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Study of the 16O(p,γ) Reaction at Astrophysical Energies
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The Feshbach theory of the optical potential naturally leads to a microscopic description
of scattering in terms of the many-body self-energy. We consider a recent calculation of
this quantity for 16O and study the possibility of applying it at astrophysical energies. The
results obtained for the phase shifts and the 16O(p,γ) capture suggest that such studies
are feasible but the calculations require some improvement geared to this specific task.

1. Itroduction

The Feshbach theory of the optical potential provides a formal tool for developing a
description of the scattering of nucleons from nuclei in terms of the microscopic interaction.
In its most standard application, this is done by reducing the Hilbert space to a subspace
that contains only the core nucleus and the additional particle in a scattering or bound
single particle state. Since the scattered particle is not allowed to occupy the orbitals filled
by the core nucleons, this subspace can only exhaust the part of the one-body Hilbert
space the lies above the Fermi energy). Several models of nucleon-nucleus scattering (such
as cluster model or folding potentials) implicitly use this approach and have been applied
with significant success. However, the above limitation can be avoided by considering a
Fock space (without a definite number of particles) and applying the Feshbach formalism
to a subspace that contains both the scattering of a particle on top of the nuclear core and
the possibility of propagating a hole excitation [ 2]. The resulting optical potential simply
reduces to the usual many-body self-energy. The properties of this particular choice of
the optical model have been reviewed by Mahaux and Sartor [ 3].
The above considerations suggest that the technique of using many-body Green’s func-

tion can make reasonable predictions for nucleon-nucleus scattering. However, most of
its applications in nuclear physics have focused on the the study of nuclear correlations [
4]. In this contribution, we consider the self-energy resulting from a recent application
of the self-consistent Green’s function method the nucleus of 16O [ 5, 6] and explore its
predictions for proton-nucleus scattering.

2. The model

In Refs. [ 5, 6], the nuclear self-energy was computed within a model space P corre-
sponding to the harmonic oscillator states of all orbitals up to the pf shell plus the 1g9/2
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Figure 1. Feynman diagram representation of the self energy. The first diagram represent the
Hartree-Fock like contribution to the mean field. The remaining ones describe core polarization
effects in the particle (R(2p1h)) and hole (R(2h1p)) part of the spectrum.

orbital. A parameter b=1.76 fm was employed and a G-matrix interaction based on the
Bonn-C potential [ 7] was used in the calculation. When expressed in coordinate space,
this self-energy takes the form

Σ⋆(r, r′, ω) =
∑

α,β∈P

φα(r)
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where φα(r) are the harmonic oscillator wave functions, coupled to the nucleon spin with
quantum numbers, α = {nα, lα, jα, mα} and the sum runs over all the orbits belonging
to the model space 3. We note that this choice for the space P is adequate to study
properties of the nuclear interior when considering low energy (long range) excitations
and accounting for the spectral fragmentation [ 6]. However the gaussian like functions
φα(r) are not optimal when one is concerned with properties sensitive to the nuclear
surface.
In Eq. (1), the mean field part of the optical potential, ΣMF , corresponds to the Hartree-

Fock diagram of Fig. 1. The remaining diagrams are usually referred as core polarization
contributions [ 3]. They were computed in Ref. [ 6] by including the coupling of single
particle motion (i.e. quasiparticles and quasiholes) to different types of collective motion,
namely excitations of the A-particle core, two-particle and two-hole states. At low enough
energies they can be expressed as a discrete sum of poles, see Eq. (1). There εi± determine
the excitation energies of the resonances that do not have a mean field character.
Thus, Eq. (1) gives us a model for the optical potential that acts in the full single

particle Hilbert space. However, before using it in practical applications one has to
correct for the fact that the calculations of Ref. [ 6] did not include the electromagnetic
interaction and were based on a two-body realistic interaction, which is not sufficient to
account for spin-orbit splitting. Hence, in this work we augment the self-energy (1) with
the Coulomb potential for a uniformly charged sphere of radius Rc = 3.2 fm and add a
correction U(r, r′). The scattering equation takes a Schrödinger-like form [h̄=c=1 and µ
is the reduced mass]
{

−∇2

2µ
+ VCoul.(r)

