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Weak Insider Trading and Behavioral Finance∗
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Abstract. In this paper, we study the optimal portfolio selection problem for weakly informed traders in the
sense of Baudoin [Stochastic Process. Appl., 100 (2002), pp. 109–145]. Apart from expected utility
maximizers, we consider investors with other preference paradigms. In particular, we consider agents
following cumulative prospect theory as developed by Tversky and Kahneman [J. Risk Uncertainty,
5 (1992), pp. 297–323] as well as Yaari’s dual theory of choice [Econometrica, 55 (1987), pp. 95–115].
We solve the corresponding optimization problems, in both noninformed and informed case, i.e.,
when the agent has an additional weak information. Finally, comparison results among investors with
different preferences and information sets are given, together with explicit examples. In particular,
the insider’s gain, i.e., the difference between the optimal values of an informed and a noninformed
investor, is explicitly computed.
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1. Introduction. In a paper by Baudoin [1] the notions of weak information and a weakly
informed agent are introduced, where the latter is an agent having additional information
about the law (under the objective probability measure) of a functional of the price process. In
contrast to the well-known strong information approach (initiated in [10]), we follow Baudoin’s
approach and assume that there is an extra-informed investor acting in the market who knows
the law (under the historical probability P) of a functional Y related to the asset prices. In
this approach the historical probability P is assumed to be unknown to every agent, whereas
everyone knows the equivalent martingale measure Q, which is assumed to be unique; i.e., the
market is complete (see Assumption 2.1). Therefore, knowing the P-law of Y translates to
an informational advantage. The assumption that nobody in the market observes the prices
under P is justified by the reasonable fact that the model for the prices can be calibrated on
observed data under Q, while all the agents ignore the effective drifts in the price dynamics
(see Remark 1 in [2]).

In [1], the author studies a portfolio optimization problem for a noninformed agent and
an insider, respectively. He is then able to characterize the optimal terminal wealth and
the corresponding optimal value. Moreover, he finds an explicit formula for a particular
choice of the utility function. It is important to note that only expected utility maximizers
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(EU or classical, henceforth) are considered in [1]. A natural question is “What happens if
one considers different preference paradigms other than EUs?” More specifically, we think
of an investor whose goal is not necessarily to maximize the expected utility from terminal
wealth. In the utility maximization literature, the EU case developed by Von Neumann and
Morgenstern in the early 1930s is the most treated thanks to its relative simplicity and the
possibility of using a dual theory allowing us to solve a wide range of problems. However, it
is empirically observed that real-world people systematically violate the hypotheses standing
behind EU (this leads to a number of so-called paradoxes and puzzles).

In this paper, we consider two alternative models.

• Cumulative prospect theory (CPT). This paradigm is fully described in [12] and is a
further development of the original prospect theory by Kahneman and Tversky (see
[9]). Briefly, according to CPT, an economic agent evaluates her payoff with respect
to a reference level B: if the payoff is greater than B, then it is considered a gain.
On the other side, a payoff lower than B becomes a loss for a CPT agent, and a loss
hurts more than an equivalent gain (loss aversion). This type of investor does not use
a utility function. More precisely, she has two value functions—a concave one for the
gains and a convex one for the losses. Hence, the overall form of her “utility” function
is so-called S-shaped and she is risk-averse with respect to (w.r.t.) gains while risk-
loving w.r.t. losses. Finally, laboratory evidence shows that people tend to overweight
relatively large gains and losses of small probabilities. This feature is captured via
two reversed S-shaped functions (one for the gains and one for the losses) describing
probability distortions. Loosely speaking, the shape of such a weighting function
looks like a reversed S; i.e., it is monotone increasing, greater than the identity for
small probabilities, and lower than the identity for probabilities near 1. A general
mathematical treatment in continuous time for CPT can be found in [6], where it is
necessary to use Choquet capacities instead of classical expectations and to split the
objective function into two parts—one for the gains and one for losses.

• Yaari’s dual theory of choice. In 1987, Yaari proposed in [13] a set of axioms different
from that of Von Neumann and Morgenstern. The result was a dual representation of
the expected utility criterion, where in the preference value functional the distortion
applies to decumulative probabilities instead of payoffs (recall that a utility function
u(·) can be viewed as a distortion on payoffs). A mathematical formulation of Yaari’s
model in continuous time can be found in [4], where w(·) is used as a probability
distortion function. In [13] it was shown that the risk aversion is characterized by a
convex w(·), i.e., by an overweighting of relatively small payoffs and an underweighting
of relatively large payoffs, whereas the opposite case of a risk-loving agent is described
by a concave w(·).

For any of the previous two paradigms, we will solve the optimization problem for a nonin-
formed investor and for an insider. We stress that, in this paper, agents will always be small
traders, in the sense that their investment choices do not affect the asset prices. Our study
is strongly motivated by the contributions in [4] and [6]. We will use the same mathematical
framework and keep their notation to get a more transparent comparison with their results.

An important issue in this family of nonclassical problem is well-posedness. Indeed, it is
shown in [6] that ill-posed problems, i.e., having infinite optimal value, can quite easily arise
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if one does not make the right assumptions on the value functions and/or the probability
distortions. We will give sufficient conditions for well-posedness during our analysis.

At last, we recall that the existing literature lacks explicit examples and explicit com-
putations of the optimal value for both CPT and Yaari’s models. This is why we focus on
examples which, to the best of our knowledge, are new.

The paper is organized as follows. In section 2, we recall the weak information setting as
developed in [1], and in section 2.1 we consider the maximization problems of an EU agent,
whose results are already proved in [1]. Then, section 3 deals with the problem in the CPT
case, and section 4 is devoted to comparison results between differently informed CPT agents.
Section 5 concerns a Yaari-type investor, and section 6 concludes. Some proofs are presented
in the appendices.

2. The weak information approach. Let (Ω,F ,F,Q) be an atomless probability space,
where F := {Ft}0≤t≤T is a completed and right-continuous filtration with F0 being the trivial
σ-algebra and T > 0 a constant time horizon.

We consider a continuous-time market model with one riskless asset, whose price is
S0 ≡ 1, and m traded risky assets, whose evolution is described by the process S(t) =
(S1(t), . . . , Sm(t)). Notice that we do not specify any particular dynamics for our price pro-
cesses. The main assumption we make is the following.

Assumption 2.1. The price process (S1(t), . . . , Sm(t)) is a continuous and adapted square
integrable martingale on (Ω,F,Q). Moreover, Q is the unique probability measure under
which S(t) is a local martingale; i.e., the market is complete.

We consider two types of agents acting in this market—a noninformed agent (or N-agent)
and an informed agent (I-agent). An N-agent relies on Q as well as on the observable past
and present prices when taking her investment decisions. On the other hand, an I-agent also
has some privileged information concerning the law of a functional Y of the stock prices.
Specifically, the I-agent knows the distribution of Y under the so-called historical measure P

governing market prices.

From now on, we assume that Y is a scalar random variable (everything shown below
can be easily generalized to a vector valued random variable or to more general functionals Y
taking values in a Polish space P). We will denote by QY the law of Y under Q and by ν the
effective law of Y known by the I-agent. Therefore, we have

QY (B) = Q{Y ∈ B} ∀B ∈ B(R).

Assumption 2.2. ν is equivalent to QY , the (real) density is ξ := dν
dQY

, and ξ(Y ) is Q-a.s.
bounded.

The privileged information (Y, ν) can be naturally associated to a new measure called by
Baudoin the minimal probability.

Definition 2.1. The probability measure Qν defined on (Ω,FT ) by

(2.1) Qν(A) :=

∫
R

Q(A|Y = y) ν( dy), A ∈ FT ,

is called the minimal probability associated to the weak information (Y, ν).
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The expression minimal probability used by Baudoin is justified in [1, Proposition 6],
showing that Qν fulfills some class of minimization problems. Moreover, observe that Qν does
not depend on the choice of the utility function in a standard portfolio selection model; thus
in a behavioral setting this amounts to saying that the minimal probability is unaffected by
the probability distortions and the value functions (see Remark 3.3 later in this paper).

We now turn to utility maximization problems for noninformed and informed investors
under the weak information approach.

2.1. The classical agents’ models and their solutions. In a classical portfolio selection
model, i.e., when the N-agent’s objective is to maximize her expected utility from terminal
wealth, all the results have already been derived in [1]. For the reader’s convenience, we
recall here the solution of this problem assuming that the considered investor is endowed
with a positive initial wealth x0 and with a utility function satisfying the following standard
assumption.

Assumption 2.3. The utility function U : (0,+∞) → R is strictly increasing, strictly
concave, and twice continuously differentiable and satisfies the Inada conditions U ′(+∞) = 0,
U ′(0+) = +∞.

Before formulating the optimization problems, we need to define a suitable class of portfolio
processes. We are going to use a slight modification of the definition of tame portfolios given
in [6], which is well adapted to solve the optimal investment problems of both EU and CPT
agents, in the informed as well as in the noninformed cases. Let us denote by Πi(t) the number
of shares of the ith risky asset held by our trader at time t.

Definition 2.2. An admissible portfolio is a couple (x0,Π(·)), where x0 is an initial wealth
and Π(·) is a F-predictable process (S(t))-integrable and such that the corresponding wealth
process

(2.2) x(t) := x0 +

∫ t

0
Π(u) dS(u), 0 ≤ t ≤ T,

is an (F,Q)-martingale. Moreover, we say that an admissible portfolio Π(·) is Q-tame if the
corresponding wealth x(·) is Q-a.s. bounded from below, where the bound may depend on Π(·).

Remark 2.1. Notice that the terminal wealth x(T ) ≡ X of any tame portfolio (x0,Π(·)) is
an FT -measurable random variable Q-a.s. bounded from below and such that EQ[X] = x0.
Conversely, thanks to Assumption 2.1 a standard completeness argument can be applied so
that any bounded from below contingent claim X with EQ[X] = x0 can be replicated by a Q-
tame portfolio Π(·) with the initial wealth x0.

1 Hence, in the formulation of the optimization
problems of both EU and CPT agents, we can replace the (dynamic) constraints on strategies
Π(·) with (static) constraints on contingent claims X as in [6]. This is usual in the martingale
approach.

Let us recall the optimal strategies for noninformed and informed agents.

• For an N-agent, the most natural way to evaluate her own utility from terminal wealth
X is to choose the martingale measure Q when computing the expectation (in fact,

1See, for example, [11, Definition 6.1 and Theorem 6.6] or [6, Proposition 2.1]. We also remark that in [6],
absolute value portfolio strategies were used instead of our “number of shares” strategies.
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she does not know the historical measure P, so she cannot use it! See [2].). Therefore,
the EU noninformed agent’s problem is
(EU-N)

Maximize EQ[U(X)]

subject to EQ[X] = x0, X is FT -measurable and Q-a.s. bounded from below.

The solution to (EU-N) is the trivial null portfolio, Π ≡ 0, thanks to a simple appli-
cation of Jensen’s inequality and the concavity assumption on U(·).
In the CPT case things will be different even for noninformed “risk-neutral” agents,
i.e., agents evaluating their gains/losses under the risk-neutral measure Q.

• According to Baudoin and Nguyen-Ngoc [1, 2], in a classical portfolio optimization
problem for an informed agent who has the weak information (Y, ν) and a utility
function U(·) satisfying Assumption 2.3, we can define the financial value of the weak
information (Y, ν) for an insider with initial endowment x0 > 0 as follows (X will
denote any terminal payoff which can be attained using admissible strategies):

(2.3) u(x0, ν) := inf
μ∈Eν

sup
Π admissible

Eμ[U(X)],

where Eν is the set of probability measures on FT which are equivalent to Q and such
that the law of Y under those measures is ν. Using convex duality and the martingale
dual approach in complete markets, one has the following result easily adapted from
[2, Theorem 1]: Assume that the expectations below are finite. Then for each initial
endowment x0 > 0,

(2.4) u(x0, ν) = sup
Π admissible

Eν [U(X)] = Eν
[
U
((

U ′)−1
(
Λ(x0)
ξ(Y )

))]
,

where Λ(x0) is defined by

Eν
[

1
ξ(Y )

(
U ′)−1

(
Λ(x0)
ξ(Y )

)]
= x0.

Moreover, under Qν the optimal terminal wealth is given by

(2.5) X∗ =
(
U ′)−1

(
Λ(x0)
ξ(Y )

)
.

Remark 2.2. Note that if the insider has no additional information, i.e., ν = QY , then we
have ξ(Y ) = 1 Q-a.s. Therefore, we deduce u(x0, ν) = U(x0) and X = x0 Q-a.s., which is
nothing but the N-agent’s solution. Finally, as a corollary one can even show that u(x0, ν) ≥
U(x0), where the equality holds for ν = QY .

Turning back to the portfolio optimization problem of a weakly informed classical insider,
we see that it can be equivalently defined as
(EU-I)
Maximize Eν [U(X)]

subject to Eν
[

1
ξ(Y )X

]
= x0 > 0, X is FT -measurable and Qν-a.s. bounded from below,
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thanks to the first equality in (2.4).

We also remark that the constraint in (EU-I) is a direct consequence of the relation
dQν = dν

dQY
(Y ) (see [1, Remark 4]). Indeed, we can write 1/ξ as a density of QY w.r.t. ν and

1/ξ(Y ) is Q-a.s. bounded. Now it immediately follows that x0 = EQ[X] = Eν [(1/ξ(Y ))X], as
appears in (EU-I).

Example 2.1 (see [1, Proposition 67]). Let WQ be an (Ω,F,Q)-Brownian motion, and con-
sider a market with only one risky asset whose price dynamics is

dS(t) = σS(t)dWQ(t), t ∈ [0, T ], S(0) = s0 > 0,

for some constant σ > 0, or equivalently

S(t) = s0 exp

(
σWQ

t − σ2

2
t

)
.

