
REVIEW
published: 05 June 2020

doi: 10.3389/fonc.2020.00790

Frontiers in Oncology | www.frontiersin.org 1 June 2020 | Volume 10 | Article 790

Edited by:

Claudio Fiorino,

San Raffaele Hospital (IRCCS), Italy

Reviewed by:

Jung Hun Oh,

Cornell University, United States

Alexander F. I. Osman,

Al-Neelain University, Sudan

*Correspondence:

Giulia Marvaso

giulia.marvaso@ieo.it

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Radiation Oncology,

a section of the journal

Frontiers in Oncology

Received: 30 January 2020

Accepted: 22 April 2020

Published: 05 June 2020

Citation:

Isaksson LJ, Pepa M, Zaffaroni M,

Marvaso G, Alterio D, Volpe S,

Corrao G, Augugliaro M, Starzyńska A,
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In order to limit radiotherapy (RT)-related side effects, effective toxicity prediction and

assessment schemes are essential. In recent years, the growing interest toward artificial

intelligence and machine learning (ML) within the science community has led to the

implementation of innovative tools in RT. Several researchers have demonstrated the

high performance of ML-based models in predicting toxicity, but the application of these

approaches in clinics is still lagging, partly due to their low interpretability. Therefore, an

overview of contemporary research is needed in order to familiarize practitioners with

common methods and strategies. Here, we present a review of ML-based models for

predicting and classifying RT-induced complications from both a methodological and a

clinical standpoint, focusing on the type of features considered, the ML methods used,

and the main results achieved. Our work overviews published research in multiple cancer

sites, including brain, breast, esophagus, gynecological, head and neck, liver, lung, and

prostate cancers. The aim is to define the current state of the art and main achievements

within the field for both researchers and clinicians.

Keywords: radiotherapy, toxicity, predictive models, machine-learning, radiomics

INTRODUCTION

It is estimated that as many as half of the cancer patients in the world are eligible for radiotherapy
(RT), either with curative or palliative intent (1). Ultimate generation linear accelerators and
modern techniques, such as intensity-modulated RT (IMRT), stereotactic body RT (SBRT), and
proton therapy (PT), offer high conformity and submillimetric levels of precision. However, normal
tissues close to the target region, defined as organs at risk (OARs), can also be affected, leading to
RT-induced toxicity. Short-term or acute toxicity occurs during treatment or within 3 months after
its completion, and generally, full recovery occurs within weeks to months. Conversely, late effects,
such as fibrosis or RT-induced oncogenesis, are generally considered as irreversible and progressive
over time. It follows that, when planning any RT treatment, its potential benefits have to be weighed
against the possibilities of damage to healthy organs and tissues, with the final aim of maximizing
curative response while minimizing the probability of normal tissue complications. On the other
hand, when RT is delivered with curative intent, target coverage should not be jeopardized in favor
of sparing OARs (2). However, different RT-induced side effects vary in their clinical significance,
so an accurate estimate of risks is mandatory, especially when alternatives such as surgery or
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chemotherapy are available. The physiopathology of toxicity is
not only related to the radiation dose but also depends on genetic
factors and tumor microenvironment. Therefore, identifying the
main factors that predispose for a specific type of toxicity can
help to improve treatment planning and inform patients and
clinicians about expected treatment tolerance.

Radiosensitivity is generally studied with the so-called normal
tissue complication probability (NTCP) models, which can
be classified into mechanistic (or analytical) and data-driven
[or (semi)empirical] (3). The former category is based on a
simplified characterization of the interaction between radiation
and biological tissues and seeks to explain the underlying
mechanisms with explicit algorithms. The most common
analytical models are the Lyman–Kutcher–Burman models,
which are often included into treatment planning systems to
allow for a biological optimization of the delivered dose among
competing treatment strategies (4). These algorithms are based
on handcrafted rules with intricate exceptions that often fail to
predict the actual complications induced by RT. On the other
hand, data-driven approaches are based on the assumption that
the interaction between radiation and normal tissue is complex
and cannot be properly represented deterministically. Therefore,
such approaches aim to identify the model that best fits the input
data (also termed features or independent variables) and output
data (also termed response or dependent variables). Predictors of
toxicity can be roughly classified into “dosimetric,” which directly
concerns the delivery of radiation (e.g., dose-volume histogram
(DVH) points), “clinical,” which includes patient- and disease-
related variables (e.g., gender and tumor histology), and “image-
based” or “radiomic,” which can be extracted from various
medical images (e.g., the mean, variance, and skewness of image
intensity histograms). In general, these approaches can be further
distinguished into well-known traditional statistical techniques,
such as regression-based techniques, and approaches based on
artificial intelligence (AI) and machine learning (ML) (5).

Abbreviations: 3D-CRT, 3D conformal RT; ADC, apparent diffusion coefficient;

AI, artificial intelligence; ANN, artificial neural network; AUC, area under the

curve; BMI, body mass index; BRT, brachytherapy; CNN, convolutional neural

networks; CP-DMA, canonical polyadic decomposition–deterministic multi-way

analysis; CT, computed tomography; CTCAE, common terminology criteria for

adverse events; Dmax, dose max; DV, dose-volume; DVH, dose-volume histogram;

EBRT, external beamRT; ED, erectile disfunction; EORTC, EuropeanOrganization

for Research and Treatment of Cancer; FDG PET, [18F]-fluorodeoxyglucose

PET; GEC-ESTRO, Groupe Européen de Curiethérapie-European SocieTy for

Radiotherapy & Oncology; GI, gastrointestinal; GLCM, gray level co-occurrence

matrix; GU, genitourinary; H&N, head and neck; IBM, image biomarker;

IBDM, image-based data mining; ICA, independent component analysis; IMRT,

intensity-modulated RT; kNN, k-nearest neighbors; LASSO, Least Absolute

Selection and Shrinkage Operator; LR, logistic regression; MARS, multivariate

adaptive regression splines; ML, machine learning; MRI, magnetic resonance

imaging; NSCLC, non-small-cell lung cancer; NTCP, normal tissue complication

probability; NTR, non-treatment related; OAR, organ at risk; PCa, prostate cancer;

PCA, principal component analysis; PET, positron emission tomography; PLR,

penalized logistic regression; PRFR, pre-conditioned random forest regression;

PSA, prostate-specific antigen; PT, proton therapy; PTV, planning target volume;

RB, rectal bleeding; RF, random forest; RSDM, rectum surface dose maps; RT,

radiotherapy; RUS, random under-sampling; SBRT, stereotactic body RT; SNP,

single nucleotide polymorphism; SVM, support vector machine; TPS, treatment

planning system. TRIPOD, Transparent Reporting of a multivariable prediction

model for Individual Prognosis Or Diagnosis; V20, volume receiving 20% of dose.

