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Analytical theory of short-pulse free-electron laser oscillators
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A simple model for the nonlinear evolution of a short-pulse free-electron laser oscillator in the
small gain regime is derived. An analysis of the linearized system allows the definition and calcula-
tion of the eigenmodes characterizing the small signal regime. An arbitrary solution of the nonlinear
system can then be expanded in terms of these supermodes. In the single-supermode approxima-
tion, the system reduces to a Landau-Ginzburg equation, which allows the efBciency and saturated
power to be obtained as functions of cavity detuning and cavity losses. In the limit of small cavity
detuning, electrons emit superradiantly, with an efBciency inversely proportional to the number of
radiation wavelengths within the optical pulse, and power proportional to the square of the bunch
charge. In the multisupermode regime, limit cycles and period doubling behavior are observed and
interpreted as a competition between supermodes. Finally, the analytical and numerical results are
compared with the experimental observations from the Free-Electron Laser for Infrared eXperiments
experiment.

PACS number(s): 41.60.Cr, 42.60.Jf

I. INTRODUCTION

In this paper we study the linear and nonlinear evolu-
tion of radiation pulses in a small-gain &ee-electron laser
(FEL) driven by electron pulses much shorter than the
slippage length, 4 = AN, where N is the number of
undulator periods and A is the radiation wavelength [1].
We derive a system of equations for the radiation ampli-
tude and the collective electron variables describing the
multipass evolution in the cavity. The system is con-
trolled by only two independent parameters, cavity de-
tuning and losses. In the small signal regime eigenvalues
and eigenmodes (supermodes) of the linearized system
are found as functions of the cavity detuning. This al-
lows one to calculate gain, linear frequency shift, and
optical power for different supermodes. The maximum
gain per pass,

P, - pP,
i

Lb'
(npL ) (2)

where P, is the electron beam power, and the eKciency
1s

imum eKciency operation point the emission is super-
radiant. Maximum eKciency occurs approximately for
bd 0.1815Lb(o.pL, /Lb) ~, where np is the total cavity
loss, L, = A/4vrp, the cooperation length [3], p oc Ib

1/3

the fundamental FEL parameter [4] and Ib, the peak elec-
tron current. For a cavity length corresponding to op-
timum efficiency, the gain is P 5np/3 and the optical
pulse is a narrow spike of N, = (L,/2A) gnpL, /Lb « N
optical periods with a peak power scaling as the square
of the beam charge,

g pg
——0.1875(Lb/A)gp,

occurs for bd pt: 0 0225Lpgp, where bZ is the cavity
shortening, Lb is the electron beam length, and gp [2] is
the usual cw small gain parameter.

The supermodes are then used to describe saturation,
expanding the complete solution of the nonlinear sys-
tem in terms of the eigenfunctions of the linear problem.
In the single supermode operation, the model reduces
to a Landau-Ginzburg equation describing steady-state
saturation. This allows one to calculate eKciency and
saturated power as a function of cavity detuning and
losses. For small losses, the eFiciency is maximum when
the cavity length is close to that for vacuum synchro-
nism. An approximate evaluation of the supermode at
small cavity detuning shows analytically that at the max-

Although short-pulse effects reduce the gain &om the cw
value Q = 0.27gp [2], efficiency is larger than the cw value

1/2N .
For small values of both cavity detuning and losses,

different supermodes can be nonlinearly excited, allowing
for a multimode regime where the optical power oscillates
periodically over several hundred passes [5,6]. We inves-
tigate numerically the transition &om the quasi-steady-
state regime, where one supermode dominates, to a limit-
cycle oscillation regime, where at least two supermodes
have comparable amplitudes. As cavity detuning or cav-
ity loss decrease, the equilibrium solution becomes un-
stable and period-doubling cascade leads to chaotic be-
havior [7]. In the case of chaotic behavior the number
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of supermodes involved in the dynamics becomes larger
than two. Various regimes of nonlinear operation of the
free-electron laser oscillator, such as stable point, limit-
cycle oscillation and period doubling are investigated in
terms of supermodes. An accurate quantitative predic-
tion of the nonlinear behavior requires the multielectron
equations [see Eqs. (11) and (12)]. The objective of the
present work, in which we use the reduced model [see Eqs.
(16)—(20)], is to capture the essential nonlinear features
of short-pulse FEL oscillators.

II. THE BASIC MODEL

We start with the standard set of FEL equations, de-
rived in the Compton approximation and recast in a di-
mensionless form, for the complex field amplitude A and
the electron phase and energy, 9 and p [3]:

where Ay and Ap are, respectively, the fields at the end
and at the entrance of the undulator, r accounts for the
reduction in amplitude due to energy losses at; the mir-
rors, and h = 28l:/b, is the normalized cavity detuning,
where bd is the cavity shortening relative to that for per-
fect synchronism between the cavity round-trip time for
vacuum speed of light and the injection period of the
electron micropulses. By shortening the cavity by bl. ,
the optical pulse is pushed forward in ( by h on each
pass .

In the (u, () plane, the undulator lies between the lines
u + ( = 0 and u + ( = 1. The electrons move on lines
of constant u and the radiation, propagating in the same
direction as the beam, moves on lines of constant (. The
electrons and the radiation interact only when their tra-
jectories in the (u, () plane intersect between the lines
u+ ( = 0 and u+ ( = 1. Integrating Eq. (4) along u and
using Eq. (7), the input field for the (n + 1)th pass is

c)A(u, () = goX(u) (exp[ —io(u &)])

c)8(u, ()

(4)

(5)

1—$

+rgp dug(u) (exp[—io(u, ()]) .

(8)
c)p(u, () = —(A(u, () exp[io(u, ()] + c.c.) .

In these equations, u = (z —v~~t)/P~~A, ( = (ct —z)/A,
with u + ( = 1, where z is the distance along the axis of
an undulator of length L = A N, period A = 2m/k
and rms parameter a, A = A (1 —

P~~ ) /P~~ A (1 +
a )/2pp is the resonant wavelength, and v~~

= cP~~ is the
average longitudinal beam velocity; the other variables
are the electron phase 8 = (k+k )z —ckt, with k = 2m/A,
the electron energy detuning, p = 47rN (p —pp)/pp,
the slowly varying complex amplitude of the radiation
field A, defined such that ~A~2 = 47rN gpP(z, t)/P,
where P(z, t) is the intracavity optical power, P,
mc pp(Ib/e) is the electron beam power, Ib is the peak
electron current, and mc pp is the initial beam energy;
gp ——47r(N /pp) (Ibf/Ip)(a A E/rb)2 is the cw small-
gain parameter [2], F is 1 for a helical undulator and
equal to the well-known di8'erence of Bessel functions
for a linear undulator, rg is the beam radius, Ip
4vrepmc /e 17000 A is the Alfven limit current, and
f is the filling factor describing the transverse overlap
between the optical and electron pulses. The parame-
ter gp is related to the fundamental FEL parameter p
of Ref. [4], which is independent of the undulator length
and scales as Ib, by go ——(4m pN )s. In Eq. (4) the an-
gular brackets indicate an average over the particles and
the electron current profile is modeled as Ib(u) = Iby(u),
with J dug(u) = Lb/b, , where Lb is the mean length of
the electron micropulse, defined as the charge divided by
Ib/c, which is independent of the bunch shape.