Hence, by a change of variable, weak information on the final price S(T ) is equivalent to weak
information on the Gaussian random variable WQ

T . Suppose the I-agent has the privileged

information (WQ
T , ν), where

ν(dx) =
1√
2πs

exp

(
−(x−m)2

2s2

)
dx

is Gaussian with mean m ∈ R and variance s2 ≤ T , with 0 < s ≤ √
T (in what follows, we

will write ν ∼ N (m, s2)). Note that Assumption 2.2 is fulfilled, and we can also explicitly
compute

(2.6) ξ(Y ) = ξ(WQ
T ) =

√
T

s
exp

(
−(WQ

T −m)2

2s2
+

(WQ
T )2

2T

)
.

Therefore, if we set δ = s2−T
T , then for a power utility function U(x) = xα, α ∈ (0, 1), one can

compute

u(x0, ν) = xα0
1√
1 + δ

(
1− α
1

1+δ − α

) 1−α
2

exp

(
αm2

2[T (1 − α)− αδT ]

)
.

Specifically, if m = 0 and s2 = T (i.e., δ = 0), then we recover the no additional information
case as ν = QY . If m �= 0 and s2 = T , then the I-agent has some additional information
regarding the drift but not the variance of the Brownian motion; in this case we have u(x0, ν) =

xα0 exp(
αm2

2[T (1−α)] ), and the bigger m, the more valuable the information. Vice versa, if m = 0

and s2 < T , then we obtain u(x0, ν) = xα0
1√
1+δ

( 1−α
1

1+δ
−α

)
1−α
2 , which tends to infinity as δ ↓ −1

or, equivalently, as s ↓ 0. Thus a more precise knowledge on the final price leads to a higher
value of the weak information, as naturally expected. This example will be studied in full
detail in the CPT case as well.
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3. The CPT agents’ models and their solutions. In this section we will give the solution
of portfolio selection problems of CPT noninformed and informed agents. We will keep as
much as possible the setting and the notation used by Jin and Zhou [6] to describe the
preferences and the objective function of a CPT investor. We point out that our results are
linked to those in [6]. However, they need a complete proof as we are working in a slightly
different setting. Loosely speaking, in [6] the investor knows the historical probability P, and
she performs a standard change of measure based on a pricing kernel (or state price density)
ρ, thus obtaining martingale processes for the prices under an equivalent probability. After
that, a complete solution based on ρ is derived under some technical assumptions.

In the present framework we start from the very beginning with martingale prices. There-
fore, no change of measure is needed and ρ ≡ 1 a.s.; i.e., it is totally concentrated. As a
consequence, we will see that the structure of the solution for an N-agent will be law de-
pendent, in the sense that only the distribution of a random variable will affect her optimal
value.

Now, we briefly recall the cornerstones of the CPT preferences behind the formulation
above and its assumptions. In CPT, the trader’s goal is to select the portfolio that will
produce a terminal wealth X maximizing her “utility.” Such a “utility” (also called “prospect
value” in Kahneman and Tversky’s terminology) will come up from the algebraic sum of some
expected distorted values of gains and losses w.r.t. a reference wealth that we set once for all at
the value 0. Mathematically speaking, we will make the following assumptions, corresponding
to Assumptions 2.3 and 2.4 in [6]. If the random variable X represents a final wealth at time
T and our CPT agent uses μ as a reference measure, then she will assign to X the prospect
value V (X), which is defined by

(3.1) V (X) := V+(X
+)− V−(X−)

with its components V+(·) and V−(·) given by

(3.2) V+(Y ) :=

∫ +∞

0
T+(μ{u+(Y ) > y}) dy, V−(Y ) :=

∫ +∞

0
T−(μ{u−(Y ) > y}) dy

for any random variable Y ≥ 0 μ-a.s. Here, X+ and X− denote the positive and the negative
parts of X, respectively. The functions u+(·), u−(·) and T+(·), T−(·) appearing above are
assumed to satisfy the following conditions.

Assumption 3.1. u+(·) and u−(·) : R+ → R+ are strictly increasing and concave, with
u+(0) = u−(0) = 0. Moreover, u+(·) is strictly concave and twice differentiable, satisfying the
Inada conditions u′+(0+) = +∞ and u′+(+∞) = 0.

Assumption 3.2. T+(·) and T−(·) : [0, 1] → [0, 1] are differentiable and strictly increasing,
with T+(0) = T−(0) = 0 and T+(1) = T−(1) = 1.

Our CPT agent will look for a terminal wealth X, which is FT -measurable and a.s.
bounded from below w.r.t. her reference probability. However, her initial endowment can be
any amount x0 ∈ R and not necessarily nonnegative. In this paper, the reference measure μ
will alternatively be the risk neutral measure Q for the noninformed investor and the minimal
probability measure Qν for the informed one.
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3.1. The noninformed agent’s problem. We now consider a noninformed agent who
evaluates her total utility distinguishing gains from losses w.r.t. the reference level 0. For
the moment, probability distortions are not allowed, i.e., T±(·) = id(·). Such an investor
represents an intermediate case between a classical agent and a behavioral agent in the sense
of Kahneman and Tversky.

Within this framework, it seems reasonable to define the problem of a noninformed agent
as

(3.3)
Maximize V (X) = EQ[u+(X

+)]− EQ[u−(X−)]

subject to EQ[X] = x0, X is FT -measurable and Q-a.s. bounded from below.

Unfortunately there is bad news about (3.3) because under Assumptions 3.1 and 3.2 it can
easily be ill-posed. Before giving a more precise statement (and its proof), we note that an
investor with the previous objective function would be better off choosing a fixed reward x+
whenever X is positive, thanks to Jensen’s inequality and the concavity of u+(·). Otherwise,
conditioned to X ≤ 0, she will try to minimize the expected loss. The following ill-posedness
result depends substantially on a comparison between the magnitude of the utility from large
gains and that of disutility from large losses.

Proposition 3.1. Assume limx→+∞ u+(x) = +∞ and limx→+∞
u+(x)
u−(x) ∈ (1,+∞], where the

previous limit exists. Then (3.3) is ill-posed.
Proof. Consider the sequence of admissible terminal wealths (Xn), where

Xn =

{
n(x+0 + 1) with Q-probability 1/2,

2x0 − n(x+0 + 1) with Q-probability 1/2

for n sufficiently large. Then we have

V (Xn) =
1

2

[
u+
(
n(x+0 + 1)

) − u−
(
n(x+0 + 1)− 2x0

)]→ +∞

as n → +∞, thanks to our assumptions limx→+∞ u+(x) = +∞ and limx→+∞
u+(x)
u−(x) ∈

(1,+∞].
There are different ways out of this drawback. Obviously, we could choose suitable value

functions u±(·), e.g., imposing limx→+∞ u+(x) < +∞. We could alternatively introduce
probability distortions, especially on the loss part as explained in [6]. Finally, we could impose
a loss control, i.e., a lower bound L on the maximal loss which can be suffered by the investor
(for more details see [8]). One could also use a combination of the previous modifications.

Let us consider the case where the probability distortions satisfy Assumption 3.2. Thus
the problem for a CPT N-agent will be

(CPT-N)
Maximize V (X) = V+(X

+)− V−(X−)

subject to EQ[X] = x0, X is FT -measurable and Q-a.s. bounded from below,

where we set

V+(X
+) :=

∫ +∞

0
T+(Q{u+(X+) > y}) dy, V−(X−) :=

∫ +∞

0
T−(Q{u−(X−) > y}) dy.
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The main difference between our problem (CPT-N) and the optimization problem in [6] con-
cerns the constraint on the expected value of the terminal wealth X. More specifically, in
[6, equation (2.6)], the budget constraint was EP[ρX] = x0, where the law of the state price
density ρ was assumed to be atomless w.r.t. P. Now, we do not have that atomless density as
we are already working under the martingale measure Q. We also recall that the assumption
on ρ being atomless w.r.t. P was imposed in [6] just to avoid technical difficulties. In our
case, the absence of a weighting random variable (this was actually the role played by ρ) will
change the structure of the solution to (CPT-N) as well as its economical interpretation.

For the reader’s convenience, we will report below only the main results, while the proofs
are postponed to the appendices.

For any fixed random variable Z uniformly distributed over (0, 1) w.r.t. Q (i.e., Z ∼ U(0, 1)
for short) and given a pair (p, x+) with p ∈ [0, 1] and x+ ≥ x+0 , define v+(p, x+) as the optimal
value of the following problem:

(3.4)
Maximize V+(X) =

∫ +∞
0 T+(Q{u+(X) > y}) dy

subject to EQ[X] = x+, X ≥ 0 on {Z ≤ p}, X = 0 on {Z > p}.
Next, we set up the optimization problem

(3.5)

Maximize v+(p, x+)− u−
(
x+−x0

1−p

)
T−(1− p)

subject to

{
p ∈ [0, 1], x+ ≥ x+0 ,

x+ = 0 if p = 1, x+ = x0 if p = 0,

where we conventionally define u−(
x+−x0

1−p )T−(1 − p) := 0 if p = 1 and x+ = x0. Finally, we
denote by X∗ the optimal solution to (CPT-N), and we make the following hypothesis.

Assumption 3.3. T ′
+(z) is nonincreasing for z ∈ (0, 1], lim infx→+∞−xu′′

+(x)

u′
+(x) > 0, and for

any Z ∼ U(0, 1) w.r.t. Q we have EQ[u+((u
′
+)

−1( 1
T ′(Z)))T

′(Z)] < +∞.

Under Assumption 3.3, for any Z ∼ U(0, 1) w.r.t. Q we have

X∗ = (u′+)
−1
(

λ
T ′
+(Z)

)
IZ≤p∗ − x∗

+−x0

1−p∗ IZ>p∗,(3.6)

V (X∗) = EQ
[
u+

(
(u′+)

−1
(

λ
T ′
+(Z)

))
T ′
+(Z)IZ≤p∗

]
− u−

(
x∗
+−x0

1−p∗

)
T−(1− p∗),(3.7)

where the pair (p∗, x∗+) is optimal for (3.5) and the Lagrange multiplier λ satisfies

(3.8) EQ
[
(u′+)

−1
(

λ
T ′
+(Z)

)
IZ≤p∗

]
= x∗+.

Remark 3.1. First, our result shows that a CPT noninformed investor is interested in
probabilities (and not in events). This is a byproduct of the law-invariance property of the
CPT preferences and the fact that she observes the evolution of the price process under the
martingale measure Q. These facts are eventually reflected by the indifference in the choice
of Z. For instance, in a Brownian motion driven market as in Example 2.1, the agent can
choose Z = FW (WQ

T ), where FW (·) is the distribution function of WQ
T . In this way she will
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obtain a gain when the price of the risky stock is lower than a certain threshold. However,
she could also choose Z = 1− FW (WQ

T ), representing the opposite situation.
Second, we highlight that the explicit solution given by (3.6) is available only when T ′

+(·)
is nonincreasing over (0, 1]. Combining this observation with Assumption 3.2, a necessary
condition to get (3.6) is for T+(·) to be concave. Notice that a reversed S-shaped T+(·) does
not fulfill this condition.

Before going further, we consider the case of power utilities. In [6], the authors were able
to find a much more explicit solution assuming generic probability weighting functions T±(·)
and u+(x) = xα, u−(x) = k−xα with α ∈ (0, 1), k− ≥ 1.2 We now adapt their reasoning
and choose the special distortion on gains T+(p) = pγ , γ ∈ (0, 1], as suggested by Remark
3.1. Intuitively, this concave function should reflect an overweighting of relatively large gains
w.r.t. smaller payoffs. With straightforward computations, for α < γ we find

(3.9) ϕN (p) := EQ
[
T ′
+(Z)1/(1−α)IZ≤p

]
= γ1/(1−α)

(
1− α

γ − α

)
p

γ−α
1−α , p ∈ [0, 1],

(3.10) kN (p) :=
k−T−(1− p)

(1− p)αϕN (p)1−α
=

k−
γ

(
γ − α

1− α

)1−α T−(1− p)

(1− p)αpγ−α
, p ∈ (0, 1],

and following the same reasoning as in [6, Theorem 9.1], we have the following proposition.
Proposition 3.2. In the constant relative risk aversion (CRRA) case with x0 ≥ 0 and

T+(p) = pγ , γ ∈ (0, 1], the following hold.
(i) If 0 < α < γ ≤ 1 and infp∈(0,1] kN (p) ≥ 1, then (CPT-N) is well-posed and

(3.11) X∗ = x0

(
γ − α

1− α

)
Z

γ−1
1−α , Z ∼ U(0, 1),

(3.12) V (X∗) = xα0 γ

(
1− α

γ − α

)1−α

.

(ii) If α ≥ γ or infp∈(0,1] kN (p) < 1, then (CPT-N) is ill-posed.
It is clear by the parameters’ condition in (i) that the curvature of the value function

on gains must be greater than that of the distortion T+(·) if we hope to find a financially
meaningful solution. Moreover, the well-posedness of this model strongly depends on the
shape of T−(·). We also note that the optimal value V (X∗) is decreasing in γ, whereas it does
not exhibit a clear dependence in α. As a particular case, we have the following corollary.

Corollary 3.3. With the same assumptions of Proposition 3.2 and T−(p) = pδ, δ ∈ (0, 1),
the following hold.

(i) If 0 < δ ≤ α < γ < 1 and k− ≥ f(α, γ, δ), where

(3.13) f(α, γ, δ) := γ
(1− α)1−α

(γ − α)1−γ

(α− δ)α−δ

(γ − δ)γ−δ
,

then (CPT-N) is well-posed.