}

ψ(r) +
∫

dr′ {U(r, r′) + Σ⋆(r, r′, Ecm)} ψ(r′) = Ecm ψ(r) , (2)

which, for Ecm < 0, also describes the bound states of 17F. The potential

U(r, r′) =
∑

α

δεα φα(r
′)φ∗

α(r
′) (3)

3The isospin degrees of freedom are not shown explicitly here.
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Figure 2. Phase shifts for proton - 16O
scattering in the s1/2, d5/2 and d3/2 partial
waves, as a function of the center of mass
energy. The experimental results are from
Ref. [ 8].
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Figure 3. Astrophysical factor for the
16O(p,γ) capture. The solid curves give the
theoretical results for capture to the d5/2 and
s1/2 states and the total capture. The dashed
curves represent the same results after rescal-
ing by a constant as described in the text.
The experimental results are from Ref. [ 9].

is chosen in analogy to the work of Ref. [ 6] and acts by simply shifting the energy of
the principal mean field orbitals. In practice, this corresponds to modifying the depth of
the optical potential independently for each different partial wave. In the present work
we found that one can fit the energy levels of the orbitals in the p and sd shells by
choosing δε1p3/2=-2.62 MeV, δε1p1/2=-2.25 MeV, δε2s1/2=+8.52 MeV, δε1d5/2=-3.75 MeV
and δε1d3/2=+8.4 MeV.

3. Results

Figure 2 shows the phase shifts for the scattering of positive parity waves resulting
from Eq. (2). The position of the bound states in 17F and of the resonances shown in the
plot has been forced to agree with the experimental data employing the above choice of
U(r, r′). This is necessary for obtaining the correct asymptotic behaviour of the bound
wave functions. The position of the first s1/2 resonance is determined by the first εp+ pole
in Eq. (1). This was originally predicted at 6.3 MeV, ∼0.5 MeV above the experimental
value. The background contribution to the phase shifts is instead a prediction of the
theory. As it can be seen, the mean field tends to be slightly too repulsive for the
s1/2 partial wave and slightly too attractive in the d3/2 case. Considering the simple
expansion of Eq. (1) in terms of a few harmonic oscillator wave functions, the model gives
a reasonable description of the phase shifts. Eq. (2) was also solved for the valence orbitals
of the last proton bound states of 17F. The radial wave functions behave asymptotically
as

flj(r) −→r→∞ Clj
W−η,l+1/2(r)

r
, (4)
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whereW−η,l+1/2 is a Whittaker function, η the Sommerfield parameter and the asymptotic
normalization constants (ANCs) are predicted to be Cs1/2= 98.2 fm−1/2 and Cd5/2= 1.59 fm−1/2.

The astrophysical factor for 16O(p,γ) is computed from these wave functions and the
solutions of Eq. (2) for the relevant scattering waves. The results for the transitions to
the bound states of 17F are reported in Fig. 3 with solid lines. The curves overestimate
the experimental results, due to the large values obtained for the ANCs. In contrast, the
relative spectroscopic factors are found to be 0.921 for the s1/2 state and 0.878 for the d5/2
case. This agrees with what is expected from the halo nature of these orbitals. Moreover,
we find that the shape of the theoretical curves agree well with the experimental data if
we rescale the result for capture to the s1/2 state by 0.63 and the one for d5/2 by 0.49.
This is depicted by the dashed lines in Fig. 3.
At zero energy, the astrophysical factor is determined by ANCs. The analytical study

of the asymptotic wave functions done in Ref. [ 10] yields the following approximation,

S(0) = 0.37C2
s1/2

+ 1.58× 10−3C2
d5/2

. (5)

After rescaling Cs1/2 and Cd5/2 as described above Eq. (5) gives S(0)=10.37 keV b, in
agreement with their estimate [ 10].
The discrepancies found between theory and experiment are not unexpected. Part

of these are due to the fact that the expansion of Eq. (1), originally chosen to study
properties sensitive to the interior of the nucleus, gives a poor description of the nuclear
surface to which halo states are particularly sensitive. A better choice of the basis would
involve repeating completely the calculations of Ref. [ 6]. Nevertheless, it is plausible that
this approach would lead to useful predictions of the scattering process.

We would like to acknowledge useful discussions with J.-M. Sparenberg. This work
was supported by the Natural Sciences and Engineering Research Council of Canada
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