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Abstract. We discuss recent ab initio calculations based on self-consistent Green’s function theory. It
is found that a simple extension of the formalism to account for two-nucleon scattering outside the model
space allows to calculate non-soft interactions. With this, it is possible to make predictions for Lattice
QCD potentials, obtained so far at pion masses of mπ = 0.47 GeV/c2. More traditional calculations
that use saturating chiral EFT forces yield a good description of nuclear responses and nucleon knockout
spectroscopy.

Ab initio nuclear theory has seen remarkable advances in the last 15 years. These resulted from the
combination of improved theories of realistic two-nucleon (NN) and three-nucleon forces (3NFs) and of
advances in many-body computations that have reached nuclear masses of the order of A∼100 [1].

The self consistent Green’s function (SCGF) approach is based on the one-body propagator, g(ω),
that describes the evolution of particle and hole states in (i.e., nucleon attached or removed to/from) the
exact ground state [2]. The propagator is the solution of the Dyson equation:

gαβ(ω) = g(0)
αβ(ω) +

∑
γ, δ

g(0)
αγ(ω)

[
Σ

(∞)
γδ + Σ̃γδ(ω)

]
gδβ(ω) , (1)

where the indices α, β, . . . label the states of a single-particle model space basis and g(0)(ω) is the
uncorrelated propagator, which correspond to a mean field (MF) reference state. The central quantity
is the irreducible self-energy, Σ?(ω) ≡ Σ(∞) + Σ̃(ω), which acts as an optical potential for nucleons inside
the correlated medium. One separates an enegy-independent term Σ(∞) that describes the average MF
potential felt by all particles. The dynamic part Σ̃(ω) contains the effect of correlations beyond MF. We
calculate this in the third-order algebraic diagrammatic construction [ADC(3)] approximation, which is
a non perturbative resummation of 2p1h and 2h1p configurations [3]. We generally construct the self-
energy based on a reference MF state, which is derived to best approximate g(ω) and, therefore, solve
Eq. (1) iteratively. The interested reader is referred to Refs. [3, 4, 5] for details of the formalism and of
our implementation.

Once the propagator is known, it is easy to extract information on the ground state energy, nucleon-
nucleus scattering, single-particle spectroscopy, response to external probes, and so on [3]. In the
following we describe a few very recent applications based on nuclear forces obtained either directly
from Lattice QCD calculations or from chiral effective field theory (EFT).

1. Taming the hard-core of forces from Lattice QCD
The HAL QCD collaboration has devised an approach to extract n-nucleon forces from QCD simulation
of 3n quarks in a space-time lattice [6, 7, 8]. This method generates systematically consistent two-,
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Figure 1. Calculated ground state energies of 4He for the HAL469 potential as a function of the effective radius
L2. Left: Solution for the bare interaction at Nmax=9 and 11 and varying oscillator frequencies without ladders
from the excluded space. Right: Full calculation, including all ladder diagrams from outside the model space.
Different colors and broken lines are a guide to the eye connecting results of the same Nmax. The data points
included in the fit are marked with crosses and are also shown separately in the inset. For both panels, the full
black line is the result of the IR extrapolation, with the inclusion of T BGE ladders.

three- and many-nucleon interactions that are faithful to the few-body data and scattering phase shifts
by construction. An earlier set of potentials was derived in the flavour SU(3) limit with different masses
of the (pion) pseudo-scalar meson. Among these the force with lightest value of MPS = 469 MeV/c2

shows saturation on nuclear matter [9]. We refer to this as the HAL469S U(3) interaction. Note that more
advanced interactions at near the physical pion mass are currently being computed [10].

For forces with a strong short-range repulsion, like the HAL QCD interactions, usual truncations of
the oscillator space (of up to 12 shells in this case) are not sufficient and a resummation of ladder diagrams
outside the model space is required. We do this by solving the Bethe-Goldstone Equation (BGE) in the
excluded space according to Refs. [11, 12] and add the corresponding diagrams to the mean field (MF)
term of the self-energy, which becomes energy dependent [4]:

Σ
(∞)
αβ (ω) =

∑
γ δ

∫
dω′

2πi
T BGE
αγ, βδ(ω + ω′) gδγ(ω′) eiω′η (2)

where T BGE
αγ, βδ(ω) are the elements of the scattering t-matrix in the excluded space. A static effective

interaction is then extracted that we use to calculate the ADC(3) self-energy within the included model
space. To do this, we solve the Hartree-Fock (HF) equations with the MF potential of Eq. (2):∑

β

{
〈α|

p2

2m
|β〉 + Σ

(∞)
αβ (ω = εHF

r )
}
ψr
β = εHF

r ψr
α , (3)

where latin indices label HF states. We then define a static interaction in this HF basis similarly to
Refs. [4, 13]:

Vrs,pq =
1
2

[
T BGE

rs,pq(εHF
r + εHF

s ) + T BGE
rs,pq(εHF

p + εHF
q )
]
. (4)

It should be noted that the BGE used to generate T BGE(ω) resums scattering states where at least one
nucleon is outside the whole model space, while full ADC(3) correlations are computed for all nucleons
inside the space. Hence, T BGE(ω) does not suffer from ambiguities with the choice of the single-particle
spectrum at the Fermi surface encountered with the usual G-matrix used in Brueckner HF calculations.

