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Abstract 

Advanced receptor models have been recently developed and tested in order to improve the 

resolution of apportionment problems reducing rotational ambiguity of results and aiming at 

identifying a larger number of sources. In particular, multi-time model is a factor analysis method 

able to compute source profiles and contributions using aerosol compositional data with different 

time resolutions. Unlike traditional factor analysis, each measured value can be inserted into multi-

time model with its original time schedule, thus all temporal information can be effectively used in 

the modeling process. In this work, multi-time model was expanded in order to impose constraints 

on modeled factors aiming at improving the source identification. Moreover, as far as we know for 

the first time, a suitable bootstrap technique was implemented in the multi-time scheme to estimate 

the uncertainty of the final constrained solutions. These implemented approaches were tested on a 

PM2.5 (particulate matter with aerodynamic diameter < 2.5 µm) dataset composed of 24-hours 

samples collected during one year and hourly data sampled in parallel for two shorter periods in 

Florence (Italy). The daily samples were chemically characterized for elements, ions and 

carbonaceous components while elemental concentrations only were available for high-time 

resolved samples. The application of the advanced model revealed the major contribution from 

traffic (accounting for 37% of PM2.5 as annual average) and allowed an accurate characterization 

of involved emission processes. In particular, exhaust and non-exhaust emissions were identified. 

The constraints imposed in the continuation run led to a better description of the factor associated to 

nitrates and also of biomass burning profile and the bootstrap results gave useful information to 

assess the reliability of source apportionment solutions. Finally, the comparison with the results 

computed by ME-2 base model applied to daily and hourly compositional data separately 

demonstrated the advantages provided by the multi-time approach. 
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1. Introduction 

Negative effects induced by atmospheric aerosol on the environment (IPCC, 2013) and human 

health (Pope and Dockery, 2006; WHO, 2013) have been assessed so far. In order to formulate 

strategies to reach air quality objectives in a specific area, air quality modeling could be useful to 

assess  impacting sources and their contributions (Viana et al., 2008). 

The most recent developments in monitoring techniques allow aerosol components measurement 

with higher and higher time resolution (typically from 24-h down to minutes) thus giving detailed 

information that can be used also in source apportionment studies. Besides 24-h resolution data 

carried out in compliance with regulatory purposes, hourly samples of different PM fractions can be 

collected by higher resolution instruments, such as streaker samplers and rotating drum impactors 

(RDI). IBA (Ion Beam Analysis) and SR-XRF (Synchrotron Radiation-induced X-Ray 

Fluorescence Spectrometry) techniques have been widely applied to streaker and RDI samples, 

respectively, providing elemental concentrations on hourly basis (Lucarelli et al., 2014; Visser et 

al., 2015). These data are usually combined with compositional information extracted from lower 

resolution data to gain more and more information producing a dataset of mixed time resolution. 

Traditional multivariate techniques, such as PCA (Principal Component Analysis) or PMF-2 

(Positive Matrix Factorization), need to reduce all data to a single time schedule; either the modeler 

has to average high-time resolution data over the longest sampling interval - typically 24-h - or to 

interpolate the low-resolution data to the shortest sampling period (Zhou et al., 2004). Therefore, 

the source apportionment modeling is typically limited to the separate analysis of high-time or daily 

samples thus either important source markers given by the complete chemical speciation often 

available on daily samples or the high-time resolution information get lost. 

In order to properly take into account all the temporal details provided by experimental data without 

averaging or interpolating, an advanced receptor model was developed (Zhou et al., 2004; Ogulei et 

al., 2005) using Multilinear Engine (ME-2) which is a flexible algorithm program implementing a 

scripting language able to solve multivariate receptor problems (Paatero, 1999). By the multi-time 

approach, apportionment problems can be solved inserting each data value in its original time 

schedule. 

By means of the flexibility of ME-2 program, in this work the multi-time model has been expanded 

1) to perform a continuation run; and 2) to assess uncertainties on the solutions. More precisely, 

during the continuation run physically meaningful constraints can be imposed on the resolved 

sources in order to reduce rotational ambiguity and enhance the problem solution. Usually the 

constraints derive from a-priori knowledge on the features of sources influencing the monitoring 

site. An important step in receptor modeling is also the evaluation of the uncertainty on the final 
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solution. As highlighted in Paatero et al. (2014), the uncertainty in receptor analysis arises from 

three main causes: (1) random errors in data values; (2) rotational ambiguity and (3) modeling 

errors. In order to capture these different sources of uncertainty, three estimation methods were 

developed and are now available in the latest version of EPA PMF 5.0 (EPA, 2014): bootstrapping, 

dQ-controlled displacement of factor elements and bootstrapping enhanced with displacement. In 

this work, a method based on bootstrap technique for estimating uncertainty on model results has 

been implemented in multi-time scheme in order to assess the reliability of an advanced factor 

analysis solution. Apart the very recent work by Liao et al. (2015), this is one of the very few 

examples of multi-time resolution ME-2 analysis with constraints reported in the literature. 