ML-Based Models of Toxicity
The theoretical framework for artificially intelligent ML models
was laid down already in the 1950s (6), but it was not until
recently that advances in technology have allowed for the
integration of these tools into the experimental and clinical
practice of health sciences. AI, in its broadest sense, denotes an
artificial system able to perform a certain task to some success.
ML, typically considered a subset of AI, generally refers to some
set of algorithms that can “learn” to perform a specific task
without explicit implementation of the solution (although the
terms AI and ML are often used interchangeably). For instance,
ML algorithms are able to produce predictions on new and
unseen data after being trained on a finite learning data set
and are especially useful for tasks that involve a large amount
of data or variables (Figure 1). With the plethora of possible
variables that can lead to toxicity, ML approaches are particularly
well suited to model the relationship between treatment-induced
side effects and related covariates. An ML model that is able
to predict an outcome from a set of inputs, after tuning the
best set of parameters on a number of training cases, is referred
to as a classifier. Some common classifiers are naïve Bayes,
logistic regression (LR), k-nearest neighbors (kNN), random
forests (RF), support vector machine (SVM), and artificial neural
networks (ANN).

Since the ML model will learn the parameters from the
available data, it follows that the characteristics of the data set
are absolutely crucial. If the training data set is sparse, the model
typically fails to learn a representative set of parameters that
can be generalized to instances outside of the data set. This
problem, which generally arises when a model has been trained
to encompass a particular set of data too closely, is known as
overfitting or overtraining. Overfitting can occur for a variety of
reasons and should always be a major concern when constructing
an ML model.

Since the performance of any ML model depends on the
particular problem and data set it is applied to, it is intractable
to generally rank different methods. Nevertheless, an acceptable
approximation of a model’s performance is given by the so-called
AUC (which is defined as the area under the receiver operating
characteristic curve) applied to an independent validation set.
The AUC value of a model ranges between 1, corresponding to
perfect classification of the validation set, and 0.5, corresponding
to a purely random classification. It is important to note, however,
that the AUC can be severely misleading in case of flaws in the
model design, such as heavily imbalanced data sets or misused
validation procedures.

Successful ML models have the potential to aid clinical
facilities and practitioners in minimizing side effects and
increasing the likelihood of positive outcomes. Despite a good
amount of research in ML methods for toxicity assessment, to
the best of our knowledge, this is the first effort to summarize
the current state of the field. Previous publications have focused
either on specific anatomical districts (5) or exclusively on
methodologies and theory (7, 8). Therefore, the aim of this review
is to present an overview of current achievements in the field as
well as main areas of debate and possible future directions, both
from a methodological and a clinical perspective.
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FIGURE 1 | Typical workflow of artificial intelligence-based models for clinical toxicity prediction. Machine learning algorithms work by tuning their characteristic

parameters by modeling the relationship between input and output data in an automatic manner.

SEARCH STRATEGY AND SELECTION
CRITERIA

A comprehensive literature review was performed through the
use of a search string (see Supplementary Materials S1) built
by an experienced medical librarian with input from the study
investigators. Different combinations of database-specific terms
were used, supplemented by keywords in order to cover all
the areas related to RT toxicity, ML, and toxicity prediction.
The literature review was conducted using the PubMed/Medline
databases in order to identify publications to be synthetized
into an exhaustive overview of the state of the art of ML
application for the prediction of RT-induced toxicity. The search
resulted in 864 hits. Reference lists of selected articles were hand
searched for further potential relevant papers and also using
the Snowballing technique (9). Studies with no focus on cancer,
radiation therapy, toxicity, or any kind of ML (in its broadest
sense) were excluded, together with articles dealing with pediatric
patients. All publications in languages other than English were
also excluded. In the end, 53 studies were included in this
narrative review. The search was conducted in March 2020 (see
Supplementary Materials S2).

OVERVIEW OF CONTEMPORARY
RESEARCH

Many studies were found that employ ML-based models
to predict RT-related side effects. Most of them concern
head and neck (H&N) (13 studies), lung (15 studies), and
prostate (16 studies) cancers, while a minor portion focused
on brain (1 study), breast (3 studies), esophagus (1 study),
gynecology (3 studies), and liver (1 study) cancers (Table 1). The

presented literature is divided into different sections according
to the anatomical district. Focus was put into presenting both
methodological and clinical aspects of the papers.

Brain
A single study on ML-based toxicity modeling was found related
to brain cancer (4). In the study, the authors conducted a
comprehensive comparison of the performance of different ML
classifiers on multiple data sets including patients with brain,
lung, and H&N primaries. Their models included decision
trees, RF, neural network, SVM, elastic net LR, and Logit-
Boost classifiers and were tested on 12 distinct data sets for
a total of 3496 patients. Both dosimetric and blood marker
data from meningioma as well as (non)-small-cell lung cancer
(NSCLC) and H&N cancer patients were considered. No single
classifier was found to be ideal across all data sets, but RF and
net LR performed comparably (best in six and four data sets,
respectively). Based on these results, the authors also investigated
methods of preselecting a classifier, concluding that empirical
selection of the classifier is advantageous, leading to an average
AUC increase of 0.02.

Breast
Current available literature includes only one abstract (11) and
two full papers (10, 12). In the study by Saednia et al., they
proposed an innovative approach based on the detection of body-
surface temperature increase induced by radiation dermatitis.
Thermal images of the irradiated breast were taken from a pool
of 90 patients at four consecutive time points: pre-RT and after
5, 10, and 15 fractions, respectively (with a total dose of 42.50Gy
in 16 fractions). Skin toxicity was assessed at the end of RT with
the Common Terminology Criteria for Adverse Events (CTCAE)
guidelines. On the independent testing data set, the RF classifier
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TABLE 1 | Summary of reviewed literature.

