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Abstract

We consider a mean-variance hedging (MVH) problem for an arbitrage-free large
financial market, i.e. a financial market with countably many risky assets modelled by
a sequence of continuous semimartingales. By using the stochastic integration theory
for a sequence of semimartingales developed in De Donno and Pratelli [6], we extend
the results about change of numéraire and MVH of Gourieroux, Laurent and Pham [12]
to this setting. We also consider, for all n ≥ 1, the market formed by the first n risky
assets and study the solutions to the corresponding n-dimensional MVH problem and
their behaviour when n tends to infinity.
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1 Introduction

In this paper we study a quadratic hedging problem for a future stochastic cash flow F ,
delivered at time T , in a non necessarily complete large financial market.

Let us consider first a market consisting of n + 1 primitive assets X = {S0, S}: one
bond with price process S0

t = exp(
∫ t

0 rsds) and n risky assets whose price process is a
continuous n-dimensional semimartingale S = (S1, · · · , Sn). A criterion for determining a
“good” hedging strategy is to solve the mean-variance hedging (MVH) problem introduced
by Föllmer and Sondermann [11]:

min
ϑ∈Θ

E

[
F − V x,ϑ

T

]2
, (1)

where

V x,ϑ
T = S0

T

(
x+

∫ T

0
ϑtd

(
S/S0

)
t

)
(2)
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is the terminal value of a self-financed portfolio in the primitive assets, with initial invest-
ment x and quantities ϑ invested in the risky assets.

This problem has been solved by Föllmer and Sondermann [11] and Bouleau and Lam-
berton [3] in the martingale case and, with different methods, by Gourieroux, Laurent and
Pham [12] (abbr. GLP) and Rheinländer and Schweizer [21] in the semimartingale case
under more or less restrictive conditions.

Here we focus on the GLP approach, which consists in adding a suitably chosen numéraire
as an asset to trade in and changing the probability measure. The numéraire is chosen in
such a way that the set of attainable contingent claims in the extended market remains un-
changed. This procedure leads to considering a simpler quadratic hedging problem where
the new prices process is a martingale so giving an explicit description of the optimal trading
strategy for the original MVH-problem.

In this paper we seek to extend GLP’s approach to a large financial market, i.e. a
market with one bond and countably many risky assets. We recall that no-arbitrage in
large financial markets has been studied for the first time in a rigorous way by Kabanov
and Kramkov [14, 15] in the complete case and by Klein and Schachermayer [16] in the
incomplete case. More recently, Bjork and Näslund [2] and De Donno [4] have investigated
the completeness of some special models, where the assets prices dynamics are driven by
one Brownian motion (common to all assets) and countably many independent Poisson
processes (one for each asset).

In order to extend the GLP artificial extension method to an infinite-dimensional set-
ting, one has to use a stochastic integration (SI) theory with respect to a sequence of
semimartingales, i.e. with respect to a semimartingale taking values in the space R

N of all
real sequences, which is much more delicate to use than the vectorial one. Mikulevicius and
Rozovskii [19] developed a SI theory for martingales taking values in a topological vector
space (see also De Donno [4] and De Donno et al. [5] for financial applications). More
recently, De Donno and Pratelli [6] have proposed a stochastic integral for a sequence of
semimartingales, generalizing the SI theory by Mikulevicius and Rozovskii in this particular
case. We will use their construction for making our MVH problem meaningful.

This paper is organized as follows. In Section 2, we recall some basic facts on stochastic
integration with respect to a sequence of semimartingales and obtain an infinite-dimensional
version of the Galtchouk-Kunita-Watanabe (abbr. GKW) decomposition theorem. In Sec-
tion 3, we define the good set of trading strategies and we show that the set of all attainable
contingent claims is closed in L2 (P ). In Section 4 we show the invariance property for the
set of all attainable claims. In Section 5, we show how to extend the artificial extension
method to our setting and in Section 6 we consider the finite-dimensional MVH problems,
corresponding to consider only the market formed by the bond and the first n risky assets,
and we show that the sequence of solutions of these finite-dimensional problems converges
to the solution of the original one (1).
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2 Some preliminaries on stochastic integration with respect

to a sequence of semimartingales

In this section we will follow very closely the treatment of the stochastic integration for
countably many semimartingales, that the reader can find in De Donno and Pratelli [6].

Let (Ω,F , P ) be a probability space with a filtration F ={Ft, t ∈ [0, T ]} satisfying the
usual conditions of right-continuity and P -completeness, where T > 0 is a fixed finite
horizon. Letting p ≥ 1, we will denote by Hp(P ) the set of all real-valued martingales M
on the given filtered probability space, such that M∗ = supt∈[0,T ] |Mt| ∈ Lp(P ) (see Jacod’s
book [13] for more details). Moreover, we denote by S(P ) the space of real semimartingales,
equipped with Emery’s topology (see Emery [10]). S(P ) is a complete metric space.