Moreover, as far as we know, this is the first application of bootstrap analysis on multiple time 

resolution data. 

The ME-2 model implemented in this work was applied to PM2.5 samples collected at a traffic site 

in Florence (Italy) both with daily and hourly time resolution in the framework of the regional 

project PATOS2 - Particolato Atmosferico in TOScana 2 – (PATOS2, 2014) as described in detail 

below.  

 

2.Material and methods 

2.1 Aerosol measurements 

The PM2.5 aerosol samples analyzed by multi-time model were collected from April 2009 to March 

2010 at a traffic site in Florence (Italy). The monitoring site was located at one of the major roads in 

the city beltway, close to a traffic light and a bus stop. In addition, there is a mechanic workshop 

behind the site and many car parks are located all along the road sides. 

PM2.5 daily data were collected in parallel on PTFE and quartz-fibre filters. Samples on Teflon 

filters were collected every other day while samples on quartz-fibre filters everyday. PM2.5 mass 

concentrations were determined by gravimetric technique on Teflon filters. Filters were weighed by 

an analytical balance after a 24-hours conditioning period in controlled temperature (20 ± 1° C) and 

relative humidity (50 ± 5 %). Moreover, a ionization gun was used to avoid electrostatic effects. 

They were then analyzed by PIXE (Particle Induced X-Ray Emission) to obtain the elemental 

composition (Lucarelli et al., 2010) and by Ion Chromatography (IC) to determine water-soluble 

inorganic ions (Morganti et al., 2007). Concentrations of Total Carbon (TC), Organic Carbon (OC) 

and Elemental Carbon (EC) were retrieved by thermo-optical-transmission analysis on 1.5 cm
2 

quartz-fibre filter portions using the Sunset Lab analyzer with NIOSH-like protocol (CEN/TC 264, 

2011). The accuracy of PIXE elemental concentrations was determined by summing up independent 

uncertainties on standard samples thickness (5%) and X-rays counting statistics (from 2% to 20% or 
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higher when values approach detection limits); uncertainties on carbonaceous components and ions 

are in the range 5-10%. Irrespective of the analytical technique, elemental concentrations are 

affected by additional uncertainties (~ 5%) due to other sampling parameters (e.g. flow rate 

variations). 

During shorter periods in early autumn (23 September - 7 October 2009) and in winter (14 - 28 

January 2010) hourly PM2.5 samples were collected by a two-stage streaker sampler. Briefly, this 

device separates particles on different stages using a pre-impactor and an impactor. PM with 

aerodynamic diameter Dae >10 µm is removed by pre-impactor while the impactor deposits aerosol 

coarse fraction (2.5 µm < Dae < 10 µm) on a Kapton foil and the fine fraction (Dae < 2.5 µm) is 

collected on a Nuclepore polycarbonate membrane. The two collecting supports are kept in rotation 

at constant speed producing a circular continuous deposition on both stages (D’Alessandro et al., 

2003). 

PIXE analysis of these samples by a properly collimated proton beam, scanning the deposit in steps 

corresponding to 1-hour of aerosol sampling, provided the elemental concentrations with hourly 

time resolution (Lucarelli et al., 2010 and 2014). 

 

2.2 Model description 

Multivariate receptor models represent a valuable tool to solve source apportionment problems of 

airborne particulate matter. From the input matrix containing concentration data of mass and 

chemical species collected at the monitoring site, receptor models estimate the number of sources 

influencing the area and decompose the initial matrix into two matrices representing source time 

contributions and chemical compositions.  

In receptor modeling, the principle of mass conservation is assumed and a mass balance analysis is 

performed to apportion PM sources. Using the index p for factors, i for samples and j for species, 

the base equation in a factor analysis model can be written as below: 

               (1) 

where xij is the concentration of the j-th species in the i-th sample, fpj is the mass fraction of the j-th 

species from the p-th source, gip is the contribution of the p-th source in the i-th sample and eij are 

the residuals. Besides factor chemical profiles and time series of source contributions, model 

outputs include also the Explained Variations (EV), i.e. the fraction of a species variation explained 

by each source. Indicating with s the uncertainties of input data, EV values are computed by the 

model as follows (Paatero, 2010):  
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                        (2) 

 