2We recall that the parameter k− is usually called the loss aversion coefficient, as in this framework it
reflects the idea that “losses loom larger than gains.” In what follows, we will refer to this case as to CRRA,
due to the constant relative risk aversion coefficient exhibited by the value functions.
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(ii) If 0 < δ ≤ α < γ = 1, then (CPT-N) is well-posed.
(iii) If δ > α, then (CPT-N) is ill-posed.

Proof. Using (3.10) and the special form of T−(·), it is immediate to compute the infimum
of kN (p) over (0, 1] via first order conditions. Now, case (iii) follows if we let p tend to 1.
In the other cases, we have that the infimum is reached for p̂ = γ−α

γ−δ ≤ 1. Hence, we find
kN (p̂) = f(α, γ, δ) with the subsequent well-posedness condition k− ≥ f(α, γ, δ). If γ = 1,
(3.13) reduces to

f(α, 1, δ) =
(1− α)1−α(α− δ)α−δ

(1− δ)1−δ
≤ 1.

To see this, note that we have 1 − δ, 1 − α, α − δ ∈ (0, 1). Moreover, the function g(x) :=
xx ≡ ex lnx is well defined for x ∈ (0, 1). To prove the previous relation, we have only to show
that for every 0 < y < x < 1 we have

y ln y + (x− y) ln(x− y)− x lnx ≤ 0.

But this is true because

sup
0<y<x<1

y ln y + (x− y) ln(x− y)− x lnx = 0,

as is easily seen using standard minimization techniques.

Remark 3.2. We stress that the ad hoc choice of concave T±(·) corresponds to an investor
who underweights relatively small gains and losses and overweights relatively large gains and
losses.3 Lengthy but not difficult computations show that f(·, ·, ·) is decreasing in γ and
increasing in δ, confirming the economic intuition. In fact, the lower the overestimation of
gains is, the higher the loss aversion coefficient has to be in order to compensate for its effect
and in order for the problem to reach well-posedness. However, the dependence on α is not
monotonic.

For a better understanding of the previous corollary, in Figure 1 we provide a plot rep-
resenting a three-dimensional (3D) surface of the well-posedness threshold f(· · · ) in case (i),
where we arbitrarily fix γ = 0.9 and we take α ∈ [0.7, 0.9) and δ ∈ (0, 0.7]. A horizontal
plane at the level f = 1 is drawn to facilitate the distinction between a surely well-posed case,
i.e., when the surface stands below the plane, or a probable ill-posed case, i.e., when the loss
aversion coefficient has to be sufficiently high to ensure condition (3.13). More generally, we

can also note that for the reversed S-shaped T−(·) used in [12], namely, T−(p) = pδ

(pδ+(1−p)δ)1/δ

with δ ∈ (0.28, 1), we have

kN (p) = const× (1− p)δ−αpα−γ

[(1 − p)δ + pδ]1/δ
.

In this case, if δ ≥ α or δ < α < γ, we have a systematic ill-posedness because limp→1− kN (p) =
0.

3This is no longer true if we assume that T+(·) = id(·), as our trader will not weight gains, while she would
exhibit some distortion on the loss side.
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Figure 1. A comparison between the well-posedness threshold and the level of k−.

3.2. The insider’s problem. In this section we will solve the portfolio optimization prob-
lem for an informed agent with CPT preferences. We keep Assumption 3.1 on the value func-
tions u±(·) and Assumption 3.2 on the probability distortions T±(·). Furthermore, thanks to
the equivalence between Q and Qν stated in Assumption 2.2, the CPT I-agent can still rely
on the admissible portfolios described in Definition 2.2. We remark that the dynamics of the
wealth process x(·) under Q remains the same as in (2.2), whereas it drastically changes under
Qν.4

We now define the value of the weak information for the I-agent analogously to (EU-I).
The optimization problem for a CPT insider with the weak information (Y, ν) and the initial
endowment x0 ∈ R is
(CPT-I)

Maximize V ν(X) := V ν
+(X

+)− V ν−(X−)

subject to Eν
[

1
ξ(Y )X

]
= x0, X is FT -measurable and Qν-a.s. bounded from below,

where
(3.14)

V ν
+(X

+) :=

∫ +∞

0
T+(Q

ν
{
u+(X

+) > y
}
) dy, V ν

−(X
−) :=

∫ +∞

0
T−(Qν

{
u−(X−) > y

}
) dy.

Here X represents the terminal payoff obtained via the initial wealth x0 and the dynamics
(2.2). The optimal value of problem (CPT-I) will be denoted V (x0, ν).

Remark 3.3. Notice that the maximization problem (CPT-I) is formulated under the
minimal probability Qν . To see why this makes sense, we recall that the historical probability
P is unknown to the I-agent and thus cannot be used. Moreover, using the martingale measure
Q (as in the N-agent’s optimization problem) does not make sense since it does not exploit
the information advantage of the I-agent; hence it must be replaced by a different measure
reflecting the extra knowledge. Thus, the insider chooses a probability belonging to the set
Eν , and it seems natural for her to select a measure which is not influenced by u±(·) and

4For more details, see [1], where the theory of conditioned stochastic differential equations (CSDEs) is
developed.
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T±(·). As a matter of fact, a CPT trader is able to correctly assess probabilities of events.
Therefore, those functions should not affect probabilities because they are used in the CPT
paradigm only to describe risk attitudes.

Another reason behind the choice of Qν relies on the fact that it reflects a Bayesian
updating in the sense that it involves the conditional probabilities Q(·|Y = y). Moreover,
the properties of the minimal probability in [1, Remark 4, especially properties 1 and 3],
make it desirable to use Qν in (CPT-I).5 Furthermore, dropping the distinction between
losses and gains and probability distortions as well, we recover (EU-I). On the other hand, in
the extreme case of no additional information ν = QY , we have V ν±(X) = V±(X) thanks to
minimal probability’s property 3 in [1, Remark 4], so we turn back to (CPT-N).

To conclude this remark, we observe that we could define the financial value of the weak
information (Y, ν) analogously to Baudoin [1] as

inf
μ∈Eν

sup
Π admissible

V μ
+ (X+)− V μ

− (X−),

where V μ
± (·) are defined similarly as in (3.14). Unfortunately, due to the complexity of the

preferences of the CPT I-agent, it is not clear whether the previous problem is equivalent to
(CPT-I).

It is important to note that (CPT-I) is nothing but a special case of the problem originally
studied by Jin and Zhou [6] (see their equation (2.7)), where

1. the measure P is replaced by Qν in both the objective function and the constraints,
and

2. the random variable ρ is replaced by the new random variable 1
ξ(Y ) .

Therefore, we have to check that all the assumptions imposed in [6] on ρ are now fulfilled by
1

ξ(Y ) , and then we will be able to use all the results found in [6] with the obvious modifications,

i.e., substitute for 1
ξ(Y ) and Qν in every explicit expression. First, to avoid undue technicalities,

the assumption of ρ having no atoms w.r.t. P [6, Assumption 2.2] is now translated to the
following.

Assumption 3.4. The random variable 1
ξ(Y ) has no atoms under Qν ; i.e.,

Qν
{

1
ξ(Y ) = a

}
= 0 ∀ a ≥ 0.

Other technical conditions on ξ(Y ) are straightforward to check; in fact we have 1
ξ(Y ) ∈

(0,+∞) Qν-a.s. thanks to our Assumption 2.2. Moreover, Eν [ 1
ξ(Y ) ] = 1 follows directly from

the definition of ξ.
Remark 3.4. It is worth noticing that

Qν
{

1
ξ(Y ) = a

}
= EQ

[
ξ(Y )I{ 1

ξ(Y )
=a

}
]
= 1

aQ
{
ξ(Y ) = 1

a

}
,

so that the Qν-law of 1/ξ(Y ) is atomless if and only if the Q-law of ξ(Y ) is. The latter
condition is satisfied in many common situations (see our examples at the end of this section).

5In [2], the authors confirm that Qν was built for the purpose of keeping the independence property. Then,
it seems reasonable for us to keep such a feature in the evaluation function of a CPT agent.
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We now adapt the analysis made in [6] with the necessary modifications for a CPT informed
investor. In what follows, we will need a new set of variables for the I-agent that will be
equipped with the superscript ν to distinguish them from the same variables for the N-agents.
We define

1
ξ(Y ) ≡ esssupQν

1
ξ(Y ) := sup{a ∈ R : Qν{ 1

ξ(Y ) > a} > 0},
1

ξ(Y ) ≡ essinfQν
1

ξ(Y ) := inf{a ∈ R : Qν{ 1
ξ(Y ) < a} > 0}.

Once again, well-posedness is an important issue as in the case of the N-agent’s problem. With
some slight adjustments to Theorems 3.1 and 3.2 in [6], we have the following propositions.

Proposition 3.4. Problem (CPT-I) is ill-posed if there exists a nonnegative FT -measurable
random variable X such that Eν[ 1

ξ(Y )X] < +∞ and V ν
+(X) = +∞.

Proposition 3.5. If u+(+∞) = +∞, 1
ξ(Y ) = +∞, and T−(·) = id(·), then (CPT-I) is

ill-posed.
Thus, to avoid systematic ill-posedness, we will impose the following assumption.
Assumption 3.5 (see [6, Assumption 3.1]). V ν

+(X) < +∞ for any nonnegative, FT -measurable
random variable X satisfying Eν [ 1

ξ(Y )X] < +∞.
Remark 3.5. Note that we do not yet have a comparison result between the optimal value

of a CPT I-agent, V (x0, ν), and the optimal value for a CPT N-agent’s problem, so for the
moment we cannot conclude that an insider always gets more than a noninformed agent in
this behavioral context; nor can we say that ill-posedness for the N-agent implies ill-posedness
for the I-agent.

We recall the main steps to get to the solution to (CPT-I) (for more details see [6]). First,
for a given pair (A, x+), with A ∈ FT and x+ ≥ x+0 , define the problem

(3.15)
Maximize V ν

+(X) =
∫ +∞
0 T+(Q

ν{u+(X) > y}) dy
subject to Eν[ 1

ξ(Y )X] = x+, X ≥ 0 Qν-a.s., X = 0 Qν-a.s. on AC .

Note that Assumption 3.5 implies that V ν
+(X) is a finite nonnegative number for any feasible

X. We now define vν+(A, x+), the optimal value of problem (3.15), in this way:
• if Qν(A) > 0, then the feasible region of (3.15) is nonempty and vν+(A, x+) is defined

as the supremum of (3.15);
• if Qν(A) = 0 and x+ = 0, then the only feasible solution for (3.15) is X = 0 Qν-a.s.,

so vν+(A, x+) := 0; and
• if Qν(A) = 0 and x+ > 0, then (3.15) has an empty feasible region, and therefore

vν+(A, x+) := −∞.
For any c ≥ 0, set vν+(c, x+) := vν+({ω ∈ Ω : 1

ξ(Y (ω)) ≤ c}, x+); moreover, define F ν(·)
and FQ(·) as the distribution functions of 1

ξ(Y ) w.r.t. Qν and Q, respectively. Following the

guidelines of [6, equation (4.4)], we set up the “simpler” problem

(3.16)

Maximize vν+(c, x+)− u−
(

x+−x0

1−FQ(c)

)
T−(1− F ν(c))

subject to

⎧⎪⎨
⎪⎩

1
ξ(Y ) ≤ c ≤ 1

ξ(Y ) , x+ ≥ x+0 ,

x+ = 0 if c = 1
ξ(Y ) , x+ = x0 if c = 1

ξ(Y ) ,
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where we use the convention

(3.17) u−
(

x+−x0

1−FQ(c)

)
T−(1− F ν(c)) := 0 if c = 1

ξ(Y ) and x+ = x0.

We are now ready to state the results for a CPT agent who has the weak information (Y, ν).

Proposition 3.6. Assume that u−(·) is strictly concave at 0. We have the following conclu-
sions:

(i) If Xν∗ is optimal for (CPT-I), then

cν∗ := (F ν)−1 (Qν{Xν∗ ≥ 0}) , xν∗+ := Eν
[

1
ξ(Y )(X

ν∗)+
]

are optimal for (3.16). Moreover, {ω : Xν∗ ≥ 0} and {ω : 1
ξ(Y ) ≤ cν∗} are identical up

to a Qν-null probability set, and

(Xν∗)− =
xν∗+ − x0

1− FQ(cν∗)
I 1

ξ(Y )
>cν∗ Qν-a.s.

(ii) If (cν∗, xν∗+ ) is optimal for (3.16) and Xν∗
+ is optimal for (3.15) with parameters

({ 1
ξ(Y ) ≤ cν∗}, xν∗+ ), then

Xν∗ := Xν∗
+ I 1

ξ(Y )
≤cν∗ −

xν∗+ − x0
1− FQ(cν∗)

I 1
ξ(Y )

>cν∗

is optimal for (CPT-I).
Therefore, in order to solve (CPT-I) we can exploit the following algorithm:

Step 1. Solve (3.15) with given parameters ({ 1
ξ(Y ) ≤ c}, x+), where 1

ξ(Y ) ≤ c ≤ 1
ξ(Y ) and

x+ ≥ x+0 , in order to obtain vν+(c, x+) and the optimal solution Xν∗
+ (c, x+).

Step 2. Solve (3.16) to get (cν∗, xν∗+ ).

Step 3. (i) If (cν∗, xν∗+ ) = ( 1
ξ(Y ) , x0), then Xν∗

+ ( 1
ξ(Y ) , x0) solves (CPT-I).

(ii) Else Xν∗
+ (cν∗, xν∗+ )I 1

ξ(Y )
≤cν∗ −

xν∗
+ −x0

1−FQ(cν∗)I 1
ξ(Y )

>cν∗ solves (CPT-I).

To get an explicit solution we now have to impose conditions similar to that in Assumption
3.3. In particular, we have the following.