Cancer type References No. of pts Type of RT Type of predicted

toxicity

Features

type

Classifier Results*

Breast (10) 90 RT Dermatitis R RF Acc = 0.87 (test)

(11) 2277 Moist desquamation,

dermatitis, chest pain,

fatigue

D, C LR, RF, gradient

boosting

0.56–0.85

(12) 827 RT Telangiectasia D, C LASSO

Esophagus (13) 101 IMRT or 3D-CRT Pneumonitis D, C LR Acc = 0.63

Gyneco (14) 42 EBRT+BRT Rectal toxicity D SVM 0.82–0.91

(15) 42 EBRT+BRT Rectal toxicity D CNN (transfer

learning)

1.29

(16) 35 BRT Fistula formation D, C SVM 1.30

H&N (17) 437 RT (397) PT (40) Toxicity (grade ≥3) C LR, RF, XGBoost 0.63–0.65

(18) 2121 RT Unplanned

hospitalizations,

Feeding tube placement,

Weight loss

D, C LR, gradient

boosting, RF

0.64–0.76

(19) 153 RT Xerostomia D, R, C 6ML algotithms Best SVM and

extra-trees 0.74–0.89

(20) 86 RT Trismus D IBDM Identification of a

cluster of voxel related

with toxicity

(21) 427 RT Xerostomia D, C LR, LASSO, RF Best LR (0.70)

(22) 173 RT Acute dysphagia D, C SVM, RF 0.82

(23) 297 IMRT Xerostomia (grade ≥2) D, C LR Model updating

is beneficial

(24) 134 IMRT and PT Esophagitis R, D LASSO 0.75

(25) 47 3D-CRT Sensorineural hearing loss R, C Decision stump,

Hoeffding

76.08% accurarcy

75.9% precision

(26) 37 IMRT Parotid shrinkge

Xerostomia

D, C Fuzzy logic

Naïve Bayes

Acc = 0.79–0.86

(27) 249 IMRT Xerostomia, sticky saliva R, D Multivariate LR 0.77

(28) 351 IMRT Mucositis D, C LR, SVM, RF 0.71 (RF)

(29) 1 (H&N)

1 (Prostate)

IMRT Xerostomia (H&N),

Rectal bleeding (prostate)

D Decision tree, SVM 0.42% MAE (H&N)

97% acc (prostate)

Liver (30) 125 SBRT Hepatobiliary toxicity D, C CNN (transfer

learning)

1.25

Lung (31) 110 SBRT LC, DFS, OS, and fibrosis R Cox regression

(32) 203 IMRT or PT Pneumonitis C RF 1.06

(33) 192 IMRT and 3D-CRT Radiation pneumonitis R, D, C LASSO 0.68

(34) 197 SBRT Chest wall syndrome D, C Descision tree

RF

n/a

(4) 3496

(lung+brain

+H&N)

RT Classifiers comparison D, C Decision tree, RF,

ANN, SVM, elastic

net, logit-boost

Best: elastic net LR

and RF

(35) 14 SBRT Lung injuries R, D LR 0.64–0.78

(36) 201 SBRT Pneumonitis D, C Decision trees, RF,

RUSBoost

(37) 115 RT Esophagitis D, C LASSO 0.78

(38) 54 3D-CRT Pneumonitis D, C Bayesian network

LR

Single variable

0.66–0.83

(39) 748 RT Esophagitis D, C LR 0.83

(40) 219 3D-CRT Pneumonitis D, C SVM 1.16

(Continued)
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TABLE 1 | Continued

Cancer type References No. of pts Type of RT Type of predicted

toxicity

Features

type

Classifier Results*

(41) 55 (H&N)

219+166

(Lung)

3D-CRT Xerostomia,

Pneumonitis (166)

Esophagitis (216)

D, C LR, SVM, ANN Best: modified SVM

(42) 219 RT Radiation pneumonitis D, C Decision tree,

ANN, SVM,

self-organizing

maps

0.79

(43) 234 RT Radiation pneumonitis D, C Decision tree 0.72

(44) 166 EBRT Esophagitis

xerostomia

D LR

(45) 142 3D-CRT Pneumonitis D ANN 0.61–0.85

Prostate (46) 64 IMRT (52 pts),

3D-CRT (12 pts)

Urinary toxicity

Gastro-intestinal toxicity

R, D, C LR 0.65–0.77

(47) 33 IMRT Cystitis R LR 0.62–0.75

(48) 33 IMRT Rectal wall changes R LR 0.46–0.81

(49) 351 RT Rectal bleeding

Fecal incontinence

Urinary incontinence

Nocturia

R, D, C LR 0.58–0.73

(50) 598 RT Late fecal incontinence D, C ANN 0.78

(51) 593 RT Rectal bleeding D, C ICA 0.83, 0.80, 0.78

(52) 324 BRT+-EBRT GU toxicity symptoms D, C, G RF 0.7

(53) 118 EBRT, BRT GI toxicities D LR Identification of spatial

constraint for toxicity

reduction

(54) 368 RT Rectal bleeding,

Erectile dysfunction

C, G RF, LR 0.71 (rectal bleeding)

0.68 (erectile

dysfunction)

(55) 79 IMRT Rectal toxicity (grade ≥2) D, C LR 1.28

(56) 754 EBRT Dysuria, hematuria,

incontinence, frequency

D, C LR, Elastic-net,

SVM, RF, ANN,

MARS

Best: LR, MARS

AUC = 0.65

(57) 99 EBRT Rectal bleeding D LDA, SVM,

k-means, kNN,

PCA, CP-DMA

Best: CP-DMA

(58) 261 3D-CRT Rectal toxicity, rectal

bleeding

D, C RF NTCP, NTCP 0.76, 0.66

(59) 718 RT Rectal bleeding LR, ANN 0.655, 0.704

(60) 321 RT Acute bladder and rectal

toxicity

D, C ANN, SVM 0.7

(61) 119 RT Rectal bleeding

Nocturia

D ANN Sensitivity and

specificity >55%

3D-CRT, 3D conformal RT; Acc, accuracy; ANN, artificial neural network; AUC, area under the curve; BRT, brachytherapy; CNN, convolutional neural network; CP-DMA, canonical

polyadic decomposition–deterministic multi-way analysis; DFS, disease free-survival; EBRT, external beam RT; GI, gastrointestinal; GU, genitourinary; H&N, head and neck; IBDM,

image-based data mining; ICA, indipendent component analysis; IMRT, intensity-modulated RT; kNN, k-nearest neighbors; LASSO, Least Absolute Selection and Shrinkage Operator;

LC, local control; LDA, linear discriminant analysis; LR, logistic regression; MAE, mean absolute error; MARS, multivariate adaptive regression splines; ML, machine learning; NTCP,

normal tissue complication probability; n/a, not applicable; OS, overall survival; PCA, principal component analysis; pt, patient; PT, proton therapy; RF, random forest; RT, radiotherapy;

RUSBoost, random under-sampling Boost; SBRT, stereotactic body RT; SVM, support vector machine. Features were classified as clinical (C), dosimetric (D), genomic (G), or radiomic

(R). *If not specified, AUC values are reported.

showed a good accuracy (87%) at the fifth fraction in predicting
the skin toxicity at the end of RT.

The authors in the study by Reddy et al. trained three
different classifiers, namely, RF, gradient boosted decision tree,
and LR, on a large population of 2277 patients to predict
the occurrence of common radiation toxicities, such as moist
desquamation, radiation dermatitis, breast/chest wall pain, and
fatigue. Validation performances reached AUC values of 0.85,

0.82, 0.77, and 0.56 for the respective endpoints. According to the
authors, it was the first demonstration of the ability to accurately
predict acute RT toxicities in a prospective validation data set.

