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Abstract. Glassy solids may undergo a fluidization (yielding) transition upon

deformation whereby the material starts to flow plastically. It has been a matter

of debate whether this process is controlled by a specific time scale, from among

different competing relaxation/kinetic processes. Here, two constitutive models of cage

relaxation are examined within the microscopic model of nonaffine elasto-plasticity.

One (widely used) constitutive model implies that the overall relaxation rate is

dominated by the fastest between the structural (α) relaxation rate and the shear-

induced relaxation rate. A different model is formulated here which, instead, assumes

that the slowest (global) relaxation process controls the overall relaxation. We show

that the first model is not compatible with the existence of finite elastic shear modulus

for quasistatic (low-frequency) deformation, while the second model is able to describe

all key features of deformation of ‘hard’ glassy solids, including the yielding transition,

the nonaffine-to-affine plateau crossover, and the rate-stiffening of the modulus. The

proposed framework provides an operational way to distinguish between ‘soft’ glasses

and ‘hard’ glasses based on the shear-rate dependence of the structural relaxation time.

1. Introduction

Liquids behave like solids at sufficiently high rates of deformation, but at very slow

(quasistatic) deformation they flow with zero energy cost [1, 2]. Glassy solids exhibit

a very similar behaviour at intermediate to high deformation rates, but they possess

a finite shear modulus when subject to quasistatic deformation. However, when the

amplitude of applied deformation is sufficiently large, glassy solids yield to plastic

deformation [3, 4]. The question about the kinetics of this yielding, or the elastic-

plastic transition, has a long history: it goes back to, at least, the work of Eyring [5],

who introduced the basic concepts still in use today [6, 7].

The key concept in Eyring’s theory and most of the subsequent treatments,

including the Shear Transformation Zone (STZ) theory [8] or the Cooperative Shear

Model (CSM) [9, 10], is that the plastic flow sets in when the applied stress suppresses

the barrier for molecular jumps out of the local energy well, such that the motion of
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molecules in the direction of shear matches the globally applied shear rate. In such

models, there is a single relaxation time, set by the escape rate out of the energy well,

and often referred to as the α-relaxation [11].

Successive modifications of the Eyring model accounted for the distribution of

relaxation times, following from the distribution of energy wells [12]. This approach

led to the celebrated Soft Glassy Rheology (SGR) theory [13]. A different way

of incorporating the heterogeneity of the dynamical process is through the already

mentioned STZ model, which has proven useful in the modelling of real solids.

In most of these models the relevant time scales for relaxation in the strained

system are identifiable with local energy barriers, although in Mode Coupling Theory

the relaxation is more collective and cooperative [3, 4]. Recently, it has been emphasized

that the dynamics of glasses may be controlled by local, rather than global relaxation

processes [14]. Accordingly, these models cannot give closed-form constitutive relations

depending on the overall (observable) structural relaxation time and the (externally

imposed) deformation rate.

Here we compare and contrast the ‘soft’ and the ‘hard’ glassy materials, where

the soft glassy systems age, restructure, and therefore adjust their modulus on the

experimental time scale. The ‘hard glass’ instead is controlled by frozen-in configurations

that are stable on a time scale much longer than any experiment: such amorphous

solids appear with a well-defined plateau modulus at low frequencies. We follow

a different approach to the strain- and strain rate-dependent deformation of glassy

solids [16, 27]: our model is analytically tractable, and based on the theory of nonaffine

elasticity [15, 17, 18]. The key role is played by the overall structural relaxation time.

Within this elasto-plastic model, two different relations for the structural relaxation

time τα are examined: one in which τα is controlled by the slowest macroscopic process

in the glass under dynamic shear, and the other, where it is controlled by the process

with the highest rate, typically the local shear-assisted bond-breaking time-scale. It

turns out that only the former model can recover the hallmark of hard glassy solids: a

non-zero shear modulus plateau at vanishing frequencies/rates. Other characteristics of

glassy deformation including the yielding (elastic-plastic transition) and its temperature

dependence, are also recovered.

The title of this paper is a deliberate counterpoint to the Soft Glassy Rheology

theory [13], because we focus on the elasticity and yielding transition of true solids with

the quasistatic shear modulus, whereas in SGR the long-time limit is that of a fluid

flow.

