

Do polyethylene terephtalate microplastics (PET-µPs) affect or suffer the effects by the sea urchin *Paracentrotus lividus*?

Beatrice De Felice*1, Cinzia Ferrario1, Stefano Gazzotti2, Marco Aldo Ortenzi2, Michela Sugni1, Marco Parolini1

¹ University of Milan, Department of Environmental Science and Policy, Via Celoria 26, I-20133 Milan, Italy ² Laboratory of Materials and Polymers (LaMPo), Department of Chemistry, University of Milan, via Golgi 19, I-20133, Milan, Italy *e-mail: beatrice.defelice@unimi.it

BACKGROUND

Microplastic (μPs) contamination in marine ecosystems is of growing concern. A number of monitoring surveys have shown that μPs composed by different polymers are floating in surface waters, but many of them sink to bottom sediments. However, the information on the toxicity caused by the exposure to μPs reaching sediments towards benthic marine organisms is still scant.

In addition, most of the ecotoxicological studies on μPs have been focused only on the effects caused by the exposure to plastic items towards the organisms, utterly neglecting the potential biota-induced (physico-chemical) alterations of μPs following ingestion by the organisms, which can affect their environmental fate.

1.EFFECTS OF PET-µPs ON SEA URCHINS

We investigated the ingestion and the potential adverse effects induced by 7-days dietary exposure to three environmentally relevant amount (0.03 - 0.3 - 3 g PET- μ Ps) of micronized, irregular shaped and sized PET- μ Ps towards a benthic grazer, such as the sea urchin *Paracentrotus lividus*.

2.EFFECTS ON PET-μPs INDUCED BY SEA URCHINS

We investigated the potential alteration of μPs structure/surface and PET macromolecular chain due to the ingestion and the permanence of PET- μPs within the sea urchin digestive tract.

MATERIALS AND METHODS

EXPERIMENT 1

- ENT 1
- dietary exposure for 7 days;
- irregular shaped PET- μ Ps with size range: <50 μ m (6.4%); 50<x<100 μ m (8.1%); 100<x<500 μ m (68.5%); 500<x<1,000 μ m (17.1%);
- three doses: 0.03 0.3 3 g PET-μPs, corresponding to 760 7,600 76,000 particles, and 8 80 800 particles/g respectively;
- at the end of the experimental period animals were sacrificed, dissected and the oesophagus was collected:
 - the proximal (to the mouth) part was used for BIOMARKER ANALYSES (ROS, SOD, CAT, GPx, GST, LPO);
 - the distal part was used for HISTOLOGICAL ANALYSES (Bouin's fixative).

EXPERIMENT 2

- dietary exposure for 7 days;
- irregular shaped PET- μ Ps with size range: <50 μ m (6.4%); 50<x<100 μ m (8.1%); 100<x<500 μ m (68.5%); 500<x<1,000 μ m (17.1%);
- 9 g of PET-μPs, corresponding to 228,000 particles;
- faecal pellets were daily collected, minced with scissors and left in hydrogen peroxide for 6 days to recover PETµPs;
- at the end of the experimental period the collected PETµPs were analyzed with:
 - SCANNING ELECTRON MICROSCOPE (SEM);
 - FOURIER TRANSFORMED INFRARED SPECTROSCOPY (FT-IR).

1.EFFECTS OF PET-µPs ON SEA URCHINS

HISTOLOGICAL ANALYSES:

no differences
 were observed
 at the tissue level between
 control and
 treated groups.

BIOMARKER ANALYSES:

- significant increase in ROS level at the higher concentration;
- significant increase in GPx activity at the low and mid concentration.

RESULTS

2.EFFECTS ON PET-µPs INDUCED BY SEA URCHINS

SEM ANALYSES:

no marked ultrastructural differences were present between control and ingested PET-μPs;

• in some of the ingested particles superficial signs compatible with sea urchin teeth scrapes were observed (arrow).

PET-µPs WITH PUTATIVE TEETH INDENTATIONS

FT-IR ANALYSES:

control PET-μPs showed higher intensities in the 1,700 cm⁻¹ peak and in the 1,000 cm⁻¹ peak;

the peaks around 3,000 cm⁻¹, related to aromatic and aliphatic C-H stretching, were more intense and sharper in control PET-µPs.

- Slight modulation of the sea urchin oxidative status;
- No histological alterations.

NEXT: WILL LONG-TERM EXPOSURE TO PET-μPs ENHANCE THE RISK TO SEA URCHIN?

CONCLUSIONS

- Limited structural and chemical alteration of PET;
- Benthic grazers might contribute to the degradation of μPs .

NEXT: WILL LONG-TERM BIOLOGICAL WEATHERING ENHANCE THE DEGRADATION?