Let S = (Si)i≥1 be a sequence of semimartingales. We denote by E the set of all
real-valued sequences (i.e. R

N), endowed with the topology of pointwise convergence and
by E′ its topological dual, namely the space of all signed measures on N which have a
finite support; each of them can be identified with a sequence with all but finitely many
components equal to 0. We will denote by ei the element of both E′ and E such that
eij = δi,j (where δi,j is the Dirac delta); 〈·, ·〉E′,E will denote the duality between E′ and E.

We denote by U the set of not necessarily bounded operators on E and, for all h ∈ U , we
denote by D(h) the domain of h (D(h) ⊂ E). We say that a sequence (hn) ⊂ E′ converges
to h ∈ U if limnh

n(x) = h(x), for every x ∈ D(h).
We say that a process ξ taking values in U is predictable if there exists a sequence (ξn)

of E′-valued predictable processes, such that for all (ω, t), and for all x ∈ D(ξt(ω)), one has
ξt(ω) = limnξ

n
t (ω).

Finally, a E′-valued predictable process ξ is called a simple integrand if it has the
form ξ =

∑
i6n ξ

iei = (ξ1, ξ2, . . . , ξn, 0, · · · ), where ξi are real-valued predictable bounded
processes. One can define the stochastic integral of a simple integrand ξ with respect to S
in the following obvious way: ∫

ξdS =

∫ ∑

i6n

ξidSi.

Let ξ be a predictable U -valued process. Following De Donno and Pratelli [6], we will
say that ξ is integrable with respect to S if there exists a sequence (ξn) of simple integrands
such that:

1. ξn converges to ξ pointwise;

2.
∫
ξndS converges to a semimartingale Y in S(P ).

We call ξ a generalized integrand and define
∫
ξdS := Y . Moreover, we denote by L(S,U)

the set of generalized integrands.
This notion of stochastic integral is well-defined and implies an infinite-dimensional

extension of Memin’s theorem (Théorème V.4 [18]), which states that the set of stochastic
integrals with respect to a semimartingale is closed in S(P ):
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Theorem 1 (De Donno and Pratelli [6], Theorem 5.2) Let S = (Si)i>1 be given a sequence
of semimartingales and (ξn) a sequence of generalized integrands such that (

∫
ξndS) is a

Cauchy sequence in S(P ). Then there exists a generalized integrand ξ such that
∫
ξndS →∫

ξdS in S(P ).

In the sequel, we will need an infinite-dimensional version of the GKW-decomposition for
a sequence of continuous local martingales. For this reason, we briefly recall the Mikulevicius
and Rozovskii [19] theory of SI for a sequence of locally square integrable martingales and
show how to extend it to a sequence of continuous local martingales.

We assume that Si = M i ∈ H2(P ) for all i > 1. It is easy to see that there exist:

1. an increasing predictable real-valued process (At) with E[AT ] <∞,

2. a family C = (Cij)i,j>1 of predictable real-valued process, such that C is symmetric
and non-negative definite, in the sense that Cij = Cji and

∑
i,j6l xiC

ijxj > 0, for all

l ∈ N, for all x ∈ R
l, dPdA a.s.,

such that
〈
M i,M j

〉
t
(ω) =

∫ t

0
Cij

s,ωdAs(ω). (3)

Consider C for fixed (ω, t) and assume for simplicity that C is positive definite. The
above Itô isometry makes it natural to define on E′ a norm by setting:

|x|2E′
t,ω

= 〈x,Ct,ωx〉E′,E =

∞∑

i,j=1

xiC
ij
t,ωxj , (4)

where the sum contains a finite number of terms. The norm is induced by an obvious scalar
product, which makes E′ a pre-Hilbert space. This norm depends on (ω, t): for simplicity,
we omit ω, but we keep t in the notation and denote E′

t the space E′ with the norm induced
by Ct. E

′
t is not necessarily complete, but we can take its completion H ′

t which is a Hilbert
space. H ′

t is generically not included in E, hence the canonical injection from E′ to E
cannot be extended to an injection from H ′

t to E.
The following theorem is essentially due to Mikulevicius and Rozovskii [19] (see their

Proposition 11, p. 145). Nonetheless we prefer to follow the formulation of this result given
by De Donno and Pratelli [6], since it fits better into their more general theory of SI for a
sequence of semimartingales, as introduced before.

Theorem 2 (De Donno and Pratelli [6], Theorem 3.1) Let ξ be a U-valued process such
that:

1. D(ξω,t) ⊃ Hω,t for all (ω, t);

2. ξω,t|Hω,t
∈ H ′

ω,t;

3. ξt(Cten) is predictable for all n;
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4. E[
∫ T

0 |ξt|
2
H′

t
dAt] <∞.

Then, there exists a sequence ξn of simple integrands, such that ξn
ω,t converges to ξω,t in

H ′
ω,t for all (ω, t) and

∫
ξndM is a Cauchy sequence in H2(P ). As a consequence, we can

define the stochastic integral
∫
ξdM as the limit of the sequence

∫
ξndM .

Remark 3 The set of all stochastic integrals
∫
ξdM , with ξ fulfilling the four conditions

of Theorem 2, is a closed set in H2(P ) and coincides with the stable subspace generated by
M in H2(P ). It is an immediate extension of the analogous result in the finite-dimensional
case.

