pS(µ) in (2.2).

(iii) If µ ∈ P1, then for all y > 0 we have

FS(µ)(y) = 1−Gµ(1/y) and GS(µ)(y) = 1− Fµ(1/y).

Proof To prove property (i) it suffices to show that S preserves the convex order of measures.

Let µ, ν ∈ P1 such that for any convex function f ,
∫
fdµ ≤

∫
fdν. Since S(µ) and S(ν) have

both unit mass and the same first moment, it is enough to show that for any positive constants

K,L we have

ES(µ)[(KX − L)+] ≤ ES(ν)[(KX − L)+].

Now ES(µ)[(KX − L)+] = Eµ[X(K/X − L)+] = Eµ[(K − LX)+], and the same holds true for

ν. Since x 7→ (K − Lx)+ is a convex function, the result follows. Property (ii) has already been

proved above, so it remains to show property (iii). We show only the left-hand side equality, the

same arguments can be applied to get the other one. By the definition of S we have

FS(µ)(y) = S(µ)(X ≤ y) = Eµ[X1(1/X≤y)]

= Eµ[X]− Eµ[X1(X<1/y)] = 1−Gµ(1/y).

Hence, the proof is complete.
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2.2 The symmetric two-marginals martingale problem

In this subsection, we consider the change of numeraire in the two-period setting. Let S be the

operator that assigns to every Q ∈M(µ, ν) the measure S(Q) defined by

ES(Q)[f(X,Y )] = EQ
[
Y f

(
1

X
,

1

Y

)]
, for every bounded measurable function f. (2.3)

Lemma 2.4 The operator S satisfies the following properties:

(i) S(Q) is a probability in M(S(µ), S(ν)) and it satisfies S ◦ S = id, i.e. S is an involution.

(ii) S (M(µ, ν)) =M(S(µ), S(ν)).

Proof (i) First, let us prove that S(Q) ∈ M(S(µ), S(ν)) for Q ∈ M(µ, ν). The fact that Y has

law S(ν) under S(Q) follows from the definition of S. Regarding X, by the martingale property

under Q, we have

ES(Q)[f(X)] = EQ
[
Y f

(
1

X

)]
= EQ

[
Xf

(
1

X

)]
,

for all bounded measurable functions f depending only on X. Hence, using (2.1) yields that X

has law S(µ) under S(Q). It remains to show the martingale property:

ES(Q)[Y f(X)] = EQ
[
Y

1

Y
f

(
1

X

)]
= EQ

[
f

(
1

X

)]
= EQ

[
X

1

X
f

(
1

X

)]
.

Now by the martingale property under Q we obtain EQ[Y 1
X f( 1

X )] = ES(Q)[Xf(X)], which

implies ES(Q)[Y |X] = X. The fact that S is an involution follows immediately from its definition.

(ii) In order to prove that S (M(µ, ν)) =M(S(µ), S(ν)), we note that one inclusion is implied

by the property 1 in this proposition. The other inclusion is a consequence of the fact that the

symmetry operator S is an involution.

Remark 2.5 Notice that the symmetry operator S can be seen as the projection of S. Indeed,

the first part of the proof above gives that for any Q ∈M(µ, ν) and for all bounded measurable

functions f : R++ → R, we have ES(Q)[f(X)] = ES(µ)[f(X)]. In other terms, the projection of

S(Q) into the first coordinate of the product space R2
++ equals S(µ). Similarly one can see that

the projection of S(Q) onto the second coordinate is S(ν).

Let C : R2
++ → R be any continuous function with linear growth, i.e. |C(x, y)| ≤ κ(1 +x+y)

for some constant κ > 0. The lower and upper model-free price bounds for such a derivative can

be computed by solving the following martingale optimal transport problems:

P (µ, ν, C) := inf
Q∈M(µ,ν)

EQ[C(X,Y )], P (µ, ν, C) = sup
Q∈M(µ,ν)

EQ[C(X,Y )]. (2.4)

They have the interpretation of sub and super-replication prices of the payoff C through a duality

theory that has been developed during the last few years by several authors (see, i.e., Beiglböck

et al. [2] and Beiglböck et al. [3] among others).

The following proposition shows the symmetry properties of such model-free bounds with

respect to the change of numeraire transformation.