The multi-time model was developed in order to insert every measured concentration data with its 

original time schedule. Each concentration is influenced by emissions from several sources; 

therefore, in the modeling source contributions need to be averaged in order to refer to the same 

sampling period of the corresponding concentration value. To this aim, the main equation (Eq.1)  is 

modified as below (Zhou et al., 2004):  

    (3) 

where s is the sample number, j represents the species, ts1 and ts2 are starting and ending time, 

respectively, for the s-th sample described by the number of time units. The time unit corresponds 

to the shortest sampling interval of available data (e.g. 1 hour for the dataset used in this work). As 

in Eq.1, xsj is the concentration of the j-th species in the s-th sample, fjp is the mass fraction of the j-

th species from the p-th source, gip is the contribution of the p-th source during the sampling period 

for the s-th sample and esj are the residuals. ηjm are adjustment factors for replicated species 

measured by more than one analytical method with different time resolutions. Adjustment factors 

for non-replicated species can be set to unity by default while an adjustment factor next to unity 

indicates a good agreement between the different measurements (Ogulei et al., 2005).  In this work, 

the adjustment factors were always set to unity as the same analytical technique (i.e. PIXE) was 

used to measure both daily and hourly elemental concentrations. 

Since some sources could contain no or few species measured with high time resolution, a 

regularization equation (Eq.4) is used to smooth the time series of their contributions: 

       (4) 

where gip is the source contribution of the p-th source during the i-th time unit and ɛi is the residual.  

Eqs.3 and 4 were solved using Multilinear Engine algorithm (ME) (Paatero, 1999) which provides a 

weighted least-squares solution to the problem minimizing the sum of squares, i.e. the so-called 

object function Q: 

 

        (5) 
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As shown in Eq.5, both the main equation (Eq.3) and the auxiliary equations (e.g. regularization 

equations, pulling equations and constraints) are taken into account in the object function Q;  are 

the uncertainties of input data and  are the uncertainties related to the auxiliary equations. 

In this work, the model was expanded in order to perform the continuation run. Indeed, starting 

from the base-case solution obtained by the multi-time model, suitable constraints to the identified 

factors were inserted in the model in the form of auxiliary equations. As examples, specific marker 

ratios can be constrained to stoichiometric values and ambiguous chemical contributions in a source 

profile can be pulled to zero or to a specific value (Amato and Hopke, 2012). The strength of each 

constraint is controlled by the Qmain increase limit set by the user, the greater is the allowed 

increase, the stronger is the effect of the constraining (Paatero and Hopke, 2009). Due to the 

imposed conditions, resolved factors can be more clearly identified as the rotational ambiguity on 

the solutions is reduced.  

In addition, a method for estimating uncertainty in the multi-time model solutions was here 

implemented in order to evaluate the robustness of our results. It is based on the bootstrap analysis, 

inspired by one of the available techniques from the EPA PMF 5.0 script. Factors are initialized by 

the final solution values and the analysis is repeated many times (typically more than 100 times). As 

in the EPA PMF 5.0 script, the implemented bootstrap analysis is based on three different steps: 

resampling, reweighting and random rotational pulling. In particular, during the last phase of the 

procedure some random-selected elements of time contribution matrix are pulled up or down 

toward a specific value in order to assess the solution uncertainty due to rotational ambiguity. In 

this work, the bootstrap method was slightly modified in order to properly take into account the 

different dimensions of input and output matrices used in multi-time approach.  

The variables used for the model were classified in strong, weak or bad according to the noise to 

signal ratio (S/N) criterion (Paatero, 2013; Norris and Duvall, 2014) and for measured, missing and 

below MDL (minimum detection limit specific for each component) data the procedure described in 

Polissar et al. (1998) was followed. Finally, for multi-time analysis 22 daily variables (PM2.5 mass, 

Na, Mg, Al, Si, Cl, K, Ca, Ti, V, Mn, Fe, Ni, Cu, Zn, Br, Pb, SO4
2-

, NO3
-
, NH4

+
, OC and EC) and 

14 hourly species (Na, Mg, Al, Cl, K, Ca, Ti, V, Mn, Fe, Ni, Cu, Zn and Pb) were chosen. Input 

matrix shows a sub-block structure where the concentrations of the chemical species measured by 

the same method are grouped together and the row number corresponds to the number of available 

samples. For each row the start, the duration and the end of the sampling have to be expressed as 

time units. In addition, each column containing concentration values must be followed by a column 

reporting uncertainty on concentrations. The input matrix for this work was composed by two sub-
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blocks with 776 samples and the total number of time units was 4104. In Figure 1 an example of the 

input data used for multi-time ME model is shown.  