When M = (M i)i>1 is a sequence of continuous local martingales, it is quite easy to
extend the previous construction. Indeed, from Dellacherie [9] (Théorème 2 and Théorème
3, p. 743) we deduce that there exists a uniform localization for the sequence (M i), i.e. a
sequence (τn) of stopping times such that τn → T and M i

·∧τn
is a bounded martingale for

all i > 1.
This property allows us to define by localization, in the usual way, a stochastic integral

with respect to M and for all U -valued processes ξ such that:

1. D(ξω,t) ⊃ Hω,t for all (ω, t);

2. ξω,t|Hω,t
∈ H ′

ω,t;

3. ξt(Cten) is predictable for all n;

4.
∫ T

0 |ξt|
2
H′

t
dAt <∞ P -a.s..

Finally, again by using Dellacherie’s uniform localization, it is easy to prove a GKW-
decomposition in our setting:

Proposition 4 Let M = (M i)i>1 be a sequence of continuous local martingales and N be
a real-valued local martingale. Then, there exists an integrand ξ satisfying conditions 1.-4.
as in Theorem 2, and a real-valued local martingale L vanishing at zero and orthogonal to
each M i, such that

N = N0 +

∫
ξdM + L. (5)

Proof. Apply the Dellacherie uniform localization and Remark 3 and proceed exactly as,
for instance, in Jacod [13], Théorème (4.27) if N is locally square-integrable. Otherwise,
use the following argument by Ansel and Stricker [1] (D.K.W. cas 3): write N as the sum
N = N c +Nd, where N c and Nd are its continuous and purely discontinuous parts. Nd is
orthogonal to all continuous local martingales and N c is locally bounded and then it can
be written as N c =

∫
ξdM + U with U orthogonal to M and ξ satisfying conditions 1. to

4.. To conclude, it suffices to set L = U +Nd. �
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3 The market model

Let (Ω,F , P ) be a probability space with a filtration F ={Ft, t ∈ [0, T ]} satisfying the usual
conditions of right-continuity and P -completeness, where T > 0 is a fixed finite horizon.
We also assume that F0 is trivial and FT = F .

In this market model agents can trade in countably many primitive assets whose prices
are modelled by a sequence of real valued processes X = (Si)i≥0: a bond price process
S0

t = exp
∫ t

0 rsds, with r a progressively measurable process interpreted as the instantaneous

interest rate and such that |
∫ T

0 rsds| ≤ c for some constant c > 0, and countably many risky
assets, whose price processes Si are assumed to be continuous semimartingales.

We set

M2 =

{
Q≪ P :

1

S0
T

dQ

dP
∈ L2 (P ) , every Si/S0 is a Q-local martingale

}

and
Me

2 = {Q ∈ M2 : Q ∼ P} .

Throughout the paper, we make the natural standing assumption:

Me
2 6= ∅. (6)

This assumption is related to some kind of no-arbitrage condition (see, e.g., the seminal
paper by Kreps [17]).

We denote by Θ the space of all generalized integrands ϑ ∈ L(S/S0,U) such that∫ T

0 ϑtd(S/S
0)t ∈ L2(P ) and for all Q ∈ Me

2

∫
ϑd(S/S0) is a Q-martingale.

Notice (see the discussion in De Donno [4], pp. 8-11) that in general one cannot define
the value process of a trading strategy ϑ in the usual way: the expression ϑt · (S/S0)t is
not always well-defined. This is because ϑt takes values in the space U which is, in most
cases, strictly bigger than E′, and so we cannot use duality to define a product between the
strategy ϑ and the price process. For this reason we will use the following:

Definition 5 For a trading strategy ϑ ∈ Θ the value process of the corresponding self-
financed portfolio with respect to the primitive asset family {S0, S} and with initial value
x ∈ R is given by

Vt = V x,ϑ
t = S0

t

(
x+

∫ t

0
ϑsd

(
S/S0

)
s

)
, t ∈ [0, T ] . (7)

Moreover we denote by

GT (x,Θ) :=
{
V x,ϑ

T : ϑ ∈ Θ
}
⊆ L2 (P )

the set of investment opportunities (or attainable claims) with initial value x ∈ R.

The next proposition makes our MVH-problem meaningful, ensuring the existence of its
solution θ∗ and uniqueness of the corresponding optimal value process V x,ϑ∗

.
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Proposition 6 The set GT (x,Θ) is closed in L2(P ).

Proof. Let ϑn be a sequence in Θ such that S0
T (x+

∫ T

0 ϑn
s d(S/S

0)s) converges in L2(P ) to

a random variable V . Take some Q ∈ Me
2 and set Y n

t :=
∫ t

0 ϑ
n
s d(S/S

0)s, t ∈ [0, T ]. Observe
that the sequence of Q-martingales (Y n

t )t∈[0,T ] converges in H1(Q) (see, e.g., Remark 2.2.
in Delbaen and Schachermayer [8]). Now, since convergence in H1(Q) implies that in S(Q)
(see Theorem 14 in Protter [20], p. 208) and Emery’s topology is invariant under a change
of an equivalent probability measure (see Théorème II.5 in Memin [18], p. 20), the sequence
(Y n

t )t∈[0,T ] converges also in S(P ). Now, thanks to Theorem 1 we can exhibit a generalized
integrand ϑ ∈ L(S/S0,U) such that

V = S0
T

(
x+

∫ T

0
ϑsd

(
S/S0

)
s

)
.