In an oscillator, the radiation is reflected backward
after amplification and then forward for the next pass
through the undulator, so that the input field for the
(n+ 1)th pass is

BA"(m+1)
(~ ~) A(n) (~)

9Ap (()
&

~Ao (()

where the pass number n is considered as a coarse-grained
variable. Defining A((, v) = Ao ((),

b 2bd
V = (10)

in terms of the gain. parameter p = (Lb/A)gp, the difFer-
ence equation (8), with Eq. (9), and Eqs. (5) and (6),
give

c)A((, ~) c)A((, 7.) n
c)~ c)( 2

We limit the analysis to ultrashort electron micropulses,
with y(u) = (Lb/A)h(u), where 6(u) is the Dirac delta
function. We assume a micropulse much shorter than the
slippage length (Lb « A), but long with respect to the
radiation wavelength, such that the phase of the electrons
entering the undulator is uncorrelated with that of the
radiation pulse. Thus 0 is initially distributed uniformly
between 0 and 2'. The case of a micropulse shorter than
a radiation wavelength has been considered by Pinhasi
and Gover [8], and should iiot be confused with the short-
micropulse case discussed here.

The linear gain per pass is assumed small, (Lb/A)gp
1, so that the substitution A(u, () = Ap(() can be made
in Eq. (6). In this limit, the cavity shortening h and the
cavity losses 1 —r are assumed small, so that in Eq. (8)
r = 1 —np/2, with np « 1, and A~ +i)(( —8) may be
approximated by the following Taylor series expansion.

Ap~"+ ) (( —8) = r A~~") ((), (7) exp —iO, w, 11
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8'0((, ~)
A(E, e) exp[ep[(, c)] + c.c.),

E(~) [80/6vrv 3(27) ] exp[(3~3/2 )7' ~ —n7], .

(»)
where Fo is the initial energy, and net gain (gain minus
losses)

2

37
(i4)

If o.w )) 1, the radiation decays after reaching the
maximum 6 „(Eon/lsvr) exp[(3~3/n) 'l'] at 7.

(1/2)(~3/n) l . If the losses are very small and the ra-
diation grows to 8 7r (for example, for fo 10
n 0.01 and w 10 ) the electrons perform a half syn-
chrotron oscillation in phase and the emission is superra-
diant, with A((, w) = &Ai(~w(), where Ai is the solution
of the self-similar equations (14) and (15) of Ref. [9].

We observe that Eqs. (11) and (12) depend only on
two parameters, scaled cavity detuning v = 2hZ/Ap and
scaled cavity loss, n = no/p.

Finally, it is worth noting that Eqs. (11) and (12) are
similar to the ones derived for a backward wave oscillator
(BWO) [10],where 7 is the scaled time and ( is the scaled
undulator length.

III. THE REDUCED MODEL

where rI = 1 for 0 & ( & 1 and g = 0 elsewhere, and
0((,7) = 0(u = 0, (). The gain parameter p accounts
for the reduction of the usual cw parameter go due to
short-pulse effects, by the factor Ii,/4 & 1.

As a result of the electron bunch being very short, the
radiation interacts with all the electrons over the slippage
length 0 & ( & 1. Due to the cavity shortening v, radia-
tion moves forwards or backwards in ( during successive
passes through the cavity, depending on whether v is,
respectively, negative or positive. In the first case (cav-
ity longer than perfect synchronism), a boundary condi-
tion for A must be assigned to the leading edge ( = 0,
and the radiation is shifted by ~v~w along the positive di-
rection of (, leaving the interaction region through the
boundary ( = 1; in this case the radiation propagates in
the same direction as the electrons. In the second case,
when v is positive (cavity shorter than perfect synchro-
nism), a boundary condition for A must be assigned to
the trailing edge ( = 1, and the radiation propagates
backwards, leaving the interaction region through the
boundary ( = 0 and moving towards the electrons. The
exact synchronism case (v = 0) has been studied in a
previous work [9], showing that superradiant emission
occurs in the limit of very low cavity loss. In the lin-
ear regime the radiation builds up with a nonexponential
growth rate, with energy

pled equations for the phases and the energies of N )) 1
electrons and a complex field amplitude, Eqs. (11) and
(12). It has been shown that the complete FEL dynamics
can be approximately described in terms of few relevant
collective variables [11], assuming the following trunca-
tion relation:

((& —(&))' p( —0)) = ((& —(&))')( p( —0)) (»)
where p = 00/8(. Ansatz (15) results &om a truncation,
at the second order in the hierarchy, of equations for the
cumulants of the phase-energy electron distribution. In-
troducing B = (exp( —i0)), P = (pexp( —i0)), Q = (p)
and S = (p ), Eqs. (11) and (12) reduce to the following
set of closed equations [11]:

OA o.—v + —A=gB,
ct( 2

OA

87
8B
0(
BP
0(

= —A —i SB —2i QP + 2iQ'B,

OQ [AB* +—c.c.],

BS
0

2[AP* +—c.c.],

(16)

(19)

(20)

For v ) 0 we define the scaled radiation energy as
1

(22)

Integration of Eq. (21) over (, and neglecting A((
1, w) (which is physically equivalent to a low spontaneous
emission level), yields the eKciency as a function of the
scaled pass number T:

where rI = 1 for 0 & ( & 1 and q = 0 elsewhere. We
will assume in the following a resonant monochromatic
and unbunched initial beam, with B = P = Q = S = 0
at ( = 0 and. initial field A((, w = 0) = Ao((). It can
be easily shown that the assumption of a nonresonant
initial beam is equivalent to a constant frequency shift in
the initial field. This frequency shift of the radiation in
response to a nonresonant electron beam is established
in the linear regime as discussed in [12].

It is worth remarking that the only "independent" vari-
able of Eqs. (16)—(20) is the field amplitude A, governed
by Eq. (16); indeed, for each value of w, the electron vari-
ables B, P, Q, R, and S are determined as functions of
A by Eqs. (17)—(20). This results from the fact that in
an oscillator the radiation is rejected back to the undu-
lator entrance, where it begins interacting with freshly
injected electrons.