2. Nonaffine elastoplastic model

2.1. Free energy of deformation

We start from a phenomenological model that describes the mechanical response of

glasses [16]. The shear modulus for a generic amorphous solid can be written in a form:
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G = 2
5π

(κφ/R0)(z − zc). Here, κ is the bond spring constant, φ is the atomic/particle

packing fraction, R0 is the mean distance between nearest neighbours, and z is the

average number of mechanically-active neighbours. This mean contact number z does

not include nearest-neighbours which are fluctuating fast in and out of contact. As

illustrated in many previous studies, the shear modulus vanishes at a critical connectivity

value zc, due to nonaffine displacements which soften the elastic response [17, 18]. We

recall that nonaffine displacements are prominent in amorphous solids: due to the lack

of local symmetry in the particle environment, the forces that this particle receives

from its nearest neighbours in the affine position prescribed by the strain tensor are

unbalanced [15]. This lack of mechanical equilibrium in the affine position causes the

additional displacement of the particle towards a true equilibrium position under the

action of the unbalanced local force. This additional displacement is accompanied by a

decrease in the free energy of deformation because the displacement implies a mechanical

work which is done by the solid to keep equilibrium.

This is true for both athermal solids (such as jammed packing of particles) and

also for thermal systems (e.g. polymer or metallic glasses). If interparticle interactions

are purely central-force, then zc = 6 [20], reflecting the celebrated Maxwell counting

of constraints, whereas for more complex interactions one has zc = 2.4 for covalent

networks [21, 22], and z = 4 for a glass of linear polymer chains [23, 24, 25] (where a

mixture of covalent bonds and central-force Lennard-Jones type interactions is present).

The elastoplastic free energy Fel−pl response to the imposed shear deformation γ can

be written as: Fel−pl(γ) = FA(γ)−FNA(γ), with two contributions corresponding to the

affine deformation (as in Born-Huang theory and its extensions [26]), and to the nonaffine

deformation (the sum of negative local, internal work contributions), respectively. Using

the generic shear modulus G(z), this free energy becomes

Fel−pl =
1

2

(
2κφ

5πR0

)
[z(γ)− zc]γ2, (1)

where the modulus G(z) incorporates the microscopic parameters of spring constant

κ, and the mean packing fraction φ. The source of elastic nonlinearity here is the

change (reduction) of the mean contact number z with increasing deformation in the

affine part of Fel−pl [16]. It is important to point out that the nonaffine part of this

deformation free energy remains quadratic in the strain amplitude γ, even beyond the

yield point of the glass. This theoretical prediction [15, 22] has also been confirmed

experimentally in colloid glass by measuring the mean squared nonaffine displacement

at different strains [27].

As discussed in studies by various authors, upon being sheared, the glassy cage of

nearest-neighbours gets deformed in such a way that neighbours are lost in the two

extensional sectors of the solid angle around a given particle [12, 16]. In the two

compression sectors, the particles, instead, are pushed against the test particle, but

due to excluded volume there is practically no gain of new mechanical contacts, see Fig.

1. Hence, there is a net decrease of the total z due to the shear deformation. In many

amorphous solids, this is associated with dilatancy [28], although in some glasses the
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Figure 1. (Color online) A scheme of local cage packing, when the two extension

sectors under applied shear reduce the number of mechanically-active contacts, while

the two compression sectors do not change their mean connectivity.

dilatancy could be too small to be measured as the decrease of z(γ) can be associated

with redistribution of particles in free volume pockets.

2.2. Evolution of connectivity with strain

The simplest physically-motivated expression that captures the relevant limits of

undeformed glass z → z0, and the post-yielding fluidized state z → z0/2 (which would

be equal to 6 in the Maxwellian packing of monodisperse spheres where the local shear

modulus becomes zero [17]), with an exponential crossover dependence on both the

energy barrier (Arrhenius) β∆ ≈ Tg/T ≥ 1 [16], and on the shearing time, is as follows:

z(γ) =
z0
2

[
1 + e−(Tg/T )γe−t/τα

]
, (2)

where the factor e−t/τα is expected from the general solution to the time-dependent

diffusive (Smoluchowski) dynamics [29]. This equation compactly expresses the fact

that the number of long-lived neighbors z decays (eventually to about a half of its

value, in the two compacted sectors out of the four in Fig. 1) either upon externally

driving the system to a very large deformation γ, or simply by waiting for a very long

time t much longer than the characteristic α-relaxation time, τα. Note that lowering

the temperature much below Tg makes the transition happen at smaller γ, i.e. the

material is more brittle. Please note that within this picture, conceptually consistent

with MCT [30, 31], the cooperatively-enhanced local cage-level energy barrier sets the

global energy barrier, hence β∆ ≈ Tg/T used above.