The other two properties defining the set Θ are obviously satisfied also by the process ϑ.
�

4 Extending the GLP artificial extension method

According to GLP, we define a numéraire as a self-financed portfolio with respect to the
primitive assets family X = {S0, S}, which is characterized by a trading strategy a ∈ Θ
and a strictly positive value process V (a) = V 1,a > 0 as in (7) with V0(a) = 1.

Remark 7 To avoid misunderstandings when comparing our results to GLP’s, observe that
we have denoted by “a” the strategy used as a numéraire, instead of the integrand in its
exponential representation as in GLP.

To such a numéraire a we can associate a new family of countably many assets consisting
of this numéraire and the primitive assets. This assets family is called, as in GLP, a-extended
assets family, its price process is given by {V (a),X} while its price process renormalized in
the new numéraire is {1,X (a)} := {1,X/V (a)}.

Given a numéraire a ∈ Θ, we define

M2(a) =

{
Q (a) ≪ P :

1

VT (a)

dQ (a)

dP
∈ L2 (P ) , every X (a)i is a local Q (a) -martingale

}

and
Me

2 (a) = {Q (a) ∈ M2 (a) : Q (a) ∼ P} .

As in GLP Proposition 3.1, and with the same proof, we have the following characterization
of the set Me

2(a) of equivalent a-martingale measures in terms of the set Me
2 of equivalent

martingale measures:
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Proposition 8 Let a ∈ Θ be a numéraire and V (a) its value process. There is a one-to-one
correspondence between M2(a) (resp. Me

2(a)) and M2 (resp. Me
2): Q(a) ∈ M2(a) (resp.

Me
2(a)) if and only if there exists Q ∈ M2 (resp. Me

2) such that

dQ (a)

dP
=
VT (a)

S0
T

dQ

dP
. (8)

We denote by Φ(a) the space of trading strategies with respect to the a-extended assets

family {V (a),X}, i.e. the set of all φ(a) ∈ L(X(a),U) such that VT (a)
∫ T

0 φt(a)dXt(a) ∈
L2(P ) and V (a)

∫
φ(a)dX(a) is a local Q(a)-martingale for all Q(a) ∈ Me

2(a).
For a trading strategy φ(a) ∈ Φ(a) the value process of the corresponding self-financed

portfolio with respect to the a-extended assets family {V (a),X} and with initial value x ∈ R

is given by

Vt = V
x,φ(a)
t = Vt (a)

(
x+

∫ t

0
φs (a) dXs (a)

)
t ∈ [0, T ] (9)

Furthermore,

GT (x,Φ(a)) := {V
x,φ(a)
T : φ(a) ∈ Φ(a)}

denotes the set of terminal values of self-financed portfolios with respect to the a-extended
assets family {V (a),X} and with initial value x.

In the finite assets case (GLP, Proposition 3.2, p. 186-188) the artificial extension leaves
invariant the investment opportunity set, and gives explicit expressions for the correspon-
dences linking the investment opportunities sets. We briefly recall this result: let an be a
n-dimensional numéraire and V (an) = V 1,an

its value process,

• to a self-financed portfolio (V n, ϑn) with respect to {S0, S
n
}, corresponds the self-

financed portfolio (V n, φn(an)) = (V n, (ηn(an), ϑn(an))) with respect to {V (an), S0, S}
given by

ηn
t (an) =

V n
t − ϑn

t S
n

t

S0
t

and ϑn
t (an) = ϑn

t , t ∈ [0, T ]; (10)

• to a self-financed portfolio (V n, φn(an)) = (V n, (ηn(an), ϑn(an))) w.r.t. {V (an), S0, S}
corresponds the self-financed portfolio (V n, ϑn) w.r.t. {S0, S

n
} given by

ϑn
t = ϑn

t (an) + an
t

V n
t − φn

t (an)X
n

t

Vt(an)
, t ∈ [0, T ]. (11)

Note that the above expressions involve some scalar products between strategies and
price processes, which in our infinite-dimensional setting are not well-defined. This makes
very difficult to find the infinite-dimensional analogues of the GLP-correspondences above.
Nonetheless, the following proposition states their existence for our large financial market
and, as a straightforward consequence, the invariance of the investment opportunities set
under a change of numéraire.

Proposition 9 Let a ∈ Θ be a numéraire and V (a) its value process.
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1. Let ϑ ∈ Θ be a trading strategy with respect to the primitive assets family {S0, S}
and let V denote the value process of the corresponding self-financed portfolio. Then
there exists a trading strategy φ(a) ∈ Φ(a) with respect to the a-extended assets family
{V (a),X} with the same value process V .

