
DEPRESSION AND CARDIOVASCULAR AUTONOMIC CONTROL: 

A MATTER OF VAGUS AND SEX PARADOX 

 

 

Eleonora Tobaldinia,b*, Angelica Carandinaa,d*, Edgar Toschi-Diasa,b,c, Luca Erbaa,b, Ludovico 

Furlana,b, Andrea Sgoifo d, Nicola Montanoa,b. 

  

a Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlínico, 

Milan, Italy  

b Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy. 

c Laboratory of Autonomic and Cognitive Neuroscience - Methodist University of São Paulo, São 

Paulo, Brazil; Ibirapuera University, São Paulo, Brazil. 

d Department of Chemistry, Life Sciences and Environmental Sustainability, Stress Physiology Lab, 

University of Parma, Parma, Italy 

*both authors equally contributed to the manuscript   

 

 

Author for correspondence: 

Nicola Montano, MD PhD 

Ospedale Maggiore Policlinico 

Via Francesco Sforza, 28 

Milan - Italy 

e-mail: nicola.montano@unimi.it 

 

 

 

mailto:nicola.montano@unimi.it


1 
 

ABSTRACT  

Depression is a well-established stress-related risk factor for several diseases, mainly for those with 

cardiovascular outcomes. The mechanisms that link depression disorders with cardiovascular 

diseases (CVD) include dysfunctions of the autonomic nervous system. Heart rate variability analysis 

is a widely-used non-invasive method that can simultaneously quantify the activity of the two 

branches of cardiac autonomic neural control and provide insights about their pathophysiological 

alterations. Recent scientific literature suggests that sex influences the relationship between 

depressive symptoms and cardiac autonomic dysfunction. Moreover, a few studies highlight a 

possible sex paradox: depressed women, despite a greater vagal tone, experience a higher risk of 

adverse cardiovascular events than depressed men. Although there are striking sex differences in the 

incidence of depression, scanty data on this topic are available. Lastly, studies on the heart-brain axis 

bidirectionality and the role of sex are fundamental not only to clarify the biological bases of 

depression-CVD comorbidity, but also to develop alternative therapies, where vagus nerve appears 

to be a promising target of non-invasive neuromodulation techniques. 
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1. INTRODUCTION  14 

The daily exposure to multiple psychosocial stress factors can result in a prolonged and frequent 15 

activation of the stress response (McEwen, 2006). Furthermore, worry and rumination can extend 16 

stress-related emotional and physiological activation, both in advance of and following stressors 17 

(Brosschot et al., 2006). These situations represent significant pathophysiological risk factors and 18 

lead to physical and psychological consequences. As a matter of fact, depression is the major stress-19 

related psychiatric disorder. The last official global health estimates reported that the total number of 20 

people with depression exceed 300 million and the proportion of the world wide population with 21 

depression is rated to be 4.4% (World Health Organization, 2017). When ranked by disability and 22 

death combined, depression comes ninth behind killers such as stroke and HIV (Smith, 2014).  23 

But what is the rationale behind this deadly fame? Darwin in 1872, commenting on the work of 24 

Claude Berndard, emphasized the close bond between the brain and the heart: “when the mind is 25 

strongly excited, we might expect that it would instantly affect in a direct manner the heart; […] when 26 

the heart is affected it reacts on the brain; and the state of the brain again reacts through the pneumo-27 

gastric nerve on the heart; so that under any excitement there will be much mutual action and reaction 28 

between these, the two most important organs of the body.” (Darwin, 1990) So, through this intimate 29 

connection, psychiatric disorders such as depression not only affect the brain but also involve the 30 

heart. Countless evidence from the scientific literature has emphasized the link between 31 

cardiovascular disease (CVD) and depression (Carney et al., 2003; Elderon & Whooley, 2013; 32 

Freedland et al., 2003; Glassman, 2007; Lett et al., 2004; Penninx et al., 2001; Sgoifo et al., 2015; 33 