Finally, Mbah et al. set out to highlight the main failure
causes for models predicting RT-induced toxicity. Data from two
different German cohorts were used for a total of 827 breast
cancer patients who received RT. The Least Absolute Selection
and Shrinkage Operator (LASSO) LR model was used to predict
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telangiectasia within each individual data set separately. Each
model was also externally tested on the other data set. To their
surprise, they found that one predictive variable (hypertension)
had a positive coefficient on one data set, and a negative
coefficient on the other. Some variables were also exclusive to a
specific model, thus suggesting that overcoming overfitting does
not completely solve the problem of generalization.

Esophagus
An ML-based model for toxicity prediction in esophagus cancer
patients was published by Hart et al. (13). In their work, the
authors investigated the relationship between clinical symptoms
of radiation pneumonitis and the pulmonary metabolic activity
on post-treatment [18F]-fluorodeoxyglucose positron emission
tomography (FDG PET). Their study included a cohort of
101 patients who underwent restaging FDG PET/computed
tomography (CT) imaging between 3 and 12 weeks after
completing thoracic RT for esophageal cancer. Several LR
models were built with different combinations of treatment
and dosimetric variables, obtaining a peak accuracy of 0.63
with p ≤ 0.032 when combining pulmonary metabolic radiation
response with the mean lung dose, thus indicating a significant
relationship between pulmonary metabolic radiation response
and radiation pneumonitis.

Gynecological Cancers
The three studies in this section analyze toxicity outcomes
prediction following brachytherapy alone or in combination
with external beam RT (EBRT) in gynecological cancers. All the
models were trained with limited data sets, ranging between 35
and 42 patients, and with SVM or convolutional neural network
(CNN) classifiers.

Tian et al. (16) developed a model for fistula formation
prediction with an SVM classifier. Thirty-one different features
were used as predictor variables from a relatively small sample of
35 patients treated with interstitial brachytherapy. Their model
reached a high accuracy of 0.901, but the authors rightfully point
out the strong limitation deriving from the usage of the small
data set.

One study by Chen et al. (14) investigated the relationship
between rectal toxicity (CTCAE grade ≥2) and dosimetric
features. In detail, the feature calculation was performed
on both the 3D rectum surface and the 2D deformed
accumulated rectal surface dose map. The models, for
which they used SVM classifiers, achieved AUC values of
0.82 and 0.91 for different feature selection procedures (and
42 patients). The authors also demonstrated that the ML
model outperformed classification based on the conventional
Groupe Européen de Curiethérapie-European SocieTy
for Radiotherapy & Oncology (GEC-ESTRO) dosimetric
parameters Dose to 0.1, 1 and 2 cm3, which achieved an AUC
of 0.71.

Zhen et al. (15) tested the feasibility of a CNN for rectum
toxicity prediction through a transfer learning approach. The
network itself, originally developed by the visual geometry
group at the University of Oxford, had been pretrained on the
ImageNet data set. The fine-tuning step was then performed

on unfolded rectum surface dose maps (RSDM). By using the
gradient-weighted class activation maps, the authors were also
able to identify the existence of discriminative regions on the
RSDM. Their results demonstrate than the CNN can outperform
conventional dosimetric parameters with top AUC values of 0.89
as compared to a meager 0.58 for the one-dimensional dose-
volume (DV) parameters (or 0.7 for 2D RSDM features). The
authors also presented comparisons between the transfer learned
network and a network trained from scratch.

Head and Neck
The size of the training data sets in published works on H&N
cancers ranges from 37 to 2121 patients. Predicted toxicity
outcomes included late xerostomia, acute mucositis, parotid
shrinkage, unplanned hospitalization, and weight loss. Applied
classifiers included LR, RF, gradient boosting, and one based on
fuzzy logic. In addition, one study (4) made a comparison of the
performance of different classifiers on different data sets (please
refer to the Brain section for further details).

The two most recent articles (17, 18) both applied three
different classifiers (RF, gradient boosting, and LR models)
to predict unplanned hospitalizations, feeding tube placement,
and significant weight loss (Reddy) and grade ≥3 toxicity
(Wojcieszynski). Reddy et al. considered a large data set of
2,121 patients, comparing over 700 treatment-related and clinical
variables, and achieved AUC values of up to 0.640, 0.755,
and 0.751 for RF, gradient boosting, and LR, respectively.
Wojcieszynski et al. achieved a moderate success in predicting
grade≥3 toxicity for 437 patients after 90 and 180 days (c-statistic
0.65 and 0.63, respectively) using 47 different patient covariates.
Among them, planning target volume (PTV) integral dose, body
mass index (BMI), integral dose to regions outside the PTV, and
age were most statistically impactful ones.

By retrospectively comparing updating strategies,
Nakatsugawa et al. (23) demonstrated the importance of
continuous model revising. On their data set, they concluded
that the best strategy was to update the model yearly, keeping
only the two most recent years of data. The method they used
was LR classifying grade ≥2 late xerostomia with clinical and
dosimetric variables from 297 patients.

The aim of the study by Beasley et al. (20) was to identify
specific CT image regions with a dose–toxicity association to
identify radiation-induced trismus in H&N patients treated
with RT. To achieve this objective, an image-based data
mining (IBDM) framework was applied to a cohort of 86
patients. The IBDM approach allowed for the identification of
a cluster of voxels associated with trismus; this cluster was
internally validated using a DVH-based approach and externally
on a cohort of 35 patients. As stated by the authors, this
study represents the first clinical application of IBDM with a
continuous outcome variable.

Jiang et al. (21) utilized a data set of 427 H&N cancer patients
treated with RT to predict xerostomia. Ridge LR, LASSO LR,
and RF classifiers were trained with planned radiation dose
data and non-dosimetric features to investigate the influence
of dose patterns on xerostomia. Among the three different ML
methods explored, ridge LR showed the best predictive power
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with an AUC of 0.70, although the difference in performance
was not statistically significant. The study highlighted how
radio-morphology combined with ML methods can indicate
the patterns of dose which are most influential on xerostomia,
potentially improving radiation treatment planning.

Dean et al. (22) developed a model to predict severe acute
dysphagia in H&N cancer patients treated with RT. Penalized
LR (PLR), SVM, and RF models were trained using dosimetric
and clinical data and then internally and externally validated on
173 and 90 patients, respectively. Results showed that PLR model
performances were comparable with the more complex models
with an AUC of 0.82 and that dose to the pharyngeal mucosa was
an important predictor of dysphagia.