2. Let φ(a) = (η(a), ϑ(a)) ∈ Φ(a) be a trading strategy with respect to the a-extended
assets family {V (a),X} and let V denote the value process of the corresponding self-
financed portfolio. Then there exists a trading strategy ϑ ∈ Θ with respect to the
primitive assets family {S0, S} with the same value process V .

3. We have in particular that

GT (x,Θ) = GT (x,Φ (a)) . (12)

Proof. 1. Let ϑ ∈ Θ be a trading strategy with respect to the primitive assets family
{S0, S} with value process V = S0(V0 +

∫
ϑd(S/S0)). By the definition of SI for a sequence

of semimartingales there exists a sequence ϑn of simple integrands w.r.t. S/S0 such that∫
ϑnd(S/S0) converges in S(P ) to

∫
ϑd(S/S0).

We associate to each approximating strategy ϑn a self-financed portfolio with respect to
the primitive assets family, whose value process is given by

V n
t = S0

t

(
V0 +

∫ t

0
ϑn

sd
(
Sn/S0

)
s

)
, t ∈ [0, T ].

By GLP, Proposition 3.2 (i), there exists a trading strategy φn(a) = (ηn(a), ϑn(a)) given
by (10) with V n(a) instead of V n(an) and with the same value process V n, i.e.

S0
t

(
V0 +

∫ t

0
ϑn

s d
(
S/S0

)
s

)
= Vt(a)

(
V0 +

∫ t

0
φn

s (a)dXs(a)

)
, t ∈ [0, T ].

By the multidimensional version of Proposition 4 in Emery (1979), we have that

S0

V (a)

(
V0 +

∫
ϑnd

(
S/S0

))
→

S0

V (a)

(
V0 +

∫
ϑd

(
S/S0

))

in S(P ), as n → ∞, and so the sequence
∫
φn(a)dX(a) is convergent in S(P ). Now, by

the infinite-dimensional version of Memin’s theorem (Theorem 1) there exists a generalized
integrand φ(a) ∈ L(X(a),U) such that V0 +

∫
φn(a)dX(a) → V0 +

∫
φ(a)dX(a) in S(P ), as

n→ ∞, and obviously for all t ∈ [0, T ]

S0
t

(
V0 +

∫ t

0
ϑsd

(
S/S0

)
s

)
= Vt (a)

(
V0 +

∫ t

0
φs (a) dXs (a)

)
.

Finally, by Proposition 8 and since ϑ ∈ Θ, the process
∫
φ(a)dX(a) is a local Q(a)-

martingale for all Q(a) ∈ Me
2(a), and also VT (a)

∫ T

0 φs(a)dXs(a) ∈ L2(P ), i.e. φ(a) ∈ Φ(a).
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2. Let φ(a) ∈ Φ(a) be a trading strategy with respect to the a-extended assets family
{V (a),X} with value process of the corresponding self-financed portfolio given by V (a)(V0+∫
φ(a)dX(a)).

By definition of Φ(a), there exists a sequence of simple integrands φn(a) = (ηn(a), ϑn(a)),
with ηn(a) real-valued, converging pointwise to φ(a) and such that

∫
φn(a)dX(a) →

∫
φ(a)dX(a)

in S(P ) as n→ ∞.
Denote by V n the value process of the approximating self-financed portfolio correspond-

ing to φn(a), i.e. V n = V (a)(V0 +
∫
φn

s (a)dX(a)), and consider the following sequence of
strategies ϑn with respect to {S0, S} defined by the GLP correspondence (11):

ϑn
t = ϑn

t (a) + atψ
n
t (a), t ∈ [0, T ],

where

ψn =
V n − φn(a)X

n

V (a)
.

We remark that the process ϑn takes values in U . Now, if we proceed as in the second part
of the proof of Proposition 3.2 in GLP (observe that, by definition of generalized integrand,
φn(a) is bounded, which implies ψn(a) locally bounded), we obtain

d(V n/S0)t = ψn
t d(V (a)/S0)t + ϑn

t (a)d(S/S0)t.

Being d(V (a)/S0)t = atd(S/S
0)t with a ∈ L(S/S0,U), if we approximate a by a sequence

ak of simple integrands converging pointwise to a and such that
∫
akd(S/S0) →

∫
ad(S/S0)

in S(P ), also the sequence
∫
ψn(a)akd(S/S0) converges in S(P ) with n fixed and k tending

to infinity and then, by Theorem 1, there exists a generalized integrand ζn such that

ψn
t (a)d

(
V (a)

S0

)

t

= ζn
t d

(
S

S0

)

t

,

and moreover, since ψn(a)ak converges pointwise to ψn(a)a, ζn = ψn(a)a. Furthermore

S0
t

(
V0 +

∫ t

0
ϑn

s d(S/S
0)s

)
= Vt(a)

(
V0 +

∫ t

0
φn

s (a)dXs(a)

)
, t ∈ [0, T ].