Zellweger et al., 2004). Several studies, such as “The INTERHEART study”, examined modifiable 34 

risk factors for acute myocardial infarction in over 25.000 patients from 52 different countries: 35 

depression was officially recognized as a coronary heart disease (CHD) risk factor in the 2010 Global 36 

Burden of Disease Study (Charlson et al., 2011;  Nicholson et al. 2006; Yussuf et al., 2004). 37 

Moreover, a wide number of authors reported that either major depressive disorder (MDD) or 38 
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significant depressive symptoms with substantial functional impairment are associated with an 39 

increased risk of heart failure, stroke, peripheral artery disease and worse adverse outcomes (Grenon 40 

et al., 2012; Pan et al., 2011; Rutledge & Linke 2007; Surtees et al., 2008). Depression has also been 41 

shown to be an independent predictor of poor prognosis and re-hospitalization among patients with 42 

established heart failure (Jiang et al., 2001) and patients with MDD are much more likely to suffer 43 

acute cardiovascular sequelae such as myocardial infarction, congestive heart failure and 44 

hypertension (Nemeroff & Goldschmidt-Clermont, 2012).  45 

In the last years, multiple potential behavioural and biological factors have been identified as possible 46 

substrates of this dangerous comorbidity. The effects of poor health behaviours have been extensively 47 

highlighted in numerous papers (Brummett et al., 2003; Whooley et al., 2008; Win et al., 2011), 48 

especially in The Heart and Soul Study (Sin et al., 2016), a prospective cohort study of 1024 subjects 49 

with stable coronary heart disease: depressed patients had a 50% greater rate of adverse 50 

cardiovascular events than those without depressive symptoms, but the difference was no longer 51 

significant following adjustment for smoking, medication adherence and physical activity. Among 52 

the pathophysiological pathways that could link depression and CVD, inflammatory processes, 53 

enhanced activity of the hypothalamo-pituitary-adrenal (HPA) axis and alterations of the 54 

cardiovascular autonomic control play a key role. Most of the evidence demonstrates that one-third 55 

of patients with MDD shows elevated peripheral inflammatory biomarkers like c-reactive protein, 56 

interleukin-6, interleukin-1β and tumor necrosis factor-α (Baghai et al., 2018; Dowlati et al., 2010). 57 

Moreover, a meta-analysis of 22 antidepressant treatment studies found that cytokine levels decreased 58 

in response to therapy, along with a reduction in depressive symptoms (Hannestad et al., 2011). In 59 

depression-related cardiovascular outcomes inflammation may act as a promotor for the progression 60 

of atherosclerosis, inducing endothelial activation and expression of adhesion molecules and vascular 61 

endothelial growth factors. The HPA axis hyperactivity may be reciprocally regulated by altered pro-62 

inflammatory pathways, constituting a complex bidirectional biological crosstalk (Baune et al., 63 



5 
 

2012). This dysregulation may lead to increased vasoconstriction, heart rate and platelet activation, 64 

factors that are directly implicated in the progression to CVD. However, among the possible 65 

biological mediators that have been considered to explain the association between depression and 66 

CVD, cardiovascular autonomic control dysfunction is the most investigated (Kemp et al., 2012).  67 

 68 

2. CARDIAC AUTONOMIC CONTROL IN DEPRESSION 69 

Heart rate variability (HRV) is a very useful non-invasive and sensitive indicator of autonomic 70 

impairment. Lowered HRV is a widely recognized prognostic risk factor for adverse cardiovascular 71 

events (e.g. myocardial infarction and arrhythmias) as well as cardiac mortality (Carney & Freedland, 72 

2009; Thayer et al., 2010; van der Kooy et al., 2006). HRV analysis in the frequency domain identifies 73 

two oscillatory components, namely low frequency (LF) and high frequency (HF), ranging from 0.04 74 

to 0.15 Hz and from 0.15 to 0.4 Hz respectively. The HF band reflects parasympathetic activity and 75 

its power is influenced by breathing whereas LF band seems to be produced by both sympathetic and 76 

parasympathetic branches, even if its physiological interpretation is still controversial. Finally, the 77 

ratio of LF to HF power (LF/HF) provides information about the sympatho-vagal balance (Shaffer & 78 