Assumption 3.6.

(i) (F ν)−1(z)
T ′
+(z)

is nondecreasing in z ∈ (0, 1].

(ii) lim infx→+∞
−xu′′

+(x)

u′
+(x)

> 0.

(iii) Eν[u+((u
′
+)

−1( 1
ξ(Y )T ′

+(F ν( 1
ξ(Y )

))
))T ′

+(F
ν( 1

ξ(Y )))] < +∞.

Briefly, condition (i) is related to the fact that the distortion on gains should not be too
extreme.6 Then, hypothesis (ii) on the RRA coefficient on gains is the same as for the N-agent

6We observe that our Assumption 3.6 is nothing but Assumption 4.1 in [6]. However, in their context con-
dition (i) concerns the distribution function of the state price density ρ; thus it involves the market parameters.
On the contrary, in our case (i) imposes a link between the distortion T+(·) and F ν(·); therefore it is a condition
on the I-agent’s weak information. A similar remark holds for (iii).
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(recall that the value functions, as well as the probability distortions, are assumed to be the
same for the two types of agent in order to facilitate a comparative analysis).

Under Assumption 3.6, both vν+(c, x+) and the corresponding optimal solution Xν∗
+ to

(3.15) can be expressed more explicitly, together with the optimal solution Xν∗ of (CPT-I):

vν+(c, x+) = Eν

[
u+

(
(u′+)

−1

(
λν(c, x+)

ξ(Y )T ′
+(F

ν( 1
ξ(Y )))

))
T ′
+(F

ν( 1
ξ(Y )))I 1

ξ(Y )
≤c

]
,(3.18)

Xν∗
+ = (u′+)

−1

(
λν(c, x+)

ξ(Y )T ′
+(F

ν( 1
ξ(Y )))

)
I 1

ξ(Y )
≤c,(3.19)

Xν∗ = (u′+)
−1

(
λν(cν∗, xν∗+ )

ξ(Y )T ′
+(F

ν( 1
ξ(Y )))

)
I 1

ξ(Y )
≤cν∗ −

xν∗+ − x0

1− FQ(cν∗)
I 1

ξ(Y )
>cν∗ ,(3.20)

where λν(c, x+) satisfies E
ν [(u′+)−1( λν(c,x+)

ξ(Y )T ′
+(F ν( 1

ξ(Y )
))
) 1
ξ(Y )I 1

ξ(Y )
≤c] = x+.

Remark 3.6. Before going further, let us explore in detail the implications of the optimal
policy adopted by a weakly informed CPT investor. As Jin and Zhou noticed in [6, Footnote
7], a noninformed agent selects a final payoff which looks like a gamble on a good state of the
world.7 In fact, in their framework a trader obtains a final wealth greater than her reference
point if and only if the event {ρ ≤ c∗} happens. In a market with one risky asset, constant
coefficients, and null interest rate, this amounts to saying that the final price of the stock,
namely, S(T ), must be greater than a certain threshold depending on c∗. This can be easily
shown by noting that

S(T ) = s0 exp
((

b− σ2

2

)
T + σW P

T

)
,

where W P is an (F,P)-Brownian motion over [0, T ]. This in turn implies

{ρ ≤ c∗} =
{
exp
(
− b2

2σ2T − b
σW

P
T

)
≤ c∗
}
=
{
S(T ) ≥ s0 exp

(
b−σ2

2 T − σ2

b ln c∗
)}

.

Obviously one can see that the greater c∗ is, the higher the P-probability to reach a final gain
is. Can we find a similar explanation for a weakly informed CPT investor? A good state of
the world for the I-agent is the event{

1
ξ(Y ) ≤ cν∗

}
=
{
ξ(Y ) ≥ 1

cν∗
}
.

Again, it is clear that the greater cν∗ is, the higher the Qν-probability of a terminal gain is.
Moreover, note that the optimal threshold cν∗ varies with the weak information (Y, ν)! (Recall
that cν∗ is obtained in Step 2 of the previous algorithm, where one has to solve (3.16).) It
would be interesting to analyze how much cν∗ or the probability of a terminal (positive) gain
Qν{ξ(Y ) ≥ 1/cν∗} varies depending on ξ(Y ), and this is in general not an easy task. However,
we are able to provide an interesting example where this dependence can be estimated (see
Example 3.1 below).

7Remember that in the original framework the agent knows the historical measure P, but this is by no
means helpful; i.e., it does not give any advantage because P is common knowledge.
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Analogously to the noninformed agent case, let us now assume that the I-agent has CRRA
value functions. We follow again the argument described in [6, section 9], but now using the
functions

ϕν(c) := Eν

[(
ξ(Y )T ′

+(F
ν( 1

ξ(Y )))
)1/(1−α)

1
ξ(Y )I 1

ξ(Y )
≤c

]
> 0, 1

ξ(Y ) < c ≤ 1
ξ(Y ) ,(3.21)

kν(c) :=
k−T−(1− F ν(c))

ϕν(c)1−α (1− FQ(c))
α > 0, 1

ξ(Y ) < c ≤ 1
ξ(Y ) .(3.22)

Note that the case c = 1
ξ(Y ) is trivial and that once again the sign of the initial wealth x0 is

crucial.
Proposition 3.7. Assume that x0 ≥ 0 and Assumption 3.6 holds.
(i) If infc> 1

ξ(Y )
kν(c) ≥ 1, then (CPT-I) is well-posed and

Xν∗ =
x0

ϕν( 1
ξ(Y ))

(
ξ(Y )T ′

+(F
ν( 1

ξ(Y )))
)1/(1−α)

,(3.23)

V ν(x0, ν) = xα0ϕ
ν( 1

ξ(Y ))
1−α.(3.24)

(ii) If infc> 1
ξ(Y )

kν(c) < 1, then (CPT-I) is ill-posed.

Note that a null initial wealth corresponds to a null risky investment and a null financial
value. Finally, if x0 < 0, it is sufficient to adapt the results of [6, Theorem 9.2] to the present
case.

Example 3.1 (computation of V (x0, ν) with T+(·) convex). We provide an example where
the optimal value of a CPT I-agent with weak information (Y, ν) can be explicitly computed.
We assume CRRA value functions with x0 ≥ 0 for the informed agent and a single risky
asset market analogous to that of Example 2.1, with weak information given by Y = WQ

T and
ν ∼ N (0, s2) with 0 < s ≤ √

T . It is easy to compute

(3.25)
1

ξ(Y )
=

s√
T

exp

{
T − s2

2Ts2
(WQ

T )2
}
,

which immediately gives 1
ξ(Y ) =

s√
T
and 1

ξ(Y ) = +∞. Next, Assumption 3.4 is clearly satisfied;

i.e., 1
ξ(Y ) has no atoms under Qν , as 1

ξ(Y ) does not have atoms under Q and the two measures

are equivalent. Moreover, 1
ξ(Y ) ∈ (0,+∞) Qν-a.s. and its Qν-expected value is 1. Thus every

technical condition is fulfilled.
The next step consists in verifying the three conditions in Assumption 3.6. Condition (ii)

follows immediately by the CRRA hypothesis, and (iii) will be checked a posteriori once we
have performed the necessary computations. For condition (i), we observe that the law of Y
under Qν is exactly ν. Hence, with some tedious but elementary computations one can check
that the distribution function of 1

ξ(Y ) under Qν is given by

(3.26) F ν(c) = Qν
{

1
ξ(Y ) ≤ c

}
=

⎧⎨
⎩

0 if c ≤ s√
T
,

2N
(√

2T

T − s2
ln
(
c
√
T
s

))
− 1 if c > s√

T
,
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where N (·) is the distribution function of a standard Gaussian random variable. The left
inverse of F ν(·) is given by

(3.27) (F ν)−1(z) =
s√
T

exp

(
T − s2

2T

[
N−1

(
z + 1

2

)]2)
, z ∈ [0, 1).

Now, condition (i) requires the ratio (F ν)−1

T ′
+

(z) to be nondecreasing over (0, 1]. If the distortion

T+(·) is assumed to be twice continuously differentiable, we see that this is indeed the case
whenever the derivative of that ratio is nonnegative. Note that a sufficient condition for this
to happen is T ′′

+(·) ≤ 0 over [0, 1], as it ensures

(3.28)
d

dz

(F ν)−1

T ′
+

(z) =

[
(F ν)−1

]′
T ′
+ − (F ν)−1T ′′

+

(T ′
+)

2
(z) ≥ 0, z ∈ (0, 1],

thanks to the fact that
[
(F ν)−1

]′
(·), T ′

+(·) and (F ν)−1(·) are nonnegative functions. By the
way, T ′′

+(·) ≤ 0 is only a sufficient condition and not necessary. Therefore, we can try to use
a nonconcave T+(·) and check the validity of (i).

It turns out that a class of weighting functions that fulfills both Assumption 3.2 and the
previous condition (i) is given by8

(3.29) T+(p) = 2N
(√

1− 2a N−1

(
p+ 1

2

))
− 1, a ∈ (0, 12) .

It is not difficult to check that such distortions are globally convex over (0, 1), thus implying
a prudential criterion when evaluating gains. The lack of concavity restricts our attention to
(CPT-I), as Assumption 3.3 for (CPT-N) is not fulfilled. A closer look at (3.29) shows that
those weighting functions are nothing but the primitives of

(3.30) T ′
+(p) =

√
1− 2a exp

(
a

[
N−1

(
p+ 1

2

)]2)
, a ∈ (0, 12) .

By using (3.27) and (3.30), rather long calculations show that condition (i) is indeed fulfilled

if and only if a ≤ T−s2

2T < 1
2 (however, we will choose a < T−s2

2T as the equality leads to
integrability problems, so that condition (iii) in Assumption 3.6 might not hold). Forgetting
for a while the ill-posedness issue, we now apply Proposition 3.7. After cumbersome (but not
difficult) computations, we find

Xν∗ = x0

√
T − s2 − 2aT

s
√
1− α

exp

(
−T − s2 − 2aT

2Ts2(1− α)
(WQ

T )2
)
,

V (x0, ν) = xα0

√
T (1− 2a)

s

(
s
√
1− α√

T − s2 − 2aT

)1−α

.

8To define T+(1) we use the convention N (+∞) = 1.
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Performing first order derivatives, it is immediate to see that V (x0, ν) is increasing in T ,
whereas it is decreasing in a and in s. This is perfectly coherent with intuition, as the more
accurate the information, the greater its value should be. It is interesting to note that the
magnitude of the parameter a determines the “degree” of convexity of T+(·) and as a → 0,
T+(·) tends to the identity function. As expected, we obtain lima→0+ V (x0, ν) = u(x0, ν) as
in Example 2.1, because CPT and EU preferences coincide.

According to the last observation in Remark 3.6, we can provide in this example some
information on how the threshold cν∗ varies with the information (Y, ν). A closer look at the
shape of the distribution function F ν(·) in (3.26) shows that if s → 0 (which corresponds to
more and more accurate information), then the random variable 1/ξ(Y ) tends to be more and
more concentrated around 0; i.e., (3.26) tends to Ic>0. In the other extreme case, as s → √

T
(which corresponds to no additional information case), 1/ξ(Y ) tends to be more and more
concentrated around 1; i.e., (3.26) tends to Ic>1.

We now come back to the ill-posedness issue. In order to ensure well-posedness, one has to
compute ϕν(c) and specify a particular form for T−(·) and check whether infc> 1

ξ(Y )
kν(c) ≥ 1

as we did in Corollary 3.3. Nonetheless, we observe that we can also find an estimate of
the value V (x0, ν) in the well-posed case. If infc>0 k

ν(c) ≥ 1, then we know that V (x0, ν) =
xα0ϕ

ν(+∞)1−α, and we can compute

(3.31) ϕν(+∞) = EQ

[
ξ(Y )

1
1−αT ′

+

(
F ν
(

1
ξ(Y )

)) 1
1−α

]
≥ inf

p∈[0,1]
T ′
+(p) E

Q
[
ξ(Y )

1
1−α

]
−→ +∞

as s → 0+ whenever the infimum appearing in (3.31) above is strictly positive. On one hand,
this fact suggests that well-posedness can be assessed only for weak information that is not too
accurate, i.e., when s2 is close to T . On the other hand, the condition on infp∈[0,1] T ′

+(p) > 0 is
fulfilled by our particular choice in (3.30). Moreover, this intuition is implicit in the empirical

estimation in [12], where the suggested distortion T+(p) =
pδ

(pδ+(1−p)δ)1/δ
automatically satisfies

infp∈[0,1] T ′
+(p) > 0 for sufficiently high δ (approximatively δ > 0.28, whereas in [12] it was

estimated δ = 0.69).

Example 3.2 (reversed S-shaped probability distortion T+(·)). We are aware of the fact that
empirical observations suggest that probability weighting be neither globally convex nor glob-
ally concave. While in the previous example an ad hoc construction was performed in order
to obtain explicit (and sensible!) expressions, we now suggest a particular reversed S-shaped
T+(·) which may look like an observable one. Following the same reasoning as in [6, Example
6.1] and using the framework in Example 3.1, it is not difficult to exhibit such a distortion.