 

3.  Results and discussion 

In this section, the base-case and constrained solutions are discussed separately. The base-case 

results were obtained without imposing any constraint and were useful to get a preliminary 

identification of the factor profiles and contributions. In order to enhance the chemical profiles 

obtained and also to improve the interpretation of factors, some constraints were imposed on the 

base-case solutions and the continuation run was performed. Major improvements obtained from 

the continuation run analysis are then described and compared to the base case results and the 

uncertainty analysis results on the final constrained solution are reported too. Finally, the multi-

time model solutions were compared to those obtained from the application of ME-2 base model to 

PM2.5 hourly and daily data separately, in order to highlight the benefits to insert multi-time 

resolution details in the same modeling process.   

   

3.1 Base run results 

Before the modeling phase, a mass closure analysis was performed on daily concentration data. In 

order to take into account contributions from oxidized forms of some aerosol chemical species and 

other undetected components, preferential oxides for metals and crustal elements were calculated 

and Organic Carbon (OC) was converted in Organic Matter (OM). The OC-to-OM conversion 

coefficient, whose value is typically in the range 1.2-2.3, was set to 1.4 which can be considered 

representative for an urban area, as reported for example in Turpin and Lim (2001). The 

reconstructed mass explained about 95% of the measured PM2.5 mass and OM represented the 

major contribution (about 45%). 

In addition, the ion balance was calculated considering SO4
2-

, NO3
-
, NH4

+
, Ca

2+
, K

+
, Mg

2+
, Na

+
 and 

Cl
-
. The balance showed an excess of anions (r

2
 =0.97 and slope m=0.85, see Figure S1) likely due 

to the presence of ammonium bisulphate (NH4HSO4).   

In Table S1 mean, median, standard deviation, quartiles, maximum and minimum concentration 

values of the measured species are reported.  

After carrying out 30 runs with ME multi-time analysis, a 7-factor solution was selected 

corresponding to the minimum Q value (Q=5026.44). It is noteworthy that reducing or increasing 

the number of factors, the solutions showed ambiguous chemical profiles and inconsistent mass 

closures (i.e. the sum of species contributions exceeded the 100% of total mass in some factor 

profiles). For the selected solution, most of the scaled residual were between ±3 with a random 
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distribution of positive and negative values; only for Cl, the residuals showed a longer tail on 

positive values. Since the mass is reconstructed on hourly basis by the multi-time model, it is not 

directly comparable with the mass measured with 24-h resolution and therefore a regression 

analysis cannot be performed. However, the computed hourly mass concentrations were averaged 

and the daily mean values were compared with the 24-h mass measurements obtaining a good 

agreement with a regression coefficient of 0.94 and r
2
=0.95 (Figure S2). Finally, scaled source 

profiles and contributions were obtained by dividing each profile by the corresponding mass 

fraction and multiplying each factor score by the same value.  

The seven factors resolved by ME-2 were tentatively assigned to specific aerosol sources on the 

basis of their chemical profiles and EV. Two of them are likely related to traffic (exhaust and non-

exhaust emissions) while the others were associated to biomass burning, soil dust, sulphate, nitrate 

and aged sea salt. In Figure 2 contributions of each species to the chemical profile (µg/µg, grey 

bars) as well as EV values (black points) are represented. In Table 1 average source contributions to 

PM2.5 - both absolute (µg/m
3
) and relative (%) concentrations - are reported for summer and 

winter time. The source contribution temporal patterns computed by multi-time approach are 

represented in Figure S3. 

Two factors were assigned to traffic emissions: the one which mainly contributed to total PM2.5 

mass concentration showed high EV and relevant concentration values for EC, OC, Zn and Pb 

while the other was characterized by high values for Ca, Cu, Fe, but also for Ti, Al and other crustal 

elements. Referring to previous literature works (Pant and Harrison, 2013; Amato et al., 2009) these 

factors were identified as traffic exhaust and non-exhaust emissions, respectively, due to the 

presence of specific markers as outlined in the following. 