The factor z0 is the mean number of mechanical contacts at rest; its value is z0 ≈ 12

for dense glasses [35], as also confirmed experimentally in colloidal glass [27]. In a glass

of linear polymer chains, z0 ≈ 8 was found in Brownian-dynamics simulations [25], and

by examining the packing of tetrahedral sublattices [36]. Finally, in a silica glass (an

archetype system of random covalent bonds), the mean packing number was found to
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be z0 ≈ 5-6 [37, 38]. Here we want to propose that, as the mean connectivity z0 of a

hard glassy material diminishes on increasing shear amplitude, its value does not drop

below the critical number at marginal stability zc: At this point (when z = zc) the solid

is fully fluidised, and any further decrease in density is unjustified. Accordingly, we take

z0/2 ≈ zc. This assumption is supported by many observations: in the colloid packing

zc = 6 [21, 27], in a linear polymer zc = 4 [25, 24] and in a covalent-bonded network

zc = 2.4 [21, 22].

2.3. Stress-strain relation and strain-dependent modulus

Putting Eq. (2) back into the free energy of deformation, Eq.(1), replacing t with γ = γ̇t

for the case of deformation ramp, and differentiating, the following stress-strain relation

for the non-viscous part of the stress under a constant-rate strain ramp is obtained:

σ =
1

4
z0Kγ e

−Aγ (2− Aγ) , (3)

with the linear modulus G0 = 1
2
z0K, where we defined K = 2κφ

5πR0
. Predictions of this

model have been found in quantitative agreement with experimental data on metallic

glass [39], colloidal glass under shear [40, 41, 27] and data of 2D colloidal glass at the

air-water interface [42, 43].

Finally, upon differentiating the stress in Eq. (3), we find the expression for the

modulus

G =
1

2
G0e

−Aγ
(
2− 4Aγ + A2γ2

)
(4)

where the shorthand parameter A = (Tg/T ) + (γ̇τα)−1 is coming from Eq. (2), and τα
is the structural relaxation time, which will also depend on the applied shear-rate γ̇.

In the next section, we will address different conceptual models which express the

overall τα in terms of the underlying kinetic processes. We will see that different ways

of combining the underlying rate processes leading to different τα(γ̇) expressions, result

in two completely different scenarios which can distinguish between ”soft” and ”hard”

glasses.

3. Rate-dependent relaxation time

Equation (3) still does not take into account how the shear rate affects the structural

relaxation time τα, which appears in Eq. (2). When the rate of a physical process is

determined by the interplay of sub-processes, each with its own kinetics, two possibilities

exist: either the overall relaxation rate is controlled by the fastest of the two rates

(summation in series), or instead it is the longest relaxation time that controls the

overall process, making the rates add in parallel.

In our case, we could have the in-series addition of two key rates:

τ−1α = τ−10 +
γ̇

γc
, (5)
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where τ0 is the static structural α-relaxation time of the cage, and γc is a constant

parameter that sets the amount of strain needed to break a cage (typically γc ∼ 0.1

[39, 44]). This constitutive expression is saying that the faster rate of cage breaking

controls the overall relaxation rate. This relation is used within an extended version of

Mode-Coupling theory for sheared liquids, which is able to describe shear-thinning of

viscoelastic liquids [44]. Furthermore, this relation has been found in both experiments

and simulations of supercooled liquids [45] and polymer melts [46, 47].

One should note that in the static limit γ̇ → 0 one recovers τα → τ0, with a finite

cage relaxation time, as typical for liquids. Note that a similar relation to Eq. (4) with

a power-law exponent n acting on γ̇ defines a broader class of Herschel-Bulkley models

[48].