In another study, Gabryś et al. (19) investigated whether
xerostomia risk assessment can be amended by ML with
dosimetric, radiomic, and demographic features, rather than
only using a NTCP model. The authors compared predictive
performance of seven classification algorithms, six feature
selection methods, and 10 data cleaning/class balancing
techniques using the Friedman test and the Nemenyi post-hoc
analysis. A cohort of 153 H&N cancer patients was used to
predict xerostomia at different time stages. Their multivariate
models achieved AUC values ranging from 0.74 to 0.88, with
SVM and “extra-trees” having the top performances. The
authors also pointed out that LR was preferred for univariate
feature selection, and that data cleaning/class balancing had no
advantage. Their NTCP models, on the other hand, failed to
predict xerostomia (AUC < 0.6).

The study of Abdollahi et al. (48) aimed to predict
sensorineural hearing loss in radiochemotherapy-treated H&N
cancer patients. From a cohort of 47 patients, 490 image features
of 94 cochlea were derived from CT images. To perform
feature selection, classification, and prediction, 10 different ML
approaches were tested. The predictive power (AUC, accuracy,
and precision) of theML algorithms was over 0.70 in all cases; the
best was obtained by Decision Stump and Hoeffding modeling
with 76.08% and 75.9% accuracy and precision, respectively. In
conclusion, CT radiomic analysis, both with and without clinical
and dosimetric variables, could help with chemoradiation-
induced hearing loss.

On a small data set of 37 patients treated with IMRT, Pota et al.
(26) applied a fuzzy logic-based classifier in order to predict the
occurrence of parotid shrinkage and 12-month xerostomia. To
do this, they used clinical features, dosimetric parameters, CT-
based radiomic features, and combinations thereof as predictor
variables. They achieved high respective accuracies of up to
0.86 (parotid shrinkage) and 0.79 (xerostomia). Their developed
model is easily interpretable and have comparable performance
to a naïve Bayes classifier.

The goal of the study by Van Dijk et al. (27) was to
build a predictive model for xerostomia and sticky saliva in
H&N cancer patients using CT image biomarkers (IBMs).
The planning CT scans of 249 H&N cancer patients were
collected to extract IBMs in order to create multivariable LR
models, which were then internally validated by bootstrapping.
In total, 26 features correlated with xerostomia and 24 correlated
with sticky saliva were selected. The results showed how the

addition of IBMs of the parotid and submandibular glands to
dosimetric data improved the mean AUC from 0.74 to 0.77.
The authors found that the IBM “short run emphasis” was the
most important for xerostomia prediction, and “maximum CT
intensity” was the most important for sticky saliva prediction.
These features represented heterogeneity and density within the
salivary glands, respectively.

Dean et al. (28) compared LR, SVM, and RF classifiers in
a framework to predict severe acute mucositis on a cohort
of 351 patients. Their variables included dose-volume (DV)
parameters, spatial dose metrics, and clinical data. Although
model performances were comparable, the best performance
was obtained with the RF classifier, with an AUC value of
0.71. The authors also confirmed that reducing the volumes
of oral cavity receiving intermediate/high doses may reduce
mucositis incidence.

Zhang et al. (29) developed decision tree and SVMmodels for
a single H&N patient. The model was supposed to predict saliva
flow rate with DV constraints and tailored plan properties as
input variables. The mean absolute error of predicting saliva flow
rate was 0.42%. Their results suggest that “ML tools can be used
to guide planners to select DV constraint settings corresponding
to all involved OARs in a knowledge-driven manner.”

El Naqa et al. (41) investigated several types of linear
and non-linear kernels1 to generate interaction terms and
approximate the treatment-response function in order to capture
the potential complexity of heterogeneous variable interactions
more accurately. This study investigated xerostomia on a data set
with 55H&N cancer patients as well as two data sets with prostate
cancer (PCa) patients. By first analyzing patient distributions
with principal component analysis (PCA), they concluded that
SVM outperformed both LR and an ANN.

Liver
Ibragimov et al. (30) employed a pre-trained CNN model on 3D
dose maps in order to predict liver toxicity after SBRT. They also
included non-dosimetric patient variables as additional inputs to
the network. By using the saliencymaps of the network, they were
able to identify anatomical regions that are critical to spare during
SBRT. On their data set of 125 patients, their model managed to
predict hepatobiliary toxicity with an AUC of 0.85. In addition,
their deep learning model also predicted almost two times fewer
false-positive toxicity cases compared to DVH-based predictions.
The authors also observed that irradiation of the proximal portal
vein was associated with two times higher toxicity risks than
irradiation of the left portal vein.

Lung
For lung cancers, the size of the data sets ranged between
54 and 235 patients. The majority of the studies dealt with
radiation-induced pneumonitis, whereas some studies dealt with
esophagitis, xerostomia, sticky saliva, and chest pain. Lung cancer
RT may cause chest pain due to rib fracture, radiation-induced

1In this context, kernels are mathematical transformation functions that allow an

implicit embedding of data in another feature space. For the purpose of this article,

different kernels can be thought of as different types of SVMs.
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neuropathy of the intercostal nerves or nerve branches, chest wall
edema, or chest wall fibrosis. However, the only study we found
that specifically investigated chest pain is the one by (34). The
authors utilized decision tree and RF methods to identify robust
features predictive of chest wall pain in a cohort of 197 patients.
Both univariate and multivariate analyses confirmed the role of
rib dose to 1 cc, chest wall dose to 30 cc, and rib dose max (Dmax)
as relevant variables. Based on these findings, efforts should be
directed at lowering the rib dose to 1 cc <4000 cGy, chest wall
dose to 30 cc <900 cGy, and rib Dmax < 5100 cGy in order to
mitigate chest wall syndrome.

Das et al. performed two studies (42, 43) for pneumonitis
prediction in a data set of 219 lung cancer patients treated with
RT. In both studies, the final model derived from a fusion of two
or more single models. In the study dated 2007, starting from a
data set of 234 lung cancer patients treated with RT, they trained
a model for lung radiation-induced grade 2+ pneumonitis.
The model consisted of a parametric dose-based Lyman NTCP
model in conjunction with weighted non-parametric decision
trees. The combined models’ predictive power resulted in an
AUC of 0.72—an improvement compared to the 0.62 AUC of
the Lyman NTCP alone. In particular, the information about
non-dose variables provided by the decision trees could add
interpretability and aid in dissemination. In the study dated
2008, the authors constructed a consensus model by fusing
four different non-linear multivariate models: decision trees,
neural networks, SVMs, and self-organizing maps. Consensus
was achieved by simply averaging the predictions for each patient
from all four individual models (in an ensemble-wise manner,
i.e., with several predictions for each individual model). This
achieved an average AUC value of 0.79 with lower variance than
the individual component models.

