DE GRUYTER

Biomed. Eng.-Biomed. Tech. 2020; aop

Valentina D. A. Corino*, Luca lozzia, Giorgio Scarpini, Luca T. Mainardi and Federico Lombardi

A simple model to detect atrial fibrillation via

visual imaging

https://doi.org/10.1515/bmt-2019-0153
Received June 17, 2019; accepted February 21, 2020

Abstract: Automatic detection of atrial fibrillation (AF) is
a challenging issue. In this study we proposed and vali-
dated a model to identify AF by using facial video re-
cordings. We analyzed photoplethysmographic imaging
(PPGi) signals, extracted from video of a subject’s face.
Sixty-eight patients were included: 30 in sinus rhythm
(SR), 25 in AF and 13 presenting with atrial flutter or
frequent ectopic beats (ARR). Twenty-six indexes were
computed. The dataset was divided in three subsets: the
training, validation, and test set, containing, respectively,
58, 29, and 13% of the data. Mean of inter-systolic in-
terval series (M), Local Maxima Similarity (LMS), and
pulse harmonic strength (PHS) indexes were significantly
different among all groups. Variability and irregularity
parameters had the lowest values in SR, the highest in
AF, with intermediate values in ARR. The PHS was higher
in SR than in ARR, and higher in ARR than in AF. The
LMS index was the highest in SR, intermediate in ARR
and the lowest in AF. Similarity indexes were higher in
SR than in AF and ARR. A model with three features,
namely M, Similarityl and LMS was chosen. With this
model, the accuracy for the validation set was
0.947+0.007 for SR, 0.954+0.004 for AF and 0.919+0.006
for ARR; for the test set (never-seen data), accuracy was
0.876+0.021 for SR, 0.870+0.030 for AF and 0.863+0.029
for ARR. A contactless video-based monitoring can be
used to detect AF, differentiating it from SR and from
frequent ectopies.
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Introduction

Atrial Fibrillation (AF) is often asymptomatic [1] thus
making arrhythmia recognition difficult or impossible in
many patients. The incapacity to diagnose AF in time has
important clinical implications, since even brief episodes
of asymptomatic AF are associated with increased risk of
stroke, heart failure, hospitalization, and death [2]. The
thromboembolic risk increases significantly when AF
duration exceeds 48 h [3]. The impact is also economical
since the costs related to health care resources utilization
increase.

The recent guidelines of the European Society of Car-
diology stress the role of opportunistic screening to
improve AF detection [4] in all subjects older than 60 year
of age. This indication is apparently supported by recent
technological advances that may allow a better and more
frequent monitoring of risk patients as well as a screening
of general population, using widespread devices such as
arm-cuff manometers and smartphone [5, 6]. Several
wristband devices are now available over the counter. They
are based on the recording and analysis of a photo-
plethysmographic (PPG) signal obtained by direct contact.
The PPG signal, showing high variability and irregularity
during AF, has been shown to well differentiate AF from
sinus rhythm (SR). Other arrhythmias (ARR), such as atrial
flutter or tachyarrhythmias, can also be identified [7].

It has been shown that by recording an individual’s
face and extracting the subtle beat-to-beat variations of
skin color, it is possible to obtain a signal (the PPG im-
aging, photoplethysmographic imaging (PPGi)) that re-
flects cardiac pulsatile signal [8, 9]. This technology
could be of particular interest in those clinical conditions
where traditional electrocardiogram (ECG) recordings are
difficult to obtain: neonates, people with skin damage,
and very elderly patients. A proof-of-concept study [10]
has demonstrated the feasibility of AF detection by the
use of a contactless technology, recording an individual’s
face and extracting the subtle beat-to-beat variations of
skin color, reflecting the cardiac pulsatile signal. This
study included only 11 patients and introduced an index
quantifying the pulse variability, called the pulse har-
monic strength (PHS) that resulted associated with a 20%
detection error rate.
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We have recently reported the feasibility of this
methodology of detecting AF [11]. Aim of this study is to
propose and validate a model to identify AF by using the
PPGi, i. e., by analyzing face color changes due to blood
volume pulse (BVP) variations, differentiating it not only
from SR, but also from other rhythm disturbances.