Proposition 2.6 Let us define the payoff S∗(C)(x, y) := yC( 1
x ,

1
y ) for x, y > 0. Then

P (S(µ), S(ν),S∗(C)) = P (µ, ν, C), P (S(µ), S(ν),S∗(C)) = P (µ, ν, C). (2.5)
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Proof We only prove the equality for P , the one for P can be shown using the same arguments.

By definition of P we have

P (S(µ), S(ν),S∗(C)) = sup
Q∈M(S(µ),S(ν))

EQ[S∗(C)(X,Y )].

Using property 2 in Lemma 2.4 and the definition of S(Q), we get

sup
Q∈M(S(µ),S(ν))

EQ[S∗(C)(X,Y )] = sup
Q∈S(M(µ,ν))

EQ[S∗(C)(X,Y )]

= sup
Q∈M(µ,ν)

ES(Q)[S∗(C)(X,Y )].

Since S∗(C) = Y C(1/X, 1/Y ) and by definition of S(Q) as in (2.3), we obtain

ES(Q)[S∗(C)(X,Y )] = ES(Q)[Y C(1/X, 1/Y )] = EQ[C(X,Y )],

yielding

P (S(µ), S(ν),S∗(C)) = sup
Q∈M(µ,ν)

EQ[C(X,Y )]

= P (µ, ν, C),

which gives the result.

We conclude this section by showing how the symmetry operator S∗ introduced in Proposition

2.6 acts on the space of hedgeable claims, which we define as

H(µ, ν) =
{
C : R2

++ → R : there exist ϕ ∈ L1(µ), ψ ∈ L1(ν), h ∈ L0,

C(x, y) = ϕ(x) + ψ(y) + h(x)(y − x) Q− a.e. ∀Q ∈M(µ, ν)
}
.

This set contains all the payoffs that can be replicated by investing semi-statically in the stock as

well as in Vanilla options. It turns out that this set is invariant by the symmetry operator S∗ or,

in other words, the set of semi-static portfolios does not depend on the choice of the numeraire.

Proposition 2.7 The set H(µ, ν) is invariant by S∗, i.e. S∗(H(µ, ν)) = H(S(µ), S(ν)).

Proof First, we prove that S∗(H(µ, ν)) ⊂ H(S(µ), S(ν)). Let C ∈ H(µ, ν), i.e. there exist func-

tions ϕ ∈ L1(µ), ψ ∈ L1(ν), h ∈ L0 such that

C(x, y) = ϕ(x) + ψ(y) + h(x)(y − x) Q− a.e. ∀Q ∈M(µ, ν).

Let S∗(C)(x, y) := yC(1/x, 1/y) for all x, y > 0 and let

ϕ̃(x) = xϕ(1/x), ψ̃(y) = yψ(1/y), h̃(x) = (ϕ(1/x)− 1/xh(1/x)) , x, y > 0.

By construction, such functions satisfy ϕ̃ ∈ L1(S(µ)), ψ̃ ∈ L1(S(ν)) and h̃ ∈ L0. Moreover, one

can check by direct computation that

S∗(C)(x, y) = ϕ̃(x) + ψ̃(y) + h̃(x)(y − x), Q− a.e. ∀Q ∈M(µ, ν). (2.6)

Now, since S(M(µ, ν)) =M(S(µ), S(ν)), we also have the following equivalences:

EQ [|C(X,Y )− ϕ(X)− ψ(Y )− h(X)(Y −X)|] = 0, ∀Q ∈M(µ, ν)

⇔ ES(Q)
[∣∣∣S∗(C)(X,Y )− ϕ̃(X)− ψ̃(Y )− h̃(X)(Y −X)

∣∣∣] = 0, ∀Q ∈M(µ, ν)

⇔ EQ
[∣∣∣S∗(C)(X,Y )− ϕ̃(X)− ψ̃(Y )− h̃(X)(Y −X)

∣∣∣] = 0, ∀Q ∈M(S(µ), S(ν)).