Esophagitis is another common side effect in lung cancer RT,
but only two studies researched this topic (41, 44). In the former,
the authors explored model building and variable selection
methods for multivariate dose-response assessment, considering
a data set of 166 NSCLC patients. Using a LR classifier, the
authors concluded that performance can be improved by mixing
clinical and DV factors as input parameters. In the second paper,
they investigated several types of linear and non-linear kernels
to approximate the treatment-response function and capture the
potential complexity of heterogeneous variable interactions. This
was done with a data set of 219 lung cancer patients. In the same
article, the authors also investigated pneumonitis on a data set of
166 patients and xerostomia on a data set of 55 patients. After
applying PCA to analyze variable distributions, they concluded
that SVM outperformed both LR and an ANN.

Niedzielski et al. (24) explored a novel method for using CT
imaging biomarkers to quantify patients’ radiosensitivity and
subsequently predict esophagitis risk. Patients with high response
to radiation, despite lower radiation dose, were labeled as
radiosensitive. This information was extracted through K-means
clustering (an automatic clustering algorithm) with three nodes.
The authors concluded that inclusion of the radiosensitive
variable improved LASSO LR model performance (mean AUC,
0.75) compared to models without this information (mean AUC,
0.69). Their predictive model was built with a cohort of 134

NSCLC patients treated with IMRT (85 pts) or passive-scatter PT
(49 pts).

Valdes et al. (36) developed a patient-specific “big data” clinical
decision tool in order to predict radiation-induced pneumonitis
in stage I NSCLC patients who received SBRT. In the study, the
performance of three different algorithms [Decision Trees, RF,
random under-sampling (RUS) Boost] was evaluated on a cohort
of 201 lung cancer patients. The feature selection highlighted that
the most important features for pneumonitis prediction were the
diffusion capacity of the lung for carbon monoxide and the dose
to the heart, trachea, and bronchus. The authors also stated that
at least 800 patients are needed to keep the error below 10% for
pneumonitis prediction.

Huang et al. performed two studies for prediction of
esophagitis. In the first one (39), a model for the assessment
of severe acute esophagitis for NSCLC patients treated with
RT was constructed. Correlation analysis and LR models with
clinical and dosimetric variables were tested on three different
Washington University data sets including a total of 748 patients.
Their most successful bivariate model (using the variables mean
esophagus dose and concurrent chemotherapy) achieved an AUC
of 0.83. In the second one (37), they tested the previously
published model to predict the risk of severe acute esophagitis
on a new independent data set of 115 NSCLC patients. The
model used a logistic function with the same two predictor
variables: mean esophageal dose and concurrent chemotherapy.
When comparing the model with a new model built solely on
the independent data set, the authors concluded that the former
was almost as predictive as the latter (although the same variables
were selected), being AUC= 0.78.

Most of the published studies concern radiation-induced
pneumonitis as the target variable, as it represents one of the
principal dose-limiting toxicities associated with thoracic RT
(40). Of these studies, Lee et al. (38) developed a Bayesian
network approach in a cohort of 54 NSCLC patients treated
with 3D conformal RT (3D-CRT). For inference, they included
DV, clinical, and blood biomarker data. They also compared the
Bayesian network ensemble approach, which managed to achieve
an AUC of 0.83, with a LR classifier (AUC= 0.77), and univariate
predictors (AUC ≤ 0.69). Valdes et al. (36) considered a larger
data set of 201 stage I NSCLC patients to construct different
models with decision trees, RF, and RUSBoost, concluding that
RUSBoost had the best performance. They found that the three
most important predictive features were the dose to 15 cc of the
heart, dose to 4 cc of the trachea or bronchus, and race. However,
rather than developing amodel for clinical use, the article focused
on the power of using learning curves and comparisons of testing
and training error to guide the discovery process.

Su et al. (45) investigated an approach to build an ANN,
comparing three different validation methods. The ANN was
built as a fully connected three-layered feed forward network,
and achieved peak AUC values of 0.85. As input to the network,
they used DV data from a data set of 142 patients treated with
3D-CRT. Chen et al. (40) tested an SVM model in a data set
of 219 patients and compared two models: one including only
dose variables (AUC = 0.71), while the other used dose as well
as non-dose variables (AUC = 0.76). They concluded that it is
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indeed beneficial to include non-dose factors in prediction. The
two most predictive variables in their model were generalized
equivalent uniform doses close to the mean lung dose, and
chemotherapy prior to RT. Luna et al. (32) used a RF approach in
a cohort of 203 patients treated with stage II–III locally advanced
NSCLC. They evaluated 32 clinical features at both univariate
and multivariate analysis and confirmed the importance of lung
volume receiving 20% of dose (V20), lung mean, and pack-
year as predictors of radiation pneumonitis. They also identified
esophagus max as a new possible indicator.

Beside dosimetric- and clinical-based predictors, image-based
variable models have also been employed to predict RT-related
toxicity outcomes in lung cancer patients. Bousabarah et al. (31)
used CT-based radiomic features to predict radiation-induced
lung injuries. The study analyzed 110 patients with primary stage
I/IIa NSCLC treated with stereotactic body RT for predicting
various outcomes, including local lung injury up to fibrosis.
Interestingly, for this classification task, only first-order features
from gray-level histogram were found to be predictive. Overall,
the work suggested that radiomic analysis of planning CT images
may help to predict local lung injury up to fibrosis, together
with disease-free survival and overall survival in lung cancer
patients treated with SBRT. The derived features can be regarded
as imaging biomarkers that could support the clinical decision
process to the benefit of the patients and oncologist.

Moran et al. (35) investigated the potential of CT-based
radiomic features to characterize post-SBRT lung injury. They
also investigated the relationship between changes of radiomic
feature values and accumulated dose by constructing dose–
response curves. The ability to assess lung injury was tested by
using a logistic regression classifier, which achieved AUC values
in the 0.64–0.75 range using only gray level co-occurrence matrix
(GLCM) features. Their results showed that eight out of nine
features demonstrated a significant dose–response relationship,
suggesting a potential objective measurement of post-SBRT
lung injury.

Krafft et al. (33) developed a predictive model for radiation
pneumonitis using CT-extracted radiomic features in
combination with clinical and dosimetric parameters from
a cohort of 192 NSCLC patients. Of the 192 patients, 80% (152)
were treated with IMRT while the remainder with 3D-CRT.
A LASSO logistic regression classifier was built, resulting in
an average AUC of 0.68, showing an increased performance
compared to models not including image features (AUC= 0.51).