Materials and methods
Study design

Patients admitted to the Cardiovascular Diseases Unit of the Ospedale
Maggiore Policlinico in Milan, Italy were enrolled. The study was
approved by the internal Ethical Committee of the Hospital. During the
procedure, an RGB (red, green and blue) camera was positioned on a
tripod, placed in front of the subject at a distance of 1.5 m and con-
nected to a PC workstation. The camera recorded the face of the patient
for the whole session of the experiment (3 min). During the acquisi-
tion, a 12-lead ECG was recorded so that an expert cardiologist could
determine the type of rhythm. Possible rhythm classes were SR, AF,
and ARR.

As video recording device, an industrial camera (GigE Sony XCG-
C30C camera) was used with spatial resolution of 659*494 pixels.
Videos were acquired with a frame-rate of 120 FPS and 8 bits resolu-
tions. Data were saved in RGB, uncompressed, audio-video interlaced
(AVI) raw format to be processed offline. The camera was equipped
with 15 mm fixed focal length lenses.

Each patient was asked to sit on a chair and to move as little as
possible. The ambient setting included sunlight coming from a win-
dow, placed in front of subject’s face to avoid possible shadows on his
face and an artificial light due to the room neon lamps.

Patient characteristics

Seventy-six patients were enrolled into the study between
September 2016 and May 2017. According to cardiac rhythm clas-
sification, 25 subjects were in AF (14 males and 11 females, mean
age of 73£13 years), 33 subjects in SR (23 males and 10 females,
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mean age of 66+19 years), and 18 subjects (ARR) presented either
atrial flutter or frequent atrial or ventricular ectopies (eight males
and 10 females, mean age 74+7 years). Three subjects in SR were
excluded from the study, since they were unable to remain in
silence or to avoid moving their face during the whole duration of
the acquisition. Five subjects with a pacemaker to control ven-
tricular response to atrial flutter were excluded from the ARR
group, as ventricular rhythm was not physiological but paced by
the device. The clinical characteristics of the analyzed patients are
shown in Table 1.

Extracting plethysmographic imaging (PPGi) signal
from facial video

Videos, saved in RGB, AVI raw format, were processed offline to
extract the beat-to-beat pulsations, according to a method previously
validated [9], and briefly described in the following. First, three
different regions of interest (ROIs) were recognized and tracked over
time: forehead, nose and cheek. ROI detection was performed by the
Viola-Jones face detection algorithm [12] while ROI tracking for hori-
zontal and vertical movements was obtained by the Lucas-Kanade-
Tomasi motion flow tracking algorithm [13]. Secondly, a spatial
average of pixel intensity of each channel (red, green and blue) was
computed for each ROI and for each frame to retrieve reflected light
modulation directly correlated to the BVP changes of facial peripheral
arteries. Finally, the signals were detrended [14] and band-pass
filtered (cut-off frequencies fc1=0.1 Hz and fc2=5 Hz) to remove noise
and to enhance pulsatile component.

Thus, three PPGi signals were obtained, one from each of the
analyzed ROI. Among them, the selection of the target PPGi signal was
achieved by calculating the power spectral density (PSD) on the entire
signal and by measuring the signal-to-noise ratio (SNR) using the
following formula:

fZ
f Prpei, ndf 4
SNR = 10xlogo| L————df + [ Preci, ydf
f Poppgi, () J2
0.1
where Pppgin(f) (with n varying from one to three in this study) is the

PSD of nth PPGi signal, f; = fp — 0.15, f, = fp + 0.15 and where fp is the

Table 1: Demographic characteristics and cardiovascular history in the study population.

Variable NSR AF ARR
N 30 25 13
Gender (male/female) 20/10 12/13 6/7

Age (years) 64 + 19 (24-86)
AF duration (months) -

Previous AF -

Previous electrical cardioversion -

Previous myocardial infarction 7

Ejection fraction 57 + 8 (35-68)
Diabetes 6
Hypertension 15
Rate-control drugs 0

Amiodarone 0

74 + 13 (38-89) 74 +7 (65-82)
34 +42(0.5-132) -

4 N
9 1
0 1
57 + 8 (23-65) 55+ 11 (34-65)
2 4
14 8
16 5
1 0
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pulse frequency (measured in Hz). The signal with the highest SNR was
selected as PPGi signal to be further analyze. The BVP systolic peaks
were detected by the algorithm of Scholkmann et al. [15], and from
them the inter-systolic interval series were computed.