Change of numeraire in the two-marginals martingale transport problem 7

As a consequence, we have

S∗(C)(x, y) = ϕ̃(x) + ψ̃(y) + h̃(x)(y − x), Q− a.e., ∀Q ∈M(S(µ), S(ν)),

i.e. S∗(C) ∈ H(S(µ), S(ν)). To prove the opposite inclusion, i.e. H(S(µ), S(ν)) ⊂ S∗(H(µ, ν)),

we first observe that any C ∈ H(S(µ), S(ν)) can be written as C = S∗(C̃) where we define

C̃(x, y) := yC(1/x, 1/y). Hence the same arguments as in the first part of the proof (until (2.6))

apply and give C̃ ∈ H(S ◦ S(µ), S ◦ S(ν)) = H(µ, ν) since S is an involution. The proof is

complete.

3 Model-free pricing of forward start straddles

In this section we apply our results on the change of numeraire to compute the model-free sub-

replication price of a forward start straddle of type I, which complements the result obtained in

Hobson and Klimmek [10].

In their article Hobson and Klimmek [10] consider the problem of computing a model-free

lower bound on the price of an option paying |Y −X| at maturity. This is an example of type II

forward start straddle, whose payoff for any strike α > 0 is given by

CαII(x, y) = |y − αx| , x, y > 0, (3.1)

while the type I forward start straddle with strike α > 0 is given by

CαI (x, y) =
∣∣∣y
x
− α

∣∣∣ , x, y > 0, (3.2)

cf. Lucic [15] and Jacquier and Roome [11]. Hobson and Kilmmek [10] derive explicit expressions

for the coupling minimizing the model-free price of an at-the-money (ATM) type II forward

start straddle C1
II as well as for the corresponding sub-hedging strategy. In particular, they

show that the optimal martingale coupling for such a derivative is concentrated on a three

points transition {p(x), x, q(x)} where p and q are two suitable decreasing functions. The precise

result will be recalled below. Such a characterization is obtained under a dispersion assumption

[10, Assumption 2.1] on the supports of the marginal laws: the support of (µ− ν)+ is contained

in a finite interval E and the support of (ν−µ)+ is contained in its complement Ec. Notice that

the interval E can be open, half-open or closed. Instead of working under such a condition on

the supports, we would rather impose the following standing assumption.

Assumption 3.1 Let the following properties hold:

(i) The measures µ and ν belong to Pd1 ;

(ii) δF has a single local maximizer m.

The main reason for setting up this assumption is that it makes our proofs simpler and more

uniform, without losing too much of generality. Indeed, Assumption 3.1(i) implies that both

marginals are atomless, which is the standing assumption used in Henry-Labordère and Touzi

[7] construction of the right- and left-monotone transference plans, which will be considered later

in this paper. Moreover, in the case of marginals with densities, Assumption 3.1(ii) is equivalent

to the dispersion assumption in [10] under the additional condition that µ and ν do not coincide

on any sub-interval of R++ (as we show in the remark below). Notice that the latter condition

is necessary for Assumption 3.1(ii) to hold.
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Remark 3.2 Let µ, ν ∈ Pd1 with µ 4 ν and such that they do not coincide on any sub-interval

of R++. Then Assumption 2.1 in [10] is equivalent to our Assumption 3.1(ii). To see this, let

µ, ν ∈ P1 with µ 4 ν. Suppose that Assumption 2.1 in [10] holds, i.e. there exists a finite interval

E with endpoints 0 ≤ a < b such that supp(µ− ν)+ ⊂ E and supp(ν−µ)+ ⊂ Ec. Hence, by the

definition of support, each x > 0 such that (µ−ν)((x−ε, x+ε)) =
∫

(x−ε,x+ε)
(pµ(z)−pν(z))dz > 0

(resp. < 0) for all ε > 0 satisfies x ∈ E (resp. x ∈ Ec). Consequently, δF is decreasing on E and

increasing on Ec. Hence, since µ and ν do not coincide on any sub-interval of R++, δF admits

a single local maximizer at a and a single local minimizer at b, whence Assumption 3.1(ii)

follows. Conversely, suppose that Assumption 3.1 holds. Then δF has a single local maximizer

m > 0. Now, notice that δF cannot be nonnegative over the whole half-line R++ and moreover

limx→0 δF (x) = limx→∞ δF (x) = 0. Hence, by continuity, δF has at least a global minimum at

some point m̃. Moreover, the fact of having a single local maximizer implies that δF cannot have

more than one local minimizer. The convex order µ 4 ν is equivalent to
∫ x

0
δF (z)dz ≤ 0 for all

x > 0, which implies m̃ < m. Therefore, for almost every x ∈ (m̃,m) we have pµ(x)− pν(x) > 0,

while for almost every x ∈ (m̃,m)c we have pµ(x)− pν(x) ≤ 0, so that Assumption 2.1 in [10] is

fulfilled.