Traffic exhaust emissions account for particles which are typically in the fine fractions and are 

generated by the vehicle combustion of fossil fuels and directly emitted from the tailpipe. In 

particular, carbonaceous compounds represent the most useful markers for this source (EC and OC) 

and their relative contributions depend strongly on engine type and age of vehicles. Indeed, 

gasoline engines are known to release higher OC concentrations while diesel engines emit more EC 

(Ntziachristos et al., 2007). This factor represents the main contribution to total PM2.5 mass in both 

seasons and its profile is composed mainly by EC and OC which account for 57% and 41%, 

respectively. The obtained OC/EC ratio results 0.72, comparable with literature values for primary 

emissions, e.g. Pio et al. (2011). The presence of Si was previously found in the PM1 profile of a 

factor associated to a traffic source (Vecchi et al., 2008) and negligible contributions in the profile 

derive from heavy metals, particularly from Zn and Pb. On a yearly basis, this factor associated to 

exhaust emissions contributed for about 37% to PM2.5 mass. 
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The traffic non-exhaust emissions are typically due to tyre and brake wear, road surface abrasion, 

wear and corrosion of other vehicle components such as the clutch and resuspension of road surface 

dust (Pant and Harrison, 2013). They are typically characterized by trace metals (e.g. Cu, Fe, Zn, 

Ca, Mn) even if their composition is site-dependent. The identification of traffic non-exhaust 

emissions is relevant because of their contribution to heavy metals and carcinogenic components in 

atmosphere but also in relationship with the exceedances of air quality guidelines and limits (Amato 

et al., 2011). The chemical profile of this factor is composed mainly by Fe, Ca and Cu, with 

contributions from other species, such as Al, Ti and Mg, generally attributed to crustal components. 

The presence of EC confirms the anthropogenic nature of this factor while the significant 

contribution of SO4
2- 

needs to be more investigated even if a sulphate contribution to road material 

resuspended by traffic has been already observed by Amato et al. (2009). The contribution from 

this non-exhaust emissions factor is comparable in both seasons and accounts for about 7% as 

annual average. 

Biomass burning factor is often identified by levoglucosan and its isomers (mannosan and 

galactosan) generated by cellulose pyrolysis. As levoglucosan concentrations were not measured in 

this study, biomass burning emissions - which include contributions from pellet and wood heating, 

agricultural activities and forest fires - were characterized by other inorganic elements/compounds, 

mainly potassium salts (KCl, K2SO4 and KNO3), metals (Zn, Pb) and refractory compounds 

including Ca, Mg and Si. Actually, the use of K could be disadvantageous because it has multiple 

source emissions (Pachon et al., 2013) and the availability of levoglucosan could have been more 

helpful to better resolve the contributions from biomass burning reducing the interference from 

other sources. Since K emitted from biomass burning is water-soluble while K from mineral dust is 

not, the K
+
 ion water-soluble fraction measured by ion chromatography (IC) could represent a 

suitable marker for biomass burning emissions especially in fine aerosol fractions (Reche et al., 

2012). K
+
 was measured during this campaign and, due to the high correlation between K and K

+
 in 

our dataset (Figure S4), in this work K was used as a tracer for the biomass burning source (Nava et 

al., 2015). Indeed, K is an element detected by PIXE on both daily and hourly samples thus 

allowing the use of unitary adjustment factors in the multi-time model (as described in paragraph 

2.2). The modeled chemical profile (Figure 2b) was dominated mainly by OC and K. As already 

mentioned above the presence of Cl and SO4
2-

 could be ascribed to potassium salts. Although 

already observed in previous literature works (Reche et al., 2012; Gildemeister et al., 2007; Lee and 

Hopke, 2006 as examples), the total lack of an EC contribution in the chemical profile of biomass 

burning was considered a bit suspicious and it needed further investigations (see paragraph 3.2 for 

more details). The typical seasonal pattern with relevant contribution values (up to 30 µg/m
3
 as 
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hourly concentration) during winter time was observed (Figure S3b). A strong impact of biomass 

burning for Central Italy has been already shown by Nava et al. (2015) during a PM10 sampling 

campaign carried out at different sites in Tuscany (Italy).  

The ME-2 factor assigned to sulphate is traced by SO4
2-

 (which accounts for about 78% of the 

PM2.5 mass in the factor profile) and NH4
+
. Secondary sulphate is produced in atmosphere by 

photochemical oxidation of sulphur oxides emitted as gases from local sources or long range 

transports (Seinfeld and Pandis, 1998). This factor is characterized by a clear seasonality with 

major contributions during summer months when a more intense insolation drives photochemical 

processes with the accumulation of reaction products in atmosphere. Moreover, the atmospheric 

circulation conditions in summer foster the transport of  SO2 and sulphate which are produced on 

regional scale. The SO4
2-

 to  NH4
+
  ratio for this factor is 3.3, i.e. it is intermediate between the 

stoichiometric ratio for (NH4)2 SO4 (2.7) and that relative to ammonium bisulphate (5.3). 