Setting δ = s2−T
T , for a given set of parameters a < 0, 0 < b < −1

δ , c0 >
s√
T

we obtained

(3.32)

T+(p) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4k
(

s√
T

)a
δa

[
N
(
N−1

(
p+1
2

)
δa

)
− 1

2

]
, p ∈ [0, p0),

4k
(

s√
T

)a
δa

[
N
(
N−1

(
p0+1
2

)
δa

)
− 1

2

]
+ 4k̃

(
s√
T

)b
δb

[
N
(
N−1

(
p+1
2

)
δb

)
−N

(
N−1

(
p0+1
2

)
δb

)]
, p ∈ (p0, 1),
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where δa :=
√

1
δ

(
a+ 1

δ

)
, δb :=

√
1
δ

(
b+ 1

δ

)
, k̃ := kca−b

0 , p0 := F ν(c0), and the real number

k is uniquely determined by the terminal condition T+(1) = 1. Note that such a T+(·) is a
nondecreasing function over [0, 1] and T ′

+(p) → +∞ as p → 0 or p → 1, which is consistent
with the empirical estimates. However, it is important to note that the overall construction
depends on the weak information (Y, ν); thus it seems to be completely unrealistic. This flaw
was still present in Example 6.1 of [6], where the ad hoc distortion depends on the market
parameters! To conclude, we note that the condition infp∈[0,1] T ′

+(p) > 0 which ensured (3.31)
is satisfied for the T+(·) that we exhibit in (3.32). In fact, we have

T ′
+(p) = T ′

+(F
ν(x)) =

{
kxa if 0 < x ≤ c0,

k̃xb if x > c0,

which is always greater than or equal to kca0 > 0.

4. Comparison between differently informed CPT agents. Our analysis distinguished
four different types of investors, depending on their information (N-agents versus I-agents)
and on their valuation criteria or preferences paradigms (classical EU maximizers versus CPT
investors in the sense of Kahneman and Tversky).

In [2], the authors already compared an EU N-agent with an EU I-agent; the main result
was the fact that the insider always gets more than a noninformed agent (see also the estimate
in Example 2.1). Furthermore, the differences between an EU N-agent and a CPT N-agent
are easy to analyze: on one hand, we have seen that the optimal policy for a classical N-agent
is to choose a constant wealth, i.e., X∗ = x0 Q-a.s., leading to the optimal value U(x0),
whereas the CPT N-agent’s strategy is characterized by her substantial indifference between
events with the same probability. This phenomenon produces structurally different optimal
final wealths, as the behavioral agent can even exploit a leverage effect by choosing a negative
final wealth with positive probability. Moreover, this kind of investor can obviously select
(p∗, x∗+) = (1, x0), thus obtaining V (X∗) = u+(x0). However, this strategy is not necessarily
the best one, as she has to face (3.5).

The comparison between EU and CPT agents sharing the same extra information is inter-
esting only from a qualitative point of view. This is because decision criteria are extremely far
from each other. For an additional insight, we refer the interested reader to [4] and [6], where
the optimal strategies as well as the optimal values of the problems are compared. Here, we
notice only that one can have u(x0, ν) < +∞ and V (x0, ν) = +∞ even if the two insiders
share common extra information (Y, ν). To see this, assume the same market setting as in
Example 3.1. Now, for any fixed initial endowment x0 > 0, Example 2.1 shows that for every
s > 0 we have u(x0, ν) < +∞, whereas it tends to infinity only when s ↓ 0. However, if
we assume T−(·) = id(·), then for every s > 0 Proposition 3.5 implies ill-posedness for the
I-agent, i.e., V (x0, ν) = +∞.

From now on, we compare the solutions and the optimal values of the problems faced
by a CPT N-agent and a weakly informed CPT I-agent. We assume that they share the
same initial endowment x0 ∈ R, the same utility functions u±(·), and the same probability
weightings T±(·). We suppose that Assumptions 3.3 and 3.6 are in force and the I-agent
has weak information given by (Y, ν). In asymmetric information models (see, e.g., [10]), a
fundamental issue consists in proving that an insider always “gets” more than a noninformed
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trader, and the difference between the optimal values of these two investors is usually called
insider’s gain. Now, we are going to prove that this fact still holds in such a behavioral setting.
In other words, we show the inequality V (x0, ν) ≥ V (X∗), whose intuitive meaning is that
any additional information is an advantage for the investor, even if she is a behavioral one.

Before stating the main result, we need the following preliminary lemma, which compares
F ν(·) and FQ(·), the distribution functions of the random variable 1/ξ(Y ) w.r.t. Qν and Q,
respectively.

Lemma 4.1. The following inequality holds:

(4.1) F ν(c) ≥ FQ(c) ∀ c ∈
[

1
ξ(Y ) ,

1
ξ(Y )

]
.

Moreover, if c ∈ ( 1
ξ(Y ) ,

1
ξ(Y )) and ξ �≡ 1, then (4.1) holds strictly.

Proof. If c ≥ 1, then it is sufficient to use the estimation

F ν(c) = 1− EQ
[
ξ(Y )I 1

ξ(Y )
>c

]
= FQ(c) + EQ

[
(1− ξ(Y ))I 1

ξ(Y )
>c

]
≥ FQ(c) +

(
1− 1

c

)
(1− FQ(c))

≥ FQ(c).

Otherwise, if c < 1, we observe that the function f(c) := EQ[(1− ξ(Y )) I 1
ξ(Y )

>c] is increasing

in ( 1
ξ(Y ) , 1) and limc↓ 1

ξ(Y )
f(c) = 0. Finally, the strict inequality is a consequence of Assumption

2.2, i.e., the equivalence of ν and QY .
We are now ready to prove the existence of the insider’s gain. Note that it suffices to

find a particular feasible solution to (CPT-I) whose prospect value for the informed trader
is greater than or equal to V (X∗). A quick look at (CPT-N) and (CPT-I) shows that they
share the same feasible set. Hence, we could even choose X∗ as the insider’s terminal wealth.
This random variable will not be the optimal solution to (CPT-I). However, we will be able
to prove that V ν(X∗) ≥ V (X∗), and this will in turn imply V (x0, ν) ≥ V (X∗).

Theorem 4.2. Let Assumption 2.2 hold. Then

V (x0, ν) ≥ V (X∗).

Moreover, if ξ �≡ 1, V (X∗) < +∞, and the optimal solution (p∗, x∗+) to (3.5) is such that
p∗ ∈ (0, 1), then the inequality is strict.

Proof. First, we recall that a behavioral N-agent endowed with a concave T−(·) is indifferent
in choosing (3.6) as the optimal solution for any given Z ∼ U(0, 1) w.r.t.Q. Now we distinguish
between two cases, namely, when the optimal value for the N-agent is finite and when it is
not. In the first case, the noninformed trader can select Z̃ = FQ( 1

ξ(Y )). Using (3.6) and (3.7)

and setting c∗ := (FQ)−1(p∗), we find

X∗ = (u′+)
−1
(
λ(c∗,x∗

+)

T ′
+(Z)

)
I 1
ξ(Y )≤c∗

− x∗+ − x0

1− FQ(c∗)
I 1
ξ(Y )<c∗

,(4.2)

V (X∗) = V+(X
∗+)− u−

(
x∗+ − x0

1− FQ(c∗)

)
T−(1− FQ(c∗)),(4.3)
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where (p∗, x∗+) are optimal for (3.5) and λ(c∗, x∗+) is determined by the budget constraint. On
the other hand, if the informed investor chooses X∗ as her terminal wealth, then she obtains
the prospect value

(4.4) V ν(X∗) = V ν(X∗+)− u−
(

x∗+ − x0

1− FQ(c∗)

)
T−(1 − F ν(c∗)).

Now, using Lemma 4.1, it is immediate to see that the negative part of the prospect value for
the N-agent is greater (in absolute value) than that of the I-agent. Moreover, using the fact
that u+

(
(u′+)−1

)
(·) is strictly decreasing, we can explicitly write

(4.5) V+(X
∗+) =

∫ +∞

0
T+

(
Q

({
T ′
+

(
FQ( 1

ξ(Y ))
)
>

λ(c∗,x∗
+)

u′
+(u

−1
+ (y))

}
∩
{

1
ξ(Y ) ≤ c∗

}))
dy.

Now it suffices to note that T ′
+(·) is monotone decreasing, whereas FQ(·) is monotone in-

creasing; furthermore, V ν
+(X

∗+) can be written analogously to V+(X
∗+) just by replacing Q

with Qν . Therefore, applying again Lemma 4.1, we have V ν
+(X

∗+) ≥ V+(X
∗+), which in turn

implies the desired inequality. In the ill-posed case for the N-agent, note that we can find
a sequence of feasible solutions to (3.5), namely, {(pn, xn+)}n∈N, where pn = (FQ)−1(cn) for

some cn ∈ [ 1
ξ(Y ) ,

1
ξ(Y ) ], for every n ∈ N. This sequence will in turn induce a sequence of feasible

terminal wealths {Xν,n}n∈N. Now, using the previous argument, it is easily seen that if the
I-agent chooses that sequence of terminal wealths, then her optimal value will diverge to +∞,
too. Finally, the strict version is a consequence of (4.1) holding strictly.

We remark that, in general, the optimal pair (c∗, x∗+) for the N-agent will be different
than (cν∗, xν∗+ ). Moreover, we have seen that ill-posedness for (CPT-N) implies ill-posedness
for (CPT-I). A natural question arising from this observation is whether it is possible to find
an example where (CPT-N) is well-posed and (CPT-I) is ill-posed. The answer is positive,
and we are going to exploit some results previously obtained in a single risky asset market
driven by an (Ω,F,Q)-Brownian motion (see Example 3.1 for the notation).

Proposition 4.3. Assume CRRA preferences with x0 ≥ 0, T+(p) = p, and T−(p) = pδ,
0 < δ < α < 1. If the weak information of CPT I-agent is given by Y = WQ

T and ν ∼ N (0, s2)
with 0 < s ≤ √

T , then for sufficiently small s (CPT-I) is ill-posed.
Proof. To start, recall that with these assumptions on the agents’ preferences, Corollary 3.3

ensures well-posedness for (CPT-N). Then, ill-posedness for (CPT-I) follows from Proposition
3.7 if we are able to show that

(4.6) inf
c> 1

ξ(Y )

kν(c) ≡ inf
c> 1

ξ(Y )

k−(1− F ν(c))δ

(1− FQ(c))α
(
EQ

[
ξ(Y )

1
1−α I 1

ξ(Y )
≤c

])1−α < 1.

Now, we apply Jensen’s inequality to the convex function f(x) = x
1

1−α , α ∈ (0, 1), and we
estimate the infimum choosing ĉ = (FQ)−1(1−α

1−δ ). Hence we obtain

inf
c> 1

ξ(Y )

kν(c) ≤ inf
c> 1

ξ(Y )

k−(1− F ν(c))δ

(1− FQ(c))αF ν(c)
≤ k−

(
1− δ

α− δ

)α (1− F ν(ĉ))δ

F ν(ĉ)
,
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where it is important to note that ĉ depends both on the preference parameters and on the
weak information. At this point it is not difficult to compute

(4.7) FQ(c) ≡ Q
{

1
ξ(Y ) ≤ c

}
=

⎧⎨
⎩

0 if c ≤ s√
T
,

2N
(√

2s2

T−s2
ln
(
c
√
T
s

))
− 1 if c > s√

T
,

where, as usual, N (·) is the standard Gaussian distribution function. Next, we find

(4.8) (FQ)−1(z) =
s√
T

exp

(
T − s2

2s2

[
N−1

(
z + 1

2

)]2)
, z ∈ [0, 1).

Using the explicit expression of F ν(·) in (3.26), we can compute

F ν(ĉ) = 2N
(√

T

s
N−1

(
2− α− δ

2(1 − δ)

))
− 1.

Now we see that for every choice of k− ≥ 1 and 0 < δ < α < 1, there exists an s̃ > 0 such
that for every s < s̃ the inequality in (4.6) is fulfilled.

Economically speaking, the meaning of the previous proposition is that there can always
exist particular weak information which ensures well-posedness for the N-agent’s problems and
ill-posedness for the informed investor. Obviously, this extra information must be sufficiently
accurate (in our case, s < s̃) in order to provide an infinite optimal value for the I-agent.
We recognize that our estimation for (4.6) is effectively rough. For a more detailed analysis,
we note that an explicit expression for kν(c) can be provided, even if it is quite cumbersome.
However, it is not difficult to perform a graphical analysis whose results are shown in Figure
2. Fixing α = 0.88, δ = 0.7, and T = 1, kν reduces to a function of k−, s, and c; isolating
the loss aversion coefficient k−, we can now see whether k− ≤ supc>s k(c, s), which in turn
implies ill-posedness for the CPT insider’s problem. In the left plot, the 3D surface of k(c, s)
shows that even for a quite elevated k− we still have ill-posedness. On the contrary, if s is
sufficiently close to 1, then every k− ≥ 1 leads to well-posedness, as the surface lies below
the horizontal plane at level k ≡ 1 and k(·, s) becomes monotonically decreasing. Finally, for
particular values of s, i.e., for specific types of weak information, we have drawn in the right
plot the corresponding curves k(c), which confirm what was previously stated.

Remark 4.1. It is worth noting that with the same hypotheses as in Proposition 4.3, the
analogous problem for a classical informed trader has a completely different solution. Indeed,
(EU-I) is well-posed for every s > 0, and its optimal value tends to diverge only if s ↓ 0. On
the other hand, if we assume T−(·) = id, then (CPT-I) too becomes ill-posed for every s > 0,
thus showing a substantial lack of robustness.

To conclude this section, we now provide an example where the insider’s gain can be
explicitly computed and whose results have a clear and intuitive economic explanation.

Example 4.1 (explicit evaluation of the insider’s gain). We use exactly the same setting of
Example 3.1, changing only the probability distortion on gains of the informed investors.
Precisely, this time we assume

(4.9) T+(p) = 2N
(√

1 + 2b N−1

(
p+ 1

2

))
− 1, b > 0.
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Figure 2. A graphical analysis for the ill-posedness of the CPT insider’s problem.

These weighting functions are globally concave over (0, 1)9 and are the primitives of

(4.10) T ′
+(p) =

√
1 + 2b exp

(
−b

[
N−1

(
p+ 1

2

)]2)
, b > 0.