Ginsberg JP, 2017). Alterations of autonomic nervous system that promote vagal withdrawal are 79 

reflected in reductions of HRV. It is not surprising that a considerable body of research reports 80 

reduced HRV and cardiac parasympathetic indexes, derived both in time and frequency domain 81 

analysis, in patients with depression in comparison to healthy controls (Jangpangi et al., 2016; Koch 82 

et al., 2019; Nahshoni et al., 2004; Sgoifo et al., 2015). In Kemp’s meta-analysis, unmedicated 83 

depressed patients displayed reduced HRV compared to control subjects in a standardized short-term 84 

resting state condition (Kemp et al., 2012) and Shinba et al. observed that drug-naïve depressed 85 

patients without comorbidity showed lower cardiac vagal tone and a shift of the sympathovagal 86 

balance towards sympathetic prevalence when compared with healthy age-matched controls during 87 

task execution (Shinba, 2017). Depression has been associated with decreased time domain measures 88 
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of HRV, including HF and several nonlinear measures, whereas the LF/HF ratio showed a significant 89 

increase. Based on these data, we can imagine that the intrinsic mechanisms of regulation of HRV 90 

are altered in this pathological condition, both at rest and in response to physiological and 91 

psychosocial stimuli (Chen et al., 2017; Koch et al., 2019; Shinba, 2017). However, there is an 92 

important bias in all these studies: sex differences were not carefully considered for the analysis.  93 

 94 

2.1. SEX DIFFERENCES IN THE RELATIONSHIP BETWEEN HRV AND 95 

DEPRESSION 96 

As to sex differences, the first relevant element is the different prevalence of depression in women 97 

versus men: women are about twice as likely to develop depression during their lifetime (Bromet et 98 

al., 2011; Lucht et al., 2003, Seedat et al., 2009). In 2010, depression global annual prevalence was 99 

5.5% and 3.2% for women and men respectively. Furthermore, women seem to manifest more 100 

somatic symptoms of depression than men (Silverstein et al., 2013). The finding of similar prevalence 101 

ratios in all developed countries suggests that the differential risk is indicative of a biologically based 102 

sex difference. Studies on the short allele variant of the serotonin transporter-linked polymorphic 103 

region (5-HTTLPR), which is associated with higher susceptibility to the development of depression 104 

in response to environmental stress, identified this interaction more frequently in women than men 105 

(Gressier et al., 2016; Sharpley et al., 2014; Uher & McGuffin, 2010). Specific forms of depression-106 

related disorders, e.g. premenstrual dysphoric disorder, postpartum depression and postmenopausal 107 

depression, led to hypothesize the existence of a correlation between female hormonal fluctuations 108 

and depression. Moreover, females and males seem to have similar rates of depression before puberty 109 

and at ages older than 65 years (Bebbington et al., 2003; Burcusa & Iacono, 2007; Cyranowski et al., 110 

2000). From a large number of existing studies (Broderick & Korteland, 2002; Hampel & Petermann, 111 

2005; Johnson & Whisman, 2014; Jose & Brown, 2008; Lopez et al., 2009; Peled & Moretti, 2007; 112 

Tamres et al., 2002), higher propensity for ruminative thinking in women has been proposed as a 113 
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possible explanation for sex differences in prevalence rates of depression, as well (Nolen-Hoeksema, 114 