Remark 3.3 Both properties in Assumptions 3.1 are preserved under change of numeraire. In-

deed, we have already seen in Lemma 2.3 that S(µ), S(ν) belong to Pd1 . Concerning property

(ii) in the assumption, note that

FS(µ)(y) =

∫ y

0

pµ( 1
x )

x3
dx = 1−

∫ 1/y

0

xpµ(x)dx,

so that

δFS(y) = FS(ν) − FS(µ) = −
∫ 1/y

0

x∂x(δF )(x)dx.

Hence, δFS has a single local maximizer xS? if and only if δF has a single local minimizer x?,

satisfying x? = 1
xS?

.

Let us come back to the model-free pricing of forward start straddles. Given the form of the

payoff (3.2), it is very natural to try to obtain an optimal martingale coupling for its model-free

sub-hedging price combining the change of numeraire techniques with Hobson and Klimmek [10]

results. For reader’s convenience, we summarize their main result in the following theorem. It is

a consequence of Theorem 5.4 and Theorem 5.5 in [10] applied to the particular case when the

marginals µ, ν have densities (see their Subsection 6.1). Therefore, its proof is omitted.

Theorem 3.4 Let Assumption 3.1 hold. Then there exists a unique optimal coupling QHK(µ, ν)

in M(µ, ν) such that

P (µ, ν, C1
II) := inf

Q∈M(µ,ν)
EQ [|Y −X|] = EQHK(µ,ν) [|Y −X|] . (3.3)

Moreover, QHK(µ, ν)(dx, dy) = µ(dx)KHK(x, dy), with a transition kernel KHK given by

KHK(x, ·) = δx1x≤a + (l(x)δp(x) + u(x)δq(x) + (1− l(x)− u(x))δx)1a<x<b + δx1x≥b, (3.4)

where:

(i) a (resp. b) is the single local maximizer (resp. minimizer) of δF ;
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(ii) p : (a, b)→ [0, a] and q : (a, b)→ [b,∞] are continuous decreasing functions solutions to the

equations

δF (q(x)) + δF (p(x)) = δF (x),

δG(q(x)) + δG(p(x)) = δG(x), x ∈ (a, b).
(3.5)

(iii) l, u : (a, b)→ [0, 1] are given by

u(x) =
x− p(x)

q(x)− p(x)

pµ(x)− pν(x)

pµ(x)
,

l(x) =
q(x)− x
q(x)− p(x)

pµ(x)− pν(x)

pµ(x)
.

(3.6)

Now, a simple application of change of numeraire results from the previous section gives that

QHK(µ, ν) attains the lower bound price for the type I forward start straddle C1
I as well. This

result complements the one in [10] about type II forward start straddle C1
II . We show first a

symmetry property of Hobson-Klimmek optimal coupling.

Proposition 3.5 Let Assumption 3.1 hold. The martingale measure QHK(µ, ν) satisfies the

symmetry relation

S (QHK(S(µ), S(ν))) = QHK(µ, ν)

where the symmetry operator S is defined in (2.3).

Proof Let the pair (pS , qS) define the measure QHK(S(µ), S(ν)). A simple computation shows

that the measure S(QHK(S(µ), S(ν))) is concentrated on { 1
pS(1/x)

, x, 1
qS(1/x)

}. In order to get

the equations satisfied by this three-band graph, recall first the symmetry relations

δFS(y) = −δG(1/y), δGS(y) = −δF (1/y). (3.7)

By definition, (pS , qS) is characterized by the two equations

δFS(qS(x)) + δFS(pS(x)) = δFS(x),

δGS(qS(x)) + δGS(pS(x)) = δGS(x).

Hence, using (3.7) we have

δF (1/qS(1/x)) + δF (1/pS(1/x)) = δF (x),

δG(1/qS(1/x)) + δG(1/pS(1/x)) = δG(x).