Processing of PPGi signal

Twenty-six indexes were computed belonging to the following three
classes: (i) Spectral analysis, (ii) Variability and Irregularity analysis,
(iii) Shape analysis. Parameters from the first two classes were
computed on the inter-systolic interval series, whereas shape analysis
was performed on the PPGi signal.

In the spectral analysis, the Pulse Harmonic strength (PHS) was
used [10] to measure the strength of fundamental frequency compared
to the total energy of the total spectrum. PHS is defined as the energy of
the fundamental frequency and its main harmonics within 0.05 and
3 Hz band width divided by the energy of the remaining spectral
components.

Variability and irregularity quantify different properties: vari-
ability is related to the dispersion of data, whereas irregularity is
related to the degree of unpredictability of the data fluctuations.
Variability analysis of the inter-systolic intervals series includes the
mean (M), the standard deviation (SD), the root of the mean squared
differences of successive intervals, (rMSSD) and the percentage of
interval differences of successive intervals greater than x ms (pNNx,
with x =10, 20, ..., pNN100)[7]. An additional feature was extracted by
Lorentz plot (Lor), assessing the spatial distribution of inter-systolic
intervals in the scatter plot. Shortly, in the Lor, each RR interval is
plotted as a function of the previous one [16]. Thus, the dispersion of
point’s perpendicular to the line-of-identity reflects the level of short-
term variability, while the dispersion along the line-of-identity in-
dicates the level of long-term variability. Lor represents the ratio be-
tween the dispersion of point’s perpendicular and along the line-of-
identity.

Irregularity of the inter-systolic intervals series was assessed by
approximate (ApEn) [7] and sample entropy (SampEn) [7], that quan-
tify the unpredictability of fluctuations. Approximate entropy (ApEn)
is a regularity statistic quantifying the unpredictability of fluctuations
in a time series. Intuitively, the presence of repetitive patterns of
fluctuation makes it more predictable than a time series in which such
patterns are absent. ApEn reflects the likelihood that similar patterns
will not be followed by additional similar observations. A time series
containing many repetitive patterns, i. e., a regular and predictable
series, has a relatively small ApEn, while a less predictable, i. e., more
complex process, has a higher ApEn. The computation of ApEn for any
series of length (N) starts with the choice of two parameters: the length
of patterns to be compared, m, and the tolerance of mismatch, r, be-
tween the corresponding elements. ApEn(m, r, N) quantifies the
number of similar patterns which will remain similar when a new
sampleis added (i. e., when the length of the pattern increase from m to
m + 1). SampEn is an improved version of ApEn, which does not
consider self-matches of patterns, an inclusion that makes ApEn a
biased estimator. Sample entropy has the advantage to converge more
rapidly than ApEn and thus it can be safely computed on shorter series.
To compute ApEn and SampEn, we used the classical parameters
r=0.2 x standard deviation and m=1 and 2.

A measure of similarity between waves was obtained by calcu-
lating the relative number of similar pairs of waves in the recording
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[17]. Briefly, each wave is represented as a point of the p-dimensional
real space; the normalized waves are points belonging to the p-
dimensional unitary sphere. Hence, the morphological dissimilarity
between two waves is evaluated by using the standard metric of the
sphere to compute their distance
D;; = arccos(w!'-w}")

where w;" and w;" represent the ith and jth normalized waves, i. e.,
wY = wy/ || wi| and () the scalar product. A measure of similarity be-
tween waves is obtained by calculating the relative number of similar
pairs of waves in the recording. The similarity depends on the
threshold € used in evaluating the similarity, that is, two waves are
considered to be similar when their distance is lower than epsilon. In
this study, five different thresholds are tested: epsilon = [r/2, /4, T1/8,
/16, and 11/32], defining Sim1, Sim2, Sim3, Sim4, and Sim5. A final
index called Local Maxima Similarity (LMS) based on the similarity of
local maxima distribution between consecutive temporal windows of
the signal was introduced (Italian patent application “cardiac activity
measurement system and method thereof” filed on May 04, 2018 with
number 102018000005089).