2012).  115 

Sex differences do not occur only in terms of prevalence of the disease but also in terms of disease 116 

features. In particular, there are evidences about a sex effect on the relationship between depressive 117 

symptoms and cardiac autonomic function. Depressed women are reported to have higher vagally 118 

mediated cardiac control compared to depressed men (Chambers & Allen, 2007). Garcia et al. 119 

evaluated cardiac autonomic control through passive tilt test in treatment-naive young adults with a 120 

first episode of major depression and without any comorbid psychiatric disorder. They found that 121 

young depressed males had significantly lower HRV during passive orthostatic challenge in 122 

comparison to healthy age-matched control men, whereas there were no significant alterations in the 123 

autonomic function of depressed women. They reported a more robust association of depressive 124 

symptoms with poor cardiac vagal control and sympathetic predominance among depressed males 125 

than females (Garcia et al., 2012). Similar results have been obtained by Chen et al.: mildly depressed 126 

elderly men exhibited prominent sympathetic predominance compared to the control group, that 127 

resulted mainly from diminished HF power and preserved LF power. In contrast, since both HF and 128 

LF were attenuated among more depressed elderly males, sympathovagal balance showed no 129 

differences in spite of profound vagal withdrawal. There were still no differences in HRV between 130 

all depressed elderly female subgroups and the respective age-matched control group (Chen et al., 131 

2010). These results seem to imply a pervasive decline of cardiac autonomic function in depressed 132 

men, but not in depressed women. Recent research studies have verified the existence of sex 133 

differences in the association between depressive symptoms and cardiac autonomic dysfunction in a 134 

non-clinical population, as well. Higher scores in daily depressive symptoms were associated with a 135 

decreased circadian variation pattern of vagal activity in men but with increased circadian variation 136 

pattern in the female group. In particular, a higher average amount of sadness experienced in daily 137 

life was associated with higher levels of lnHF power in women (Jarczok et al., 2018a; Verkuil et al. 138 
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2015). A cross-lagged analysis over a 10-year period in the Whitehall II study revealed that higher 139 

scores in vagal indexes at baseline are associated with a lower likelihood of depression incidence in 140 

men but not in women (Jandackova et al., 2016). Further evidence also comes from animal models. 141 

Within a population of 42 adult female Macaca fasciucularis in a laboratory setting, Jarczok et al. 142 

observed that females classified as behaviourally depressed showed higher vagal cardiac control 143 

compared to non-depressed counterparts (Jarczok et al., 2018b). 144 

A possible interpretation of sex differences in cardiac autonomic dysfunction of depressed patients 145 

derives from the neurovisceral integration model (Thayer & Lane, 2009; Figure 1). A reduction of 146 

grey matter volume in ventromedial prefrontal cortex (vmPFC) has been found in unmedicated male 147 

patients with major depressive disorder, but not in the female counterpart (Yang et al., 2017). This 148 

brain area exerts an inhibitory control over amygdala activity and stronger vmPFC-amygdala 149 

connectivity predicts higher vagally mediated HRV (Sakaki et al., 2016). In addition, depressed 150 

females but not depressed males were found to have a reduced amygdalar volume when compared 151 

with sex-matched control subjects (Hastings et al., 2004). 152 

Sex-related differences in HRV have generally been reported in the normal population (Koenig & 153 

Thayer, 2016). Women show larger vagal modulation, despite they are characterized by a higher HR 154 

relative to men. However, these differences seem to disappear with aging, especially from the age 155 

group of 55–64 years (Voss et al., 2015). Furthermore, some authors demonstrated an increased HRV 156 

in postmenopausal women with estrogens replacement therapy compared to women without hormone 157 

therapy (Liu et al., 2003; Neves et al., 2007; Pikkujämsä et al., 2001). Lastly, estrogens receptors 158 

have been localized throughout the central autonomic network (McEwen et al., 2012). This evidence 159 

suggests a possible role of estrogens in the female protective mechanism against the autonomic 160 

alterations associated with depression. In addition, the vagal predominance observed in depressed 161 

women could in part be due to the differential coping strategies that male and female subjects show 162 

in response to chronic stressors (namely, fight-or-flight vs. tend-and-befriend response, respectively) 163 
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(Taylor et al., 2000). In fact, a greater oxytocin release in response to stress has been found in women 164 