A different choice would be to say that the longest process time dominates the

overall relaxation dynamics (in a solid this would be the structural relaxation). In this

case, the in-parallel summation gives

1

1/τα
=

1

1/τ0
+

1

γ̇
, i.e. τ−1α =

γ̇

1 + γ̇τ0
, (6)

where τ0 is the equilibrium cage relaxation. That is, we measure the total time of

relaxation in two steps: τ0 + 1/γ̇, as e.g. in the reaction-diffusion case, where the

total time of the process is a sum of the two consecutive times. When γ̇ is high, the

deformation is affine (not able to relax local internal forces by adjusting positions and

reducing z0 connectivity). An affine deformation also implies that the characteristic

time of the structural rearrangement is much larger than the time-scale of the external

driving, τ0γ̇ � 1. In general, τ0 could be identified with the Maxwell-Frenkel relaxation

time, approximately given by the hopping time of one atom to get out of the cage [2].

Since in a high-rate affine deformation the atoms never leave the cage (their motion is

limited to high-rate motions within the cage), it is clear that the time-scale set by τ0 is

the one which governs the structural relaxation.

In contrast, at low γ̇ such that τ0γ̇ � 1, the relative internal positions adjust

non-affinely into much deeper minima under the action of the external drive, and the

stronger barriers to relaxation result in the increase of the effective τα. However, for hard

materials, in practice, the overall relaxation time is close to the equilibrium structural

relaxation time τ0. For example, for silicate glasses, the structural relaxation time is

found experimentally on the order of 19,000 years [49] so that 1/τ0 is probably much

smaller than any experimentally accessible γ̇.

The two models are schematically compared in the cartoon of Fig. 2.

4. Results and comparison

We will now compare predictions of the model with these two different constitutive

relations for the relaxation process. In Eq.(4), we replace τα = γcτ0/(γc + γ̇) inside

the parameter A = (Tg/T ) + (γ̇τα)−1, which implements the in-series rate addition in

Eq.(5). This modulus is plotted in Fig. 3 as a function of increasing shear rate, for
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Figure 2. (Color online) A scheme comparing the addition of relevant rates according

to the in-series model (liquid-like, Eq. 5), and in-parallel model (solid-like, Eq. 6), with

reference to the equations in the text. The finite relaxation time at γ̇ → 0 is a feature

of SGR model, i.e. the liquid-like quasistatic response, presented as dashed line to

contrasti it with the prediction of the in-parallel addition model.

several values of the final strain γ. It is clear that the solid-like response for quasistatic

deformation (γ̇ → 0) is never attained, even at the smallest strain. This shows that

the constitutive model given by Eq. (5) cannot describe a solid in equilibrium, but at

most a viscoelastic liquid. We should also remark on the fact that this outcome is in

contradiction with the underlying premise of the theoretical model which assumes the

existence of a free energy of deformation quadratic in the strain, Eq. (1).

In contrast, when we apply the in-parallel constitutive model for the rates addition,

τα = (1 + γ̇τ0)/γ̇ in Eq. (6), the plots in Fig. 4 show the shear modulus having the

correct qualitative behaviour. At very low strain, the modulus reaches the quasistatic

(equilibrium) plateau. However, above a critical yield strain γ∗ the low-rate response

is at zero modulus (plastic flow). This elastic-plastic crossover is achieved because

the structural relaxation diverges in the constitutive model of Eq. (6). The low-rate

(equilibrium) plateau is dominated by the nonaffine dynamics, after which a smooth

crossover leads to a higher plateau at high strain rates, which is instead affine.

Figure 5 shows how the yield point γ∗ (the solution of ∂σ/∂γ = 0) approaches

the simple asymptotic value γ∗ = (2 −
√

2)/β∆, independent of the strain rate when

the cage barrier is high. That is, strongly bonded glass reaches the limit of its elastic

response already at a very small strain – while in a weak glass the yield point has a

strong dependence on the rate of applied shear, expressed as γ̇τ0 in Fig. 5.

The same qualitative behaviour of G is to be expected for the complex modulus

G∗(ω) in response to an oscillating deformation of amplitude γ. It has been
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Figure 3. (Color online) Model predictions from Eq. (4) using the constitutive

relation Eq. (5). For the calculations the cage barrier has been kept constant, β∆ = 5.