As we did in Example 3.1, we check condition (i) of Assumption 3.3, as (ii) is clearly true
and (iii) will be controlled ex post. Using (3.27) and performing the first order derivative, it

is immediate to see that (F ν)−1

T ′
+

(·) is nondecreasing over (0, 1] for every b > 0. Hence, we can

make our computations assuming well-posedness for (CPT-I), which implies that of (CPT-N)
as well (thanks to Theorem 4.2). For the noninformed investor, we exploit the results of
Proposition 3.2, which give us

X∗ = x0
√

1−α+2b
(1−α)(1+2b)1/(1−α) T

′
+(Z)1/(1−α),(4.11)

V (X∗) = xα0
√
1 + 2b

(√
1−α

1−α+2b

)1−α

.(4.12)

On the other hand, for the CPT insider we apply Proposition 3.7, which yields

Xν∗ = x0
T−s2α+2bT
s2(1−α)

exp
{
−T−s2+2bT

2Ts2(1−α)
(WQ

T )2
}
,(4.13)

V (x0, ν) = xα0

√
T (1+2b)

s2

(√
s2(1−α)

T−s2α+2bT

)1−α

.(4.14)

The insider’s gain is thus given by V (x0, ν)− V (X∗). For our purposes, it is more convenient
to compute the ratio

(4.15)
V (x0, ν)

V (X∗)
=

√
T

s

(√
s2(1− α)

T − s2α+ 2bT

)1−α

≥ 1,

9Thus, we observe an overestimation of relatively large gains and an underestimation of small gains.
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which is increasing in both b, T and decreasing in s, whereas the dependence on α is not
monotone. Note that this makes perfect sense since a greater T (or a lower s) improves the
accuracy of insider information. Moreover, if s ↑ √

T , the ratio (4.15) decreases to 1. On the
other hand, as b ↓ 0 we see that T+(·) converges uniformly to the identity function, and, in
the case of well-posedness, we recover the same results of Example 2.1, where the agent was
a classical insider. Finally, if α ↑ 1, then (4.15) tends to

√
T/s, which is equivalent to saying

that if the trader becomes risk-neutral, then the ratio between the optimal values is nothing
but an index of the “goodness” of the extra information.

The comparison between the optimal terminal wealths X∗ and Xν∗ exhibits the already
known flaw of being dependent on the choice of Z; in particular, if Z = FQ( 1

ξ(Y )), then

straightforward computations show that Xν∗ ≥ X∗ if and only if the terminal price of the
stock lies in a certain range, whereas if Z = 1− FQ( 1

ξ(Y )), we obtain the opposite result.

5. The Yaari models and their solutions. In this section we are going to look at the model
proposed by Yaari in [13]. That model is somewhat linked to CPT model since a probability
distortion w(·) is applied as well. However, in that model gains are not distinct from losses,
so what is important for the trader is the level of terminal wealth X. Moreover, the value
function is simply the identity; hence distortions on payments are not allowed. We will solve
the problems relative to a noninformed investor and an insider, respectively, following the
approach developed in [4]. At last, we will provide an example where the insider’s gain can
be explicitly computed. From now on, the following assumptions on the distortion w(·) will
be in force.

Assumption 5.1 (see [4, Assumption 3.3]). w(·) : [0, 1] → [0, 1] is continuous and strictly
increasing with w(0) = 0, w(1) = 1. Furthermore, w(·) is continuously differentiable on (0, 1).

5.1. The noninformed agent’s problem. For our N-agent, we adapt the solution scheme
proposed in [4, section 3.2]. Assuming an initial endowment x0 > 0, a standard formulation
of this model would be

(YA-N)
Maximize VY (X) :=

∫ +∞
0 w (Q {X > x}) dx

subject to EQ[X] = x0, X ≥ 0, X is FT -measurable.

Once again, we note that the objective function is law-invariant in the sense that if X is a
feasible solution to (YA-N) with distribution function FX(·), then for every Z ∼ U(0, 1) w.r.t.
Q we have VY (X) = VY

(
(FX)−1(Z)

)
(see, e.g., Lemma A.1). Moreover, the structure of the

objective function may be a source of ill-posedness, similarly to what happened for the CPT
model. A straightforward adaptation of the proof in [4, Theorem 3.4] shows the next result.

Proposition 5.1.Under Assumption 5.1, (YA-N) is ill-posed if lim infz↓0 w′(z) = +∞ and
well-posed if lim supz↓0w′(z) < +∞.

In particular, w(z) = zγ leads to well-posedness if γ > 1, whereas γ < 1 implies ill-
posedness. We also recall that in Yaari’s model, a convex distortion is equivalent to risk
aversion. Moreover, using Jensen’s inequality, we see that if w(·) is convex, then (YA-N) has
the trivial solution X∗

Y = x0 Q-a.s. with VY (X
∗
Y ) = x0 (we will use this fact in Example 5.1).

Therefore, there remain some other interesting shapes of w(·) to analyze. Following [4], we
impose this technical condition.
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Assumption 5.2 (see [4, Assumption 3.5]). M(z) := w′(1 − z) is continuous on (0, 1), and
there exists z0 ∈ (0, 1) such that M(·) is strictly increasing on (0, z0) and strictly decreasing
on (z0, 1).

In other words, the previous assumption describes an S-shaped distortion function which
is useful for the subsequent mathematical analysis, whereas it is not properly suitable in an
economic sense from a descriptive or a normative point of view. In fact, such an S-shaped
w(·) implies underweighting of both relatively large and small payoffs. Using exactly the same
argument as in the proofs of Proposition 3.6 and Theorem 3.7 in [4], we obtain the main result
of this section.

Proposition 5.2. Suppose Assumption 5.2 holds. Define

z(λ) := inf {z ∈ (0, z0] : M(z) = λ} ,(5.1)

h(λ) := w (1− z(λ))− λ (1− z(λ)) ,(5.2)

and let λ∗ be the unique positive root of h(·). Then, for every Z ∼ U(0, 1) w.r.t. Q, we have
X∗

Y = b∗Iz(λ∗)<Z≤1, where b∗ = x0
1−z(λ∗) is determined by the budget constraint. Moreover,

VY (X
∗
Y ) = b∗w (1− z(λ∗)).

5.2. The insider’s problem. For a weakly informed trader who follows the tenets of Yaari’s
dual theory of choice, the optimization problem can be naturally set as

(YA-I)
Maximize V ν

Y (X) :=
∫ +∞
0 w (Qν {X > x}) dx

subject to Eν
[

1
ξ(Y )X

]
= x0, X ≥ 0, X is FT -measurable.

We will call Xν∗
Y its optimal solution, with optimal value VY (x0, ν). Once again, we recover

the same structure as in [4, problem (2.11)], and we replace ρ with 1
ξ(Y ) and P with Qν. Before

giving the solution, we impose the following technical hypothesis.

Assumption 5.3 (see [4, Assumption 5.2]). Mν(z) := w′(1−z)
(F ν)−1(1−z) is continuous on (0, 1),

and there exists z0 ∈ (0, 1) such that M(·) is strictly increasing on (0, z0) and strictly decreas-
ing on (z0, 1).

The solution to (YA-I) is completely described in the next proposition.
Proposition 5.3. Suppose Assumption 5.3 holds. Define

zν(λν) := inf {z ∈ (0, z0] : M
ν(z) = λν} ,(5.3)

hν(λ) :=

∫ 1

zν(λ)

[
w′(1− z)− λ(F ν)−1(1− z)

]
dz.(5.4)

Let λν∗ be the unique positive root of hν(·). Then, Xν∗
Y = bνI 1

ξ(Y )≤cν
, where cν is the unique

root of

(5.5) ϕν(c) := xw (F ν(x))− w′ (F ν(x))

∫ x

0
s dF ν(s)

over ((F ν)−1(1−z0),
1

ξ(Y )) and bν is implicitly defined by the budget constraint Eν [ 1
ξ(Y )X

ν∗
Y ] =

x0. Moreover, VY (x0, ν) = λν∗x0.
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Proof. The proof uses the same arguments as in [4, Proposition 3.6 and Theorem 3.7].

Before giving an explicit example, we show that an I-agent always gets a higher optimal
value than an N-agent. In fact, (YA-N) and (YA-I) share the same feasible set; therefore, the
noninformed agent can choose Z = FQ( 1

ξ(Y )) and the insider can select the corresponding X∗
Y

as her terminal wealth. Hence, using Lemma 4.1, we can compute

V ν
Y (X

∗
Y ) =

∫ +∞

0
w

(
Qν

{
b∗I

z(λ∗)<FQ(
1

ξ(Y ) )
> x

})
dx

=

∫ b∗

0
w
(
F ν
(
(FQ)−1(1− z(λ∗))

))
dx

≥
∫ b∗

0
w (1− z(λ∗)) dx

= VY (X
∗
Y ),

which obviously implies VY (x0, ν) ≥ VY (X
∗). This time, too, the comparison between the

optimal terminal wealths is not very sensible, as it strongly depends on the choice of Z.

Example 5.1 (evaluation of the insider’s gain in Yaari’s model). Consider the single risky as-
set setting as in Example 2.1. We assume that the weak information of the I-agent is given
by Y = FW (WQ

T ) and ν(dx) = [(2− 2a)x+ a] dx, a ∈ (0, 1), where FW (·) is the cumulative

distribution function (cdf) of the random variable WQ
T .

Note that Y ∼ U(0, 1) w.r.t. Q, and the economic intuition behind this example is that
the insider has weak knowledge about the terminal price, as the distortion applied by FW (·)
is irrelevant due to its strict monotonicity. Furthermore, the parameter a is an index of the
goodness of the extra information: (Y, ν) becomes, in particular, more and more valuable as
a → 0+, whereas if a → 1−, we recover the no additional information case. At this point, we
can immediately compute

(5.6)
1

ξ(Y )
=

1

(2− 2a)FW (WQ
T ) + a

,
1

ξ(Y )
=

1

2− a
,

1

ξ(Y )
=

1

a
.

Now, we assume a risk-averse investor endowed with probability distortion w(z) = zγ , γ > 1.
As noticed in section 5.1, for such a convex w(·) we already know that X∗

Y = x0 Q-a.s. and
VY (X

∗
Y ) = x0. Next, we check the validity of Assumption 5.3. Using (5.6) together with the

uniform distribution of Y , we find

(5.7) M(z) = γ(1− z)γ−1
√

4z(a− 1) + (a− 2)2, z0 =
a2(1− γ) + 2(1 − a)

2(1− a)(2γ − 1)
.

Then, we look for a root of ϕν(·) as defined in Proposition 5.3. It turns out that an admissible

cν ∈ ((F ν)−1(1−z0),
1

ξ(Y )) is obtained only under an additional condition over the parameters
γ and a. More precisely, we have

(5.8) cν =
2γ − 1

2− a
if γ <

1

a
.
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Observe that whenever γ < 1/a, the quantity z0 in (5.7) belongs to (0, 1). The final step is
to find the optimal solution Xν∗

Y together with its optimal value. Using the budget constraint
we have

Xν∗
Y = bν∗I

WQ
T ≥(FW )−1

(
aγ−1

(a−1)(2γ−1)

),(5.9)

VY (x0, ν) = x0
γγ(γ − 1)γ−1(2− a)2γ−1

(1− a)γ−1(2γ − 1)2γ−1
,(5.10)

where bν∗ = x0
(1−a)(2γ−1)
(2−a)(γ−1) . We remark that our insider will obtain bν∗ if the terminal prices

are higher than a certain threshold which is decreasing in both a and γ as economic intuition
suggests. Furthermore, bν∗ is decreasing in both parameters and the Q-probability of obtaining
bν∗ is nothing but (γ−1)(2−a)

(2γ−1)(1−a) , which is increasing in both γ and a. Finally, we note that

VY (x0, ν) ≥ x0 obviously holds. However, there is no clear dependence of VY (x0, ν) in the
parameters.

6. Conclusions. In this paper we considered portfolio optimization problems for investors
following different preference paradigms. Classical expected utility, CPT, and Yaari’s dual
theory maximizers have been studied under both (weakly) informed and noninformed cases.
The informed case is easy to handle, since the techniques developed by, e.g., [6] in both
CPT and Yaari-type cases can be applied with basically no changes. On the contrary, for the
noninformed investor, those results cannot be directly applied. Nonetheless, the corresponding
optimization problems can be solved using similar techniques, leading to a family of optimal
solutions, for which uniqueness in distribution of the solution replaces the uniqueness almost
surely. In particular, a nonexpected utility trader obtains an optimal terminal payoff which
looks like a gamble on the final price, where this payoff can even be negative in the CPT case.
We proved the intuitive fact that the optimal value of a CPT informed agent is always bigger
than that of a CPT noninformed agent. In other terms, the value of the (weak) information
is always positive. Moreover, in the CPT I-agent case, ill-posedness is an even more delicate
issue than in the noninformed case. In some involved examples, we performed some graphical
analysis which helped us to understand well-posedness as a function of model’s parameters.

Another contribution of this paper is the explicit computations of the optimal terminal
wealths of a CPT and a Yaari-type insider. In particular, we proposed two new classes
of probability distortions, a convex one and a concave one, and a new example of weak
information which turns out to be economically meaningful (see Examples 3.1, 4.1, and 5.1).

The partial and strong information cases are left for future research.

Appendix A. A Choquet maximization problem. Our aim is to solve a general utility
maximization problem which includes a Choquet capacity:

(A.1)
Maximize V1(X) =

∫ +∞
0 T (P{u(X) > y}) dy

subject to EP[X] = a, X ≥ 0,

where a ≥ 0, T : [0, 1] → [0, 1] is a strictly increasing, differentiable function with T (0) = 0
and T (1) = 1, and u(·) is a strictly concave, strictly increasing, twice differentiable function
with u(0) = 0, u′(0) = +∞, u′(+∞) = 0. Note that the only difference with the Choquet
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maximization problem solved in [6, Appendix C] is that their weighting function ξ in the
constraint is not atomless, being here a Dirac mass. This makes it impossible to directly use
their results.