We observe that Eqs. (16) and (19) yield an equation
for the energy balance:

+
I ~

OQ t'0 Bi
(87 0 )

A description of the FEL dynamics in the nonlinear
regime requires a numerical integration of 2N + 2 cou-

p(e)—:— ' =
~

+ ce) E(c) (23).Q((=1 ~) 1 (d
47rlV 4vrlV q d~
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Finally we also note that, for v ) 0, the field propagates
freely in the region v—r & $ & 0, decaying at a rate given
by the cavity loss o.:

vk —ipk +1=0. (33)

where 4~ is a normalization constant and k~, with j =
1, 2, 3, are the complex roots of the cubic equation:

A(&p((, ~) = e "A(( = O, r+(/v). (24)
We choose 4 normalized to 1:

IV. LINEAR REGIME d&lC'(&) I' = 1.

The linear regime has been studied numerically for
an arbitrary beam profile y(u) in Ref. [13] and analyti-
cally in the long-bunch approximation, Lp )) A, in Refs.
[14,15]. In our case, the small-signal regime (A « 1) is
described by the linearized equations, for 0 & ( & 1:

For v & 0, 4(0) = 0 and hence 4'(() = 0, implying that
no nonzero solutions exist for v & 0. This means that
the time-independent solution is the solution of the set
of Eqs. (25)—(27).

For v ) 0 the eigenvalue p must satisfy the character-
istic equation

OA o.—v + —A=B,
8( 2

OB
0 )

(25)

(26)

k,'(k, —k, )e '"'+ k,'(k, —k, )e '"'

+k,'(k, —k, )e-*" = 0. (35)
BP
|9 (27)

A((, r) = exp[(p —n/2)r]4((),
B((,r) = exp[(p —n/2)r]@((),
P((, ~) = exp[(p —n/2)~]I'((),

(28)
(29)
(30)

We assume an initially unbunched beam, B(( = 0, 7) =
P(( = O, w) = 0, and note that for perfect cavity syn-
chronism (v = 0), no boundary condition on A is re-
quired, because the radiation does not propagate along
(. For v & 0 or v & 0 we assume A(( = 0, 7) = Ap
or A(( = 1,T) = Ap, respectively, where Ap character-
izes the level of spontaneous emission that is amplified
by the FEL interaction. In addition, the initial level of
radiation in the oscillator cavity is assumed to match the
level of spontaneous emission i.e. , A((, w = 0) = Ap.

The solution of the set of linear equations (25)—(27)
with inhomogeneous boundary conditions can be repre-
sented as a sum of time-independent solutions with in-
homogeneous boundary conditions and a time-dependent
solution with homogeneous boundary conditions. By as-
suming that the level of spontaneous emission Ao is small,
we will concentrate on the time-dependent solutions that
can have a nonzero temporal growth rate and, hence,
reach high amplitudes.

The eigenstates of Eqs. (25), (26), and (27) are solu-
tions of the form

Moreover, for ( & 0 the solution decays exponentially
as 4(() = 4'(0) exp(p(/v) if p has a positive real part.
Eigenvalues p can be obtained, as functions of the cavity
detuning v, with a simple numerical iterative algorithm,
searching the zero of Eq. (35). To facilitate the search,
the threshold value of v, for which the eigenvalue p has
zero real part (i.e. , zero gain), can be obtained first by
a numerical scanning of only the imaginary part of p.
Then, varying v from the threshold, the eigenvalue can
be then found by continuity. A discrete set of eigenvalues
is found. No solutions with a positive real part exist for
v ) 0.13, whereas the fundamental eigenvalue p~ has a
positive real part for 0 & v & 0.13, with a maximum gain
gi/p = 0.1875 at v = 0.045; the second eigenvalue p2 has
a positive real part for 0 & v & 0.02, with maximum gain
g2/p = 0.0412 at v = 0.0048; the third eigenvalue ps has
a positive real part for 0 & v & 0.01, with maximum
gain gs/p = 0.019 at v = 0.0019. In Fig. 1 we plot
the scaled gain g /p = 2Rep [Fig. 1(a)] and the linear
frequency shift dP„/d~ = Imp, [Fig. 1(b)] for the first
three eigenvalues (n = 1, 2, 3) as a function of the cavity
detuning v.

For small values of v, the eigenvalues and the eigen-
functions can be approximated by the following expres-
sions:

p ~ 3(v/2) e' + n m (v/2) e'

where the steady-state gain per pass is g = 2pRep. Sub-
stituting (28)—(30) in Eqs. (25)—(27), we obtain

whereas the intensity is given by

—p4 +i%' = 0 (31) ~4 (()~ (3~3/n m v) sin (nor()e~" ~~ (37)

and @"= iC, where a prime indicates a derivative with
respect to (. From the boundary conditions on B and
P, 4(0) = 0 and @'(0) = 0; for v & 0 or v & 0 we
assume 4'(0) = 0 or 4(1) = 0, respectively. For v g 0,
the solution

and the associate phase change is given by

dvP„„=(2/-)" [(1/2) + (-'-'/3)(-/2) "], (38)

4(() = 4~[k,'(k2 —ks)e '"'~

+k'(k —k ).-'" ~ + k,'(k, —k, ).—" ~]

with p = ~3(2/v)1~ [1 —(2n2vr2/3)(v/2)2~s] and n =
1, 2, . . .. From Eq. (36), the gain corresponding to the
eigenvalue p is
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(39)~n —3~3p (v/2) &/& —~ ~ (v/2)&/s

52

and the 1linear &equency shift
'

dP„ mp„= (3/2)(v/2)' 1+ ' '( /2 '

Hence a, an increasing number of ei enval
bl f wi maximum gain

the limit value for v = 0
a v 2/( 2nvr's , tending toward

g =3~3 ( /2)'/'= ~ '
L

(41)

In Eq. (41) we have introduced a coo
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has the following solution:

where

I(0) exp(gw)
1 + [I(0)/I, ] [exp(gr ) —1]

' (47)

I, =
2RePi

(48)

Using Eqs. (22) and (24), the saturation energy in the
single supermode approximation is

(49)

where the second term is the energy outside and ahead
of the slippage region. In Fig. 5 we plot the gain,
Qi/p = 2Repi (a) and the saturated energy for the first
supermode E', (b) as a function of the cavity detuning
v, for three diR'erent values of loss o.. The intensity in-
creases when the cavity loss decreases, showing a sharp
peak near v = 0. For a relatively large loss (n ) 0.1),
no pronounced peak in the intensity is observed in the
detuning curve, while for a smaller n, emission can occur
at a smaller cavity detuning, although with a lower gain.

I, = i1—2 ( n ) 3~3(v/2) '~' —o.

2Rep, ) 9(v/2)s&s (50)

In Fig. 6 we compare the approximate solution Eq. (50)
(dashed line) with Eq. (48) for n = 0.03. Equation (50)
has a maximum I, o. / at v 0.363o. / . Therefore,
using Eq. (23), the maximum efficiency is

The smaller bump in F, at larger v is due to the factor
1 + v~Oi(0)

~
/n, which accounts for free propagation of

the radiation ahead of the electrons, outside the slippage
region.