The nitrate factor is characterized by NO3
-
 and NH4

+
 as major contributors in the chemical profile 

accounting for 45% and 9% of PM2.5 mass, respectively. Nitrates represent a secondary component 

due to oxidation of the nitrogen oxides produced by local combustion processes, typically traffic 

and heating systems in urban areas. The temporal pattern shows a strong seasonality with high 

values during winter months and very low values during summer. This effect could be explained 

both by the residential heating emissions during colder months and by the atmospheric gas-to-

particle equilibrium shifted towards the gaseous phase during summertime as well as by negative 

sampling artifacts (Vecchi et al., 2009). NO3
-
/NH4

+
 ratio is 4.8, i.e. higher than the expected 

stoichiometric value for ammonium nitrate (3.4). This higher ratio might be due to the influence 

from other sources (such as biomass burning processes which produce KNO3), or gaseous 

pollutants reactions with mineral particles (such as Ca bearing particles forming Ca(NO3)2) during 

long-range transport episodes as shown in Perrone et al. (2013). There is also a relevant 

contribution of EC in the factor profile. As EC has a primary origin, its presence in this factor 

associated to secondary nitrate is suspicious and will be investigated in the following paragraph. 

The soil dust factor represents particulate matter deposited on the ground and resuspended by 

natural (e.g. wind) or anthropogenic agents (e.g. traffic) as well as due to medium- and long-range 

transport events. Principal tracers for this factor are crustal elements, such as Al, Si and Ti (Viana et 

al., 2008; Bernardoni et al., 2011 and therein in cited literature). The Al/Si ratio in the ME-2 

chemical profile factor is 0.30, which is comparable to the value expected for average crustal matter 

(Mason, 1966). Both relative and absolute contributions of the soil dust factor to PM2.5 mass are 

higher during summertime (6%, 1.1 µg/m
3
) than wintertime (3%, 0.7 µg/m

3
). Indeed, stronger 
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atmospheric turbulence and drier soil conditions foster particles resuspension during summertime, 

as often observed in Mediterranean countries (Vecchi et al., 2008). 

The factor assigned to aged sea salt represents the contribution of marine air masses transported to 

receptor site from the coast, about 80 km far from Florence. Tracers for this source are Na, Mg and 

Cl; EV for Na e Mg show the highest values while their contributions in source profiles are 

respectively 41% and 6% of the emitted PM2.5 mass. Na/Mg ratio is 0.13, in agreement with that 

expected for bulk-sea water (0.12). Cl/Na ratio is 0.06, significantly lower than the typical value for 

fresh sea salt particles (1.8); this is likely a consequence of Cl deplection effects due to 

heterogeneous reactions involving NaCl during transport to the monitoring site (D’Alessandro et 

al., 2003). This source represents the lowest contribution to PM2.5 mass (i.e. 4%) and its average 

contribution is about 0.6 µg/m
3
. 

 

3.2 Continuation run: results 

Although the factors were quite clearly resolved in the base-case modeling reported so far, the 

obtained solution can be improved imposing proper constraints. In particular, two constraints have 

been imposed on the nitrate profile in order to enhance the characterization of this source. First of 

all, the NO3
-
/NH4

+
 ratio in the chemical profile was constrained to the stoichiometric value for 

ammonium nitrate (NO3
-
/NH4

+
 = 3.4) as in the base case it resulted a bit higher (4.8) suggesting 

nitrate and ammonium could have been over- and under-estimated, respectively. The strength 

associated to this constraining equation was defined by setting the Qmain increase limit to 100 units. 

Secondly, the presence of EC in a factor which was attributed mainly to a secondary PM 

component was not expected therefore a pulling equation was applied to EC in the profile in order 

to force to zero its contribution to the secondary nitrate factor. For this constraint the Qmain allowed 

increase was set to 10 units implying a weaker effect associated to this equation than the first one.  

The small increase in the object function (i.e. 20 units or 0.4% more than the base case) obtained in 

the continuation run represented a useful diagnostic instrument to evaluate the reliability of the 

imposed constraints and the overall goodness of the analysis. Although a definitive criterion does 

not exist yet and tolerance depends on the strength and type of constraints, increments of a few tens 

are generally considered acceptable (Paatero and Hopke, 2009). 

Both the targets imposed on the secondary nitrate factor were achieved. In Figure 3c, the resulting 

profile is compared to that provided by the base run. The content of EC is zeroed and the 

contributions from ionic compounds were also modified as NH4
+
 increased and NO3

-
 slightly 

decreased. Nevertheless, a relevant amount of SO4
2-

 appeared in the factor profile and its origin is 
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not clear yet (see below); in addition, a fraction of SO4
2-

 was still contained in every chemical 

profile, thus SO4
2- 

presence has to be investigated further. 