Finally, by letting n tend to infinity and by using the same argument (infinite-dimensional
version of Memin’s theorem) as in the previous part of the proof (after exchanging the rôles
of ϑn and φn(a)), one can easily show that there exists a strategy ϑ ∈ Θ, whose value
process equals V . The proof of item 2. is now complete.

3. This statement follows trivially from the first two items of this proposition. �

We just mentioned that, since it is not possible in this setting to define a product
between strategies and price processes, we are not able to find an explicit expression for the
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infinite-dimensional GLP correspondences. We only know that the two sets of strategies
are related by the equality of their value processes, i.e. given a strategy ϑ (resp. φ(a)) its
corresponding strategy φ(a) (resp. ϑ) satisfies the following equation:

S0
t

(
V0 +

∫ t

0
ϑsd(S/S

0)s

)
= Vt(a)

(
V0 +

∫ t

0
φs(a)dXs(a)

)
, t ∈ [0, T ].

The previous proposition ensures the existence of a solution to this equation when ϑ (resp.
φ(a)) is fixed.

Remark 10 In Section 6, we will see that there exists a sequence of predictable trading
strategies ϑn,∗, that both solve the MVH-problem arisen by considering only the first n
risky assets, and its value processes converge to the value process of ϑ∗, solution to problem
(1), in L2(P ) as n tends to infinity.

5 The MVH problem

We would like to apply the artificial extension method introduced by GLP to the following
“large” mean-variance hedging optimization problem:

J(x, F ) := min
ϑ∈Θ

E

[
F − S0

T

(
x+

∫ T

0
ϑtd

(
S/S0

)
t

)]2

. (H (x))

where F ∈ L2(P ) and x ∈ R are fixed. In financial terms, given an FT -measurable con-
tingent claim F ∈ L2(P ), we are looking for a self-financed portfolio with respect to the
primitive assets family {S0, S}, with initial investment x, that minimizes the expected
square of the hedging residual. By Proposition 6 there exists a solution ϑ∗ = ϑ∗(x,H) to
the problem (H (x)) called the optimal hedging strategy, leading to a unique optimal value
process

V ∗
t = V ∗

t (x, F ) = S0
T

(
x+

∫ T

0
ϑ∗t (x, F ) d

(
S/S0

)
t

)
.

The couple (V ∗, ϑ∗) is called optimal hedging portfolio.
Let us consider the solution ã ∈ Θ to following optimization problem:

min
ϑ∈Θ

E

[
S0

T

(
1 +

∫ T

0
ϑtd

(
S/S0

)
t

)]2

(P)

which is a particular case of (H (x)) for a zero cash flow F = 0 and initial wealth x = 1. The

strategy ã ∈ Θ leads to a unique terminal wealth VT (ã) = V 1,ea
T = S0

T (1 +
∫ T

0 ãtd(S/S
0)t).

Now, let us consider the variance-optimal martingale measure (abbr. VOMM) P̃ , defined
as the solution to the dual quadratic problem of (P):

min
Q∈M2

E

[
1

S0
T

dQ

dP

]2

. (D)

11



It is well-known that under the assumption (6), such a measure P̃ exists and belongs to
M2.

By reproducing exactly the same arguments as in Section 4 of GLP, one can easily see
that V (ã) > 0, so that we can use it as a numéraire called hedging numéraire, and that P̃
is related to ã by

dP̃

dP
=

VT (ã)S0
T

E
[
VT (ã)S0

T

] (13)

Following GLP, we will solve problem (H (x)) by transforming it into a simpler one
corresponding to the martingale case thanks to the artificial extension method. Let us
consider the hedging numéraire ã and the associated ã-extended assets family {V (ã), S0, S}.
We can define the equivalent ã-martingale measure P̃ (ã) given by the relation

dP̃ (ã)

dP
=

VT (ã)2

E [VT (ã)]2
(14)

and we call it the variance-optimal ã-martingale measure. Let us consider the quadratic
optimization problem

Jea(x, F ) = min
φ(ea)∈Φ(ea)

E eP (ea)

[
F

VT (ã)
− x−

∫ T

0
φt (ã) dXt (ã)

]2

(Hea (x))

A straightforward extension of Proposition 5.1 in GLP gives that problems (H (x)) and
(Hea (x)) are equivalent in the following sense: if θ∗ and φ∗(ã) are the unique solutions of,
respectively, problem (H (x)) and problem (Hea (x)), then they have the same value process,
i.e.

S0
t

(
V0 +

∫ t

0
ϑ∗sd(S/S

0)s

)
= Vt(ã)

(
V0 +

∫ t

0
φ∗s(ã)dXs(ã)

)
, t ∈ [0, T ]. (15)

Moreover, the relation (5.2) in GLP, between their minimal quadratic risks, is still verified,
i.e.