than in men (Taylor et al., 2000). Oxytocin-type neurons from the paraventricular nucleus synapse 165 

on cardiovagal neurons in the nucleus of the solitary tract, the dorsal motor nucleus of the vagus, and 166 

the nucleus ambiguous (Coote, 2013; Koenig and Thayer, 2016) and their excitation ultimately 167 

determines an increase in vagal outflow. Moreover, the effects of oxytocin have been found to be 168 

significantly enhanced by estrogens (Taylor et al., 2000). 169 

All the above-mentioned evidence signals the need for additional studies to understand more about 170 

sex differences in the cardiac autonomic control of depressed patients. This goal could provide new 171 

insights into the etiopathogenesis of depression and promote the development of sex-specific 172 

antidepressant therapies. 173 

 174 

2.2. SEX DIFFERENCES IN DEPRESSION-CARDIOVASCULAR DISEASE 175 

COMORBIDITY 176 

The current state of art seems to highlight a great sex paradox in depression and cardiovascular disease 177 

comorbidity. Although vagal activity is negatively associated with CVD risk and mortality in both 178 

healthy and clinical subjects (Jarczok et al., 2018a; Thayer et al., 2010), depressive symptoms have 179 

been associated with an increased risk of adverse cardiovascular events more in women than in men 180 

(Bucciarelli et al., 2019; Möller-Leimkühler, 2007). Shah et al. found that depressive disorders predict 181 

cardiovascular disease outcomes and increase risk of death in women aged ≤ 55 but not in 182 

postmenopausal women and men (Shah et al., 2014). Furthermore, data from two cross-sectional 183 

surveys (Community Mental Health Epidemiology Study and Third National Health and Nutrition 184 

Examination Survey) revealed that young adult females with depression may be at excess risk of 185 

premature cardiovascular-related death over a 15-year follow-up period (Shah et al., 2011; Wyman 186 

et al., 2012). Possible pathophysiological mechanisms that could explain the highest incidence of 187 

CVD in depressed women, despite the cardioprotective role of the vagus, are ascribed to: i) 188 
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inflammatory processes; ii) hormonal dysregulation; iii) poorer health behaviour; iv) metabolic 189 

derangement (Bucciarelli et al., 2019; Webb et al., 2017). Several authors have highlighted a strong 190 

connection between hormonal dysregulation and impaired inflammatory response in female 191 

depressed patients. As a matter of fact, circulating estrogens stimulate the T- and B-lymphocytes, 192 

with a greater immune and inflammatory response than men. Moreover, estrogens increases IL‐1 193 

secretion by macrophages and depressed women have increased eosinophil reactivity compared to 194 

men, which may be explained by the presence of estrogens receptor alpha (ERα) on their surface. 195 

Elevated serum levels of IL‐8, IFN‐γ and leptin were found in the blood of depressed women when 196 

compared to healthy controls and IL‐6, TNF‐α and IL‐1β levels are mainly elevated in the blood of 197 

depressed women compared to depressed men, suggesting that these pro‐inflammatory markers are 198 

sex-specific in MDD patients. In general, estradiol appears to be linked to suppression of pro-199 

inflammatory cytokine production, such as reduced expression of IL-6 and TNF-α, and increased 200 

production of anti-inflammatory cytokine IL-10 (Bucciarelli et al. 2019, Dudek et al. 2019, Webb et 201 

al. 2017). However, further complicating this relationship is estradiol dose, as higher concentrations 202 

are linked to anti-inflammatory responses, whereas low concentrations are associated with pro-203 

inflammatory responses (Mattina et al. 2019). Inflammation has been postulated to play a major role 204 

in endothelial damage of the cerebral vasculature in depressed patients (Halaris 2016) and plays a 205 

major role in the development of atherosclerosis and atherothrombosis. Thus, hormonal 206 