We show in the following that near vacuum cav-
ity synchronism, at the optimum cavity detuning of
Fig. 5(b), the emission is superradiant, with a maxi-
mum efficiency scaling as ~t; and a peak power scal-
ing as E', , where E, = P, (Ls/c) is the electron ini-
cropulse energy. Using the approximate expression for
the nth sup ermode in the limit of small v, C

4~ sin(nn() exp(k(), 4„(v/2) exp(i7r/6)@„and
I'„=—(v/2) i~s exp( —i~/6)C „,where 4'iv is the normal-
ization constant and k = (2/v) ~ exp(in. /6), a long but
straightforward calculation gives RePi (~3/2) vRe pi.
Then, using the approximate expression (36), we obtain,
for the erst supermode,

0.2

W 015—
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0.05— a=0.04

o.I, 1 4vra Il fr,
4+N 4vrN ~n 1+ az noZ~ mcus

In this expression r, = e /4vreome is the classic electron
radius and Z~ = wr&/A is the Rayleigh range. Using
Eq. (37) for ~Ci~ at the optimum cavity detuning v =
0.363n ~z, the peak power is ~A~ „0.8/n and the
width is ot 0.56~o.. As a result, the optical spike
is N, = N O.t. = 0.56N ~n optical periods long and is
produced with an eKciency of
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FIG. 5. (a) Linear gain Qi/p = 2Repz and (b) steady-state
energy t„ from Eq. (48), vs cavity detuning v for the funda-
mental supermode and for n = 0.10, 0.06, and 0.04.

FIG. 6. Comparison between the steady-state energy 8,
calculated from Eq. (48) (continuous line) and from the ap-
proximate expression, Eq. (50) (dashed line), for n = 0.03.
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Using the definition of A and o., the peak power is VI. MODE-COUPLING AND LIMIT-CYCLE
OSCILLATIONS

( )(apL, j epAZxx (1 + a mc xx.'p p

These expressions are in agreement to within a numerical
factor of the order of 1, with those derived in Ref. [17]
with the assumption that the optical power is such that
the electrons undergo half a synchrotron oscillation dur-
ing the interaction time, which is limited by the optical
pulse length and not the undulator length. The electrons
interact with the optical spike and undergo half an os-
cillation while traversing N, (( N undulator periods so
that the maximum efficiency g is of the order of 1/N,
instead of 1/N as in a cw FEL [17,24].

Superradiance can be interpreted as the regime in
which the radiation extracts energy &om the electrons
with a maximum eKciency. The same regime has been
found in the single-pass high-gain FEL driven by elec-
tron bunches with a length shorter than or comparable
with the slippage length [3,18,19]. A single superradiant
spike of peak power P 0.2pP, (L&/L, ) is generated by
a short electron bunch (weak superradiance), whereas a
burst of random spikes is produced by a long electron
bunch when the emission starts from shot noise [25]; the
same mechanism has been observed in FEL oscillators,
where a single spike is generated for electron bunches
shorter than the slippage length [21] and for long electron
pulses, where a chaotic superposition of spikes has been
observed experimentally and numerically in the "post-
sideband" regime [26]. In the superradiating FEL os-
cillator, with a cavity length close to that for vacuum
synchronism, the efficiency and peak power scale, respec-
tively, as the square root and the square of the quality
factor Q = 1/o. p. For long electron bunches, a spike is
produced approximately each slippage length L. Refer-
ence [26] reports the same calculated efficiency as Eq.
(51), within a numerical factor (equal to 4~2), if Lq is
substituted for the slippage length L. Hence the efB-
ciency for long electron pulses is in general larger than
that for short electron pulses and the optical Beld has
chaotic temporal and spectral features. In contrast, short
electron pulse FEL's have the advantage of generating an
extremely short radiation spike (with a typical length less
than 1 ps) with considerable efficiency and smooth spec-
tra.

In conclusion, for small cavity detuning electrons emit
a superradiant spike with a peak power proportional to
Z, and a width inversely proportional to ~E, . As a nu-
merical example, for an undulator with A = 6.5 cm,
a = 1.2, and N = 38, a beam with energy E = 22.5
MeV, charge Q = 40 pC, and Ix, ——0.5b„ZR = 1.2
m, filling factor f = 1, and cavity losses np ——5%, an
optical spike is emitted at A = 40 pm with eKciency
g 1%, intra-cavity peak power P, = 120 MW and du-
ration w, = 0.63 ps (N, = 4.75); the optimum cavity
shortening is hl: = 3 pm and the gain per pass 7%.

Single mode operation leads to a stable configuration
without the oscillation of the radiation energy as a func-
tion of the scaled pass number w. However, it has been
observed experimentally [27] and numerically [6] that
a limit cycle occurs at moderate values of v and the
macropulse power oscillates periodically over several hun-
dred passes, as does the optical micropulse shape and
spectrum. For smaller cavity detuning and loss, period
doubling of the oscillations and transition to a chaotic
regime occurs as has been discussed in Ref. [7]. In Ref.
[7], the transition has been studied numerically by vary-
ing three parameters, cavity detuning, beam length, and
beam current. In this case, the diferent regimes are
described in terms of the quantity p,z„——b, /L, z„
~A~ ~ /~2m, equal to the number of synchrotron oscil-
lations in a slippage length, where L,z„((,v) is the "in-
stantaneous" period of the synchrotron oscillation [see
Eq. (12)]. However, this parameter depends on the field
strength ~A~, which must be calculated by numerically in-
tegrating the partial differential equations. In contrast,
by restricting our model to electron pulses shorter than
the slippage length, we have developed a self-consistent
analysis of the diferent regimes of operation of the FEL,
which depends only on two (experimentally controllable)
parameters, cavity detuning and loss. We find that the
wealth of nonlinear FEL physics can be rather accurately
described by the reduced set of Eqs. (16)—(20). More
importantly, the analysis of the linear supermodes given
in Sec. IV provides a convenient &amework for under-
standing such nonlinear phenomena as the limit cycle
and chaotic behavior, as well as giving a rather accurate
estimate of the &equency of the limit cycle. In this &ame-
work, the transition &om stable operation to a limit cycle
can be interpreted in terms of nonlinear coupling between
diferent supermodes. Nonlinear oscillation of the radia-
tion power results &om a competition between di8'erent
supermodes, whereas the quasi steady-state operation oc-
curs when the first supermode is dominant. When two
supermodes dominate, a limit cycle or damped oscilla-
tions are observed.