Prostate
The most common toxicity outcomes in PCa RT are erectile
dysfunction (ED), gastrointestinal (GI) disorders, rectal toxicity,
and genitourinary (GU) side effects. To predict these unwanted
outcomes, the reviewed studies trained several different ML
classifiers including SVM, ANN, RF, and multivariate adaptive
regression splines (MARS) with data sets of sizes between 79
and 754. Lee et al. (52) also took a gene ontology analysis into
account to identify biological processes related to radiation-
induced toxicity and predicted late GU toxicity symptoms in a
cohort of 324 PCa patients. In this study, the only clinically valid
model, which achieved an AUC of 0.7, was for predicting weak

streamwith RFs. The genetic analysis they conducted highlighted
neurogenesis and ion transport as key biological processes related
to urinary tract functions.

The study by Carrara et al. (50) was designed to predict
late fecal incontinence in PCa patients treated with RT, using
ANN classification methods. A population of 598 PCa patients
was tested, recording information about comorbidities, previous
abdominal surgeries, drug treatments, and dose distribution.
In order to identify the best-performing ANNs, the authors
varied the number of inputs and neurons and simulated a great
amount of ANN configurations. Finally, the best ANNmodel was
selected, showing an 80.8% sensitivity and 63.7% specificity in
late fecal incontinence prediction, with an AUC of 0.78.

Fargeas et al. (51) applied an independent component analysis
(ICA) model to predict RB in a cohort of 593 PCa patients
treated with RT. Two subspaces from the rectal DVHs (with
and without RB) were identified and integrated with dosimetric
and clinical parameters in a Cox proportional hazards model
for RB prediction. The model was tested for 3, 5, and 8 years
RB prediction, with AUCs of 0.68, 0.66, and 0.64, respectively.
Interestingly, when ICA parameters were included the model,
performances increased with new AUCs of 0.83, 0.80, and 0.78.

In their paper, Oh et al. (54) developed a novel classification
algorithm that they call pre-conditioned random forest
regression (PRFR). The algorithm was tailored for genome-wide
association studies based on single-nucleotide polymorphisms
(SNPs). On their cohort of 368 PCa patients treated with RT,
the aim was to construct a predictive model of two post-RT
clinical endpoints: rectal bleeding and ED. After generating
a SNP importance score, they included the top 50% most
relevant SNPs in their model. This procedure achieved AUC
values of 0.71 and 0.68 for rectal bleeding and ED, respectively,
outperforming traditional classification algorithms such as RF
and logistic regression. The authors also concluded that the
model performance could be further improved by incorporating
clinical variables.

Moulton et al. (53) investigated the relationship between
spatial dose distribution and GI toxicities including rectal
bleeding, stool frequency, diarrhea, and tenesmus. Their study
contained data from 118 patients treated with a combined
EBRT/high-dose-rate brachytherapy treatment. By building
models with logistic regression and the Wilcoxon signed rank
test, they were able to investigate the association between
dose surface map-related features and toxicities. Their findings
indicated that spatial constraints on doses to certain sections
of the rectum may be important for reducing toxicities and
optimizing the dose.

Both Liu and Li (55) and Pella et al. (60) modeled acute
grade rectal toxicity for PCa patients using dosimetry and
patient clinical characteristics after treatments with IMRT and
3D-CRT, respectively. Themodel by Liu achieved a significatively
better AUC (0.88) when clinical and dosimetric variables were
combined, as compared to a model considering only dosimetric
features (0.67). In particular, the use of statin drugs and
prostate-specific antigen (PSA) level prior to IMRT was found
to be strongly related to the toxicity outcome. Pella et al.
instead compared an ANN model with an SVM model trained
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with dosimetric and clinical data from 321 patients treated
with conformal RT. The results obtained showed comparable
performances of up to 0.7 AUC for the two compared models.

Yahya et al. (56) conducted a classifier comparison for
different urinary symptoms on a cohort of 754 PCa patients.
With dose-surface data, comorbidities, and medication intake as
input parameters, they analyzed the clinical endpoints dysuria,
hematuria, incontinence, and frequency. The following classifiers
were compared: LR, elastic-net, SVM, RF, neural network, and
MARS. They pointed out that the predictive power is endpoint-
dependent and modest at best (AUC = 0.65). Best performance
was found for LR and MARS, although elastic-net and RF gave
comparable results.

Fargeas et al. (57) developed a novel approach that they call
CP-DMA to predict patients presenting rectal bleeding. The
name CP-DMA comes from canonical polyadic decomposition,
an alternative name for tensor rank decomposition, and
deterministic multi-way analysis. The model uses tensor rank
decomposition of the fourth-order tensors created by 3D
dose distributions concatenated for different patients (in the
fourth dimension) in order to find two separate vector
subspaces (one subspace for each outcome, with or without
rectal bleeding). Patients are then classified according to their
distance to the respective subspaces. Results were compared
to linear discriminant analysis, SVM, K-means, kNN, a PCA-
based unsupervised algorithm, unsupervised multidimensional
classification, and an NTCP model. Their model achieved an
AUC of 0.85, outperforming the alternative methods.

Ospina et al. (58) compared the performances of a classical
NTCP model with a RF NTCP model for late rectal toxicity
prediction on a cohort of 261 patients with PCa treated
with 3D-CRT. Both clinical and dosimetric features were
collected to train three RF models in order to predict three
different 5-year rectal toxicity endpoints: grade 2 overall rectal
toxicity and grade 1 and 2 rectal bleeding. Performance of
the model ranged between 0.66 and 0.76 depending on the
toxicity endpoint. Authors highlighted that the most suitable
parameters to be considered in rectal toxicity prediction include
dose to the rectum, age, and anticoagulant treatment of
the patients.

Zhang et al. (29) developed decision tree and SVM
models for one PCa patient (as well as a H&N cancer
case), predicting rectal bleeding (RB) with DV constraints
and tailored plan properties as input variables. The RB
prediction had an average accuracy of 97.04%, indicating that
the selection of DV constraint setting can be guided with
ML methods.

The study by Tomatis et al. (59) aimed to compare the
performances in predicting late RB in a cohort of 718 PCa
patients of an LR model and an ANN one using clinical and
DVH-based parameters. Overall, the ANN model outperformed
the other, with AUCs of 0.704 vs. 0.655, respectively. Authors
suggested how the integration of gene expression profiles and
surface dose mapping could help to improve the predictive
performances of the model.

Gulliford et al. (61) were early adopters of ANN for predicting
biological outcomes following PCa RT. They used the treatment

plan prescription and dose distribution data in order to predict
rectal bleeding and nocturia on a data set with 119 patients.
Analysis was made on different discretization levels of the
outcomes, and an attempt was made to “look inside” the ANN
at a basic level. Their results showed sensitivities and specificities
of roughly 0.55.