dysregulation, through the activation of pro-inflammatory pathways, is supposed to be a risk factor 207 

for the onset of CVD in depresses women. Finally, gonadal steroid receptors, such as ERα and ERβ, 208 

are expressed in the endothelial cell layer of the blood-brain barrier suggesting a further and direct 209 

involvement of hormones in neurovascular alteration (Dudek et al. 2019). 210 

 211 



11 
 

3. THROUGH THE VAGUS NERVE: NON-INVASIVE NEUROMODULATION 212 

TECHNIQUES AS ALTERNATIVE THERAPY  213 

The link between cardiovascular autonomic control and MDD seems to be fundamental also in view 214 

of new alternative therapies to drug treatment. Although pharmacological antidepressant treatment is 215 

the gold standard therapy for major depression, up to 50–60% of patients do not obtain adequate 216 

response following a first antidepressant drug treatment and about 40% of depressed patients do not 217 

respond to 4 or more conventional treatments and are considered to have treatment-resistant 218 

depression (Kemp et al., 2010; Otte et al., 2016; Rush et al., 2006). Moreover, pharmacological, 219 

antidepressant treatment doesn’t resolve reductions in HRV that have been observed in general 220 

population despite decrease in depressive symptoms, suggesting that the pathology might have 221 

residual effects on neurophysiological systems. In addition, several studies found that tricyclic 222 

antidepressants significantly reduce HRV because of the anticholinergic and α1-adrenergic properties 223 

of this class of medication, while the effects on cardiovascular autonomic function of selective 224 

serotonin reuptake inhibitors and serotonergic noradrenergic reuptake inhibitors are still debated 225 

(Kemp et al., 2010; Koch et al., 2019). In view of such evidence, recent research studies have been 226 

focused on trying to develop treatments that could be effective in non-responsive patients and have 227 

cardioprotective effects (Figure 2). In their review, Iseger et al. proposed a frontal-vagal network that 228 

overlaps with the functional areas affected by depression. As a matter of fact, several years of 229 

neuroimaging research have shown that the depression-related decrease of metabolism and blood 230 

flow in the prefrontal cortex and anterior cingulate and the pathologically increased activity in the 231 

subgenual cingulate and amygdala are positively correlated with cardiovascular dysautonomic 232 

features. These authors summarized the most promising neuromodulation techniques that target key 233 

nodes for both depression and cardiac autonomic control (Iseger et al., 2019). For example, the 234 

dorsolateral prefrontal cortex (DLPFC) has been frequently selected in the depression treatment as 235 

the most suitable area for non-invasive neurostimulation such as repetitive Transcranial Magnetic 236 
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Stimulation (rTMS) and transcranial Direct Current Stimulation (tDCS). It has been hypothesized 237 

that the antidepressant effect of DLPFC-stimulation is exerted via trans-synaptic modulation of the 238 

subgenual cingulate cortex (sgACC). Lane et al. observed that depressed patients show an altered 239 

emotional state shifting due to DLPFC hypoactivity and abnormal sgACC activity, which 240 

subsequently leads to altered vagal control. These alterations are positively correlated with the 241 

severity of depression and a concurrent increase in vagal indexes occurs when the pathological 242 

condition is reversed by a successful treatment (Iseger et al., 2019; Lane et al., 2013). Surprisingly, 243 

also the direct stimulation of the Vagus Nerve (VNS) has shown important antidepressant effects and 244 

it was officially approved by The Food and Drug Administration in 2005 as an alternative therapy for 245 

severely treatment-resistant depression. VNS has clear dose- and time-dependent effects on the brain 246 

in key regions implicated in the neurobiology of depression such as prefrontal and cingulate cortex 247 