The combination of the ladder diagrams contained in the ADC(3) expansion and those in the T BGE(ω)
accounts for the complete diagonalization of short-distance degrees of freedom. One can then study the
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Figure 2. Ground state energy of 4He, 16O and 40Ca as a function of the harmonic oscillator frequency, ~Ω, and
the model space size, Nmax. All results are for the HAL469 potential from full self-consistent calculations in the
T BGE(ω) plus ADC(3) approach.

infrared (IR) convergence of total binding energies to a complete basis set. Ref. [14] established that
a harmonic oscillator (HO) model space, of frequency ~Ω and truncated to the first Nmax + 1 shells,
behaves as a hard wall spherical box of radius

L2 =
√

2(Nmax + 3/2 + 2) b , (5)

where b ≡
√
~c2/mNΩ is the oscillator length (~=c=1). Given an interaction that is independent of

the model space, if the ultraviolet (UV) degrees of freedom are diagonalised exactly then the calculated
ground state energies are expected to converge exponentially when increasing the effective radius L2:

EA
0 [Nmax, ~Ω] = E∞ + C e−2 k∞ L2 . (6)

For the bare HAL469 interaction, if we use the SCGF without ladder diagrams from outside the model
space, the extrapolation according to Eq. (6) will fail because the short-distance repulsion requires
extremely large model spaces (Nmax >> 20) to reach UV convergence, see the left panel of Figure 1.
The results with T BGE(ω) and the interaction (4) included are displayed in the right panel and show good
IR convergence. The total energy is extracted from a nonlinear least-squares fit to Eq. (6).

The one-body propagators of 4He, 16O and 40Ca have been calculated using T BGE(ω) to remove UV
modes. We employed spherical harmonic oscillator spaces of different frequencies, ~Ω, and sizes up to
Nmax=max{2n + `} =11 (and Nmax ≤ 9 for 40Ca) and we used the Koltun sum rule to extract the intrinsic
ground state energies from g(ω). Fig. 2 shows that the complete resummation of ladder diagrams outside
the model space results in a somewhat flat behaviour of the total energies for ~Ω ≈5-20 MeV. While some
oscillations w.r.t. ~Ω are still present, the IR convergence pattern (shown in Fig. 1 for 4He) is very clean
for all three isotopes. This gives confidence that the short-range repulsion of HAL469 is relatively mild
and that it is accounted for accurately. From calculations up to ~Ω=50 MeV and the IR extrapolation,
we estimate a converged binding energy of 4.80(3) MeV for 4He, where the error corresponds to the
uncertainties in the extrapolation. This is to be benchmarked on the exact result of -5.09 MeV, which is
known from Stochastic Variational calculations [15]. Since the method is size extensive, we assume a
10% error due to many-body truncations for all isotopes, as a conservative estimate.

We obtain -17.9(0.3)(1.8) MeV for the ground state energy of 16O, where the first error is from the IR
extrapolation. Hence, 16O is unstable with respect to 4-α break up, by ≈2.5 MeV, although allowing an
error in our binding energies of more than 10% could make it slightly bound. This is in contrast to the
experiment, at the physical quark masses, where the 4-α breakup requires 14.4 MeV. On the other hand,
40Ca we calculate -75.4(6.7)(7.5) MeV and this is stable with respect to α breakup by ≈24 MeV.
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Figure 3. Computed total cross section for 16O (a) and 22O (b) compared to experimental data obtained from
photoabsorption [16, 17] and Coulomb excitation [18] experiments, respectively. The size of the HO basis in the
calculation is Nmax = 13 (i.e., 14 major shells) and frequency ~Ω = 20 MeV. The interaction used is NNLOsat.