Several studies aiming to correlate radiomic features with
toxicity outcomes are present in the literature. In the study
by Mostafaei et al. (46), the potential role of CT radiomics to
predict prostate RT toxicities, including acute bladder and rectal
injuries, was investigated. Sixty-four PCa patients were studied.
The findings highlighted the feasibility and good performance
of pre-treatment CT image features as new markers to predict
radiation toxicities. The results also showed that, for cystitis, the
combination of radiomic features with clinical and dosimetric
features could enhance the predictive performance: from AUC
values of 0.71 and 0.67 for radiomic and clinical models alone,
to AUC = 0.77 when the features were combined. However, for
proctitis modeling, the performance was lower in the combined
setup compared to the radiomics-only model (AUCs for clinical,
radiomic, and clinical–radiomic models were 0.66, 0.71, and
0.65, respectively). These results suggest that integration of
radiomics with clinical and dosimetric features may improve the
performance of predictive models.

Abdollahi et al. (47) analyzed magnetic resonance imaging
(MRI) images from a pool of 33 patients in order to predict
urinary toxicity in PCa patients. Different radiomics features
(S5.0SumVarnc, S2.2SumVarnc, S1.0AngScMom, S0.4SumAverg,
and S5.5InvDfMom) were tested, resulting in AUC values
between 0.62 and 0.75 and showing a major dependence of
radiomic features on radiation dose. Overall, feature changes
resulted to have a good correlation with radiation dose and
radiation-induced urinary toxicity. These radiomic features can
be identified as being potentially important imaging biomarkers
which can also allow to assess mechanisms of radiation-induced
bladder injuries.

Abdollahi et al. (25) applied radiomic feature analysis on
pre/post IMRT MRI images to find imaging biomarkers for
rectal toxicity prediction. Feature extraction was made on both
T2-weighted and apparent diffusion coefficient (ADC) images
(two different MRI scanning protocols). Pre-IMRT T2-weighted
radiomic image features could predict rectal toxicity with a fairly
good performance (AUCmean: 0.68), showing a better predicting
power in relation to ADC image features (AUC mean: 0.58). The
AUC reached 0.81 when all features were combined, suggesting
that pre-treatment MRI features may be a feasible approach to
predict radiation-induced early rectal toxicity.

Finally, Rossi L. et al. (49) applied DVH parameters, texture
features of patients’ 3D dose distributions, and non-treatment-
related (NTR) predictors to develop predictive models for GI
and GU toxicities. Multivariate LR models were trained using
the NTR features alone as well as in combination with the
other variables. RB, fecal incontinence, nocturia, and urinary
incontinence were considered. For RB, fecal incontinence,
and urinary incontinence, AUC values increased when adding
DVH and texture features to NTR features (from 0.58, 0.63,
and 0.68 to 0.73, 0.73, and 0.73, respectively). In the case
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of nocturia, inclusion of DVH parameters resulted in a
marginal improvement (0.64 vs. 0.66). Overall, the inclusion
of more features improved prediction performance for GI and
GU toxicity.

DISCUSSION

In recent years, the growing interest toward AI in all fields of
science has led to the development of innovative tools in RT (62),
including several toxicity prediction models. Some of them have
demonstrated high performance on very large and diverse data
sets, making them potential candidates for clinical integration.
Other ones have highlighted cases where ML prediction seems
to fail, such as in predicting unplanned hospitalizations or
fatigue. Interestingly, almost half of the 53 reviewed papers were
published in the last 3 years, with the earliest publication dating
back to 2004, making it a rather young area of interest with much
potential for future research.

Our overview indicates that the amount of research on ML-
based models for prediction of toxicity is not balanced across
districts, as some of them, such as lung, prostate, and H&N have
been receiving more attention than others such as brain, skin,
blood, and breast. Regarding brain cancer, the lack of ML models
is potentially ascribable to the scarcity of literature in general
concerning radio-induced toxicity within the brain. This may be
explained by the fact that acute and late complications of brain
tumor patients prevalently manifest themselves as neurological
disorders that are difficult to assess. On the other hand, H&N
studies are commonmainly because these kinds of cancers, albeit
not as common as PCa or lung cancer, are very often associated
with clinically relevant toxicity, with a well-documented impact
on patients’ quality of life. Additionally, accurate prediction of
RT toxicity in H&N cancer may help physicians to identify
the best treatment option whenever equally effective approaches
(i.e., surgery) are available. Furthermore, integration of genetic
information in the modeling approaches, despite being desirable,
appears almost completely absent, being treated only in two
studies (52, 54).

The large variety of variables, features, and models, as well
as the lack of standardization in the development of predictive
tools, accounts for the scarce comparability of the existing works.
As previously pointed out, performance measures such as the
AUC are not the be-all and end-all of model assessment and
should be taken with a grain of salt. The AUC measure has even
been criticized as an indicator of performance altogether (63)
and can sometimes be misleading. For instance, out of all the
selected papers, the best results (AUC > 0.85) were achieved in
small- or medium-sized data sets (<150 patients). This implies
that further validation of the current best-performing models on
larger and/or more diverse data sets is mandatory.

Since the principal aim of ML models for toxicity prediction
is clinical integration, critical efforts are required to make the
relevant research understandable, transparent, and accessible
to an audience with little or no specific computational
background. As a matter of fact, considering the specific
case of this review, the studies did not always accurately
report clinical information concerning pathology, RT treatment
(technique, dose, fractionation scheme), the kind of developed

toxicity (late or acute), as well as methodological details
(feature selection procedures and employed models). Therefore,
a rigorous method for communicating characteristics and
results of prediction models, which would foster the synthesis
and critical appraisal of the relevant information, is of
paramount importance. One of them was proposed by the
Transparent Reporting of a multivariable prediction model
for Individual Prognosis Or Diagnosis (TRIPOD) initiative
(64), which consists of a checklist that encompasses a
minimum set of details that authors should fulfill to provide
essential and clear information about their work. In particular,
the key points should include a summary of objectives,
study design, setting, participants, sample size, predictors,
outcomes, statistical analysis, results, and conclusions. This
would ensure that proper assessment of usefulness, potential
biases, and possible drawbacks of published research can
be made.

Other open issues are the importance of data sharing among
centers, the need for continuous model updates, and the need
for prospective studies to support the clinical applicability of the
developed models. More research and effort in these areas will
alleviate the issue of clinical integration, which represents both
the primary driver and the ultimate goal of these efforts.

CONCLUSION

Despite the loose ends about the clinical applicability of RT-
induced toxicitymodels, our overall findings show thatML-based
solutions for toxicity prediction in RT could represent a valid
tool in research settings. In order to maximize the therapeutic
index of RT and to guide the clinical selection of patients, an
effective toxicity prediction scheme is essential. Application of
such models can be a valuable asset in many different aspects for
both patients and clinicians.
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