(Carreno & Frazer, 2017; Kosel et al., 2011). An electrode is attached from a pacemaker implanted 248 

on the left side of the chest to the left Vagus Nerve in the neck. It has been suggested that impulses 249 

from the vagus nerve are transmitted to the following regions: locus coeruleus, raphe nuclei, and 250 

nucleus tractus soliarious, which then project to other above-mentioned regions of the brain long 251 

thought to be relevant for depression (Carreno & Frazer, 2017). To overcome the potential barriers 252 

of applying VNS, which requires surgery, a non-invasive VNS method has been developed. 253 

Transcutaneous Vagus Nerve Stimulation (tVNS) stimulates the afferent auricular branch of the 254 

vagus nerve located on the surface of the ear and produces a similar effect to classical VNS in 255 

reducing depressive symptoms. For instance, tVNS applied for 2 weeks in patients with depression, 256 

once or twice for 15 minutes per day, significantly reduced depression scores (Hein et al., 2013). The 257 

antidepressant effect as measured by the Beck Depression Inventory (BDI) was very prominent: it 258 

showed subjective symptom amelioration in depressed patients of almost 50 % and the effects 259 

appeared to be similar to other non-invasive brain stimulation techniques, such as rTMS (Fitzgerald 260 

et al., 2006; Frank et al., 2011) and tDCS (Loo et al., 2010). Moreover, 4 weeks of tVNS was found 261 

to modulate the resting state functional connectivity between the right amygdala and left DLPFC as 262 
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well as to enhance activation of the left insula and these changes were associated with improvement 263 

in depressive symptomatology (Fang et al., 2016; Liu et al., 2016). The tVNS seems to be able to 264 

alleviate depressive symptoms activating neuroprotective pathways and suppressing the 265 

inflammation of the areas involved by pathology (Kong et al., 2018). The molecular process leading 266 

to these results could be linked to the activation of α7 nicotinic acetylcholine receptors (α7 nAChRs), 267 

expressed on neuronal cells, astrocytes and microglia cells (Pavlov & Tracey, 2005). The tVNS 268 

determines an increased release of acetylcholine, massively activates these receptors and finally 269 

implements a neuroprotective anti-inflammatory process in the compromised areas, through the 270 

PI3K-Atk intracellular pathway, already observed in the inhibition of the peripheral macrophage 271 

inflammatory response (Tyagi et al., 2010). Lastly, to the best of our knowledge, the influence of 272 

tVNS on cardiovascular autonomic control in depressed patients has not yet been specifically studied. 273 

However, in their study on 29 healthy volunteers aged ≥ 55 years, Bretherton et al. found that 2 weeks 274 

of daily tVNS improve measures of vagal tone and some aspects of quality of life, mood and sleep, 275 

which are all aspects affected by depression. Importantly, findings showed that improvements in 276 

measures of autonomic balance were more pronounced in participants with greater baseline 277 

sympathetic prevalence (Bretherton et al., 2019). In addition, tVNS performed on 48 healthy 278 

participants significantly increased HRV, promoting a shift in cardiac autonomic function toward 279 

parasympathetic predominance (Clancy et al., 2014). To fill this literature gap, further investigations 280 

are needed to analyse the possible cardioprotective role of the tVNS in depressed patients.  281 

All these non-invasive neuromodulation techniques modulate the entire frontal-vagal network rather 282 

than just the local stimulation target. Thus, prolonged stimulation causes anatomical and functional 283 

changes in the central nervous system and promotes the remodelling of damaged neuronal circuits.  284 

Previous studies support gender-related differences in pharmacokinetics and pharmacodynamic 285 

properties of antidepressant medications (LeGates et al. 2019) and men and women with chronic 286 

depression show different responsivity to and tolerability of various antidepressant classes including 287 
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SSRIs, norepinephrinergic tetracyclic antidepressant and tricyclic antidepressant. However, only few 288 

studies have assessed the gender differences in the antidepressant effect of new neuromodulation 289 

techniques (D’Urso et al. 2017; Figiel et al. 1998; Conca et al. 2000; Brunoni et al. 2016) and authors 290 

reported that gender was not a significant predictor in determining non-invasive neuromodulation 291 

efficacy. Nevertheless, Kedzior and colleagues revealed in their meta-analysis, which included 54 292 

sham-controlled trials between 1997 and 2013, that gender might be a positive predictor of response 293 

as studies showing good antidepressant response to rTMS had mostly female patients (Kedzior et al. 294 