Statistical analysis

Kruskal-Wallis one-way analysis of variance was performed to
compare the computed parameters during SR, AF, and ARR. If the p-
value of the Kruskal-Wallis test was significant, an unpaired Wil-
coxon test with Holm’s correction was applied. A p<0.05 was
considered statistically significant.

To create a model able to classify a patient rhythm according to
his/her PPGi, feature selection and classification were performed.
Data were divided into three groups: training and validation sets, to
choose the best model, and a test set, to test the model on never-seen
data. First, the test set was created, by randomly selecting data from
nine patients (three for each rhythm). The remaining data (27 in SR, 22
in AF, and 10 in ARR) were used to select the best model. However, we
observed that the dataset was imbalanced (i. e., the classes are not
approximately equally represented), and this imbalance may produce
classifiers with poor predictive accuracy for the minority class. Thus,
we re-sampled the original dataset, by oversampling the minority
classes using the synthetic minority over-sampling technique
(SMOTE) [18], i. e., by creating synthetic examples.

As features selection procedure, a sequential forward floating
search (SFFS) algorithm was used to identify the subset of optimal
features. Briefly, the SFFS algorithm [19] starting from the empty set of
features, the feature x; that maximizes the objective function ] when
combined with the k features that have already been selected (Yk) is
added (forward step). The objective function values with different
number of features J(k) is memorized, where k indicates the number of
features. After the forward step, a backward step is performed. The
backward step consists in removing from Yk the feature that makes the
objective function J*(k) larger than J(k), where J*(k) is the objective
function after removing one feature. The backward step is repeated as
long as J*(k) is larger than J(k), with k decreasing, with the constrain
that the last added feature cannot be removed. In this study, the
objective function was the average of the accuracy for AF and for ARR,
to decrease the false negative rate. Leave-p-out cross-validation was
performed with 50 bootstrap repetitions, i. e., all the above steps are
repeated 50 times. Accuracy (the ratio between the true results and the
total number of cases), precision (or positive predictive value, i. e., the
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ratio between the true positive cases and all the predicted positive
cases), and recall (or true positive rate, i. e., the ratio between the true
positive cases and all the positive cases) were computed to evaluate
the model. Accuracy, precision and recall were averaged over the total
repetitions. The above procedure was repeated 30 times to assess the
stability of the chosen features, using the Tanimoto index [20]. Using
the average accuracy and the Tanimoto index computed on the vali-
dation set, the best model is chosen and then tested on the test set data
(never-seen-data), created for each of the 50 repetition, thus obtaining
an average test accuracy. The classification workflow is shown in
Figure 1.

All analyses and statistical tests were performed using MATLAB
R2018a (The MathWorks, USA).

Results
PPGi characterization

Table 2 shows the median (interquartile range) of all the
computed parameters, together with the p-value of the
Kruskal-Wallis test and, if the p-value is significant, which
comparisons were found statistically significant (Holm
correction). Almost all the indexes were able to signifi-
cantly differentiate AF from SR. However, only three pa-
rameters were significantly different among all groups of
patients, namely the mean of the inter-systolic interval
series (M), the LMS and the PHS. It is worth noting
that these three parameters are based on different
computational algorithms based on the analysis of,
respectively, variability of the inter-systolic interval series,
morphology of the PPGi signal and frequency analysis of
PPGi signal.

Variability and irregularity parameters had the lowest
values in SR, and the highest in AF, with intermediate
values in the ARR group. The PHS was significantly
different in the three rhythms, being higher in SR than in
ARR, and higher in ARR than in AF. The LMS index was the
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highest in SR, intermediate in ARR and the lowest in AF.
Signal similarity indexes were higher in SR than in AF and
ARR, being quite similar in the two arrhythmias groups.

Rhythm classification

The classifier was trained with different sets of features,
with an increasing number of features selected by the SFFS
algorithm and the analysis was run 30 times to assess
feature stability.

To choose the best model, average accuracy on the
validation set as well as the Tanimoto index were taken
into account. As shown in Figure 2a, the average accuracy
for the three rhythms increases with the number of features
reaching almost a constant value after five features,
whereas the Tanimoto index is equal to one for the model
using one or two features, then decreases and increases
again after 10 features. To balance between accuracy and
stability of the selected features, a model with three fea-
tures was selected. Figure 2b shows the percentage of sta-
bility of the selected features: M and LMS were always
selected, while Similarityl and Similarity2 were selected 73
and 27% of the times. Therefore, the final selected model is
a model with three features, namely M, Similarityl and
LMS.