From top to bottom the applied strain is: γ = 0.001, 0.01, 0.02, 0.03. The parameter

γc = 0.1 (strain at cage breaking) is kept constant for all curves.
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Figure 4. (Color online) Model predictions from Eq. (4) using the constitutive

relation Eq. (6). The cage barrier β∆ = 5. From top to bottom the applied strain is:

γ = 0.05, 0.08, 0.09, 0.1, 0.105, 0.11. The parameter γc = 0.1 (strain at cage breaking)

is kept constant for all curves.
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Figure 5. (Color online) The dependence of the yield strain γ∗ on the strength of

cage barrier β∆ = Tg/T , for different rates of strain ramp. The dashed line is showing

the asymptote γ∗ = (2 −
√

2)/β∆. From top to bottom the curves are for increasing

shear rate: γ̇τ0 = 0.1, 1 and 10.

shown [50, 51] that the rate-dependent modulus can be converted into a frequency-

dependent complex modulus merely by replacing γ̇ with the relation γ̇ ≈ 4iωγ0,

where γ and ω are the wave amplitude and the frequency of the signal in oscillatory

shear deformation. The resulting storage modulus G′(ω) is in full agreement with

experimental data on a variety of materials [52, 53, 55, 54, 56, 57, 58], all featuring

a low-frequency equilibrium modulus plateau (with strong nonaffine behaviour) which

transitions smoothly to an upper (affine) plateau at higher frequency, Fig. 6. Upon

reaching a sufficiently high strain amplitude, the atoms in the extensional sectors of the

cage (see Fig. 1) have now left the cage and the critical condition z → z0/2 is reached

at which fluidization occurs, leading to the disappearance of the low-frequency plateau

in the post-yielding regime. Although there is not yet experimental confirmation of this

trend as a function of strain amplitude, similar curves of fluidization have been reported

for T -induced fluidization as a function of T [59, 56, 58].

The plots in Fig. 7 show the corresponding imaginary part of the complex modulus,

G′′(ω). It also shows an expected behaviour consistent with experimental trends on

various hard glasses (metallic, silicates) [56, 58, 57], with the characteristic peak in the

loss modulus around the characteristic frequency ωτ0 ∼ 1, and a power-law decay on

both sides of the peak. It is, however, unexpected to see almost no difference in the

loss modulus for different strain amplitudes: in great contrast to the storage modulus

that shows a very dramatic fluidisation effect. Again the small horizontal shift of the

resonance peak in G′′ is consistent with trends observed in hard glasses upon T -induced
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Figure 6. (Color online) The storage modulus G′(ω), for β∆ = 5 and for different

amplitudes of oscillating strain: γ0 = 0.05, 0.08, 0.09, 0.1 and 0.11, from top to bottom,

again revealing the fluidisation above a critical strain amplitude. The parameter

γc = 0.1 (strain at cage breaking) is kept constant for all curves.
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Figure 7. (Color online) The loss modulus G′′(ω), for ∆/kBT = 5 and strain

amplitudes: γ0 = 0.05, 0.08, 0.09, 0.1 and 0.11. The relaxation peak at ωτ0 ∼ 1

changes very little during the fluidisation transition. The parameter γc = 0.1 (strain

at cage breaking) is kept constant for all curves.

fluidization [56, 58, 57]. In retrospect, we have to accept that the loss mechanism in

this theory arises from the cage re-arrangement sketched in Fig. 1, which is the same

microscopic process on either side of the elastic-plastic transition.
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5. Conclusion

Our main conclusion is that to describe a solid glass elasticity, one must adopt a

physical view of microscopic cage dynamics expressed by the constitutive relation Eq.(6).

This implies that the overall cage relaxation time under an external dynamic strain is

dominated by the internal parameter τ0 at shear rates γ̇τ0 ≥ 1. In contrast, in quasi-

static equilibrium, the glass behaves as a perfect solid with a well defined reference

state, and the finite equilibrium shear modulus. The model reproduces the elastic-

plastic transition, with the yield strain γ∗ in Fig. 5 that distinguishes between the

strong and weak glasses. In turn, the parameter which discriminates between strong

and weak glass is the bonding energy barrier ∆ for a nearest-neighbour to be removed

from the cage. In the future, the spatial variation of energy barriers and of relaxation

times can be added into the model to address more complicated strain histories and the

specificity of various material chemistries.
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