2014). To the best of our knowledge, only one paper (Huang et al. 2008) highlighted a gender effect 295 

in the therapeutic response to rTMS: while no difference was observed between male and 296 

premenopausal female patients, 68.8% and 70.6% respectively, postmenopausal women did not 297 

respond at all. They also found that greater improvement in depression score was associated with a 298 

higher estradiol/progesterone ratio in premenopausal women, suggesting an important role of female 299 

hormones in the therapeutic response.  300 

 301 

4. CONCLUSION 302 

Depression and cardiovascular disease currently represent two of the most common causes of 303 

disability and mortality. Women seem to experience depressive disorders with a double incidence 304 

than men. The latest studies have shown that depression in otherwise healthy subjects seems to 305 

increase the risk of cardiovascular disease more strongly in young women, despite a higher vagally-306 

mediated heart rate variability.  However, this sex paradox is still unresolved due to the lack of studies 307 

in sex-balanced populations and randomized clinical studies including a larger number of women. To 308 

the best of our knowledge the majority of research is correlational and does not longitudinally 309 

examine the effects of depression on cardiac autonomic control and in particular on HRV. Moreover, 310 

most studies present mixed gender groups and only a few of them considers gender differences in the 311 

analysis of results. Finally, it is difficult to analyse any adaptations related to the disease alone since 312 
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antidepressants have a great impact on the cardiovascular autonomic control. Further longitudinal 313 

studies are required assess the adaptation of the cardiovascular autonomic control in depressed 314 

patients and on the potential sex differences. Therefore, sex differences should be more carefully 315 

considered as they can add new insights into the etiopathogenesis of both these pathologies and lead 316 

to more effective therapeutic approaches. For instance, the frontal-vagal network proposed by Iseger 317 

et al. best highlights the target areas of new neuromodulatory therapies for depression, emphasizing 318 

the importance of the bidirectionality of heart-brain axis and the direct or indirect involvement of the 319 

vagus. Based on this, it is even more important to consider HRV measures in depression studies as a 320 

prognostic factor and in order to assess the influence of neuromodulation on cardiovascular 321 

autonomic control. New studies are required to shed further light on the effects of these new 322 

antidepressant therapies in relation to sex differences both from the point of view of efficacy and in 323 

the evaluation of sex-related differences in the neuromodulation of the areas involved by depression. 324 

 325 
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 709 

Figure 1. Sex differences in cardiac autonomic control of depressed patients. Depression affects several functional 710 

areas involved in the heart-brain axis. Thus, the cardiovascular autonomic control is altered. Recent studies highlight that 711 

sex influences the relationship between depressive symptoms and cardiac autonomic dysfunction. vmPFC: ventromedial 712 

prefrontal cortex; sgACC: subgenual anterior cingulate cortex; Amy: basolateral amygdala and the central nucleus of the 713 

amygdala; Hyp: hypothalamus (lateral and paraventricular); NTS: nucleus of the solitary tract; RVLM: rostral 714 

ventrolateral medulla; NA: nucleus ambiguous; IML: intermediolateral cell column of the spinal cord. 715 
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 719 

 720 

Figure 2. The frontal-vagal network and non-invasive neuromodulation techniques. Non-invasive neuromodulation 721 

techniques, such as repetitive Transcranial Magnetic Stimulation (rTMS), transcranial Direct Current Stimulation (tDCS) 722 

and transcutaneous Vagus Nerve Stimulation (tVNS), modulate the entire frontal-vagal network. The prolonged 723 

stimulation of vagus nerve or prefrontal cortex remodels the depression-damaged neuronal circuits and determines 724 

cardioprotective effects. 725 