Since the functions x 7→ 1/pS(1/x) and x 7→ 1/qS(1/x) are both continuous decreasing and

satisfy the same equations as the pair (p, q), they are candidates. Hence, the uniqueness of the

optimal coupling yields the result.

At this point we can exploit a symmetry relation between type I and type II forward start

straddles, which is given by

S∗(CαII)(X,Y ) = Y

∣∣∣∣ 1

Y
− α

X

∣∣∣∣ = α

∣∣∣∣YX − 1

α

∣∣∣∣ = αC
1
α

I . (3.8)

In particular, the ATM straddles, i.e. α = 1, are related by S∗(C1
II)(X,Y ) = C1

I (X,Y ). Moreover,

since S∗ is an involution, we also have S∗(C1
I )(X,Y ) = C1

II(X,Y ). A consequence of this is the

following proposition, which states the announced result on forward start straddle of type I and

concludes the section.
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Proposition 3.6 Let Assumption 3.1 hold. The lower bound price of the ATM forward start

straddle of type I is also attained by QHK(µ, ν), i.e.

P (µ, ν, C1
I ) := inf

Q∈M(µ,ν)
EQ
[∣∣∣∣YX − 1

∣∣∣∣] = EQHK(µ,ν)
[
C1
I

]
. (3.9)

Proof Using Proposition 2.6 and the relation (3.8), we have

P (µ, ν, C1
I ) = P (S(µ), S(ν),S∗(C1

I )) = P (S(µ), S(ν), C1
II)

= EQHK(S(µ),S(ν))
[
C1
II

]
= EQHK(µ,ν)

[
C1
I

]
,

which ends the proof.

4 Symmetry properties of left- and right-monotone transference plans

The optimization problems in (2.4) are strongly related to the concepts of right- and left-

monotone transference plans. Both notions were introduced in Beiglböck and Juillet [1], who

show their existence and uniqueness for convex ordered marginals, and prove that they solve

the maximization and the minimization problem in (2.4) for a specific set of payoffs of the form

C(x, y) = h(y − x) with h differentiable with strictly convex first derivative. Henry-Labordère

and Touzi [7] extend these results to a wider set of payoffs. Moreover they also give an explicit

construction of the left-monotone transference plan. In this section we want to study the sym-

metry property of those transference plans and show in particular that, in the case of positive

martingales, the right-monotone plan can be obtained from its left-monotone counterpart with

no effort via change of numeraire.

We start by recalling the general definition of right and left-monotone transference plan.

Definition 4.1 (Beiglböck and Juillet [1]) A martingale measure Q ∈ M(µ, ν) is left-

monotone (resp. right-monotone) if there exists a Borel set Γ ⊂ R2
++ with Q(Γ ) = 1 such

that for all (x, y−), (x, y+) and (x′, y′) in Γ we cannot have x < x′ and y− < y′ < y+ (resp.

x > x′ and y− < y′ < y+). We denote QL(µ, ν) (resp. QR(µ, ν)) the left-monotone (resp.

right-monotone) transference plan with marginals µ, ν.

The next result states how the two monotone transference plans relate to each other via the

symmetry operators.

Proposition 4.2 The operator S exchanges left-monotone and right-monotone transference plans,

i.e. S(QR(S(µ), S(ν))) = QL(µ, ν) and S(QL(S(µ), S(ν))) = QR(µ, ν).

Proof We prove only the first equality, as the second follows immediately since S is an involution.

By definition of the right-monotone transference plan QSR := QR(S(µ), S(ν)), there exists a Borel

set ΓR ⊂ R2
++ such that QSR(ΓR) = 1 and for all (x, y−), (x, y+), (x′, y′) in ΓR we cannot have

x > x′ and y− < y′ < y+. Let

Γ S
R := {(x, y) ∈ R2

++ : (1/x, 1/y) ∈ ΓR}.

We clearly have

S(QSR)(Γ S
R) = EQ

S
R

[
Y 1Γ S

R
(1/X, 1/Y )

]
= EQ

S
R [Y 1ΓR(X,Y )] = EQ

S
R [Y ] = 1.
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Since (x, y−), (x, y+), (x′, y′) ∈ Γ S
R if and only (1/x, 1/y−), (1/x, 1/y+), (1/x′, 1/y′) ∈ ΓR, we

cannot have x < x′ and y− < y′ < y+. Moreover, we have S(QR(S(µ), S(ν))) ∈ M(µ, ν),

hence by uniqueness of the left-monotone transference plan (see Theorem 1.5 in [1]) we obtain

S(QSR) = QL(µ, ν).