Table 3 (upper part) shows the accuracy, precision and
recall for rhythm detection using the final selected model
on the validation and test (never-seen data) sets. It can be
noted that for the validation set, the accuracy was higher
than 0.92 for all the rhythms, whereas it was about 0.87 for
the test set. As for AF detection, recall was 0.915 in the test
set, at the expenses of a precision of 0.752; on the contrary
for ARR, precision was 0.875+0.035 in the test set, at the
expenses of a recall of 0.686+0.077. For screening and
identification of patients with arrhythmias, high recall
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50 repetitions
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Figure 1: Schematic representation of the
overall method. As first step, 13% of the
data (three patients per group) are removed

_____________________ 1| to be used as test group. The remaining

v
30 repetitions ]
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Tanimoto walidation
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Selected model
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87% of the data enter the oversampling
(obtained using synthetic minority over-
sampling technique (SMOTE)) and then the
feature selection and classification
algorithms, using 2/3 of the data as training
and 1/3 as validation group. The
classification algorithm gives as output the
optimal model to be used on the test group.
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Table 2: All the computed parameters in the three groups, median (25th-75th percentiles).
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SR AF ARR p-Value KW Pairwise significance

M (ms) 937 (815-1002) 757 (692-831) 680 (586-713) p <0.001 All
HR (bpm) 64 (60-74) 79 (72-87) 88 (84-103) p <0.001 All
SD (ms) 135 (109-162) 180 (165-197) 147 (115-177) p <0.001 SR vs. AF
SDD (ms) 206 (177-246) 241 (224-262) 199 (142-231) 0.02 SR vs. AF
pNN10 (%) 92 (90-94) 94 (93-96) 94 (89-95) 0.02 SR vs. AF
pNN20 (%) 88 (85-90) 91 (90-93) 89 (80-91) 0.002 SR vs. AF
pNN30 (%) 84 (79-87) 88 (86-91) 85 (71-87) 0.002 SR vs. AF
pNN40 (%) 80 (72-83) 84 (82-87) 81 (64-84) 0.002 SR vs. AF
pNN50 (%) 76 (66-80) 81 (77-85) 78 (56-80) 0.002 SR vs. AF
pNN60 (%) 72 (62-77) 79 (74-82) 73 (49-77) 0.001 SR vs. AF
pNN70 (%) 67 (58-74) 75 (71-80) 69 (44-73) p <0.001 SR vs. AF
pPNN8O (%) 63 (53-70) 71 (67-77) 66 (40-71) p <0.001 SR vs. AF
pNN90 (%) 59 (49-66) 69 (64-73) 63 (36-68) p <0.001 SR vs. AF
pNN100 (%) 51 (41-59) 64 (59-68) 57 (31-62) p <0.001 SR vs. AF
rMSSD (ms) 205 (176-245) 240 (223-261) 199 (142-231) 0.02 -
ApEn_m1 (a.u.) 1.6 (1.5-1.7) 1.8 (1.8-1.9) 1.7 (1.5-1.8) p <0.001 SR vs. AF
ApEn_m2 (a.u.) 1.1 (0.99-1.1) 1.2 (1.1-1.2) 1.2(1.1-1.2) p <0.001 SR vs. AF
SR vs. ARR