2. Isovector Dipole Nuclear Response
In this Section we focus on the 16O, 22O, 40Ca and 48Ca nuclear response produced by an isovector dipole
electric field, E1. The corresponding operator, corrected for the center-of-mass displacement, is:

Q̂T=1
1m =

N
N + Z

Z∑
p=1

rpY1m −
Z

N + Z

N∑
n=1

rnY1m , (7)

which probes the excitation spectrum with multipolarity and parity Jπ=1−. We calculate the response
function R(E) of Eq. (7) by solving the usual random phase approximation (RPA) in the particle-hole
channel and starting from the same MF propagator that is used as reference state to obtain the self-
energy in previous sections. As mentioned in the introduction, this includes effects of correlations that
go beyond the usual HF mean field and, in particular, those responsible for reproducing the correct
centroid of giant resonances. We then compute the total photoabsorption cross section as

σ(E) = 4π2α E R(E) (8)

and the dipole polarizability, which is the accumulated E1 strength weighted by the inverse of the energy:

αD = 2α
∫ +∞

Ethr

dE
R(E)

E
. (9)

In the above relations, α denotes the fine-structure constant.
Our results for the total cross sections for 16O, 22O, 40Ca and 48Ca are compared with photoabsorption

and Coulomb excitation experiments in Figs. 3 and 4. The computed spectrum is collected into peaks
since we diagonalize the RPA matrix in a finite model space. We performed calculations using the

Nucleus SCGF CC-LIT Exp
16O 0.50 0.57(1) 0.585(9)
22O 0.72 0.86(4) 0.43(4)

40Ca 1.79 1.87 1.87(3)
48Ca 2.08 2.45 2.07(22)

Table 1. Isovector dipole polarizabilities αD for 16O, 22O,
40Ca and 48Ca, computed in the SCGF approach (second
column), the CC-LIT approach (third column) and obtained
by integrating the experimental data (fourth column).
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Figure 4. Same as Fig. 3 but for 40Ca (a) and 48Ca (b). Experimental data are taken from Ahrens et al [17] and
Ishkhanov et al [16] respectively.

NNLOsat chiral interaction that reproduces radii in this region and has good saturation properties [19].
For all isotopes considered, the position of the giant dipole resonance is fairly well reproduced.

By moving from the N=Z nucleus 16O to the neutron-rich 22O, the strength of the response is
distributed towards lower energies, with the first RPA peak shifted to energy below 10 MeV. In the
corresponding experimental curve, there appears a soft dipole mode of excitation, with a weaker strength
compared to the giant resonance at higher energies.

In Table 1, dipole polarizabilities αD of Eq. (9) are compared with values obtained from the integrated
experimental spectrum and from a Coupled Cluster combined with the Lorentz Integral Transform (CC-
LIT) approach calculation [20, 21]. For the 16O, where the experimental dipole polarizability is fully
integrated over the entire spectrum, our computed αD lacks 15% of the strength with respect to both
the experimental value and result of the CC-LIT approach. The total strength in the SCGF calculation
is better recovered for higher mass 40Ca and 48Ca, and even within the experimental error for 48Ca.
Correcting the discrepancies with CC-LIT may require improvements of the many-body truncation to go
beyond the RPA and we are currently working to implement such extensions.

3. Spectroscopic factors
The fragmentation of the single-particle spectral function is mostly determined by long-range
correlations (LRC) and it is constrained by general properties at the energy surface, such as the density of
states and gaps [22]. As an example, Fig. 5 demonstrates the dependence of spectroscopic factors (SFs)
for the dominant quasiparticle peaks in 56Ni on the particle-hole gap ∆Eph (which has an experimental
value of 6.1 MeV). This is calculated from a chiral N3LO two-nucleon interaction only but with a
modification of its monopole strength in the p f shell. The monopole correction controls the separation
among the p3/2 and the f7/2 orbits. Hence, by varying its strength one can control the predictions for
∆Eph. Calculations for spaces of different sizes and HO frequencies are not converged w.r.t. the model
space but all lines lay on top of each other, showing that there exists a clear correlation and that SFs can
be strongly constrained by observable quantities at low energy.

Since the correlation of SFs with ∆Eph is strong, we calculated the oxygen chain using NNLOsat
Hamiltonian of Ref. [19], which has the advantage of predicting gaps accurately. The spectroscopic
factors obtained in the ADC(3) scheme are shown in the right panel of Fig. 5 and are sensibly smaller
than previous results from older Hamiltonians that had a too dilute spectrum at the Fermi surface [23].
Remarkably, the NNLOsat results are very close (almost equal) to past FRPA calculations of 16O where
the quasiparticle energies were phenomenologically constrained to their experimental values [24]. These
are also in good agreement with (p,2p) measurements from R3B at GSI [25].
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Figure 5. Left. Dependence of spectroscopic factors of the first quasiparticle and quasihole peaks in 56Ni as
a function of the particle-hole gap ∆Eph [4]. The calculated quenching is strongly correlated to the gap even
when full convergence with respect to the model space is still not achieved. Note that ∆Eph ≡ EA+1

0 − EA−1
0 is an

experimentally observable quantity. Here, it is varied over a range of values by tuning the monopoles of the NN
interaction. Right. Calculated spectroscopic factors for protons and neutrons around Oxygen isotopes obtained
from NNLOsat. Each point refer to the separation of a nucleon from the isotope indicated nearby to the ground
state of the daughter nucleus. Likewise, stronger quenching is found for those isotopes with smaller ∆Eph gap.
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