Remark 4.3 We observe that, as a by-product of the previous result, the existence of left-

monotone transference plan for marginal laws µ, ν gives for free the existence of its right-

monotone analogue but for a different pair of marginals S(µ), S(ν) via the symmetry operator

S and vice-versa. Moreover, notice also that the result above holds in full generality, e.g. even

when the marginals do not have densities.

Building on the results in [1], Henry-labordère and Touzi [7] show in particular that QL(µ, ν)

attains the upper bound (2.4) for a larger class of payoffs satisfying a generalized Spence-Mirrlees

type condition Cxyy > 0 (or Cxyy < 0) (see their Theorem 5.1). We summarize their result in

the following theorem.1

Theorem 4.4 (Henry-Labordère and Touzi [7]) Let C : R2
++ → R be a measurable func-

tion such that the partial derivative Cxyy exists and Cxyy > 0. Under Assumption 3.1, the

left-monotone transference plan QL = QL(µ, ν) is the optimal coupling solving the martingale

transport problem

P (µ, ν, C) := sup
Q∈M(µ,ν)

EQ[C(X,Y )].

In order to apply the change of numeraire approach, notice first that by the definition of

S∗(C) we have

S∗(C)xyy(x, y) = − 1

x2y3
Cxyy

(
1

x
,

1

y

)
, ∀x, y > 0. (4.1)

Hence, we have that Cxyy > 0 holds true if and only if S∗(C)xyy < 0. This elementary remark

allows us to find the model-free price bounds for payoffs satisfying Cxyy < 0 by changing the

numeraire. This is similar to what happens with the mirror coupling in [7, Remark 5.2], where

the marginals have support in R. The symmetry operators S and S permit to handle this case

for R++-supported marginals.

To make this observation more precise, let C(x, y) be a payoff satisfying Cxyy < 0. Hence

S∗(C)xyy > 0 and by Proposition 2.6 we have

P (µ, ν, C) = P (S(µ), S(ν),S∗(C))

= EQL(S(µ),S(ν)) [S∗(C)(X,Y )]

= ES(QL(S(µ),S(ν))) [C(X,Y )] .

Therefore, P (µ, ν, C) is attained by S (QL(S(µ), S(ν))), which is equal to QR(µ, ν) by Proposition

4.2. One can prove in a similar way that if Cxyy > 0 (resp. Cxyy < 0), the lower bound in (2.4)

is attained by QR(µ, ν) (resp. QL(µ, ν)).

Remark 4.5 We say that a payoff function C is symmetric if it satisfies S∗(C) = C.2 For any

symmetric payoff C which satisfies the slightly relaxed generalized Spence-Mirrlees condition

1 Observe that the results in Theorem 4.4 hold under more general conditions than our Assumption 3.1(ii).
2 A way of constructing a symmetric payoff C goes as follows: choose its values on [0, 1]× R++ first, then for

(x, y) ∈ (1,∞)× R++, set C(x, y) = yC(1/x, 1/y). One may easily check that C satisfies S∗(C) = C.
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Cxyy ≥ 0, we can use (4.1) to get Cxyy(x, y) = − 1
x2y3Cxyy( 1

x ,
1
y ), hence Cxyy = 0. Integrating

with respect to y twice and with respect to x once, we see that C is necessarily of the form

C(x, y) = ϕ(x) + ψ(y) + h(x)(y − x), for some functions ϕ,ψ and h.

4.1 Explicit constructions of left and right-monotone transference plans and change of

numeraire

In this section we briefly recall the explicit construction of a left-monotone transference plan

performed in [7] and we show how the change of numeraire can be used to generate, essentially

for free, the basic right-monotone transport plan from its left-monotone counterpart via the

symmetry operator. We stress that Assumption 3.1 is still in force. The explicit characterization

of QL in [7] is described, for reader’s convenience, in the following theorem.