We will denote by X∗ the optimal solution to (A.1). The case a = 0 is trivial, as it implies
X∗ = 0 with optimal value V1(X

∗) = 0; therefore, assume a > 0. First we have the following
result, which states the law-invariance property of the problem.

Lemma A.1. Suppose that (A.1) admits a feasible solution X whose distribution function
is G(·); then for every random variable Z ∼ U(0, 1) w.r.t. P we have V1(X) = V1

(
G−1(Z)

)
.

Proof. One can easily guess from the structure of (A.1) that the only relevant feature of
the optimal solution is its distribution. Formally, for any such Z we can compute

EP[G−1(Z)] =

∫ +∞

0
P{G−1(Z) > y}dy =

∫ +∞

0
P{X > y}dy = EP[X] = a;

thus the random variable G−1(Z) is feasible, and we have

V1(X) =

∫ +∞

0
T (P{u(X) > y}) dy =

∫ +∞

0
T (P{X > u−1(y)}) dy

=

∫ +∞

0
T (1− P{X ≤ u−1(y)}) dy =

∫ +∞

0
T (1−G(u−1(y))) dy

=

∫ +∞

0
T (P{Z > G(u−1(y))}) dy =

∫ +∞

0
T (P{u(G−1(Z)) > y}) dy

= V1(G
−1(Z))

as claimed.
We notice at once the difference between our Lemma A.1 and Lemma C.1 in [6]: we

do not have an almost sure result. However, we proved that for any such Z the previous
equivalence holds; thus it is clearly true even for an optimal X∗. Thus we are free to choose
any Z uniformly distributed. This is a general feature of our results, i.e., replacing the almost
sureness with a weaker condition on the distribution functions which gives us an additional
degree of freedom. From now on, we follow [6] with some slight modifications. Let us introduce
the problem

(A.2)

Maximize v1(G) :=
∫ +∞
0 T (P{u(G−1(Z)) > y}) dy

subject to

{
EP[G−1(Z)] = a,

G is the distribution function of a nonnegative random variable,

which changes the domain of our problem from a set of random variables to a set of functions.
The functions G(·) appearing in the constraints must be nondecreasing and càdlàg and satisfy
G(0−) = 0, G(+∞) = 1. From Lemma A.1 we deduce the equivalence between the two
previous problems (A.1) and (A.2).

Proposition A.2. If G∗ is optimal for (A.2), then for any Z ∼ U(0, 1) w.r.t. P the random
variable X∗ := (G∗)−1(Z) is optimal for (A.1). Conversely, if X∗ is optimal for (A.1), then
its distribution function G∗ is optimal for (A.2).
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Performing the same calculations as in [6] and setting

Γ :=
{
g : [0, 1) → R+, g is nondecreasing, left continuous, with g(0) = 0

}
,

we can rewrite (A.2) as

(A.3)
Maximize v1(g) := E[u(g(Z))T ′(1− Z)]

subject to EP[g(Z)] = a, g ∈ Γ.

Thanks to the assumptions on T (·) and u(·), we now have a concave optimization problem in
g(·) and we can use Lagrange method. Thus, for a given λ ∈ R, we can solve

(A.4)
Maximize vλ1(g) := E[u(g(Z))T ′(1− Z)− λg(Z)]

subject to g ∈ Γ

and then determine λ via the original constraint. As noticed in [6], if we ignore the constraint
and apply standard maximization techniques we find g(z) = (u′)−1(λ/T ′(1 − z)). Moreover,
if T ′(z) is nonincreasing in z ∈ (0, 1], then g(z) is nondecreasing in z ∈ [0, 1), and therefore
it solves (A.4). However, if T ′(z) is not nonincreasing, then we are not able to find an
explicit solution.10 We remark that if T (z) is twice continuously differentiable, then T ′(z)
nonincreasing amounts to requiring a concave T (·). In particular, T (·) = id satisfies this
condition.

Denote Ru(x) := −xu′′(x)
u′(x) , x > 0, the index of relative risk aversion (RRA) of the function

u(·). We have the following proposition.
Proposition A.3. Assume that T ′(z) is nonincreasing in z ∈ (0, 1] and lim infx→+∞Ru(x) >

0. Then for any Z ∼ U(0, 1) w.r.t. P, the following claims are equivalent:
(i) Problem (A.3) is well-posed for any a > 0.
(ii) Problem (A.3) admits a unique optimal solution for any a > 0.
(iii) EP[u((u′)−1( 1

T ′(1−Z)))T
′(1− Z)] < +∞.

(vi) EP[u((u′)−1( λ
T ′(1−Z)))T

′(1− Z)] < +∞ ∀ λ > 0.

Furthermore, when one of (i)–(iv) holds, the optimal solution to (A.3) is

g∗(x) ≡ (G∗)−1(x) = (u′)−1

(
λ

T ′(1− x)

)
, x ∈ [0, 1),

where λ > 0 is the one satisfying EP[(G∗)−1(1− Z)] = a.
Proof. As in the proof of Proposition C.2 in [6], we can define a new probability measure

P̃ such that dP̃ = T ′(1 − Z) dP and a random variable ζ := 1
T ′(1−Z) , which is positive P-a.s.

We can now rewrite (A.3) as follows:

Maximize v1(g) := EP̃[u(g(Z))]

subject to EP̃[ζg(Z)] = a, g ∈ Γ.

10If one restricts the domain to the set of step functions g ∈ Γ, then solving (A.4) is equivalent to solving a
nonlinear programming problem in Rn, which once again does not have an easy explicit solution.
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By [5, Theorem 5.4], we get the result.

We remark that the claim (ii) (as it appears in Proposition C.2 of [6]) still holds true
because the optimal solution g∗(·) to (A.3) determines the inverse of a distribution function,
whereas the optimal solution X∗ to (A.1) is not unique P-a.s. as it depends on the choice of
Z. However, X∗ is unique in law. Moreover, we could also replace 1 − Z with Z in every
explicit expression containing an expected value, since Z ∼ U(0, 1) as well. Now we can state
the main result of this section.

Theorem A.4. Assume that T ′(z) is nonincreasing in z ∈ (0, 1] and lim infx→+∞Ru(x) > 0;
for any fixed Z ∼ U(0, 1) w.r.t. P define X(λ) := (u′)−1( λ

T ′(1−Z)) for λ > 0. If V1(X(1)) <

+∞, then X(λ) is an optimal solution of (A.1), where λ is the one satisfying EP[X(λ)] = a.
If V1(X(1)) = +∞, then (A.1) is ill-posed.

With the obvious changes in the proofs, we can also state a necessary condition for opti-
mality as in [6].

Lemma A.5. If g(·) is optimal for (A.4), then either g ≡ 0 or g(x) > 0 ∀ x > 0.

Theorem A.6. If X∗ is an optimal solution for (A.1) with some a > 0, then
P{X∗ = 0} = 0.

Note that these last results do not depend on the choice of Z. They will be useful in order
to state monotonicity properties of the value function of a CPT noninformed agent.

Appendix B. A Choquet minimization problem. In this section we solve a general utility
minimization problem including a Choquet capacity:

(B.1)
Minimize V2(X) :=

∫ +∞
0 T (P{u(X) > y}) dy

subject to EP[X] = a, X ≥ 0,

where a, T (·) satisfy the same hypothesis employed in (A.1) and u(·) is strictly increasing
and concave and u(0) = 0. Once again, the only difference with respect to the Choquet
minimization problem solved in [6, Appendix D] is the absence of the atomless weighting
function ξ.

We will denote as usual by X∗ the optimal solution to (B.1). Note that there is always a
feasible solution, namely, X = a P-a.s.; hence the optimal value of (B.1) is a finite nonnegative
number. Proceeding as in Appendix A, we can show the following law-invariance lemma.

Lemma B.1. Suppose (B.1) admits a feasible solution X whose distribution function is
G(·); then for every random variable Z ∼ U(0, 1) w.r.t. P we have V1(X) = V1

(
G−1(Z)

)
.

Thus, we can look for a solution to the following problem:

(B.2)
Minimize v2(g) := E[u(g(Z))T ′(1− Z)]

subject to EP[g(Z)] = a, g ∈ Γ,

where g(·) represents the inverse of a distribution function G(·), i.e., g(·) = G−1(·). As
already pointed out in [6], (B.2) is a difficult problem since we have to minimize a concave
objective function in a function space. Again, we can seek among corner point solutions, and
by straightforward modifications of the proof of Proposition D.2 in [6], we can prove the next
result.
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Proposition B.2. Assume that u(·) is strictly concave at 0. Then the optimal solution for
(B.2), if it exists, must be in the form g(t) = a

1−bI(b,1)(t), t ∈ [0, 1).
Obviously, by left continuity of g(·), we can extend the optimal g(·) over [0, 1] by setting

g(1) := a
1−b . Moreover, g(·) is uniformly bounded in t ∈ [0, 1], so it follows by Lemma B.1 that

an X∗ optimal for (B.1) is uniformly bounded from above. Thanks to Proposition B.2, we
can reduce our problem to finding an optimal real number b ∈ [0, 1). Therefore, we introduce
the following minimization problem:

(B.3)
Minimize v2(b) := E[u(g(Z))T ′(1− Z)]

subject to g(·) = a
1−bI(b,1](·), 0 ≤ b < 1.

Adapting the proofs of Proposition D.3 and Theorem D.1 in [6], we can obtain the following
result.

Proposition B.3. Problems (B.2) and (B.3) have the same infimum values.
Theorem B.4. Problems (B.1) and (B.3) have the same infimum values. If, in addition,

u(·) is strictly concave at 0, then (B.1) admits an optimal solution if and only if

min
0≤b<1

u

(
a

1− b

)
T (1− b)

admits an optimal solution b∗, in which case the optimal solution to (B.1) is of the form
X∗ = a

1−b∗ I(b∗,1](Z) for any choice of Z ∼ U(0, 1) w.r.t. P.

Appendix C. The solution of a CPT noninformed agent’s problem. We will now proceed
to solve (CPT-N). The scheme of the solution is nothing but the one already shown in [6].
Some results will be restated without proofs as they need only slight and straightforward
adaptations. As already noted, the main changes are due to the constraint EQ[X] = x0.
Recall (CPT-N):

Maximize V (X) = V+(X
+)− V−(X−)

subject to EQ[X] = x0, X is FT -measurable and Q a.s. bounded from below,

where

V+(X
+) :=

∫ +∞

0
T+(Q{u+(X+) > y}) dy, V−(X−) :=

∫ +∞

0
T−(Q{u−(X−) > y}) dy.

As noticed in [6, Proposition 3.1], to avoid systematic ill-posedness we will impose the following
assumption.

Assumption C.1. V+(X) < +∞ for any nonnegative, FT -measurable, random variable X
satisfying EQ[X] < +∞.

We now split (CPT-N) into its positive and negative parts, also defining their respective
optimal values v+(A, x+) and v−(A, x+) as usual; after that we merge them again.

• Positive part problem: Given the pair (A, x+), with A ∈ FT and x+ ≥ x+0 ,

(C.1)
Maximize V+(X) =

∫ +∞
0 T+(Q{u+(X) > y}) dy

subject to EQ[X] = x+, X ≥ 0 Q a.s., X = 0 Q a.s. on AC .
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• Negative part problem: Given the pair (A, x+), with A ∈ FT and x+ ≥ x+0 ,

(C.2)

Minimize V−(X) =
∫ +∞
0 T−(Q{u−(X) > y}) dy

subject to

{
EQ[X] = x+ − x0, X ≥ 0 Q a.s., X = 0 Q a.s. on A,
X is upper bounded Q a.s.

• Merged problem:

(C.3)

Maximize v+(A, x+)− v−(A, x+)

subject to

{
A ∈ FT , x+ ≥ x+0 ,

x+ = 0 if Q(A) = 0, x+ = x0 if Q(A) = 1.

With only a few and simple adaptations, we can prove the following two results.

Proposition C.1 (see [6, Proposition 5.1]). Problem (CPT-N) is ill-posed if and only if (C.3)
is ill-posed.

Proposition C.2 (see [6, Proposition 5.2]). Given X∗, define A∗ := {ω : X∗ ≥ 0} and x∗+ :=
EQ[(X∗)+]. Then X∗ is optimal for (CPT-N) if and only if (A∗, x∗+) are optimal for (C.3) and
(X∗)+ and (X∗)− are, respectively, optimal for (C.1) and (C.2) with parameters (A∗, x∗+).

Therefore, (CPT-N) is equivalent to the set (C.1)–(C.3). The next step is the crucial one,
as it completely changes the structure of the solution of our problem. We will not be able
to obtain the almost sure characterization results obtained in [6]. On the other hand, we
can avoid the technical details related to the comonotonicity and anticomonotonicity of the
random variables employed in the solution (see [6, Appendix B], where a series of so-called
quantile problems is solved).

The fact is that the density ρ allowed for a huge simplification of the overall procedure,
since it made possible looking for a solution where the set A was of the form {ρ ≤ c} for some
real number c ∈ [ρ, ρ]. Now we can find a quite similar result adapting the proof of Theorem
5.1 in [6]; this will substantially reduce the complexity of (C.3).