SampEn_m1 (a.u.) 1.6 (1.4-1.7) 1.9 (1.8-1.9) 1.6 (1.4-1.8) p <0.001 SR vs. AF
SampEn_m2 (a.u.) 1.6 (1.4-1.6) 1.9 (1.7-2) 1.6 (1.4-1.7) p <0.001 SR vs. AF
Similarity1 (a.u.) 0.94 (0.91-0.97) 0.91 (0.87-0.93) 0.9 (0.86-0.94) 0.005 SR vs. AF
Similarity2 (a.u.) 0.61 (0.52-0.75) 0.49 (0.43-0.55) 0.49 (0.41-0.6) 0.006 SR vs. AF
Similarity3 (a.u.) 0.18 (0.13-0.24) 0.13 (0.1-0.19) 0.15(0.11-0.22) ns -
Similarity4 (a.u.) 0.021 (0.013-0.043) 0.018 (0.013-0.032) 0.025 (0.015-0.049) ns -
Similarity5 (a.u.) 0.0013 (0.0006-0.0031) 0.0014 (0.00082-0.003) 0.0026 (0.001-0.0068) ns -
LMS (a.u.) 0.94 (0.88-0.96) 0.77 (0.71-0.8) 0.86 (0.77-0.92) p <0.001 All
PHS (a.u.) 13 (11-17) 1(-1-2) 3(1-10) p <0.001 All
Lor (a.u.) 0.5 (0.47-0.52) 0.61 (0.58-0.64) 0.6 (0.57-0.65) p <0.001 SR vs. AF
SR vs. ARR

SR, normal sinus rhythm; AF, atrial fibrillation; ARR, other arrhythmias.
KW, Kruskal-Wallis one-way analysis of variance.
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Figure 3 shows the values for the three parameters

selected by the SFSS and used in the model for all the
patients, divided into the three rhythms. As all parameters

% of times the feature was selected in the 3-feature model

M Similarity1 Similarity2 ~ LMS

Figure 2: Choice of the best model.

(@) The average accuracy for the three
rhythms is shown together with the
Tanimoto index as a function of the number
of used features. (b) The percentage of

stability of the selected features.

correctly classify the patient rhythm.

overlap in the three groups, no single parameter could

Figure 4 shows the 3D plot using the selected param-
eters as axes, as well as their projections with the three
pairs of axes. It can be noted that, contrary to what
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Table 3: Accuracy, precision and recall for the three rhythms, using the model selected by the SFFS and the model with the three features able
to significantly differentiate the three classes.

SR AF 2ARR
Model selected by the SFFS (M, Similarityl and LMS)
Accuracy Validation Set 0.947 + 0.007 0.954 + 0.004 0.919 + 0.006
Accuracy Test Set 0.876 £ 0.021 0.870 + 0.030 0.863 + 0.029
Precision Validation Set 0.922 +0.013 0.910 + 0.012 0.899 + 0.012
Precision Test Set 0.816 + 0.036 0.752 + 0.047 0.875 + 0.035
Recall Validation Set 0.912 + 0.013 0.958 + 0.010 0.853 + 0.018
Recall Test Set 0.813 +0.033 0.915 + 0.026 0.686 + 0.077
Model with the 3 features able to significantly differentiate the three classes (M, LMS and PHS)
Accuracy Validation Set 0.959 + 0.007 0.923 + 0.008 0.903 + 0.009
Accuracy Test Set 0.876 £ 0.012 0.815+0.014 0.792 + 0.015
Precision Validation Set 0.939 + 0.015 0.865 + 0.015 0.881 +0.018
Precision Test Set 0.802 + 0.025 0.672 + 0.018 0.786 + 0.032
Recall Validation Set 0.937 +0.013 0.925 + 0.012 0.822 +0.020
Recall Test Set 0.835 +0.033 0.872 +0.026 0.526 + 0.044
1200 . @ : () ; © Figure 3: Parameters used in the model to
o E o $ S' o H predict cardiac rhythm. Values for the three
1000 g . E' E § g ) g0 parameters used in the model (a) mean of
~ g' g . i . | o 3 ° g . inter-systolic interval series (M), (b)
£ w0 g é £ s g § §0-75 ° E $ Similarity1, and (c) local maxima similarity
° g §~ &os - (LMS) for all the patients, divided into the
600 M ¢ ) three rhythms (sinus rhythm (SR) circles,
; ¢ atrial fibrillation (AF) squares, other
o0 SR AF ARR o SR AF ARR o8 SR AF ARR arrhythmias (ARR) diamonds). The filled

happens with a single parameter, the clouds of the three
rhythms are well separated, with an accuracy of the model
greater than 90 %.

We also investigated the performance of a model based
on the three features that resulted able to significantly

markers show the median value in each
group.

differentiate all the classes, i. e., M, LMS, and PHS (as
stated in Section PPGi characterization). Table 3 (bottom
part) shows the accuracy, precision and recall for the three
rhythms using this model on the validation and test (never-
seen data) sets used for the previous model. It is worth

400 500 600 700 800 900 1000 1100 1200
[

1200

Similarity1

40 500 600 700 800 900 1000 1100 1200

075 08 085
Similarity!