In this section we present numerical results obtained
froxn solving the partial differential system of Eqs. (16)—
(20). The numerical solution can then be decomposed
into the supermodes, A((, w) = P W (w) 4' ((), and the
evolution of the coefficients W (w) investigated. We de-
terxnine the regions in the parameter space, (v, cx), where
stable operation, damped oscillations, a limit cycle or pe-
riod doubling occurs. The expansion in eigenmodes loses
its relevance when the behavior becomes highly nonlin-
ear, because nonlinear coupling between the modes as-
sures a nonvanishing content of every mode in A((, w)
On the other hand, if all the modes apart from the fun-
damental are heavily damped, as in the linear regime, and
if the saturated amplitude is not too large (i.e. , nonlinear
effects are small), then the fundamental supermode pro-
vides a good approximation for the total Geld A, and the
spectrum of the field has a single narrow line at ux ——Px,
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FIG. 7. Phase diagram in the parameter space (v, n). Re-
gion I: quasistable regime; region II: limit-cycle regime; region
III: period-doubling and chaotic regime.

where Pi is given by Eq. (46). This is indeed confirmed
by our numerical simulations, which show a single spec-
tral line in the case of a steady-state operation. As the
optical power is increased, by decreasing cavity detuning
or loss, the second mode is driven nonlinearly, and a sec-
ond narrow line appears in the spectrum at a &equency

Imp2, with a small correction due to a nonlinear
phase shift resulting &om an interaction with the first
mode. The appearance of the second spectral line coin-
cides with the onset of the limit-cycle behavior. There-
fore, more generally, the efrective number of modes par-
ticipating in the interaction corresponds to the number
of (independent) spectral lines.

Figure 7 shows a phase diagram in n and v of the
di8erent regimes: no emission occurs above the thresh-
old, for n ) Q'i/p, whereas quasi-steady-state operation
or damped oscillations occur in region I of Fig. 7, with
a very small amplitude high-&equency oscillation; limit
cycles, at a lower &equency, are observed in region II,
whereas period-doubling behavior occurs in the transi-
tion region between II and III. In region III, a transition
to chaotic behavior occurs via a period-doubling cascade;
a detailed study of this latter regime is beyond the scope
of this paper. In the following we discuss the difFerent
regimes separately.

(a)

100
I

200
I

300
I

400 500
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and v = 0.05. We have chosen initial and boundary con-
ditions as explained in Sec. IV, with Ao ——0.01. The
other curves of Fig. 8(a) represent the temporal evolu-
tion of the amplitudes IWil (dashed line) IW2l (dotted
line), and lWsl (dashed-dotted line) of the first three su-
permodes, calculated by projecting the numerical solu-
tion A((, w) on the eigenfunctions, 4i, 42, and 4s. Due
to the nonorthogonality of these functions, the decompo-
sition depends, in general, on the number of eigenfunc-
tions taken into account. In the linear regime,

I
Wi

l
grows

exponentially with a rate Repq, whereas the other two
modes are damped. In the nonlinear regime the first su-
permode drives the other two modes at a rate three times
larger, due to a pump term proportional to IWil Wi.
The three amplitudes reach saturation at difI'erent values,
with the first supermode dominating, and the other two
saturating well below the average amplitude. Although
not visible in the figure, the first supermode amplitude
has a small oscillation, of order 10,at the frequency Pi
(46). This oscillation results from the beating between
the steady-state solution (driven by the incoming spon-
taneous emission at ( = 1) and the first mode. In real
experiment this coherent oscillation is difFicult to observe

A. Quasistable operation

1 X/2

&(~) = d(IA((, ~) I'
0

(54)

calculated &om the numerical simulation for o, = 0.14

In the quasistable regime the radiation energy reaches
a quasistable equilibrium, with a small oscillation at the
single-mode frequency Pi of Eq. (46). In Fig. 8(a) (con-
tinuous line) we present the temporal evolution of the
rms field within the slippage length

FIG. 8. Steady-state regime. (a) Average field A vs
for n = 0.14 and v = 0.05; dashed line: IWil; dotted line:

I
W2

I I dashed-dotted line:
I
W3

I

. (b): steady-state power pro-
file IAI (continuous line) and single mode approximation
IAl = IW&Cil (dashed line) vs $.
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FIG. 9. Steady-state regime. Supermode amplitudes ~W
~

at saturation as a function of a for v = 0.05; continuous
line: n = 1; dotted line: n = 2; dashed-dotted line: n = 3;
dashed line: analytical solution, Eq. (48), in the single-mode
approximation.

for n = 0.03 as a function of v (a) and for v = 0.025
as a function of o. (b), crossing the boundary I-II. In
Fig. 10, the steady-state profile is reached asymptotically
for v ) 0.035 (a) and n ) 0.4 (b), whereas a bifurcation
to a limit cycle occurs for smaller values of v and o.. For
these values of o; and v, no period doubling is observed.

As an example, we will analyze in detail how cross-
ing the I-II boundary along the constant cavity detuning
curve v = 0.03 for two different values of o. on either sides
of the I-II boundary takes the oscillator from the regime
of damped oscillation to the regime of the limit cycle.

Figure 11(a) shows the rms field A, Eq. (54) (contin-
uous line) and the components of the first three super-
modes, as a function of w for v = 0.03 and n = 0.04.
The radiation exhibits a damped oscillation, with the
amplitude of the third supermode still rather small com-
pared with the average saturation value. Figure ll(b)
shows the optical micropulse power proGle for the steady
state (continuous line) and that for the two-mode ap-
proximation, ~A( = ~Wiei+ W242( (dashed line). The
spectrum of the complex amplitude A(( = 0.5, w) at the
midpoint ( = 0.5, shown in Fig. 11(c), consists of a sin-
gle line at ui ——0.157, in good agreement with the value

= 0.162 calculated &om Eq. (46). Hence, the sys-

because its magnitude relative to the saturated power is
typically very small [21,28].

The optical intensity ~A~ at saturation is shown in Fig.
8(b) (continuous line) as a function of (, together with
the single-mode approximate solution (A( = )Wi@i~
(dashed line), where Wi is calculated nuxnerically. In
this case the saturated optical Geld is almost proportional
to the Grst supermode, and the higher supermodes can
be neglected. Figure 9 shows the steady-state value of
the three amplitudes

~
Wi

~
(continuous line), (W2) (dotted

line), and
~
Ws

~
(dashed-dotted line), as a function of o, for

v = 0.05, as they result from the expansion of the numer-
ical solution on the Grst three supermodes. The dashed
line represents the single-supermode solution, Eq. (48),
~Wi~ = ~I, This ex.pression is in agreement with the
numerical value of ~Wi~ for values of n near the thresh-
old o. = 0.186. By decreasing n, the amplitudes of the
other supermodes increase, reducing the value of ~Wi~
from that of the single-mode solution. This further il-
lustrates our previous comment that the structure of the
nonlinear saturated Geld can somewhat deviate &om the
lowest supermode despite the fact that a single frequency
is present in the system.
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B. Damped oscillation and limit cycle

When two supermodes grow to a comparable ampli-
tude, a damped or limit-cycle oscillation can occur. We
have found numerically that limit-cycle oscillations occur
in region II of Fig. 7 bounded by v & 0.035 at o. = 0 and
o; & 0.047 at v = 0.015. Crossing the boundary I-II, the
damped oscillations become stable and a limit cycle is
established. Figure 10 shows the rms field A averaged
over one limit-cycle period (dashed line) and the maxi-
mum and minimum of the oscillation (continuous lines)

0 I I I I
I

I I I I
I I I I I

I
I I I I

0.0 0.05 0.1 0.15 0.2

FIC. 10. Limit-cycle oscillation. rms 6eld A, averaged over
a limit-cycle period (dashed line) and maximum and mini-
inum amplitudes (continuous lines), (a) vs v for n = 0.03 and
(h) vs n for v = 0.025.
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FIG. 11. Damped oscillation regime. (a)
Average Beld A vs 7- for v = 003
and o = 0.04; dashed line: IWi I; dot-
ted line: IWq I; dashed-dotted line: IWs I;

(b) steady-state power profile IAI (con-
tinuous ine anl' nd two mode decomposition

= IWici + Ws4'gI (dashed line) vs (;

showing the stable point operation (in arbri-
trary units).