Theorem 4.6 Let Assumption 3.1 hold. The left-monotone transference plan QL is given by

QL(dx, dy) = µ(dx)KL(x, dy) with transition kernel

KL(x, ·) = δx1x≤x? + (qL(x)δLu(x) + (1− qL(x))δLd(x))1x>x? ,

where qL(x) := x−Ld(x)
Lu(x)−Ld(x) , x? ∈ R++ is the unique maximizer of δF and Ld, Lu are positive

continuous functions on (0,∞), such that:

(i) Ld(x) = Lu(x) = x, for x ≤ x?;

(ii) Ld(x) < x < Lu(x), for x > x?;

(iii) on the interval (x?,∞), Ld is decreasing, Lu is increasing.

Moreover Ld is the unique solution to

F−1
ν (Fµ(x) + δF (Ld(x))) = G−1

ν (Gµ(x) + δG(Ld(x))), x > x?, (4.2)

and Lu is given by the relation

Fν(Lu(x)) = Fµ(x) + δF (Ld(x)), x > x?. (4.3)

Proof We refer to Theorem 4.5 in [7]. More details on the case of a single maximizer can be

found in Section 3.4 therein.

Now, using the fact that S(QL(S(µ), S(ν))) = QR(µ, ν) together with the characterization of

the left-monotone transference plan given in the previous theorem, we can investigate how the

quantities defining QR and QL are related to each other. Notice that, since both marginals have

support in R++, the symmetry relation we use here is different than the one in [7, Remark 5.2].

Proposition 4.7 Let Assumption 3.1 hold. Then the right-monotone transference plan QR is

given by QR(dx, dy) = µ(dx)KR(x, dy) with transition kernel

KR(x, ·) := δx1x≤x? + (qR(x)δRu(x) + (1− qR(x))δRd(x))1x>x? ,

where

(i) x? = 1/xS? is the unique minimizer of δF ;

(ii) Rd(x) =
1

LSu(1/x)
, Ru(x) =

1

LSd (1/x)
, for x > 0;
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(iii) the transition probability is given by qR(x) =
x

Ru(x)
(1− qSL(1/x)), for x > 0.

Proof By Lemma 2.3, if µ, ν ∈ P1 satisfy µ 4 ν, then their images by the symmetry operator

S satisfy the same conditions, i.e : S(µ), S(ν) ∈ P1 and S(µ) 4 S(ν). By Remark 3.3 one has

that δFS = δFS(µ),S(ν) has a single local maximizer and Theorem 4.6 gives that there exists a

left-monotone transference plan QSL := QL(S(µ), S(ν)) characterized as in Theorem 4.6.

To conclude, since we already know that S(QSL) = QR(µ, ν) (see Proposition 4.2), it suffices

to check that the measure Q̃ defined as Q̃(dx, dy) := µ(dx)LR(dx, dy) with the kernel LR defined

as in the statement, satisfies

EQ̃[f(X,Y )] = ES(QSL)[f(X,Y )],

for all bounded measurable functions f : (R∗+)2 → R. This can be done by direct computation

using the formulas for x?, Rd and Ru given in the statement. The details are therefore omitted.

Remark 4.8 As a by-product of the previous proposition, we get the characterization of QR in

terms of a triplet (x?, Rd, Ru), where x? > 0 is the unique minimizer of δF and Rd, Ru are

positive continuous functions on R∗+, which solve

F−1
ν (Fµ(x) + δF (Ru(x))) = G−1

ν (Gµ(x) + δG(Ru(x))) (4.4)

Gν(Rd(x))−Gµ(x) = Gν(Ru(x))−Gµ(Ru(x)). (4.5)

5 Summary

In this paper we have introduced change of numeraire techniques in the two-marginals transport

problem for positive martingales. In particular, we have studied the symmetry properties of

Hobson and Klimmek [10] optimal coupling under the change of numeraire, which exchanges type

I with type II forward start straddle. As a consequence, we have proved that the lower bound

prices are attained for both options by the Hobson-Klimmek transference plan. On the other

hand, relying on the construction of Henry-Labordère and Touzi [7] of the optimal transference

plan introduced by Beiglböck and Juillet [1], we have also shown that the change of numeraire

transformation exchanges the left- and the right-monotone transference plans, so that the latter

can be viewed has a mirror coupling acting on the former under a change of numeraire for

positive martingales with given marginals.
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