J (x, F ) = E [VT (ã)]2 Jea (x, F ) . (16)

Now since P̃ (ã) ∈ Me
2(ã), the continuous process X(ã) is a locally square integrable mar-

tingale under P̃ (ã). Furthermore, being F square integrable under P , the claim F/VT (ã) is
square integrable under P̃ (ã). The infinite-dimensional GKW-projection theorem (Propo-
sition 4) implies that there exists a U -valued predictable process φF (ã) satisfying

E eP (ea)

[〈∫
φF (ã) dX (ã)

〉

T

]
<∞

and a real-valued square integrable P̃ (ã)-martingale R̃(ã), orthogonal to X(ã) under P̃ (ã),
such that

F

VT (ã)
= E eP (ea)

[
F

VT (ã)

]
+

∫ T

0
φF (ã) dX (ã) + R̃T (ã) . (17)

12



Clearly, the solution φ∗(ã) to problem (Hea (x)) is given by the integrand in the decomposi-
tion (17), i.e. φ∗(ã) = φF (ã), and the associated minimal quadratic risk of problem (Hea (x))
is given by

Jea (x, F ) =

(
E eP (ea)

[
F

VT (ã)

]
− x

)2

+ E eP (ea)

[
R̃T (ã)

]2
. (18)

We now summarize how to “theoretically” solve our initial infinite-dimensional MVH-
problem (H (x)): compute the hedging numéraire ã and consider the MVH-problem (Hea (x))
corresponding to the price process X(ã), the strategies set Φ(ã) and the probability P̃ (ã),
which is a martingale measure for the new integrator; the GKW-projection theorem gives
its unique solution φ∗(ã). Now, in order to find the optimal strategy ϑ∗, solve with respect
to ϑ the following stochastic equation:

S0
t

(
V0 +

∫ t

0
ϑsd(S/S

0)s

)
= Vt(ã)

(
V0 +

∫ t

0
φ∗s(ã)dXs(ã)

)
, t ∈ [0, T ]. (19)

Observe that Proposition 9 ensures the existence of a solution for this equation.

We conclude this section by considering the problem

min
x∈R

J (x, F ) , (H)

which corresponds to the projection of F on the closed subspace {GT (x,Θ) : x ∈ R} of L2(P )
(to see this use the same argument as in GLP, p. 195). The solution x∗(F ) to problem (H)
is called the approximation price for F (see Schweizer [22]) and is a generalization of the
usual arbitrage-free price for F . From (16), (18) and Proposition 8 one can easily deduce
that

x∗ (F ) = E eP

[
F

S0
T

]
, (20)

so that, even in this setting, the VOMM can be interpreted as a viable price system corre-
sponding to a mean-variance criterion.

6 Finite-dimensional MVH problems

Let n ≥ 1 be given. We denote by F
n = {Fn

t : t ∈ [0, T ]} the (completed) filtration
generated by the n-dimensional primitive assets family {S0, S

n
} where S

n
= (S1, . . . , Sn),

Fn = Fn
T , by Pn the restriction on Fn of the probability measure P and we set

Mn
2 = {Qn probability measure on Fn : Qn ≪ Pn,

1

S0
T

dQn

dP
∈ L2 (P ) , S

n
/S0 is a local Qn-martingale

}

and
Mn,e

2 = {Qn ∈ Mn
2 : Qn ∼ Pn} .
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Assumption (6) ensures that, for all n ≥ 1, the set Mn,e
2 is not empty.

Consider the following n-dimensional mean-variance hedging (n-MVH) problem for a
given contingent claim F ∈ L2(P ) and an initial endowment x ∈ R:

min
ϑn∈Θn

E

[
F − S0

T

(
x+

∫ T

0
ϑn

t d
(
S

n
/S0

)
t

)]2

, (Hn (x))

where Θn denotes the set of all R
n-valued S

n
/S0-integrable F

n-predictable processes ϑn

such that S0
T

∫ T

0 ϑn
t d(S

n
/S0)t ∈ L2(Fn, P ) and for all Qn ∈ Mn

2 , the process
∫
ϑnd(S

n
/S0)

is a Qn-martingale. All the objects we have introduced in the previous two sections have
their n-dimensional counterparts, their notation and financial interpretations will be self-
evident.

The aim of this section is to study the asymptotical behavior, as n→ ∞, of the sequence
(ϑn,∗)n≥1, where ϑn,∗ is the unique solution to problem (Hn (x)).

Let us consider the following finite-dimensional dual problem associated to the assets
family {S0, S

n
}, n ≥ 1:

min
Qn∈Mn

2

E

[
1

S0
T

dQn

dPn

]2

. (Dn)

Under the standing assumption (6), problem (Dn) admits a unique solution P̃n ∈ Mn
2 ,

which we call n-dimensional variance-optimal martingale measure (abbr. n-VOMM).
Following Delbaen and Schachermayer [7], we denote Kn

0 the subspace of L∞(Fn, P )
spanned by the stochastic integrals of the form

fn = h′n

((
S

n
/S0

)
τ2
−

(
S

n
/S0

)
τ1

)

where τ1 ≤ τ2 are F
n-stopping times such that the stopped process (S

n
/S0)τ2 is bounded

and hn is a bounded R
n-valued Fn

τ1
-measurable function.

We denote by K̂n
0 the closure of Kn

0 in L2(P ) and set K̂n := span(Kn
0 , 1). Furthermore,

K̂0 denotes the closure of K0 := ∪n≥1K
n
0 ⊂ L∞(Fn, P ) in L2(P ) and K̂ = span(K0, 1).