0.0
CD
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tern relaxes to a single-frequency solution. This is also
u

' F' . 11&~d~ where a stable point is shown inobserveu xn xg. &
~~ w

act thath
I

W I-I W
I

lane. Note that despite the fac a
m ofonl a prlnclpa eq1 & quency appears in the spectrum o

the steady-state radiation In Fig. 11&~c~~, g~c~ the ion itudinal
profile in $ shown in Fig. 11(b) has a small component
of the second supermode.

F 12(a)—12(d) show the same case as for Fig. 11,Igures (~a

but with a smaller cavity loss, n = 0.02. A very I eren
picture emerges ere: eh th damped oscillation becomes a

limit cycle, still described to a good approximation by
two supermodes. The spectrum of the radiation amp i-

.283 associated with the Grst and the second su-
46) ives ~x ——0.168permodes, respectively; in fact, Eq. 46 gives

whereas the linear &equency of the second supermode is
0 3 The difFerence of 7% between the

analytical and the observed values results &om the non-
linear coup ing e wee1' between the two supermodes. The imit-
cycle frequency of the rms field A shown in Fig. (a)
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FIG. 12. Limit cycle. Same as in Fig. 111
ut for o. = 0.02 and optical pro6le deter-
Iined at w = 1000.
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is equal to the difFerence between the &equencies of the
two supermodes,

(dZ, ~ = (d2 —(dy. (55)

The other main spectral lines appearing in Fig. 12(c) are
~ = ~i —~Lc = 0.03 and ~ = ~a + ~Le ——0.41 and all
the spectral lines are spaced by ugly

——0.13.
We note &om this example that many of the charac-

teristics of a manifestly nonlinear phenomenon such as
limit cycling can be traced to the spectrum of linear su-
permodes [29]. The &equency of the limit cycle uLc is
given fairly accurately as the difference between the &e-
quencies of the lowest supermodes that scale universally
with cw gain parameter go, beam length Ls (provided
Ls &( A), and cavity detuning bZ. In Ref. [7] the numer-
ically obtained value of the limit-cycle &equency, ups,
is related to the numerically calculated value of the syn-
chrotron &equency. In our analysis, however, there is no
need to calculate the amplitude of the radiation numeri-
cally in order to predict the &equency of the limit-cycle
oscillation for a short electron bunch. Moreover, we find

that in the case of a short electron bunch the concept
of synchrotron &equency is not very useful. The super-
mode approach is more convenient because of the large
separation between supermodes, which allows one to re-
duce the effective number of degrees of &eedom. For a
long pulse a large number of supermodes can be simul-
taneously unstable [15], and the concept of synchrotron
oscillation again becomes relevant.

In Fig. 13 the calculated oscillation &equency ur (cir-
cles) vs v (a), and vs o. (b), is shown for the same cases as
Fig. 10. In Fig. 13(a), for v ( 0.035, the frequencies (cir-
cles) corresponding to the asymptotic stable operation
are in good agreement with the single-supermode values
given by Eq. (46) (dashed line). Near the value of v for
which the two supermode frequencies become locked, i.e.,
(d2 ——2~&, the frequency deviates &om the single-mode
value and follows the curve P2 —Pi (dashed-dotted line),
where P2(= Imp2) is the linear &equency and Pi is given
by Eq. (46). When v is decreased further, the nonlin-
ear coupling between the two supermodes becomes more
important and the &equencies of the two supermodes de-
viate from their respective single-supermode values. In
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FIG. 13. Oscillation frequency cu for the same parameters
as for Fig. 10. (a) u vs v (circles), nonlinear single-mode
frequency shift @i (46) (dashed line), P2-Pi (dashed-dotted
line), where P2 ——Imy2, 'the linear frequency shift (40) (dotted
line) is also shown for reference. (b) w vs n (circles) and
nonlinear single-mode frequency shift Pz (46) (dashed line).

FIG. 14. Limit-cycle regime. (a) Average field A vs
for n = 0 and v = 0.025; dashed line: IWiI; dotted line:
IWg I; dashed-dotted line: IW3 I. (b) Steady-state power
profile IXI (continuous line) and two mode decomposition
IXI = IWi4i + W2@2I (dashed line) vs g at 7 = 400.
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the transition region of Fig. 13(a), for 0.033 & v & 0.039,
we show the asymptotic frequency (upper branch) and
the damped frequency (lower branch). The damped os-
cillation becomes a limit cycle and the branches merge
to the same value at v = 0.033. In Fig. 13(a), the lin-
ear value uir, = Immi, for the first supermode (dotted
line), is drawn for reference. We find that the numeri-
cally calculated values of the limit-cycle frequency ~gg
are always slightly larger than the linear &equency ~iL, .
Prom the numerical results, we can estimate the number
of round-trip cavity passes for one-limit-cycle period as

4m

3~(~/2) 2/3 [1 + 7r 2 (~/2) 2/3]

2'
~I C'

P~r c
4vrL.

3L,'"Ss»3 ' (56)

C. Period-doubling regime

In the period-doubling regime, the oscillation 6.e-
quency is sequentially doubled, until the oscillation be-
comes irregular and the chaotic regime ensues. The
period-doubling regime occurs in region III of the phase
diagram shown in Fig. 7, for v & 0.023 at o. = 0 and
for o. ( 0.025 at v = 0.012. As an example of the se-
quential bifurcations in the oscillation amplitude, Fig.
15 shows the local maxima and minima of the rms field
A as a function of a for v = 0.01; the dashed line shows
the rms Geld averaged over one oscillation period. An
almost stable oscillation occurs for 0.05 ( o. & 0.1176,
followed by a limit cycle for 0.026 ( o. & 0.05, with
a &equency wl, c ——0.056. For smaller values of o., the
oscillation period is repeatedly doubled, until the oscil-
lation becomes chaotic for o. & 0.021. Figure 15 shows
only two sequences of period doubling. Prom this result
we conclude that chaos can be observed for very small
values of cavity detuning and loss, where several super-
modes are excited in the linear stage of the evolution,

where in the Gnal expression the approximate Equation
(40) for uiL, has been used. The limit-cycle period is in-
versely proportional to the number of cooperation lengths
L contained in the effective interaction length L& bd ~

and inversely proportional to the gain Q [see Eq. (41)].
In Fig. 13(b) the oscillation frequency is shown versus

o;, for v = 0.025. In the single-mode operation, for o. )
0.09, ~ decreases linearly with o, in agreement with Eqs.
(46) and (48), whereas the damped oscillation becomes
a limit cycle for o. ( 0.05, with the limit-cycle frequency
almost independent of o..