Theorem C.3. For any feasible (A, x+) of (C.3) such that Q(A) = p and for every (Ω,F )
random variable Z ∼ U(0, 1) w.r.t. Q, we have

(C.4) v+(A, x+)− v−(A, x+) ≥ v+(A, x+)− v−(A, x+),

where A := {Z ≤ p}.
Proof. Fix a random variable Z ∼ U(0, 1). The cases x+ = x+0 and p = 0 or p = 1 are

trivial, so we assume that x+ > x+0 and p ∈ (0, 1). Define B := AC and A := {Z ≤ p}, and
set

A1 = A ∩ {Z ≤ p}, A2 = A ∩ {Z > p},
B1 = B ∩ {Z ≤ p}, B2 = B ∩ {Z > p}.

Note that Q(A1 ∪ A2) = Q(A1 ∪ B1) = p so that Q(A2) = Q(B1). If Q(A2) = 0, then
the result is trivial, so suppose Q(A2) > 0. Choose a feasible solution X1 for (C.1) with
parameters (A, x+); we will prove that V+(X1) ≤ v+(A, x+) (the proof for a feasible solution
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X2 for (C.2) is analogous). To this end, define f1(t) := Q{X1 ≤ t|A2}, g1(t) := Q{Z ≤ t|B1},
t ∈ [0, 1], Z1 := g1(Z), and Y1 := f−1

1 (Z1). Note that Z has no atoms w.r.t. Q, which in turn
implies that it has no atoms w.r.t. Q(·|B1). Moreover, one can show that Z1 ∼ U(0, 1) w.r.t.
Q(·|B1), implying Q{Y1 ≤ t|B1} = Q{Z1 ≤ f1(t)|B1} = f1(t). To see this note that

g1(t) =
Q{AC ∩ (Z ≤ t) ∩ (Z ≤ p)}

Q{AC ∩ (Z ≤ p)} =
Q{AC ∩ (Z ≤ t ∧ p)}
Q{AC ∩ (Z ≤ p)} ,

so we can compute

Q{Z1 ≤ t|B1} =
Q{AC ∩ (Z1 ≤ t) ∩ (Z ≤ p)}

Q{AC ∩ (Z ≤ p)} =
Q{AC ∩ (Z ≤ g−1

1 (t) ∧ p)}
Q{AC ∩ (Z ≤ p)} = g1

(
g−1
1 (t)

)
= t.

Consequently, EQ[X1IA2 ] = Q(A2)E
Q[X1|A2] = EQ[Y1IB1 ]. Now set X1 := X1IA1 + Y1IB1 .

Then EQ[X1] = EQ[X1], so X1 is feasible for (C.1) with parameters (A, x+). Finally, it is
obviously seen that Q{X1 > t} = Q{X1 > t}; therefore, by the definition of V+(·) it follows
that V+(X1) ≥ V+(X1). Combining this with the similar result for the negative part problem
we get the desired inequality (C.4).

The meaning of Theorem C.3 is that a noninformed agent cares only about the probability
of events, no matter what structure they have or what economic phenomenon they represent.
In what follows, it will be clear that, for such an agent, investing in a risky asset is not so
different from tossing a coin or betting on horses!11

We can now proceed similarly to Jin and Zhou [6], using v+(p, x+) and v−(p, x+) to denote
v+({ω : Z ≤ p}, x+) and v−({ω : Z ≤ p}, x+), respectively. Note that we can freely choose
Z, and the previous definition is in some sense independent of Z thanks to Theorem C.3.
Accordingly, we replace (C.3) by the easier constrained optimization problem in R2:

(C.5)

Maximize v+(p, x+)− v−(p, x+)

subject to

{
p ∈ [0, 1], x+ ≥ x+0 ,

x+ = 0 if p = 1, x+ = x0 if p = 0.

Using Theorem C.3 we obtain the general structure of the solution to (CPT-N), which is
indeed similar to that in [6]. In what follows we will consider such a Z fixed and denote with
X∗ the optimal solution depending on Z.

Theorem C.4. Given X∗ and Z, define p∗ := Q{X∗ ≥ 0}, x∗+ := EQ[(X∗)+]. Then X∗

is optimal for (CPT-N) if and only if (p∗, x∗+) is optimal for (C.5) and (X∗)+IZ≤p∗ and
(X∗)−IZ>p∗ are, respectively, optimal for (C.1) and (C.2) with parameters ({ω : Z ≤ p∗}, x∗+).

The next step consists in solving the positive and the negative part Problems (C.1) and
(C.2) using the results obtained in Appendices A and B, respectively. In order to obtain a
more explicit result, we impose the following conditions.

11Recall that also in the original framework in [6], the optimal policy for an investor was to behave like a
gambler, but she would choose a terminal gain accompanied with a high price of the underlying stock, opposite
to a final loss if the terminal price would have fallen below a certain threshold.
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Assumption C.2. T ′
+(z) is nonincreasing for z ∈ (0, 1], lim infx→+∞−xu′′

+(x)

u′
+(x) > 0, and for

any Z ∼ U(0, 1) w.r.t. Q we have EQ[u+((u
′
+)

−1( 1
T ′(Z)))T

′(Z)] < +∞.

At this point we can perform the same procedure used in [6, section 6.1], to obtain the
following theorem.

Theorem C.5. Let Assumption C.2 hold. For any Z ∼ U(0, 1) w.r.t. Q and for a given
p ∈ [0, 1], set A := {ω : Z ≤ p}; let x+ ≥ x+0 be given. Then the following hold.

(i) If x+ = 0, then the optimal solution of (C.1) is X∗ = 0 and v+(p, x+) = 0.
(ii) If x+ > 0, p = 0, then there is no feasible solution to (C.1), and v+(p, x+) = −∞.
(iii) If x+ > 0, p ∈ (0, 1], then the optimal solution to (C.1) is X∗(λ) = (u′+)−1( λ

T ′
+(Z))IZ≤p

with the optimal value v+(p, x+) = EQ[u+((u
′
+)

−1( λ
T ′
+(Z)))T

′
+(Z)IZ≤p], where λ > 0 is

the unique real number satisfying EQ[X∗(λ)] = x+.
Proof. Cases (i) and (ii) are trivial; to prove (iii) we follow an argument similar to that

in the proof of Theorem 6.1 in [6]. Define TA(x) := T+(xQ(A))
T+(Q(A)) = T+(xp)

T+(p) , x ∈ [0, 1], and

the conditional probability measure QA := Q(·|A). Now consider (C.1) in the conditional
probability space (Ω ∩A,F ∩A,QA), i.e.,

(C.6)
Maximize V+(Y ) = T+(p)

∫ +∞
0 TA(QA{u+(Y ) > y}) dy

subject to EQA [Y ] = x+

p , Y ≥ 0.

We can apply Theorem A.4 to (C.6) choosing any random variable Z̃ ∼ U(0, 1) w.r.t. QA;
note that every required assumption for Theorem A.4 is still fulfilled. At this point, in order
to simplify calculations as much as possible, we see that once Z is chosen there is a canonical
choice of Z̃: Z̃ = 1−g(Z), where g(z) := Q{Z ≤ t|A}. In fact, we can show that if Z ∼ U(0, 1)
w.r.t. Q, then Z̃ has the same distribution w.r.t. QA. To see this, note that

QA{Z̃ ≤ t} =
Q{Z̃ ≤ t, A}

p
=

Q{1− g(Z) ≤ t, Z ≤ p}
p

= t, t ∈ (0, 1),

where we used

g(t) =
Q{Z ≤ t ∧ p}

p
=

t ∧ p

p
.

Using such a choice of Z̃ we can find that an optimal solution to (C.1) is given by X∗ =

(u′+)−1( λT+(p)
pT ′

+(pg(Z))
)IZ≤p, where λ is uniquely determined by the constraint. We now observe

that on the set {Z ≤ p} we have g(Z) = Z/p; finally we set λ := λT+(p)
p to find our re-

sults.
Comparing this result to the analogous result in [6], we see that the link between the

two solutions is substantially made by the replacement of the set {ρ ≤ c} with {Z ≤ p}. In
particular, c = ρ corresponds to p = 0 and c = ρ corresponds to p = 1. Thanks to the free
choice of Z, we see once more that a noninformed agent is interested only in probabilities and
not in events.

With a simple modification in the proof of [6, Proposition 6.2], we can also state the strict
monotonicity of the optimal value v+(·, x+) w.r.t. p.
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Proposition C.6. If x+ > 0 and Z ∼ U(0, 1) w.r.t. Q, then (C.1) admits an optimal solution
with parameters ({Z ≤ p}, x+) only if v+(p, x+) > v+(p, x+) for any p > p.

We now proceed to solve the negative part problem (C.2). We follow again the arguments
applied in [6, section 7], combining them with our results in Appendix B.

Theorem C.7. Assume that u−(·) is strictly concave at 0. For any Z ∼ U(0, 1) w.r.t. Q

and for a given p ∈ [0, 1] set A := {ω : Z ≤ p}. Let x+ ≥ x+0 be given. Then the following
hold.

(i) If p = 1, x+ = x0, then the optimal solution of (C.2) is X∗ = 0 and v−(p, x+) = 0.
(ii) If p = 1, x+ �= x0, then there is no feasible solution to (C.2) and v−(p, x+) = +∞.
(iii) If p ∈ [0, 1), then v−(p, x+) = inf0≤b<1 u−(

x+−x0

(1−p)(1−b) )T− ((1− p)(1− b)) . Moreover,

(C.2) with parameters (A, x+) admits an optimal solution X∗ if and only if the mini-
mization problem

(C.7) min
0≤b<1

u−
(

x+ − x0
(1− p)(1− b)

)
T− ((1− p)(1− b))

admits an optimal solution b∗, in which case X∗ = x+−x0

(1−p)(1−b∗)IZ>(1−p)b∗+p.

Proof. Cases (i) and (ii) are trivial; to prove (iii) we define TAC (x) := T−(xQ(AC))
T−(Q(AC))

=
T−(x(1−p))
T−(1−p) , x ∈ [0, 1], and the conditional probability measure QAC := Q(·|AC). Let us

consider (C.2) in the conditional probability space (Ω ∩AC ,F ∩AC ,QAC ):

(C.8)
Minimize V−(Y ) = T−(1− p)

∫ +∞
0 TAC (QAC{u−(Y ) > y}) dy

subject to EQ
AC [Y ] = x+−x0

1−p , Y ≥ 0, Y QAC -a.s. bounded.

Now we apply Theorem B.4 to (C.8), choosing any random variable Z̃ ∼ U(0, 1) w.r.t. QAC .
Once again, when Z is chosen there is a canonical choice of Z̃: Z̃ = g(Z), where g(t) :=
Q{Z ≤ t|AC}. Indeed, if Z ∼ U(0, 1) w.r.t. Q, then Z̃ has the same distribution w.r.t. QAC .
To see this, observe that

QAC{Z̃ ≤ t} =
Q{Z̃ ≤ t, AC}

1− p
=

Q{g(Z) ≤ t, Z > p}
1− p

=
Q{Z ≤ g−1(t), Z > p}

1− p
,

but we can compute

g(t) =
Q{Z ≤ t, Z > p}

1− p
=

t− p

1− p
∧ 0;

therefore, we obtain QAC{Z̃ ≤ t} = t, t ∈ (0, 1). Using such a choice of Z̃ and recalling
that an optimal solution to (C.8) is automatically bounded (if it exists), we can find that an
optimal solution to (C.2) is

X∗ = x+−x0

(1−p)(1−b∗)IZ>pIg(Z)∈(b∗,1] =
x+−x0

(1−p)(1−b∗)IZ>(1−p)b∗+p,

thanks to the fact that on the set {Z > p} we have g(Z) = Z−p
1−p ≥ b∗ if and only Z ≥

(1− p)b∗ + p.
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At last we have to merge these results to obtain the overall solution to (CPT-N). As in
[6] we take an intermediate step using the problem

(C.9)

Maximize v+(p, x+)− u−
(
x+−x0

1−p

)
T−(1− p)

subject to

{
p ∈ [0, 1], x+ ≥ x+0 ,

x+ = 0 if p = 1, x+ = x0 if p = 0,

where we set u−(
x+−x0

1−p )T−(1 − p) := 0 if p = 1 and x+ = x0. By simply adapting the proofs
in [6, Lemma 8.1 and Proposition 8.1], we claim the following.

Lemma C.8. For any feasible pair (p, x+) for (C.5), u−(
x+−x0

1−p )T−(1− p) ≥ v−(p, x+).
Proposition C.9. Problems (C.5) and (C.9) have the same supremum values.
Finally, we state the main result of this section.
Theorem C.10. Assume that u−(·) is strictly concave at 0. We have the following results:
(i) If X∗ is optimal for (CPT-N), then p∗ := Q{X∗ ≥ 0}, x∗+ := EQ[(X∗)+] are optimal

for (C.9).
(ii) If (p∗, x∗+) is optimal for (C.9) and X∗

+ is optimal for (C.1) with parameters ({Z ≤
p∗}, x∗+), where Z ∼ U(0, 1) w.r.t. Q, then X∗ := (X∗)+IZ≤p∗− x∗

+−x0

1−p∗ IZ>p∗ is optimal
for (CPT-N).

To conclude, if Assumption C.2 is in force, then for any Z ∼ U(0, 1) w.r.t. Q we have

X∗ = (u′+)
−1

(
λ

T ′
+(Z)

)
IZ≤p∗ −

x∗+ − x0

1− p∗
IZ>p∗,

V (X∗) = EQ

[
u+

(
(u′+)

−1

(
λ

T ′
+(Z)

))
T ′
+(Z)IZ≤p∗

]
− u−

(
x∗+ − x0
1− p∗

)
T−(1− p∗),

where (p∗, x∗+) are optimal for (C.9) and λ satisfies EQ[(u′+)−1( λ
T ′
+(Z))IZ≤p∗] = x∗+. We finally

notice that this construction could be considered as an adaptation of the model set up in [6]
if we had started with prices following a geometric or an arithmetic Brownian motion, as is
often assumed in the finance literature.
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