Besides the secondary nitrate profile, it is necessary to study the effects of the imposed constraints 

on the other source profiles to check if their chemical composition significantly changed. Traffic 

exhaust emissions, traffic non-exhaust emissions, sulphate, soil dust and aged sea salt profiles did 

not change while a significant amount of NO3
-
 appeared in biomass burning profile. This is due to 

the excess of NO3
-
 in secondary nitrate which - after the continuation run - was associated to 

biomass burning factor as a consequence of the species redistribution generated by the constraints. 

It is noteworthy that the nitrate presence in the biomass burning chemical profile is physically 

meaningful as both NO3
-
 and SO4

2-
 contributions may derive from potassium salts (KNO3 and 

K2SO4 particularly) produced by biomass combustion processes (Nava et al., 2015).  

Even if absolute and relative source apportionment values for the factors are almost unchanged in 

comparison with base run results (Table S2), the continuation run helped in understanding more 

accurately the modeled source profiles and appeared to be a suitable tool for improving results also 

for the multi-time model. 

No improvements concerning possible appearance of EC in biomass burning source was registered 

after the continuation run; thus, we tested the addition of an extra constraint on the chemical profile 

of this factor. In particular, a pulling-to-maximum equation (Paatero, 2007) was added to the 

constraints mentioned above in the continuation run analysis. By this equation, the content of EC in 

the profile was pulled up as far as possible keeping the change in Qmain below a fixed value (set to 5 

units in this analysis). The imposed condition was satisfied: a certain amount of EC was associated 

to the biomass burning chemical profile with an increase of Qmain of only 4 units in comparison to 

the continuation run analysis described above. This result suggested the presence of EC in the 

profile is reliable, as – at least in our experience - constraints which have not physical meaning are 

not achieved by the model. In addition, the suspicious amount of  SO4
2-

  in the chemical profile of 

nitrate was pulled to zero and this constraint was reached suggesting that the contribution of this 

secondary species in the profile is not relevant. Nevertheless, we chose to keep the number of 

imposed constraints on the final solution as small as possible and the results of these tests are shown 

separately in Figures S5-S6, respectively.  

 

3.3 Continuation run: uncertainty evaluation 

The bootstrap analysis provided the uncertainty associated to the constrained source profiles. The 

technique evaluates mostly the uncertainty due to random errors in input data. As mentioned above, 

also a random rotational pulling phase was performed, so that a fraction of rotational ambiguity can 
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be accounted for. During this phase, a certain number of entries of the G matrix is random-chosen 

and pulled up or down of a fixed amount. The criteria used for selecting entries to be pulled was 

here slightly modified because of the different dimensions of matrices used in multi-time approach 

respect to the traditional scheme. 100 repetitions were carried out and for each run the chemical 

profiles were computed. The interquartile range (25th-75th percentile) for each species contribution 

was chosen as the variability interval which should contain the best solution value. In Figure 4 the 

comparison between bootstrap results and modeled solutions for each source profile is shown. In 

this case, source profiles computed by bootstrap are not normalized and the values are expressed in 

µg/m
3
 on a logarithmic scale. The species tracers for each source show generally small confidence 

ranges which include the modeled solution values while, as expected, for the species which are not 

specific markers in that source profile the agreement is weaker and interquartile ranges result wider. 

However, the agreement for species tracers could be considered as index of the goodness of the 

model results. 

 

3.4 Comparison with ME-2 base model solutions 

The advantages obtained by the multi-time approach here proposed can be seen comparing the base-

case solutions to the results obtained from ME-2 base model performed with hourly and daily data 

separately.  

As far as hourly data obtained by streaker sampler are concerned, it is noteworthy that a complete 

source apportionment cannot be computed as mass concentration is typically not available from 

streaker samples. In addition, on streaker samples only elemental concentrations can be detected, 

thus the lack of any information about the carbonaceous fraction and ionic species prevents the 

identification of significant contributions impacting on the investigated area (e.g. nitrates). 

Evaluating the elemental composition of chemical profiles obtained by the application of ME-2 

base model to PM2.5 hourly data, five sources were identified: sulphate, traffic, soil dust, aged sea 

salt and biomass burning. The analysis with six factors was rejected because it led to a split of 

biomass burning profile in two factors dominated almost exclusively by K and Pb, respectively, 

which cannot be further identified without other additional information. The results provided from 

hourly data analysis are shown in Figure S7. 