Assuming (6), we deduce from Lemma 2.1(c) in [7] the following characterizations of P̃
and P̃n (here we identify any measure Q with the linear functional EQ[·] and linear func-
tionals on L2(P ) with elements of L2(P )):

P̃ (resp. P̃n) is the unique element of K̂ (resp. K̂n) vanishing on K̂0 (resp. K̂n
0 ) and

equaling 1 on the constant function 1.

Given this characterization, an immediate application of the projection theorem for
Hilbert spaces leads to the following

Proposition 11 Assume (6). The sequence P̃n converges in L2(P ), as n → ∞, to the
VOMM P̃ solution to problem (D).
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Now, we consider the following n-MVH problem:

min
ϑn∈Θn

E

[
S0

T

(
1 +

∫ T

0
ϑn

t d
(
S

n
/S0

)
t

)]2

(Pn)

and we set

Gn
T (x,Θn) :=

{
S0

T

(
x+

∫ T

0
ϑn

s d
(
S

n
/S0

)
s

)
: ϑn ∈ Θn

}
.

Under (6), each problem (Pn) has a solution ãn ∈ Θn , which leads to a unique optimal

terminal wealth V n
T (ãn) = V 1,ean

T = S0
T (1+

∫ T

0 ãn
t d(S

n
/S0)t). As in GLP and in the previous

section, one has V n(ãn) > 0 a.s., so that one can use it as a numéraire called n-dimensional
hedging numéraire. We define the n-dimensional variance-optimal ãn-martingale measure
by the relation

dP̃n (ãn)

dPn
=

V n
T (ãn)2

En

[
V n

T (ãn)
]2

and consider the n-dimensional analogue of problem (Hea (x)):

min
φn(ean)∈Φn(ean)

E eP n(ean)

[
F

V n
T (ãn)

− x−

∫ T

0
φn

t (ãn) dXt (ãn)
n
]2

(Hean

n (x))

whereX(ãn)
n

= X
n
/V n(ãn) and Φn(ãn) is the set of all R

n+1-valued X(ãn)
n
-integrable pre-

dictable processes such that V n
T (ãn)

∫ T

0 φn
t (ãn)dXt(ãn)

n
∈ L2(Fn, P ) and for all Qn(ãn) ∈

Mn
2 (ãn), the process

∫
φn(ãn)dX(ãn)

n
is a local Qn(ãn)-martingale.

We recall that, for all n ≥ 1, the solution to problem (Hean

n (x)) is given by the R
n+1-

valued predictable integrand φn,∗(ãn) satisfying the integrability condition

E eP n(ean)

[〈∫
φn,∗ (ãn) dX (ãn)

n
〉

T

]
<∞

in the following GKW-decomposition

F

V n
T (ãn)

= E eP n(ean)

[
F

V n
T (ãn)

]
+

∫ T

0
φn,∗ (ãn) dX (ãn)

n
+ R̃n

T (ãn) , (21)

where R̃n(ãn) is a real-valued square integrable (Fn, P̃n(ãn))-martingale, orthogonal to
X(ãn)

n
under P̃n(ãn).

Proposition 12 Let ϑn,∗ and φn,∗ be solutions to problems (respectively) (Hn (x)) and
(Hean

n (x)) for all n ≥ 1. Then we have the following assertions:

1.
∫ T

0 ϑn,∗
t d(S

n
/S0)t converges to

∫ T

0 ϑ∗td(S/S
0)t in L2(P ) as n → ∞, where ϑ∗ is the

solution to problem (H (x));
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2. V n
T (ãn)

∫ T

0 φn,∗
t (ãn)dXt(ãn)

n
converges to VT (ã)

∫ T

0 φ∗t (ã)dXt(ã) in L2(P ) as n→ ∞,
where φ∗ is the solution to problem (Hea (x)).

Proof. 1. It suffices to note that for all n ≥ 1, S0
T

∫ T

0 ϑn,∗
t d(S

n
/S0)t is the orthogonal

projection of S0
T

∫ T

0 ϑ∗t d(S/S
0)t onto the subspace Gn

T (0,Θn) closed in L2(P ).
2. By Proposition 3.2 of GLP and Proposition 9 we have, respectively, that for all n ≥ 1

S0
T

(
x+

∫ T

0
ϑn,∗

t d
(
S

n
/S0

)
t

)
= V n

T (ãn)

(
x+

∫ T

0
φn,∗

t (ãn) dXt (ãn)
n
)

and

S0
T

(
x+

∫ T

0
ϑ∗td

(
S/S0

)
t

)
= VT (ã)

(
x+

∫ T

0
φ∗t (ã) dXt (ã)

)
.

Then assertion 2. follows easily. �

Remark 13 We point out that, with respect to the Emery topology, used to prove Proposi-
tion 9, the L2(P )-convergence works only for the finite-dimensional optimal hedging strate-
gies. Then, to establish the correspondence between the sets Θ and Φ(a) of all strategies,
one has to deal with convergence in S(P ).
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