Figure 4: 3-D cloud of the parameters used in
the model. 3D plot using M, Similarityl and
LMS as axes, divided into the three rhythms
(SR circles, AF squares, ARR crosses). Their

projections with the three pairs of axes are
also shown.
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noting that the accuracy for SR was similar to that of the
proposed model; whereas the accuracy for AF and ARR was
significantly lower (p < 0.05).

Discussion

The aim of this study was to create a model able to
identify patients with AF, by a simple short video of
their face. Starting from a video of the face of a patient, using
a validated technique [9], a PPGi signal is extracted and
characterized by means of parameters assessing signal
morphology and heart rate properties. The main finding is
the possibility to accurately identify the rhythm of the sub-
ject and in particular to separate SR from AF, by using only
three parameters computed on the PPGi signal.

Today, commonly available diagnostic tools are not
sufficient to reveal all the patients with AF because of the
silent nature of arrhythmia in a consistent proportion of
patients [1]. In these subjects i. e., an asymptomatic form of
AF incidentally can be diagnosed during routine exami-
nation or manifesting as an AF-related complication. The
real incidence of silent AF in general population cannot be
known, being this a major healthcare problem since silent
AF has the same associated thromboembolic risk as
symptomatic AF episodes [1, 21, 22]. Thus, the development
of low cost and daily use monitoring devices is highly
desirable. The proposed model is based on the PPGi tech-
nology, whose main advantage is the absence of contact
between sensors and skin, thus not requiring patient active
participation. In addition, once activated, video recording
can also be programmed in absence of operator presence at
preselected times.

This technology can be used for opportunistic detection
of AF in several out of hospital conditions such as waiting
rooms of family doctors. An additional area of potential use
is prolonged monitoring of elderly subjects confined to bed
as a result of neurological or orthopedic disorders or neo-
nates or infants during hospital admission. Besides, it can be
used in the ambulatory settings for a short-term evaluation
of cardiac rhythm by simply asking the patients to look into
the camera without necessity of a private environment as
requested to record a traditional ECG.

To our knowledge, this is the first study aiming at
detecting AF, differentiating it from SR and also from other
arrhythmias using a contactless video of the subject’s face.
The technique we used to extract the PPGi has been vali-
dated before [9] and parameters computed on the extracted
PPGi were successfully compared to those computed from
the classical ECG [9]. The only previous study trying to
detect AF from a video derived from a camera [10] included
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only 11 patients, whose face was recorded before and after
cardioversion. They presented a proof-of-concept study
designed to investigate monitoring of the pulsatile rate in
humans using PPGi, showing that the PHS index was
associated with a 20% detection error rate. In another study
[23], 217 patients were included and facial photo-
plethysmography was recorded using an iPhone; pulse ir-
regularity was evaluated and they reached an accuracy of
0.95 in detecting AF. In our study, we reached an average
accuracy of 0.92 for AF (considering the validation and the
test sets), differentiating AF from SR and from ARR too.
This better result compared to [10] may be due to method
used to classify the recordings, moving from a single
parameter to a more complete model including three pa-
rameters describing both PPGi waveforms and vPGG rate.
On the other hand, the worse result compared to [23] may
be due to due to our aim, that is not only to differentiate AF
from SR but also from ARR.

Study limitations

The limited number of patients enrolled in the study rep-
resents a major limitation. Observed results are however
robust and the design of the study is based on training,
validation, and testing phases. More controversial, for the
present time and the future is the fact that the proposed
methodology is based on video recording of subject face
thus making all individuals easily identifiable. Recorded
data however are analyzed off-line to derive PPGi whereas
original videos can be deleted.

Conclusion

From the results of this study, a model based on a short
video of a subject’s face can be used to detect AF, differ-
entiating it not only from SR but also from atrial flutter or
frequent ectopic beats, thus being a promising tool to
identify patients with AF. Further research is needed to
determine the performance of this technology for oppor-
tunistic detection of AF in out of hospital conditions and in
monitoring of subjects confined to bed.
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