Finally, to show that, for very small loss, o. (( 1, a very
long mode-locked optical pulse train can arise (which
can eventually be cavity dumped), Fig. 14(a) shows the
rms field A (continuous line) and the components of the
first three supermodes as a function of 7 for v = 0.025
and o; = 0. Figure 14(b) shows the optical power pro-
file (continuous line) and the two-mode approximation,

= ~WiC'i+W2@2~ (dashed line). In this case a train
of undamped pulses propagates ahead of the electrons
(for —v7 & ( & 0) with a spatial period of 2av/~i, c.
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FIG. 15. Bifurcation diagram for v = 0.01. Continuous
line: maxima and minima of the rms 6eld A vs o.; dashed
line: A averaged over an oscillation period.

i.e., in the lower left corner of Fig. 7. In this regime the
total Geld is described by more than two supermodes.

VII. COMPARISON %'ITH FELIX
EXPERIMENT AND DISCUSSION

The first experimental observations of limit-cycle os-
cillations were made using the free-electron laser FELIX
(Free-Electron Laser for Infrared eXperiments) [27] op-
erating in the infrared and far-infrared spectral domains
(5—110 pm). The observations of limit-cycle oscillations
were made possible by the fact that FELIX can operate
in the large slippage regime where the slippage length L
is greater than the electron bunch length.

In this section we present an analysis of measurements,
made on FELIX, of the dependence of the small signal
gain, eKciency, and limit-cycle behavior on the cavity
detuning. In particular, the previous analysis in terms
of supermodes allows one to identify the boundaries be-
tween the regions of steady-state operation and limit-
cycle behavior on FELIX and the conditions under which
superradiance can be observed.

FELIX operates as a user facility [21] and consists of
two oscillators driven by a 3-GHz RF linac that produces
10-ps-long trains of electron bunches, each with a du-
ration of 3 ps, a charge of 200 pC, and an energy in
the range of 14—45 MeV. The facility serves the needs
of a large and varied scientific community utilizing the
tunability, the high peak power and the (subpicosecond)
temporal properties of the FEL. Each oscillator consists
of a near-concentric optical cavity and a 38-period planar
undulator with a periodicity of 65 mm. The undulators
have adjustable parameters, a ( 1.9, allowing the wave-
length to be varied over a factor of two for each linac
energy. We examine here the behavior of the longer-
wavelength FEL oscillator, FEL1, that operates in the
range 20—110 pm and is driven by a single linac section
with an energy range of 15—25 MeV. The optical cavity
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is 6 m long and has a Rayleigh range of Z~ ——1.2 m,
approximately half of the undulator length. The optical
radiation is coupled out of the cavity through a small
hole, 2 mm in diameter, situated at the center of one of
the gold coated optical cavity mirrors. The cavity length
is servo controlled. using an interferometer that stabilizes
the length to within a &action of a pm and allows the
cavity detuning bZ to be systematically scanned. The
electron bunch repetition rate is 1 0Hz, giving 40 con-
currently circulating optical pulses in the cavity at any
time. FEL1 has a maximum measured small signal gain
of 50% at the peak of the detuning curve and losses rang-
ing from 3% to 15%%uo [21]. The small signal gain and loss
have been measured using a fast pyroelectric detector
(& 200 ns response time).

In this section we examine the gain, ef6ciency, and
limit-cycle behavior ineasured at 25 pm (a 0.7) and
at 40 pm (a = 1.2) for an electron energy of t; = 22
MeV and at 60 p,m (a = 1.0) for 8, = 16 MeV. To
determine the net gain g —o.o (well below saturation) at
each wavelength as a function of bZ, the rising and the
falling edge of the optical macropulses has been measured
and then, using a least-squares fit of the logarithm of the
shape, the gain Q and the cavity loss no per pass are
determined.

The gain parameter p = (Lg/A)go is determined from
the peak of the measured gain detuning curve and &om
the relation p = 5.33@ ~t derived from Eq. (1). A typical
gain detuning curve is shown in Fig. 16. In FELIX, the
electron bunch shape is approximately triangular with
Ls = 0.38 mm [28]. Table I shows the experimentally
determined values of g pt, no, dZ pt for each wavelength,
together with the corresponding scaled loss o; and gain
parameter p. The uncertainty in the measurements of
the losses is about 2%%uo. In Table I we also show the gain
parameter as calculated &om the definition in Sec. II,
with rs = gAZR/m and a phenomenological filling factor,
f = 0.356, the same for each wavelength. Because our
simplified model has zero energy spread and. emittance,
we have introduced a filling factor less than 1, which
accounts for the decrease of the small signal gain.

In Fig. 16, the measured gain, divided by p, is shown
as a function of v = (2/pN )(bZ/A), together with the
gain corresponding to the first supermode (continuous
line) and the approximate expression for small v, Eq.
(39), (dashed line). The experimental points fit the first
supermode gain well and show the correct scaling with p.
The optimum detuning length is found to be at bl. pt
0.855pA, whereas, for bE & bZ &t, the small signal gain
per pass depends on 8Q as g 0.0222pi/s(hd/A)2/s,

0.2—

0.1—

0.0
I

0.01 0.05
I

0.09 0.13

FIG. 16. Comparision with the FELIX experiment. Con-
tinuous line: linear gain for the first supermode, g/p = 2Repi
vs v = (2/ply )(bZ/A); dashed line: approximated expres-
sion, Eq. (39); boxes: A = 25 pm; circles: A = 40 pm;
triangles: A = 60 pm.

slightly diferent &om the previously experimentally de-
termined dependence as (hC/A) / for FELIX [30].

The corresponding eKciency detuning curve for 25 pm,
measured at the end of the macropulse, is shown in Fig.
17 (circles) as a function of v over a range of b'8 be-
tween 0 and 4A, and compared with the calculated ef-
ficiency, obtained by the integration of Eqs. (16)—(20),
with n = no/p = 0.02 (continuous line). Efficiency val-
ues determined from the simulation are shown in Fig. 17
together with the corresponding measured values. The
maximum calculated efficiency, il = 1.6% at v = 0.004
(hC = 0.122k), compares well with a maximum mea-
sured efficiency of il = 1.6% determined from the electron
energy spectra after interaction [31,32]. However, the
theoretical curve has a maximum of 3.6% at v = 0.001
(bZ = 0.03A), which is not attainable in the experi-
ment because of the limited electron macropulse length.
The uncertainty in the measured vacuum desynchronism
length, bd = 0, as determined from the small signal de-
tuning curve, is bZ = +0.1A, corresponding to an uncer-
tainty in v of +0.003, of the same order as that of the
optimum v. In spite of the fact that the optimum cavity
shortening can be hidden by the uncertainty in the mea-
surement of bZ, the eKciency detuning curve fit quite
well with the corresponding calculated curve, showing
that superradiance should be observable at the smallest
bZ values.