As regards the application of ME-2 base model to daily data only, six factors were identified: 

traffic, biomass burning, nitrate, sulphate, soil dust and aged sea salt. It is noteworthy that the base 

model was not effective in resolving the different traffic contributions revealed by multi-time 

approach (exhaust and non exhaust emissions). This is likely due to the absence of the high 

temporal details contained in the hourly data, which permit to take into account in the modeling 
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process the short-time variations of elemental tracers occurring in real cases. The chemical profiles 

of the other factors were similar to those computed by multi-time approach and also stechiometric 

values for nitrate and sulphate were fully comparable. Performing the same analysis on the daily 

dataset at seven factors, one factor had significantly high EV only for Cl and, in general, the results 

showed more ambiguous chemical profiles; therefore, the six-factor solution was preferred. The 

results and apportionment values for the six factors solution of ME-2 base model on daily data are 

reported in Figure S8 and Table S3. 

 

4.  Conclusions 

The multi-time model allowed the joint analysis of both daily and hourly aerosol compositional 

data taking advantage of the detailed chemical composition related to the daily dataset and the high-

time resolution patterns given by hourly elemental data. The high temporal details improved the 

modeling, resolved more accurately the factors and together with the use of source markers on a 

daily basis improved the factor-to-source assignments. In particular, the multi-time approach led to 

the identification of two well-distinct contributions from traffic emissions (exhaust and non-exhaust 

emissions) which also represent relevant PM2.5 sources, as expected considering the location of the 

receptor site. The factor assigned to traffic exhaust emissions gives the most relevant contribution 

to PM2.5 mass (37% and 8 µg/m
3
 as annual average). The characterization of traffic emissions is 

very useful to improve the actual knowledge about the different impacts of this source on urban 

areas. The comparison with the results obtained from the application of ME-2 base model to daily 

and hourly compositional data separately demonstrated that the integration of higher resolution data 

can be advantageous to better distinguish these traffic emissions. In addition, the present work 

allowed testing the imposition of constraints on factor profiles computed by the multi-time ME-2 

model to reduce rotational ambiguity and identify more accurately the sources. Two constraints 

were imposed on the nitrate profile leading to a better definition of this factor dominated by 

secondary components and – as a result of species redistribution - a more detailed profile of 

biomass burning factor was also obtained. Finally, a bootstrap method was implemented to evaluate 

the uncertainty of final constrained solutions. This method allows accounting for the uncertainty 

due to random errors of input data and to rotational ambiguity. Confidence intervals on the seven 

source profiles were computed and the general agreement to solution values suggests the goodness 

of the final results. 

In conclusion, this application of the enhanced ME-2 revealed the importance of developing 

advanced receptor models which could lead to a better understanding of the sources impacting on a 

studied area. In particular, the multi-time model can be considered an advantageous tool to resolve 
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apportionment problems as high-time details allow to take into account fine scale variations of 

specific tracers improving identification of factors and resolving in certain situations a greater 

number of sources. For future studies, the integration of ancillary data (e.g. mass and/or other 

chemical species with hourly resolution) or longer periods with high resolution sampling could be 

helpful to obtain more reliable and robust solutions. 
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FIGURE AND TABLE CAPTIONS 

 

Figure 1: Example of the input data for multi-time ME where unc indicates the uncertainty column. 

 

Figure 2: Base-case solution: source profiles (bars) and EV values (dots). 

 

Figure 3: Comparison between source profiles provided by the base-case solution and the 

continuation run solution. 

 

Figure 4: Bootstrap results for the constrained source profiles. Interquartile intervals are 

represented by blue bars, the median values by black lines and the whiskers extend to the data 

extremes. The constrained solution values are indicated by red circles. 

 

Table 1: Absolute and relative average source contributions to PM2.5 mass during the whole 

sampling period, summer and winter. 

 

 

 

 

 

 

 

 

 

 



Table 1 

 

Table 1) Absolute and relative average source contributions to PM2.5 mass during the whole 

sampling period, summer and winter. 
 

Factor 
Summer 
[μg/m3] 

Winter 
 [μg/m3] 

Annual average 
 [μg/m3] 

Traffic exhaust 
emissions  

8.4 (45%) 7.9 (31%) 8.0 (37%) 

Biomass burning 2.5 (13%) 7.8 (25%) 5.6 (20%) 

Nitrate 0.7 (4%) 7.0 (21%) 4.4 (15%) 

Sulphate  4.0 (21%) 3.5 (11%) 3.7 (14%) 

Traffic non-exhaust 
emissions 

1.3 (7%) 1.5 (6%) 1.4 (7%) 

Soil dust 1.1 (6%) 0.7 (3%) 0.9 (4%) 

Aged sea salt 0.6 (4%) 0.6 (3%) 0.6 (4%) 

Table 1
Click here to download Table: Table 1.docx

http://ees.elsevier.com/stoten/download.aspx?id=883173&guid=e4555313-5787-45c0-b574-10399690bf61&scheme=1
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