TABLE I. Parameters of the FELIX experiment.

A (pm)
25
40
60

g.,t (%)
30.0
40.3
27.2

hZ p, (y,m)
34.2
73.5
74.4

no (%)
3.2
2.9
2.3

n ('%%uo)

2.00
1.35
1.59

1.60
2.15
1.45

1.93
1.80
1.48

Calculated from the measured peak gain.
Calculated from the definition, with f = 0.356.
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FIG. 17. EfBciency vs cavity detuning v for o. = 0.02 con-
tmuous line: average efficiency g = nE/4vrN as it results
from the numerical integration of Eqs. (16)—(20); circles: ex-
perimental data for A = 25 pm, at the end of the macropulse
(a.u. ) (measurements carried out on the FELIX experiment).

able for a longer macropulse. Our reduced model, how-
ever, only gives a qualitative description of the real be-
havior. A more accurate description can be obtained by
solving the multielectrons Eqs. (11) and (12).

Superradiance should be observable in short electron
bunch FEL's where the bunches are shorter than or of
the order of the slippage length. Because the gain is
small at the bd for optimum eKciency, where superra-
diance is observable, the time to saturation is usually
longer than the macropulse. However, in FEL's driven
by superconducting accelerators [23], superradiance may
indeed be observable with a judicious choice of the cavity
loss. For shorter macropulses, such as those of FELIX,
the technique of dynamics desynchronism [16,17,35] may
shorten the buildup time to saturation by allowing the
laser to start up with 8Z = bZ ~t for maximum gain and
saturate with hZ = 0.1815pAn ~s (see Sec. V), for max-
imum efBciency and superradiant operation. For small
cavity loss, the already very short optical pulses gener-

Limit-cycle behavior is observed in a range 0.017 & v (
0.03 (corresponding to a range 0.6 ( bd/A ( 1) [27,30].
Period doubling should be observable for a macropulse
longer than 10 ps, in the range 0.005 ( v ( 0.017, as can
be seen from Fig. 7, with o. = 0.015. For v ) 0.03, a qua-
sistable or damped operation is asymptotically reached.

When undergoing a limit cycle, two supermodes are
excited in the nonlinear part of the evolution of the
macropulse. As discussed above, a limit cycle is due to
a coupling between the erst and second supermodes. We
find that the frequency is close to wz, c = (3/2)(v/2) i
[see Eq. (56), i.e. , has a period of approximately T =
(3/2)(A/bZ)~ s (ps) for a cavity round-trip time of 40
ns. This value should be compared with the fit of the
experimental data, T [(A/hZ) ' (ps)] [33].

The macropulse oscillation frequency is related to the
optical microstructure, which consists of a train of regu-
larly spaced subpulses that are formed during the limit
cycle, as discussed in Sec. VI. The separation between
optical spikes in the substructure of a single micropulse )

as in Fig. 14, has been measured, using second-order au-
tocorrelation techniques, at A = 24.5 pm, to be approx-
imately 1.234 for bC = 0.65A [34]. This measured value
should be compared with 1.74 calculated from our ap-
proximate expression for T.

In Fig. 18 we show some examples of A = 40 p,m
macropulse shapes for different b'8 values, and repre-
senting different regimes of operation: a quasistable op-
eration (dotted line), with hl: = 1.55A (v = 0.038),
two cases of period-doubling behavior (long-dashed and
dash-dotted lines), with bl: = 0.55A (v = 0.0135) and
bZ = 0.35A (v = 0.0085), respectively, and two cases
of chaotic behavior (dashed and continuous lines), with
bl: = 0.15A (v = 0.0034) and Sl: = 0.1A (v = 0.0024), re-
spectively. In Fig. 18(a), showing the experimental data,
the macropulse ends at 10.5 ps, after which the power
decays exponentially due to cavity loss. The simulations
show that period doubling and chaos should be observ-
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FIG. 18. (a) The measured [27] and (b) simulated
macr opulse shapes at A = 40 pm for di8'erent bZ val-
ues, for the parameters of Table I, showing the various
regimes of operation. Dotted line: quasistable operation, with
bl: = 1.55A (v = 0.038); long-dashed and dash-dotted lines:
period-doubling behavior, with 6Z = 0.55A (v = 0.0135)
and 6C = 0.35A (v = 0.0085); dashed and continuous
lines: chaotic behavior, with bl: = 0.15A (v = 0.0034) and
bZ = 0.1A (v = 0.0024).
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ated by the short-bunch FEL (e.g. , 6 period long pulses
in FELIX [34]) can be further shortened to the limit of
N, = 0.56N ~o., by reducing n.

VIII. CONCLUSIONS

In conclusion, we have studied the linear and non-
linear evolution of the radiation pulse in a small-gain
FEL driven by electron bunches shorter than the slippage
length and longer than the radiation wavelength. We
have analytically calculated the eigenmodes of the linear
regime (supermodes) as a function of the scaled cavity
shortening parameter v. As v decreases, the number of
supermodes with positive gain increases. The linear gain,
as measured in the FELIX experiment operating with
electron pulses shorter than the slippage length, corre-
sponds to the gain of the erst supermode. Prom the linear
analysis, we have shown that for very small cavity short-
ening several supermodes with comparable gain are lin-
early excited. The nonlinear regime has been investigated
using a collective model using a closure relation [11],that
reduces the multiparticle equations to a set of 6ve non-
linear partial differential equations for the radiation field
and the first moments of the electron distribution. In the
single supermode approximation and for moderate values
of saturation, the equations reduce to a Landau-Ginzburg
equation, which allow one to obtain analytical expres-
sions for the optical energy and nonlinear frequency shift
at saturation as a function of the scaled cavity shorten-
ing v and loss o.. From the approximate solution we have
demonstrated that the radiation is superradiant at a cav-
ity shortening corresponding to the optimum efBciency.

Explicit expressions for optimum peak power, eKciency,
and pulse width have also been derived. In the second
part of the paper multisupermode operation has been dis-
cussed, interpreting the limit-cycle and period-doubling
behavior as a competition between different supermodes.
We have numerically investigated the transition Rom the
asymptotically stable regime, where the first supermode
dominates, to a limit cycle, where two nonlinear coupled
supermodes are excited to a comparable intensity level.
The frequency of the limit cycle has been interpreted as
the difference between the two lower supermode &equen-
cies, ugly ——~2 —ui. A further reduction of the cav-
ity length shows the transition to a chaotic regime via
a period doubling cascade. Finally, we have compared
our theoretical treatment with experimental observations
from the FELIX experiment and found good agreement.

Our theoretical approach also provides an understand-
ing and an explantion of the narrow, high-intensity peak
observed in the eKciency detuning curve of short bunch
FEL's.
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